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Abstract

Though linear projections of returns on the slope of the yield curve have contra-
dicted the implications of the traditional “expectations theory,” we show that these
findings are not puzzling relative to a large class of richer dynamic term structure
models. Specifically, we are able to match all of the key empirical findings reported
by Fama and Bliss and Campbell and Shiller, among others, within large subclasses
of affine and quadratic-Gaussian term structure models. Key to this matching are pa-
rameterizations of the market prices of risk that let us separately “control” the shape
of the mean yield curve and the correlation structure of excess returns with the slope of
the yield curve. The risk premiums have a simple form consistent with Fama’s findings
on the predictability of forward rates, and are shown to also be consistent with interest
rate, feedback rules used by a monetary authority in setting monetary policy.
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1 Introduction

Fama (1984a, 1984b) and Fama and Bliss (1987) present evidence of rich patterns of varia-
tion in expected returns across time and maturities that “stand as challenges or ‘stylized
facts”’! to be explained by dynamic term structure models (DTSMs). A large literature has
subsequently elaborated on the inconsistency of these patterns with the implications of the
traditional expectations theory (EH) — there is compelling evidence from yield? and forward-
rate® regressions for time-varying risk premiums. Still largely unresolved, however, is the
broader question of whether, taken together, these historical patterns are “puzzling” within
richer DTSMs, including those commonly implemented by academics and practitioners.
This paper takes up Fama’s challenge and uses several key stylized facts about excess
returns on bonds to “draw out” the essential features of DT'SMs that allow us to explain these
facts. Letting P* denote the price of an n-period zero-coupon bond, R} its corresponding
yield, r; the one-period short rate, and f;* the forward rate for a one-period loan commencing
at date ¢t + n,* our discussion is organized around the following empirical observations:
LPY (i) Linear projections of R};;' — R onto — (R? — ;) give negative, often statistically
significant slope coefficients d¥. (ii) Moreover, the d¥ typically become increasingly
negative with maturity.

LPF Linear projections of ft’_fll — r; onto ft(") — 1 give slope coefficients d/ that are signif-
icantly less than one, particularly for short maturities.

UMY On average, the term structure of treasury bond yields is upward sloping.

We refer to these patterns collectively as LPEH.

Though LPEH has often been viewed as a “puzzle” by term structure modelers,”> we
show that the patterns are in fact generated by two important classes of models: (1) a large
subclass (though not all) of affine DTSMs,® and (2) the family of quadratic-Gaussian term
structure models.” Key to our success at matching LPEH is having market prices of risk
that affect both the (risk-neutral) long-run mean and the rate of mean-reversion of the state
variables. Heuristically, the effect of risk premiums on the long-run mean of the state gives
us the flexibility to match UMY, while their effect on the rate of mean reversion allows us
to match the correlations between holding period returns and the slope of the yield curve
(LPY-LPF). To substantiate this claim, we show empirically that, for plausible parameter
values, LPFEH is well matched by several one- and two-factor DTSMs.

1See Fama (1984b), page 545.

2Gee, e.g., Campbell and Shiller (1991).

3See, e.g., Backus et al. (1997).

‘RP = —InPP/n, r, = R}, and ! = —In(P*/PP).

5As demonstrated by Bekaert et al. (1997a) and Backus et al. (1997), the patterns LPY and LPF cannot
be attributed to small-sample bias in the relevant linear projections. Indeed, they find that the small-sample
bias reinforces the puzzle by making the projection coefficients under LPY less negative than they would be
in the absence of such bias.

6See Duffie and Kan (1996) and Dai and Singleton (2000) for a discussion of affine DTSMs.

"See, e.g., Beaglehole and Tenney (1991) and Ahn et al. (2000).




At the heart of the EH puzzles are the findings, repeated in Table 1,% that coefficients in
the linear projection of R;}' — R} onto — (R} —r,) are statistically significantly negative —
observation LPY(i). These findings were anticipated by Fama (1984a) and Fama and Bliss
(1987) who argued that excess returns are time-varying and typically positively correlated
with the slope of the yield curve.® The challenge we set for DTSMs is not simply to have
a model imply the negative coefficients d? in FH yield projections — essentially any DT'SM
that implies a positive correlation between excess returns and the slope of the yield curve
will give this result.!® Instead, we seek to jointly match the sign (observation LPY (i)) and
maturity structure (observation LPY(ii)) of the d¥, and observation UMY.

n

Table 1: Campbell-Shiller Long Rate Regression

Estimated slope coefficients d,, from the indicated linear projections using the
smoothed Fama-Bliss data set. The maturities n are given in months. See also
Backus et al. (1997), column 1 of Tables 1 and 6.

RE:‘JI) — R} = constant + d¥ (R} —r¢)/(n — 1) + residual

Maturity 3 6 9 12 24 36 48 60 84 120
dy -0.428 | -0.883 | -1.228 | -1.425 | -1.705 | -1.190 | -2.147 | -2.433 | -3.096 | -4.173
se. || (481) | (.640) | (.738) | (.825) | (1.120) | (1.295) | (1.418) | (1.519) | (1.705) | (1.985)

ft(f; Y _ p, = constant + df ( () _ rt) + residual

Maturity 3 6 9 12 24 36 48 60 84 120
dfl 0.731 | 0.797 | 0.851 | 0.891 0.946 0.958 0.962 0.964 0.964 0.963
s.e. (.091) | (.057) | (.046) | (.039) | (.024) | (.017) | (014) | (.012) | (.011) | (.010)

“Affine” DTSMs are a natural place to begin our exploration of LPEH both because of
their historical prominence and the fact that optimal forecasts of excess returns take the form
of the linear projections extensively studied in the literature on EH. Standard formulations
of affine DT'SMs (e.g., as parameterized in Dai and Singleton (2000)) have the market prices
of risk proportional to factor volatilities. As such, the flexibility of a particular affine model
to match LPEH will depend in part on how many of the state variables have time-varying
volatilities.

Within CIR-style models, non-zero risk premiums affect the rate of mean reversion, but

8We are grateful to Backus et al. (1997) for providing the smoothed Fama-Bliss data used in our analysis.
The data are monthly from February, 1970 through December, 1995.

9Fama and Bliss (1987) focused on the slope of the forward rate curve, but as we shall see subsequently
the basic intuition from their analysis carries over to the slope R} — r;.

10 If the risk premium were constant, then an expected rise in the short-term rate would lead to an
expected capital loss on long-term bonds. Consequently, the slope of the yield curve would increase. This
is the intuition used to justify the expectations hypothesis. If the risk premium is time-varying, and in
particular is negatively correlated with the short-term rate, then an expected rise in the short-term rate has
two opposing effects. First, holding the risk premium fixed, the price of long-term bonds will fall. Second,
a falling risk premium tends to increase the values of long-term bonds. The expectations puzzle arises
whenever the second effect dominates the first, causing the slope of the yield curve to fall as interest rates
rise — in which case the slope of the yield curve and the risk premium are positively correlated.



not the long-run mean, of the state process.!’ Consequently, they do not meet our conditions
for matching LPEH. In fact, Figures 4 and 6 in Roberds and Whiteman (1999) show that
(one- and two-factor) CIR-style models are wholly incapable of matching LPY for their sam-
ple period and treasury yields, even when the parameters of their DTSMs are calibrated to
match their counterparts of the d¥. Moreover, Backus et al. (1997) demonstrate analytically
that, in order for a (one-factor) CIR-style model to potentially match LPY, it must imply a
downward sloping term structure of mean forward spreads {E[f* — 4]}, contrary to UMY.

At the opposite end of the spectrum of conditional volatility is the case of Gaussian
models. With their constant volatilities and market prices of risk, the EH null hypotheses
d¥ =1 1is true! Thus, if we are to be successful at matching LPY within a Gaussian model
we must step outside the Dai-Singleton family of affine models. Accordingly, we focus on
an “extended” Gaussian model in which the market prices of risk are affine functions of the
state. This state-dependence, in turn, implies that the term premium p} = f — Ey[rii,]
is an affine function of the slope of the forward curve, f;* — r;, which is reminiscent of the
projections in Fama (1984a) and Fama and Bliss (1987) of excess returns onto f;*—r;. In fact,
we show that it both generates projection equations consistent with their empirical findings
and resolves LPEH. Fisher (1998) independently proposed a similar potential resolution of
LPY within a two-factor Gaussian model.?

Lying between these two cases — CIR-style and Gaussian models — are what we refer
to as the A,,(N) families of N-factor models,'® where m is the number of state variables
driving the volatilities of all N state variables and 0 < m < N. The m volatility factors
have market prices of risk that affect the rates of mean reversion of the states as in CIR-style
models, while the risk premiums of the remaining N — m “non-volatility” factors affect the
long-run means of the states as in standard Gaussian models. Thus, these models meet
our heuristic criteria for matching LPEH. Additional flexibility is obtained by extending a
standard A,,(N) model to allow the N — m non-volatility factors to have state-dependent
risk premiums as in the “extended” Gaussian case.

These extended affine models are special cases of the “essentially” affine family of models
proposed by Duffee (1999).!* Duffee shows that extending the risk-premium specifications
in standard affine models improves their forecasting performance and helps in matching
the coefficients of variation of yields. We provide the complementary, formal assessment of
whether affine models also match LPFEH and, in particular, the maturity patterns displayed
in Table 1. Of equal interest, we assess the relative importance, within the affine family, of
extending the risk premium specification, allowing for time-varying volatility, and allowing
for non-zero factor correlations in matching LPEH.

We also show that quadratic-Gaussian models are inherently capable of (qualitatively)
matching LPEH, because their market prices of risk are richer than those in standard affine

HSee, for example, Chen and Scott (1993), Pearson and Sun (1994), and Duffie and Singleton (1997).

12We are grateful to Greg Duffee for bringing this unpublished manuscript to our attention. While Fisher
shows that his model qualitatively resolves LPEH, he does not compare the model-implied and historical
projection coefficients d¥, as is done subsequently here in Section 5, to assess whether extended Gaussian
models quantitatively resolve LPEH.

13Gee Dai and Singleton (2000)for a canonical representation of these families of affine DTSMs.

MDuffee’s “essentially” affine models are “affine” as this term was originally used by Duffie and Kan

(1996), so we will use the shorter “affine” term when referring to the models he studied.



models.'® Indeed the basic structure of the market prices of risk in quadratic- and extended-
Gaussian DTSMs is the same.

Backus et al. (1997) also present empirical evidence against the related EH null hypothesis
of df = 1, particularly at the shorter maturities— observation LPF; see the lower half of
Table 1. They argue that this pattern can be matched by a “negative CIR” process. Our
resolution of LPEH (and hence LPF) shares some of the same features as their negative CIR
process. However, we believe that the models studied here more clearly highlight the essential
features of DT'SMs that generate LPF. In addition, we provide a link to, and reinterpretation
of, the modeling implications of the forward-rate regressions in Fama and Bliss (1987).

To complement these qualitative assessments, we explore the quantitative fit of affine
DTSMs to LPEH in two ways. First, for the case of one-factor Gaussian and Quadratic-
Gaussian models, we illustrate the central points of this paper by showing that the parameters
can be calibrated so that the model-implied projection coefficients match, remarkably closely,
the historical coefficients in Table 1, while at the same time matching UMY. Additionally,
we find empirically that (for the purpose of matching LPEH) the one-factor quadratic- and
extended-Gaussian models offer essentially equivalent flexibility — neither seems to dominate
the other.

Of course, we do not presume that one-factor models capture the rich variation over time
in yield curves. Nor is finding admissible parameters that match LPFEH the same as showing
that the same parameters match LPFEH and other aspects of the distributions of yields, say
those summarized by the likelihood function of the data. Both of these concerns are addressed
in an extensive exploration of LPEH within the families of two-factor extended Gaussian
(Ap(2)) and mixed Gaussian-square-root (A;(2)) models. We fit a variety of models in these
families by the method of full-information maximum likelihood (ML) and then compare the
model-implied and historical versions of d¥. In this manner we are able to assess more
formally whether ML estimates of two-factor affine models (extended and standard) match
LPFEH.

The remainder of this paper is organized as follows. In Section 2 we derive our fundamen-
tal “risk-premium adjusted” yield and forward rate projections that serve as the basis of our
subsequent econometric analysis. Section 3 discusses in more depth our parameterizations of
the market prices of risk and their link to LPEH. Additionally, we provide two “structural”
interpretations of our parameterizations of risk premiums, one based on the representative
agent, stochastic habit formation model in Dai (2000) and the other on the monetary-based
explanation of LPY in McCallum (1994). Section 4 shows empirically that our illustra-
tive one-factor Gaussian DTSMs match LPEH at admissible parameter values. Section 4.3
presents a similar calibration exercise for the one-factor quadratic-Gaussian model. A more
formal and extensive empirical assessment of the fit of two-factor affine DTSMs to LPEH is
presented in Section 5. Concluding remarks are presented in Section 6. Technical details are
collected in an appendix.

15Gee Ahn et al. (2000) and Section 4.3.



2 Risk-Premium Adjusted Projections

If the failure of the EFH hypothesis is due to time-varying risk premiums, then it would
seem that accommodating risk premiums in these projection equations should restore slope
coefficients of one. We begin our exploration of the links between LPEH and DTSMs by
showing a precise sense in which this intuition is correct. The resulting risk-premium adjusted
projection equations serve as the fundamental relations underlying our subsequent empirical
analysis.

2.1 Yield Projections

n—1
Letting D},, = (ln P;j,} - rt> denote the one-period excess return on an n-period bond,
t
then from the basic price-yield relation, the ezpected excess return ef = Ey[D} | can be
expressed as

ef = —(n—1)E; [Riy) = BY] + (R} — 1), (1)

where E; denotes expectation conditioned on date ¢ information. Rearranging (1) gives the
fundamental relation!®
1

n— n 1 n n
E, |RY) — Ry + 1P| = H(Rt —Ty). (2)

There is no economic content to (2) as it holds by definition even without the ezxpectation
operator. Economic content is added by linking F;[D}, ] to the risk premiums implied by an

economic model. Toward this end, we introduce two related notions of “term premiums:”
the yield term premium

n '3 1
G =h—— ZEt[THi]a (3)
=0
and the forward term premium
pi = f{' — Eifrisnl. (4)
Since R} = %222—01 f{, the term premiums p? and ¢} are linked by the simple relation:
n—1
1 )
= — :.
L= Dy (5)
=0

16Expression (2) is formally equivalent to equation (11) of Fama and Bliss (1987), which, in our notation,
is:
n—1 n—1 1 n _ 1 n—1
Et Rt+1 _Rt +th+1 —m( t —T‘t).

We focus on (2) because it is more directly linked to the yield regressions in Campbell and Shiller (1991).



Throughout our analysis we assume that these variables are stationary stochastic processes
with finite first and second moments.
The realized excess return D}, can be decomposed into a pure “premium” part (D;?,)

and an “expectations” part:!7
n—1
b = D+ Y (Bireys — Eyaryy), where (6)
i=1
o= —(n— 1)(017::11 - C?_l) +p?_1- (7)
Since the (Eyryy; — Fiy17i44) have zero date-t conditional means, e} depends only on the
premium term D;%,:'8
ef = By[DfY] = —(n — D) E[ct — ¢ +pp (8)

Thus, we can replace D}, , by D;7; in (2) to obtain

E; |RY — Ry + D = ﬁ(Rt —Ty). (9)

From (9) it follows that the projection of the “premium-adjusted” change in yields,

n—1

n n n— p
Rt+1 Ry (Ct-i—ll — G )+ nt_ 1 (10)

onto the (scaled) slope of the yield curve, (R? —r;)/(n — 1), has a coefficient of one.!® The
FH hypothesis is obtained by setting the risk premiums in (10) to constants.

17Some of the intermediate steps in this derivation are:

n—1

nRy — (n— )RS —ry =nef — (n — 1) + Z Eyrivi — Eyarig)
=1

= —(n=D( — +ZP7 ZP]+Z Eyrevi — Byparesi)-

n
Dt+1

18 Equation (8) implies that E[e}?] = E[pf '] = E[f/*~' — r{], where the second equality follows from the
definition of p;‘_l and the stationarity of r;. This equality seems to have been largely overlooked in the
extant literature on the FH. For instance, Fama (1984b), drawing on results from Fama (1976), uses the
relation (his equation (5) expressed in our notation)

p?_l = Et[D?-H] + Et[Dt+2 D?+11] +...+ Et[Dt2+n—1 - Dt2+n—2]

to conclude that the forward rate f;*~ ! “contains” market expectations about the holding period return
D}, ,. He then computed the sample means of p~ !t and (f~' —r;) and expressed surprise at the finding
that they were nearly the same (Fama (1984b), page 544). In fact, in the population, they are by definition
the same.

19 There is an analogous set of yield projections for the forward rates. Specifically, from the definition
of pf it follows that f; +1 — I = Eip1 (Pegn — Ei[regn]) + (p{:ll — p}). Subtracting rt from both sides,
rearranging, and taking conditional expectations gives Fy| ft’rll —re] = (f —re) + (Ee[py +1 —pp). Thus,
projection of the “premium-adjusted” forward rate, ( ft'ﬁ:ll — 1y — (p;:ll — pP)), onto (ff* — ry) also gives a
slope coefficient of one. In our empirical analysis we will focus on (9). Results for forward rate projections
are available from the authors upon request.



3 Risk Premiums, DTSMs, and LPEH

The challenges set forth by Fama and the studies of LPY in the EH literature are statements
about correlations among yields and, as such, are naturally studied using linear projections.
Therefore, in attempting to generate LPEH within DTSMs we start our inquiry with models
in which conditional expectations are linear in known functions of the state vector, a trait
shared by both affine and quadratic-Gaussian DTSMs.

Consider first the case of affine DTSMs with the instantaneous short rate given by ry(t) =
ap+byY (t) and the N-dimensional state vector Y following, under the “physical” or “actual”
measure, the affine diffusion

dY (t) = k (0 — Y (1)) dt + Sv/S@)dW (1), (11)

where W (t) is an N-dimensional vector of independent standard Brownian motions and S(t)
is a diagonal matrix with the i'* diagonal element given by

[S@))ii = i + BY (2). (12)

The risk-neutral representation of Y (¢) used in pricing is obtained by subtracting 3+/.5(t)A(t)
from the drift of (11), where A(t) is the vector of “market prices of risk.” Standard formu-
lations of affine DTSMs “close” this model by assuming that A(t) is proportional to /S(t)
(see Dai and Singleton (2000) and the references therein):

A(t) = /S@) ko, (13)

where ¢y is an N x 1 vector of constants.

Focusing narrowly on the objective of matching LPEH, we know from previous studies
that this specification imposes potentially severe limitations on a model’s ability to match
first-moment properties of the yield data. In CIR-style models, the «; are zero and the §;
are normalized to vectors with unity in the " component and zero elsewhere, so A;(t) =
Ly;+/Y;(t). Consistent with the observations in Backus et al. (1997), our interpretation of
the difficulty in previous studies of matching LPEH with CIR-style models is that these risk
premiums affect the rate of mean reversion, but not the long-run mean of ¥ under the risk
neutral measure. So matching LPY and UMY simultaneously is challenging, if not infeasible.
Models in Ay (N) are not easily “fixed up” with the particular modifications of the market
prices of risk proposed here without introducing arbitrage opportunities (Cox et al. (1985)).

If the state YV is Gaussian, then S(t) is the identity matrix, A(t) is a vector of constants,
and the EH null hypothesis is true. Accordingly, we extend the basic Gaussian DTSM by
letting the market price of risk be defined by the relation?

YA() = X0+ AY (1), (14)

where )\ is an N x 1 vector and \Y is an N x N matrix of constants. The tension between
UMY and LPF highlighted by Backus et al. (1997) is relaxed by this specification of A(t)

20 Appendix C shows that the conditions for Girsanov’s theorem to apply are satisfied by the measure
change associated with the market price of risk (14) without imposing any restrictions on model parameters
(except for the usual stationarity assumption).




(while preserving no arbitrage): A° controls the shape of the mean yield curve (to make
the mean yield curve upward sloping, make \° as negative as needed) and \Y controls the
time-varying behavior of the excess returns on bonds.

More flexibility is afforded by standard affine models within the sub-families A,,(N) with
m < N. To be concrete, let N =2 and m = 1, so that Y = (Y7, Y,) with factor variances

[S(t)]11 = Yi(?), [S(t)]22 = g + B2Y1(1); (15)

the volatilities of both state variables are driven by Y7, which follows a square-root process.
Substituting (15) into (13), we obtain

A(t) = <\/Y1 @) for, /a2 + ﬁm(t)em) . (16)

As long as ay # 0, then the market prices of risk affect both the mean and persistence of
Y under the risk-neutral measure. This same logic extends more generally to the case of
models in A,,(N) with 0 < m < N and «; # 0 for some m < i < N.

Additional flexibility in matching LPEH is obtained by, following Duffee (1999), extend-
ing the specification of A(t) in A,,(NN) models to satisfy

SV/SEA(E) = ( 0;”021 ) + ( ig A%Q ) Y (), (17)

where \gy is an (N —m) x 1 vector, A} is a mxm diagonal matrix, A\¥, and AL, are mx (N —m)
and (N —m) x (N —m) matrices (all constants), and it is presumed that inf(c; + 5/Y1(t)) > 0
fori=m+1,..., N. Both formulations (16) and (17) will be examined empirically for our
illustrative two-factor (N = 2) models in Section 5.

Another family of DTSMs with the potential to resolve LPFEH is the family of N-factor
quadratic-Gaussian models with the instantaneous short rate ry given by ro(t) = ag+ Y'by +
Y'cyY, where ¢y is an N x N symmetric matrix of constants and Y follows the Gaussian
special case of (11) with S(¢) = Iny. Ahn et al. (2000) show that the market price of risk
in their canonical N-factor quadratic-Gaussian model takes exactly the same form as (14).
Thus, qualitatively, this model inherently gives the requisite flexibility to resolve LPEH.

A natural question at this juncture is: What are the economic underpinnings of our
parameterization of A; in (14)? Following are two possible structural underpinnings of this
affine parameterization within a one-factor Gaussian setting. First, it turns out that Mc-
Callum (1994)’s resolution of the FH puzzle based on the behavior of a monetary authority
is substantively equivalent to our affine parameterization of A;. McCallum (1994) starts by
exogenously specifying the yield premium as an AR(1) process, and the riskless rate process
as an AR(1) process, augmented by a linear policy reaction rule: r, = ory_1 + ARy —1¢) + ;5
where the first term is a mean-reverting, or “smoothing” component, the second term is
a “policy reaction” component with 0 < A < 2 to rule out bubble solutions, and (; is a
policy shock. Under the assumptions that (i) 0 = 1 (which is the case studied by Ku-
gler (1997)), and (ii) the bond yield is linear in the short rate (i.e., Ry = bg + by7;), the
monetary policy rule implies that r; is an AR(1) process with mean reversion coefficient
k= (1—=b1)A/[1+ (1 —by)A]. Supposing that 7 is also AR(1) under the risk-neutral measure



(with mean reversion coefficient %), then b; ~ 1 — £/2 and A = 2x/&. Thus, the condition
0 < X < 2 translates into the condition kK > k > 0. In other words, the constraints on A that
produce McCallum’s “policy reaction” interpretation of interest rate behavior are equivalent
to our state-dependent formulation of the market price of risk.?!

An alternative motivation comes from the general equilibrium production economy with
stochastic habit formation studied in Dai (2000). He shows that, in a neoclassical setting of
consumption, saving, and wealth accumulation with risky production, if an infinitely lived
representative agent has a time-nonseparable preference induced by stochastic habit forma-
tion, then the correlation between the stochastic interest rate and Sharpe ratio of the risky
production technology is necessarily negative under very general economic assumptions. This
negative correlation resolves the LPEH puzzles. The models with affine, state-dependent
market price of risk studied here can be interpreted as zeroth-order approximations to the
interest rate dynamics implied by Dai’s model.

4 LPFH and One-Factor Models

To illustrate the potential of certain affine and quadratic-Gaussian models to resolve the
LPFEH puzzle, we proceed in this section to calibrate one-factor models and verify that LPY
is in fact matched. The case of the one-factor Gaussian model is particularly revealing of the
importance of our state-dependent formulation of the risk premium, since the EH restrictions
are true under the standard Gaussian model with constant premium.

4.1 Econometric Strategy

Our strategy for assessing whether a specific one-factor model can match LPEH is to estimate
the model parameters using the moment equations (9) and (21); compute the model-implied
py and c}, evaluated at the estimated parameters; and, finally, to examine whether the
sample counterparts to the term structures of projection coefficients

cov(Rp = R+ Dy /(n = 1), (R = 1) /(n = 1))
var((R} —r)/(n— 1))

are statistically different from a horizontal line at 1. Finding a model for which the fitted ciﬁ
do not differ significantly from one resolves the LPY puzzle, because it is the model-implied
risk premiums that determine the D}, .

More concretely, to explore the links between DTSMs and LPY, we focus on forward
term premiums. This is equivalent (see footnote 18) to parameterizing the dependence of
ey = Ey[D},] on agents information set, as in Fama (1984a) and Fama and Bliss (1987).
Moreover, from (2) and (8), we can write

7y
n

(18)

Ey [R1:+11 - Rt] = E(Rt — 1) + Ey [Ct+11 -G 1} T, 1P g (19)

21 The special case of A = 2 corresponds to the case of a,, = 0 in our model of risk premia, or to the case of
Ay = 0 (constant market price of risk) in our dynamic model. In this special case, the monetary authority
induces mean reversion in the short rate, but does not induce a differential in the speeds of mean reversion
under the physical and the risk neutral measures. Consequently, the risk premia is constant.
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Thus, given parameterizations of the pj', we have fully determined the yield projections as
well. As shown formally in appendices, all of our illustrative models imply p}’ that are special
cases of

i = 0n +on(f{" = 71) + Bt (20)

where the (6, o, B,) are model-dependent functions of the underlying primitive parameter
vector ¢ describing the state vector and the dependence of ry(¢) and A(t) on Y(¢).

For the one-factor extended and quadratic Gaussian models, calibration is based on the
moment equation (see footnote 19)

Effot —rd — (ff = ro) + (Bupi] — pF) = Erlura] = 0. (21)

For these models, the risk premium parameters «,, and 3, turn out to depend only on the
scalar parameters x and \Y. However, 6, depends, as well, on other parameters of our
illustrative models. Therefore, we proceed by “concentrating” out d, from the empirical
analysis using the observation that (20) and the assumption of stationarity imply

On = (L — ) E[f}" — 1] — BrE[ry]- (22)

Thus, if the model is correctly specified, 6, can be inferred from (o, 8,) and the sample
means of the forward-spot spread and one-period short rate.
We estimate x and \¥ using the moment conditions

Elu}, 2] =0, withz, = (f]* — e, 1), n = 6,12, 24,60, 84, 120. (23)

Only a subset of the maturities between 1 and 120 months are used because the smoothed
Fama-Bliss dataset is interpolated. As a goodness-of-fit statistic we use the minimized value
of the GMM objective function (Hansen (1982)).

This procedure essentially forces our one-factor models to match UMY, while ignoring the
restrictions implicit in the dependence of d,, on the primitive parameters of the model, say <.
Two motivations for starting with this approach are: (1) it highlights the roles of the model
parameters \¥ and & in resolving LPY, and (2) we know a priori that all of the parameters
in ¢ other than x and \Y are available for matching UMY (as well as other features of the
distributions of bond yields). These parameters include \° and the long-run mean 6 of Y.
After showing that our extended Gaussian models match LPY with the §,, concentrated out,
we then show that A\’ and @ (and hence the model-implied §,) can be chosen so that these
models also match the mean yield curve (UMY) almost perfectly, except for the very shortest
maturities.

4.2 Calibration of One-Factor Gaussian Models

In the one-factor Gaussian DTSM the instantaneous short rate is given by ro; = ag+boY;, and
Y; follows a one-dimensional Gaussian process (11) with N =1, S(t) =1, and ¥ = 1.2 The
linearity of our one-factor Gaussian model implies that the yield and forward risk premiums

22The latter is a normalization, imposed without loss of generality (Dai and Singleton (2000)).
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are both affine in Y; equivalently, they are affine in any yield or yield spread that is itself
affine in Y. To facilitate interpretation and comparison with Fama’s analysis, we represent
p} as in (20) with 8, = 0 and

e—nnA __e—knA

M = T wnd (24)

6 = (1—an)(AS —a1) + (1 — o) (B — b)), (25)

where % = k + AY is the mean reversion coefficient under the risk neutral measure, A is the
length of each period, A% and B2 are the intercept and the factor loading on the one-period
forward rate delivered n periods hence, and a; and b; are the intercept and the factor loading
on the one-period zero coupon yield (the short rate). The precise definitions of these loadings
in terms of basic model parameters are given in Appendix A. This one-factor model maps
directly, using (7), to Fama (1976)’s regression model of excess returns, which implicitly
assumes that, in our notation, E[D},|f* — r,] = E[D{|f* — 4] is linear in f}» — ry. Of
course Fama does not impose the dynamic restrictions (24) and (25), because (20) (with
Bn = 0) is essentially the starting point of his empirical analysis.

The estimates (%, AY) are (0.0012, 0.0008) with asymptotic standard errors (0.029,0.019),
respectively. Though both x and \Y are statistically insignificant individually, the ratio %
is significant: the point estimate of the ratio is 0.6577 with standard error 0.2967. This
finding seems to be a consequence of the fact that, when b;)th x and \Y are very small, o,
liA47n
the converged estimates of xk and \Y, the GMM objective function is essentially flat along
the hyperplane defined by \Y = 0.6577x. The GMM test statistic is x?(10) = 2.52 so the
overidentifying restrictions are not rejected.

Figure 1 displays the estimated slope coefficients CZ% implied by the one-factor model. For
comparison, we have also plotted the estimated d¥ from Table 1, obtained under the null
hypothesis that p} is constant for all n. For all but the shortest maturities, d¥ lie within one
sample standard error of one.?®> We conclude that a one-factor Gaussian DTSM with affine
dependence of the market prices of risk on the state variable Y potentially generates a risk
premium specification that is consistent with the historical patterns LPY. Put differently,
our (calibrated) adjustments for risk premiums move the EH projection coefficients d¥ from
values significantly below one to fitted values for Jg that are largely insignificantly different
from one.

It remains to explore the abilities of the model to match the average slope of the yield
curve (UMY), conditional on the values of x and A\¥ that match LPY. This does not present
a serious challenge for the one-factor Gaussian model, because the three parameters 0, \°,
and o have not been used in matching LPY.

In the one-factor Gaussian model, the population mean of a zero coupon yield with
maturity » months is given by (see Appendix A.2)

is almost independent of n and is well approximated by . Thus, in the region around

R" = a,, + b,0, (26)

23These standard error bands reflect the sampling variation of the parameter estimates, but not of the
sample moments used in estimating d¥. Accounting for the latter would most likely widen these bands.
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Figure 1: EH Projections Under One-Factor Gaussian Model

Plot of yield projection coefficients CZ% implied by the one-

factor Gaussian model against maturity n.

120

(27)

We proceed with the values of x and AY used to match LPY. We estimate o from the
sample volatility of the monthly changes of the one-month yield: o = v/12std(r, — r441),
thereby imposing the discipline of matching the sample volatility of the short-term rate. We
then calibrate \° and 6 jointly so that the R? match their sample counterparts as closely as
possible in the sense of mean-squared errors. This results in the parameter values k = 0.0012,

AY = 0.0008, o = 2.638%, 6 = 7.309%, and A\° = —0.0049.

Figure 2 plots the historical sample mean of the zero yield curve (circles) and its model-
implied counterpart (solid line). We see that the mean curve generated from the model is
almost on top of the sample mean curve. The most notable discrepancies are at the short
end: the average 1-month yield is about 6.9%, whereas the model implies a mean of 7.3%.
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Figure 2: Average Yield Curve

Model-implied and sample average yield curves for U.S.

Treasury zero-coupon bonds.
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4.3 Calibration of One-Factor Quadratic-Gaussian Models

Shifting attention to the quadratic-Gaussian models, the zero coupon bond price P(t, ) is
given by

—log P(t,7) = A(t)+ Y'B(r) + Y'C(1)Y (28)
where
B(r) :(%Zii+ﬂ@@%+<?%glggwm) (20)
O(r) = Qe (30)
Q) = o (3D

(T + &)(e2l'm — 1) 4+ 2T’

with I'? = &2 + 2¢y0?. The expected short rate is
Efriin] = o+ Y +w, Y2 (32)
with the coefficients expressed as functions of the primitive parameters in Appendix B.

Letting a; = A(A)/A, by = B(A)/A, ¢; = C(A)/A, and HS = [H((n +1)A) — H(nA)]/A
for any coefficient H, we show in Appendix B that the forward risk premiums in this model
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can be expressed as in (20) with coefficients

_ Un/bi —wn/ci
0 = 1 B /by — Cf[er (%)
Bn = (By/bi—uvn/bi) = (B /by — 1)on. (34)

Thus, the one-factor quadratic Gaussian model implies “two-factor” risk premium model in
that p} depends linearly on both f* and r;. In fact, the forward risk premiums in the two-
factor, extended Gaussian and one-factor quadratic-Gaussian models have the same structure
(see Section 5), but they are not identical because the dynamic restrictions imposed on the

parameters «,, and 3, are different.

Figure 3: Linear vs Quadratic Gaussian Models

Model-implied estimates of forward projections coefficients cZ[l
from the one-factor Gaussian and quadratic-Gaussian DTSMs.
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Figure 3 displays the forward-rate projection coefficients JfL implied by the one-factor
quadratic-Gaussian model estimated with the same moments used in estimating the one-
and two-factor Gaussian models. We see that the quadratic-Gaussian model also does a
good job of matching the pattern LPF at all but the shortest maturities. What is perhaps
most striking about Figure 3 is that the estimated J{; from the one-factor extended Gaussian
and quadratic-Gaussian DTSMs are virtually on top of each other. In other words, with
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regard to their abilities to match LPEH, these two one-factor models perform equally well.
Evidently, for the purpose of matching LPF, the dynamic restrictions implicit in (20) for
the one-factor quadratic-Gaussian model are more restrictive than those in the two-factor
Gaussian model.

The reason that the one-factor extended Gaussian and quadratic-Gaussian models give
virtually the same results is that the estimated mean reversion coefficients and the quadratic
constant ¢, are small.?*

5 LPFEH and Two-Factor Models

The preceding calibration of one-factor models, while demonstrating that LPEH can be
matched by choice of admissible parameters in certain DTSMs, leaves open the question of
whether we can simultaneously match the patterns of LPEH and other, higher-order moments
of yield distributions. We turn next to a more demanding assessment of two-factor affine
DTSMs by computing maximum likelihood (ML) estimates of models within the families
Ap(2) and A;(2) and examining whether the implied risk premiums, computed at the ML
estimates, resolve the LPEH puzzles. Our shift to two-factor models is in recognition of
the widely documented observation that more than one risk factor is necessary to describe
yield curve dynamics. Extending our analysis to more than two factors would, of course,
only increase the flexibility we would have in matching LPEH (and other features of yield
distributions) at ML estimates of affine models.

All of the models examined have r(t) = Y;(¢) + Y2(¢) and the state-vector Y following
special cases of the bivariate diffusion:

d}/l(t) = H11(01 — Yi(t)) dt + o11\V 01 + ,B1Yi(t)dBl(t), (35)
AYo(t) = [—knVi(t) + kaa(0s — Ya(t))] dt + oas dBa(t) (36)

with cov(dBi(t),dBy(t)) = 0 and market prices of risk satisfying
0 A0
SVSOAG) =( o |+ W v YO, (37)
)\2 )\21 )\22

with all of the non-zero elements of A\’ and AY being scalars. The specific models and
the constraints they impose on (35) - (36) are given in Table 2.2° The first two are two-
factor Gaussian models, with the suffix “SG” denoting state-dependent risk premiums on

248trictly speaking, the quadratic model does not nest the one-factor Gaussian model, since in the limit as
co — 0 the forward risk premium model implied by the quadratic model maintains its two-factor structure,
but with f* —r; and r; being perfectly collinear. Consequently, o, and 3, are not identified in this limiting
case.

ZThere are several dimensions along which these models are not “maximal” within their families (Ag(2)
and A;(2), respectively). In the case of the Gaussian models, we are free to relax the constraints A}, = 0 and
A = 0. Upon freeing up these constraints, we found little change in the value of the log-likelihood function
and virtually no improvement in matching LPEH within the family Aq(2).

In the case of the A;(2) models, we could let the conditional variance of Y, have affine dependence on
Y1. However, this presents potential numerical identification problems and the likelihood function is already
quite flat with the chosen set of free parameters (see Table 3), so we proceed with constant volatility oa2.
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the Gaussian factors and the final suffixes “U” and “C”denoting k91 # 0 and k91 = 0,
respectively (uncorrelated and correlated risk factors due to feedback in the drift). The last
four models have Y; following a square-root process and Y, following a Gaussian process.
The suffix “CG” means that the second, Gaussian factor has a constant (state-independent)
risk premium.

Table 2: Two-Factor Affine Models and Their Constraints

Model Constraints

()SGU a1:1,51:0,1€21:0
AO(Q)SG C a1 = 1, ,61 =0
A(2)CGU [a1 =0, B =1, ki1 = 0, \l, = 0, AL, =
A1(2)CG—C a1 = O 51 = 1 )\21 = 0 )\ 29 = =0
A1(2)SG—U a1 = 0, ﬁl = 1, Ko1 = 0
AI(Q)SG-C o = 0, ﬂl =1

The ML estimates, their estimated standard errors, and the values of the log-likelihood
functions are displayed in Table 3.2 All of the models have one factor (the first) mean
reverting faster than the other (second) factor, consistent with previous empirical studies
of two-factor models. For the most flexible “SG-C” models with each of the families Ay(2)
and A;(2), both risk factors show substantial mean reversion under the physical measure.
However, the rates of mean reversion of the second factor under the risk-neutral measure
(Kaa + Ay) are relatively much slower (0.0025 and 0.0025, respectively).

Another notable feature of these estimates is that in all cases where ko1 is a free parameter,
ko1 1s estimated to be substantially negative implying that feedback through the drift matrix
k induces negative correlation among the two factors.?” Importantly, within the family
An(N), and in particular Ay(2), with all N factors driving volatilities (CIR-style models),
it is theoretically impossible to accommodate this negative feedback (Dai and Singleton
(2000)). Therefore, the fact that the data calls for negatively correlated factors rules out
a priori consideration of this family of models. This limitation of the A5(2) family may
partially explain why Roberds and Whiteman (1999) were unable to match LPEH with a
two-factor CIR-style model.

Feedback in the drift is not the only source of factor correlations under the risk-neutral
measures, however. With \Y; # 0, the state-dependence of the risk premiums for the second
Gaussian factor is a second source of factor correlation. Interestingly, in the Ay(2)SG-U

Z6Estimation of the Ag(2) models is a standard likelihood problem. Full information, maximum likelihood
estimates of the A;(2) models were obtained using the methods proposed by Pedersen and Singleton (1999).
They exploit the affine structure of the model to approximate the true, unknown conditional density of Y
and use this approximate density function in constructing the likelihood function of the data. In all cases,
standard errors were computed using the sample “outer product” of the scores of the log-likelihood function.
For most cases, comparable standard errors were obtained from the sample Hessian matrix.

2"In our analysis of three-factor models for swap rates (Dai and Singleton (2000)) we also found that
allowing for negative correlations among the risk factors substantially improved the fits of standard affine
models to the conditional distributions of yields, including the conditional means (yield forecastability).
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model with kg = 0, A\¥; < 0 so the state dependence of the second risk premium induces
negative correlation under the risk-neutral measure even though it is absent under the physi-
cal measure. On the other hand, in the Ay(2)SG-C model with kg # 0, AY; > 0 so the latter
state dependence tends to mitigate the negative correlation under the physical measure. Fi-
nally, in the case of model A;(2)SG-C, the large negative value of \¥, induces substantially
more negative correlation under the risk-neutral measure than (the negative correlation)
under the physical measure.

Table 3: ML Estimates of the Two-Factor Affine Models

(Standard errors are in parenthesis.)

Parameter A0(2)SG-U AO (2)SG-C A]_ (2)CG-U A]_ (Q)CG-C A]_ (2)SG-U A]_ (2)SG—C
0, 0.00001 0.00001 0.0425 0.0447 0.0425 0.0452
(.001) (.001) (.005) (.006) (.010) (.007)

02 0.0702 0.0672 -0.0021 0.0114 0.0212 0.0224
(.014) (.016) (1.05) (.851) (.021) (.004)

K11 0.6489 0.6500 0.9373 0.7513 0.9372 0.4887
(:211) (.209) (.110) (.097) (.114) (.132)

K21 * -0.2353 * -0.2591 * -0.1666
(.078) (.029) (.040)

K22 0.1217 0.1219 0.0020 0.0024 0.1231 0.3434
(.038) (.001) (.001) (.001) (.086) (.067)

o11 0.0236 0.0236 0.1092 0.1032 0.1092 0.0995
(.0005) (.0005) (.004) (.003) (.009) (.003)

022 0.0101 0.0099 0.0116 0.0084 0.0116 0.0053
(.001) (.0007) (.0003) (.0003) (.0004) (.001)

A 0.0900 0.0877 -0.2173 -0.0446 -0.2169 0.2207
(:211) (.210) (.106) (.091) (.106) (.040)

Y -0.1080 0.1126 * * * -0.6776
(.079) (.121) (.272)

A -0.1192 -0.1194 * * -0.1211 -0.3409
(.037) (.050) (.009) (.067)

Ao2 0.0072 0.0069 -0.0014 -0.0125 0.0001 -0.0005
(.003) (.003) (.002) (.002) (.0008) (.003)

Likelihood 36.547 36.557 36.668 36.712 36.670 36.733

The model-implied d? from the A(2) and A;(2) models are displayed in Figures 4
and 5, respectively, along with the historical results from Table 1 (“Historical Campbell-
Shiller”). Recall that if the model-implied risk premiums are well matched to those of the
data-generating process, then the term structure of estimated CZ% should be a horizontal
line at unity. Within the Gaussian family Ay(2), allowing for state-dependent risk premi-
ums substantially improves the model’s ability to match LPFEH: compare the “Historical
Campbell-Shiller” result (the Gaussian model with constant term premiums) to the result
for the Gaussian “SG-U” model. Allowing for non-zero factor correlations (SG-C) further
improves the fit, but even this model seems to not fully resolve LPEH.

More success at matching LPEH is obtained within the family A, (2) that accommodates
stochastic volatility. Again, there is a substantial improvement of fit to LPEH by allowing for
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negatively correlated factors. Moreover, when an extended, state-dependent risk premium
is introduced for the second, Gaussian factor and the factors are correlated, the A;(2)SG-C
model matches the maturity structure of LPY virtually perfectly for maturities longer than
two to three years.?®

We conjecture that a three-factor model within the families A;(3) or A5(3) would have
the requisite additional flexibility to match LPY at maturities under two years as well, at
least down to six months or so. At the very short end of the treasury yield curve, Duffee
(1996) shows that there are significant insitutional/liquidity effects that could affect yield
projections. Longstaff (2000) finds that, for very short-term generic repo rates, which are
less encumbered by liquidity effects, there is little evidence against the FH. The third factor
in empirical affine three-factor models typically has the fastest rate of mean reversion leading
its influence on yield curve movements to die out relatively quickly (see, e.g., Chen and Scott
(1993), Dai and Singleton (2000), and Duffee (1999)) so we do not believe that our basic
findings on the maturity patterns of LPEH for longer-term rates will be materially affected
by the inclusion of a third factor. If anything, a third factor should only improve a model’s
matching ability.

Figure 5 for the A;(2) family also sheds light on the relative importance of a state-
dependent risk premium for Y5(¢) and allowing for (negatively) correlated factors in matching
LPEH. Starting with model A;(2)CG —U, we see that having the standard state-dependence
of the risk premium for the CIR-style factor Y;(t) gives virtually no improvement in fit to
LPY over a model with constant risk premiums in which EH is true. Model A;(2)SG — U
introduces state-dependence of the risk premium for Y,(¢) by having A}, # 0, but A}, =
0 so this model completely rules out factor correlation (through both the drift matrix «
and risk premium matrix Ay). We see that own state-dependence of the risk premium for
Y5(t) leads to a modest improvement in fit to LPY. On the other hand, model A,(2)CG-
C allows for factor correlation induced only by k9 # 0, while forcing state-independence
of the risk premium for Y3(¢). Interestingly, this parameterization largely eliminates the
puzzling negative projection coefficients. Thus, for matching LPY within this family of
DTSMs, negative factor correlation through the drift seems more important than own state-
dependence of the second risk premium. This observation is also likely to be relevant to
Duffee’s analysis of the forecasting performances of alternative affine models. His reference
“completely” affine model is the A3(3) model with risk premium parameterization (13).
Since this model rules out negative factor correlations, his assessment of the improvement
in forecasting power of affine models with risk premium specification (13) over those with
specification (17) is likely to be exaggerated.

Negative factor correlation through x alone is not sufficient to match LPY, however. The
results for model A;(2)SG-C show that allowing the extra flexibility and amplified negative
correlation that comes from having A}, < 0 is necessary to match LPY.

28This matching does not, of course, presume that there is no small-sample bias in these projection
coefficients. In fact, from previous studies of both yield regressions and dynamic factor models we know that
estimates of conditional means tend to be biased in small samples. We do not expect the bias in one of the
estimates of d” to be notably different from the others. Therefore, we view the differences in these figures
as arising largely from differences in the dynamics of yields implied by different affine models.
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6 Conclusion

We began this exploration of expectations puzzles with the conjecture that richer parame-
terizations of risk premiums — parameterizations that have the risk premiums affecting both
the drifts and rates of mean reversion of the state variables— will give the requisite flexibility
for matching LPEH. For several of the popular families of one-factor DTSMs, we showed
that this is indeed the case as these models were calibrated to match LPEH quite closely.
We then took up the more demanding challenge of formulating models that match LPEH
and at the same time match other features of the conditional distributions of bond yields
as summarized by the scores of the model-implied log-likelihood functions. Focusing on the
case of two-factor affine models, we showed that a “mixed” Gaussian-square-root diffusion
model with correlated factors and state-dependence of both risk premiums fully resolved the
Campbell-Shiller expectations puzzles at the mazimum likelihood estimates for this model.

In the process, several observations about the empirical fits of affine and quadratic-
Gaussian models emerged. First, since quadratic-Gaussian and “extended” Gaussian affine
models have the same structure of their risk premiums, they are both capable in principle
of matching LPEH. In our calibration exercise, we found that one-factor versions of these
models perform equally well in this regard. However, in our maximum likelihood analysis
of two-factor affine models, we found that the Gaussian models with state-dependent risk
premiums did not match LPEH as well as an affine model with stochastic volatility introduced
through a CIR-style factor. Seemingly central to the goodness-of-fit of the latter A;(2) model
was the negative correlation among the two factors. In fact, simply allowing for negative
correlation in a standard A;(2) model with constant risk premium for the Gaussian factor
took us a long way (though not all the way) toward resolving LPEH.

We do not presume that all of the important features of the conditional distributions of
bond yields are captured by a two-factor model. The widely cited analysis of three factors
by Litterman and Scheinkman (1991), and our failure to match the maturity structure of
LPY at the very short end of the maturity spectrum, suggest otherwise. Extending our
analysis to three (or more factors) is an interesting topic for future research. Such extensions
would bring more flexibility in matching LPEH, because of their richer correlation structures
through their drifts and through state-dependence of the risk premiums.?’

Our focus on affine and quadratic-Gaussian models is motivated by the historical impor-
tance of these models. We conjecture that there is a much larger class of DTSMs with the
key features of the risk premiums outlined above that will also match LPEH. One such fam-
ily is obtained by combining a standard affine model with a Markov switching process as in
Bansal and Zhou (2000).2° From Naik and Lee (1997), for the case of CIR-style models with
shifts only in the long-run mean of a square-root diffusion, we know that Markov switching
introduces additional free parameters (only) into the “intercept” weights A(7) in the pric-
ing relation log P(t,7) = A(7) + B(7)'Y (t) (see Evans (2000) for the analogous result for

2The findings in Duffee (1999) that three-factor models with state-dependent risk premiums on the (con-
ditionally) Gaussian factors out-forecast their affine counterparts with state-independent premiums suggests
that the latter source of flexibility will remain important in matching LPEH.

30Bekaert et al. (1997b) also explore “peso problem” interpretations of the failure of the expectations
hypothesis by positing a regime switching model for the short rate and exploring the implications for the
Campbell-Shiller regressions.
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discrete-time CIR-style models). Thus, among other things, introducing regime switching
into an otherwise standard affine model has the effect of giving the model more flexibility
to match both the long-run mean of yields (influenced by the A(7)) and their correlation
structure (determined by the B(7)). Another family of DTSMs that might resolve LPEH are
the models proposed by Duarte (1999) in which the state vector follows the affine diffusion
(11) and A(t) = +/S(t)y + X "¢, for some constant N-vector c. The only state-dependence
of A(t) in Duarte’s model is through the factor volatilities. We also defer to future research
the question of whether these models generate the maturity pattern of LPY, while matching
other features of the conditional distributions of bond yields.
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Appendices

A Multi-factor Gaussian Model — Some Basic Facts

This appendix outlines the basic features of Gaussian DTSMs that we use in our analysis.

Assume that the instantaneous short rate ro(t) is a linear function of the N x 1 state vector
Y (¢):

ro(t) = ag + Y (£)'bo, (38)

where aq is a constant, and by is a N x 1 vector.
The state dynamics under the physical measure is given by

dY (t) = k(0 — Y (£))dt + odW (t), (39)

where xk and o are N X N matrices and 6 is a N x 1 vector.
The market price of risk3! is given by

At) = o PN + XYY (1)), (40)

where X% is a V x 1 vector and \Y is a N x N matrix of constants. If the Girsanov’s theorem
applies,®? the risk neutral dynamics of the state vector is given by

dY (t) = &(0 — Y (t))dt + cdW (t), (41)

where & = k + \Y and 6 = & (k6 — \°).

We assume that x can be decomposed as k = X 'k4X, where k4 is a diagonal matrix
with strictly positive diagonal elements x;, 1 <7 < N, X is a non-singular real matrix, with
diagonal elements normalized to 1.33 Similarly, we assume that % can also be decomposed
as k& = X 1kyX, where iy is diagonal with diagonal elements x;, 1 < 7 < N, and X isa
non-singular normalized matrix.

The relevant properties of the Gaussian model we need for later development are the
following. First, the conditional mean of the state vector is given by

EY(t+n)|Y(#)]=e™Y(t)+ (I —e "0 (42)

The conditional variance is given by

Var(Y(t + 7)Y (t)) = X'Q(1) X 7, (43)
31 The pricing kernel is given by
dM(t) _
ST = ~ro(tidt + AW ()

32Gee Appendix C for a proof that this is indeed the case.
33 Alternatively, one could normalize the Euclidean length of each column vector of X to 1. If o is
completely free, then we can choose to normalize k to be diagonal. In which case, we set X = I.
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where

1— e—(ni—l—nj)'r
Quj(1) = Bij———F————

7
Hi-i-lij

Y =Xoo'X'.
The zero coupon bond price and yield (with term to maturity 7) are given by

P(t,r) = e ADBEOYO)
R(t,7) = a(r)+b(r)'Y(?),

where a(1) = A(r)/7, b(T) = B(1)/T,

b(r) = (I — e F7)(&'T) by,

~ 1 4 -
a(r) = ao + (b — b(7))'6 — S Tr |2(r) X' ~'R bl X—l] ,

B 1 o —RyT 1 _ —iijT 1 _ 6_(Ri+kj)7—
Z(r) = 5y 1 - ——— - —— — } )
KT R;T (Ri + &j)T

Y = Xoo'X'.

A.1 Risk Premiums

(50)

(51)

Let us fix A as the length of a period, and define a, = a(nA), b, = b(nA), A, = A(nA),
and B, = B(nA). We will also frequently use the short hand ¢ + n to represent ¢ + nA,
whenever there is no confusion. Then the n-period zero yield is given by R} = a,, +b,Y; and

we let 7, = R}. The conditional mean of the short rate is given by

Eil[risn] = pn +Y(t)'vy,, where
Un = a1 + (9’([ - e_’“’”)bl
Vp = €_n’nb1

The one-period forward rate, delivered n-period hence, f*, is given by

1. P (n+1)A) A L pA!
=1 =A B>Y(t
ft A n P(t,?’LA) n + n ( )i
where
Apz Ao 2 g g 2 B B
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Thus, the forward risk premium is given by
ptn = ftn - Et[rt—f—n] = (Aﬁ - ,U'n) + Y(t)I(BnA - Vn)a (57)

which is linear in the state vector. It follows that the yield risk premium, c}’, defined by
n — 1 n—1 i e . .
cf = D i Pi, is also linear in the state vector.

If we have N observed yields (or related yield curve variables, such as term spreads),
we can substitute out Y (¢) by these yields. This is the general procedure for obtaining an
N-factor risk premium model in which the forward term premium is predicted by N observed

yields.

A.2 One-factor Case

The formulas for the factor loadings in the one-factor Gaussian model are

~ o2 o2
A(r) = aor+ (1 — B(1))(0 — 21%2) + ﬁB(T)Q, (58)
1— —RT
B(r) = —5 b, (59)
R
The forward-spot spread is given by
ff=r = (A5 —a1) + (BS — b)Y (¢). (60)
Substituting (60) into (57), we have
I8 = Eireen] = 6ot an(fi' — 1), (61)
where
A —
n nia 62
Br? _ e—ls’nAbl 6—&71 _ e kn
G T TBA Ty e (63)
Since E[p}| = E[f — ri], 0, can be related to the sample mean of the forward spread:

On = (1 — an)E(f] —11).

A.3 Two-factor Case

In the two-factor model, we use the forward-spot spread and the one-period rate to back out
the state vector. Since

fr=ry = (AS —a) + (B2 = b)'Y(1), (64)
re = ap+bY(t), (65)

we have
V() = J’—l( It —Ttn—_(leﬁ — a1) ), (66)
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where J is a 2 x 2 matrix formed by stacking (B2 — b;) and b;. It follows that

p? = (5n + an(.ftn - Tt) + Bnrta (67)
where

( %: ) = JYBY —e "), (68)

o = (1- ozn)(A —ay) — Bnay. (69)

Since E[p}] = E[f* — 1], 0n can be related to the sample means of the forward spread and
the short rate:

0n = (I—an)E(f{" —1i) = BuE(ry). (70)
When the state variables are independent, we obtain
—Rkin __ ,—K1n —Ram __ ,—Kon
ozn:e~ e~_e~ e~’ (71)
e—Fin _ g—Fkan e—Fin _ g—Fkan
B = —(e7™" —1)an+ (e™" —e ™). (72)

Similar relationship can be derived for any two-factor affine models. We refer interested
readers to Dai and Singleton (2000) for details.

B Quadratic-Gaussian Model

Starting with the specification of the one-factor quadratic-Gaussian model in Section 4.3, we
let A, = A(nA), B, = B(nA), Cp = C(nA), ay = A, by = B ) = @ AL = Ansizdn,
BY = Boti=Bn and C8 = 1% Then the one-period short rate is given by

Ty = aq + bl}/;/ + 61Y;’2, (73)

and the one-period forward rate, delivered n periods from t, is given by

n—l—l
fr= —Zlog P = = A% 4+ B2Y, + C2Y2 (74)
The expected short rate is given by
Et['rt—}-n] = ln+ vnY: + wnY?; (75)

where

tn = a1+ b10(1 — e ") + c16%(1 — e 4 ¢, Var,(Yign)
Vp = bie ™2 4 2¢,0(1 — e ) nA

Wwn = € g 2KnA
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From above, we can deduce the functional forms of constant coefficients in a two-factor
forward risk premium model generated by the Quadratic-Gaussian model:

It = Et[rt+n] =0n + O‘n(ftn - rt) + Bar, (76)
where
B2 —b b o, _ B2 — v,
( C2 /ey —11 11 )( Bn ) N ( C2 /ey — wnfe )’ (77)
or
_ Vn/bi — wn/c1
o= B2 /b1 = C/ar (7%)
Bn = (B>/by —vn/b) — (B2 /by — 1), (79)
and

Note that due to the existence of invariant transformations, we can normalize § = 0,
b = 1. Now, the parameters o, ¢, and \° appear only in the combinations co? and ¢)° in our
moment conditions. So one of the three parameters is not independently identified and must
be normalized to 1. Consistent estimators of the “true” parameter values can be inferred
once one of the parameters is identified through other means.3*

C Conditions for Girsanov’s Theorem
The goal is to show that
Z(t) = efot A{deS_% OtAIsASdS’ (81)

is a Martingale, when A is an affine function of a Gaussian state-vector. It can be shown that
the standard Novikov condition imposes a strong restriction on model parameters. We use a
weaker condition to show that Z(t) is a Martingale without imposing parametric restrictions.

According to Corollary 5.16 of Karatzas and Shreve (1988), if, A; is a progressively
measurable function of the Brownian motion, and for arbitrary 7" > 0, there exists a K1 > 0,
such that

A| < Kp(1+W*(2)), 0<t<T, (82)

where W*(t) = maxo<s<¢ |W(s)|, then Z(t) is a martingale.

34For an example, suppose that, under the normalization o = 1, the estimators for ¢ and A° are c¢r and Ao,
respectively. If we subsequently have a consistent estimator of o, o, then the consistent estimators for ¢ and
A% would be er /0% and AgroZ, respectively. For our purpose, however, only e¢r and Az matter, although
they should not be interpreted as consistent estimators of the population coefficients for the underlying DGP.
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For simplicity, consider the one-dimensional case (extension to the multi-dimensional case
is straightforward.) Without loss of generality, we can assume that the long-run mean of
Y (t) is zero, and its volatility is 1. Then it can be shown that

t t
Y, = / e AW, = W, + / Wode ),
0 0
It follows that

t
Y < Wi+ / W, et
0

IA

t
Wi+ / de00) = (2 — ¢=)
0
< @ W < @214 W)

Since A; is an affine function of Y (¢), it is obvious that (82) holds.
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