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An Examination of the Static and Dynamic Performance of 
Interest Rate Option Pricing Models 

In the Dollar Cap-Floor Markets 
 
 

Abstract 
 

This paper examines the static and dynamic accuracy of interest rate option 
pricing models in the U.S. dollar interest rate cap and floor markets. Alternative 
one-factor and two-factor term structure models of the spot and the forward rate 
are evaluated on the basis of their out-of-sample predictive ability in terms of 
pricing and hedging performance. In addition, the models are evaluated based 
on the stability of their parameters, the presence of systematic biases, and their 
numerical complexity and computational efficiency. The tests are conducted on 
daily data from March-December 1998, consisting of actual cap and floor prices 
across both strike rates and maturities. Results show that fitting the skew of the 
underlying interest rate distribution provides accurate pricing results within a 
one-factor framework. However, for hedging performance, introducing a second 
stochastic factor is more important than fitting the skew of the underlying 
distribution. Overall, the one-factor lognormal model for short term interest rates 
outperforms other competing models in pricing tests, while two-factor models 
perform significantly better than one-factor models in hedging tests. Modeling 
the second factor allows a better representation of the dynamic evolution of the 
term structure by incorporating expected twists in the yield curve. Thus, the 
interest rate dynamics embedded in two-factor models appears to be closer to the 
one driving the actual economic environment, leading to more accurate hedges. 
This constitutes evidence against claims in the literature that correctly specified 
and calibrated one-factor models could replace multi-factor models for consistent 
pricing and hedging of interest rate contingent claims. 
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1.   Introduction 
 

Interest rate option markets are amongst the largest and most liquid option markets in the world 

today, with daily volumes of billions of U.S. dollars in trading of interest rate caps/floors, 

Eurodollar futures options, Treasury bond futures options, and swaptions. The total notional 

principal amount of over-the-counter interest rate options such as caps/floors and swaptions 

outstanding at the end of 1997 was over $4.9 trillion, more than 30 times the $150 billion notional 

principal of all Chicago Board of Trade Treasury note and bond futures options combined.1 These 

options are widely used both for hedging as well as speculation against changes in interest rates.  

 

Theoretical work in the area of interest rate derivatives has produced a variety of models and 

techniques to value these options, some of which are widely used by practitioners.2 The 

development of many of these models was mainly motivated by their analytical tractability. 

Therefore, while these models have provided important theoretical insights, their empirical 

validity and performance remain to be tested.  Empirical research in this area has lagged behind 

theoretical advances partly due to the difficulty in obtaining data, as most of these interest rate 

contingent claims are traded in over-the-counter markets, where data are often not recorded in a 

systematic fashion.  This deficiency is being slowly remedied with the recent publication of a few 

working papers. 

 

This paper provides empirical evidence on the validity of alternative models.  It examines the 

static and dynamic accuracy of interest rate option pricing models in the U.S. dollar interest rate 

cap and floor markets. For the first time in this literature, a time series of actual cap and floor 

prices across strike rates and maturities is used to study the systematic patterns in the pricing and 

hedging performance of competing models, on a daily basis. Alternative one- and two-factor 

models of the term structure are evaluated based on their static performance (by examining their 

out-of-sample price predictions) and their dynamic accuracy (by analyzing their ability to hedge 

caps and floors). The one-factor models analyzed consist of two spot-rate specifications (Hull and 

White (1990) [HW] and Black-Karasinski (1991) [BK]) and six forward rate specifications (within 

the general Heath, Jarrow and Morton (1990b) [HJM] class). For two-factor models, two 

alternative forward rate specifications are implemented within the HJM framework. The analysis 

                                                           
1 Source: International Swaps and Derivatives Association (ISDA). 
2 The early models, many of which are still widely used, include those by Black (1976), Vasicek (1977), Cox, 
Ingersoll and Ross (1985), Ho and Lee (1986), Heath, Jarrow and Morton (1990b), Hull and White (1990), 
Black, Derman and Toy (1990), and Black and Karasinski (1991). Several variations and extensions of these 
models have been proposed in the literature in the past decade. 
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in this paper, therefore, sheds light on the empirical validity of a broad range of models for 

pricing and hedging interest rate caps and floors, and suggests directions for future research.  

 

There has been substantial theoretical progress in producing numerous term structure models for 

valuing interest rate derivatives. However, very few papers study the empirical performance of 

these models in valuing interest rate derivatives. Flesaker (1993) and Amin and Morton (1994) 

tested the HJM model in pricing Eurodollar future options. The Amin and Morton (1994) study 

evaluates different volatility specifications within the HJM framework, using a time-series of 

Eurodollar futures and options data. They document systematic strike rate and time-to-maturity 

biases for all models. However, their analysis is restricted to options with less than one-year 

maturity in a relatively illiquid market. Therefore, their analysis does not capture the longer-term 

effects of the volatility term structure, including mean-reversion. Also, they do not evaluate any 

spot rate specifications, and restrict their analysis to single factor models. Canabarro (1995) 

examines the accuracy of interest rate hedges constructed using the Black-Derman-Toy and two-

factor extensions of the Cox-Ingersoll-Ross and Brennan-Schwartz models and finds that two-

factor bond replicating strategies are more accurate than one-factor ones. However, his study is 

based on simulated data on Treasury yield curves, and does not examine many of the more recent 

term structure models. Bühler, Uhrig, Walter and Weber (1999) tested different one-factor and 

two-factor models in the German fixed-income warrants market. In their comprehensive study, 

they report that the one-factor forward rate model with linear proportional volatility outperforms 

all other models. Their study, based on weekly data, is limited to options with maturities of less 

than 3 years. In addition, the underlying asset for these options is not homogenous. For some of 

the options, the underlying asset is the ten-year German Treasury bond (“the BUND”), while for 

others, it is the five-year German Treasury bond (“the BOBL”). The methodology in this study 

involves the estimation of model parameters from historical interest rate data rather than the 

extraction of this information from derivative prices. Therefore, the results are subject to large 

pricing errors. Lastly, the paper does not analyze strike-rate biases, due to data limitations.  

However, even based on casual observation and evidence from other derivative markets, these 

biases may be significant.   

 

There have been some recent working papers that test model performance for pricing interest rate 

derivatives. Ritchken and Chuang (1999) test a three-state Markovian model in the Heath-Jarrow-

Morton paradigm when the volatility structure of forward rates is humped, using price data for 

at-the-money (ATM) caplets. They find that with three state variables, the model captures the full 

dynamics of the term structure without using any time varying parameters. However, a single 
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state variable model is unable to achieve such a fit. They conclude that the volatility hump is an 

important feature to be captured in a term structure model. Hull and White (1999) test the LIBOR 

market model using swaptions and caps across a range of strike rates, but using data for only one 

day, August 12, 1999. They find that the absolute percentage pricing error for caps was greater 

than for swaptions.  Longstaff, Santa-Clara and Schwartz (2000) use a string model framework to 

test the relative valuation of caps and swaptions using ATM cap and swaptions data. Their 

results indicate that swaption prices are generated by a four-factor model and that cap prices 

periodically deviate from the no-arbitrage values implied by the swaption market. Moraleda and 

Pelsser (2000) test three alternative spot-rate models and two Markovian forward-rate models on 

cap and floor data from 1993-94, and find that spot rate models outperform the forward-rate 

models. However, as they acknowledge, their empirical tests are not very formal. 

 

None of the above papers examines the hedging performance of the alternative models. The sole 

exception is a recent paper by Driessen, Klassen and Melenberg (2000) whose analysis runs 

parallel to the direction of our paper. They test one-factor and multi-factor HJM models with 

respect to their pricing and hedging performance using ATM cap and swaption volatilities. They 

find that a one-factor model produces satisfactory pricing results for caps and swaptions. In terms 

of hedging performance, for both caps and swaptions, they find that the choice of hedge 

instruments affects the hedging accuracy more than the particular term structure model chosen. 

However, as with all other studies cited above, their empirical examination is restricted to ATM 

options. As noted earlier, the strike rate effect may be important since many of the model 

imperfections are highlighted when one analyzes options away-from-the-money. While it is 

interesting that they find satisfactory pricing and hedging performance using a one-factor model, 

even for swaptions, it is not surprising. The question is whether this conclusion holds up for 

options that are away-from-the-money. In our paper, we specifically focus on cap and floor prices 

across different strike rates and maturities, to examine how alternative term structure models are 

affected by strike biases.3 

 

In this paper, the empirical performance of analytical models is evaluated along two dimensions – 

their static and dynamic accuracy. Static performance refers to their ability of a model to price 

options accurately at a given point in time, given that the model is estimated in a manner that is 

consistent with market observables. Dynamic accuracy refers to the ability of the model to 

capture movements in the term structure after being initially calibrated to fit market observables. 

                                                           
3 Another recent paper by Andersen (1999) adapts a multi-factor LIBOR market model to price Bermudan 
swaptions using simulations; however, it is not related to the empirical issues that we address in this paper. 
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The static accuracy of a model is useful in picking out deviations from arbitrage-free pricing. As 

for dynamic accuracy, the correct representation of the dynamics of the term structure of interest 

rates is a crucial feature to validate an arbitrage-free model as an accurate tool to hedge interest 

rate claims. The hedging tests examine whether the interest rate dynamics embedded in the 

model are similar to those driving the actual economic environment that the model is intended to 

represent. 

 

Our results show that, for plain-vanilla interest rate caps and floors, a one-factor lognormal 

forward rate model outperforms other competing one-factor models, in terms of pricing accuracy. 

In addition, the estimated parameters of this model are stable, resulting in robust estimation. We 

also find that the assumption of lognormally distributed interest rates results in a smaller “skew” 

in pricing errors across strike rates, as compared to other distributions assumed in alternative 

interest rate models. Two-factor models improve pricing accuracy only marginally. Thus, for 

accurate pricing of caps and floors, especially away-from-the-money, it is more important for the 

term structure model to fit the skew in the underlying interest rate distribution, than to have a 

second stochastic factor driving the term structure. However, the hedging performance improves 

significantly with the introduction of a second stochastic factor in term structure models, while 

fitting of the skew in the distribution improves hedging performance only marginally. This is 

because two-factor models allow a better representation of the dynamic evolution of the yield 

curve, which is more important for hedging performance, as compared to pricing accuracy.  Thus, 

even for simple interest rate options such as caps and floors, for consistent pricing and hedging 

within a book, there is a significant advantage to using two-factor models, over and above fitting 

the skew in the underlying (risk-neutral) interest rate distribution. This refutes claims in the 

literature that correctly specified and calibrated one-factor models could eliminate the need to 

have multi-factor models for pricing and hedging interest rate derivatives.4 

 

We examine two alternative calibrations of the different models.  In the first implementation, the 

volatility and mean-reversion parameters are held constant. As a result, while the models are 

calibrated to fit the current term structure exactly, the model prices match the current cap/floor 

prices only with an error, albeit by minimizing its impact. In the alternative implementation, an 

additional element of flexibility is introduced by making the parameters time-varying. This 

enables us to fit both the current term structure and the cap/floor prices exactly, although this 

                                                           
4 For instance, Hull and White (1995) state that “the most significant difference between models is a strike 
price bias ... the number of factors in a term structure model does not seem to be important except when 
pricing spread options ... one-factor Markov models when used properly do a good job of pricing and 
hedging interest-rate sensitive securities”. 
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renders the parameter estimates unstable.  Thus, there is a tradeoff between the imperfect fit of 

the models and the instability of the model parameters, which is examined in our empirical 

analysis. 

 

The paper is organized as follows. Section 2 discusses the contract specifications and presents a 

brief background on the pricing and hedging of interest rate caps and floors. It presents the 

motivation for testing the static and dynamic accuracy of the models, along with an overview of 

the different term structure models used for pricing and hedging these contracts. In section 3, 

details of estimation and implementation of these term structure models are discussed. Section 4 

describes the design of this empirical study and the different methodologies used in evaluating 

the alternative models. Section 5 describes the data used in this study, along with the method 

used for constructing the yield curve. The results of the study are presented in section 6. Section 7 

concludes. 

 

2. The pricing and hedging of interest rate caps and floors 

 

An interest rate cap (floor) is a collection of caplets (floorlets). A caplet (floorlet), in turn, is a 

single European call (put) option on a reference interest rate, expiring on a specific date. Hence, a 

cap (floor) can be regarded as a portfolio of European call (put) options on interest rates, or 

equivalently, put (call) options on discount bonds. Typically, an interest rate cap is an agreement 

between the cap writer and a borrower to limit the borrower’s floating interest rate to a specific 

level for a given period of time. The cap is structured on a specific reference rate (usually the 3- or 

the 6- month LIBOR) at a predetermined strike level. The reference rate is reset at periodic 

intervals (usually 3- or 6- months). At the reset date, if the reference rate exceeds the strike rate, 

the cap writer pays the borrower an amount equal to the difference between the reference rate 

and the strike rate. However, if the reference rate is below the strike rate, no payments are made. 

Hence, a cap provides a borrower protection against a rise in interest rates above a specific level, 

by setting a maximum interest rate.  

 

In a similar manner, an interest rate floor contract provides protection to a floating rate investor 

against falling interest rates, by setting a maximum interest rate level. The floor contract is also 

structured on a reference rate (reset at periodic intervals), at a predetermined strike rate. At the 

reset date, if the reference rate is below the strike rate, the floor writer pays the investor an amount 

equal to the difference between the strike rate and the reference rate.  Otherwise, no payments are 
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made. Thus, the floor sets a minimum interest rate level for a floating rate lender. The cap and floor 

contracts are defined on a predecided principal amount.5 

 

A caplet with maturity ti and strike rate k, pays at date ti, an amount based on the difference 

between the rate (ri) at time ti and the strike rate, if this difference is positive, and zero otherwise. 

The amount paid is based on the notional amount and the reset period of the caplet and is paid 

on a discounted basis at time ti. The payoff of this caplet at date ti, on a notional principal of $A, is 

given by  
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The payoff from a floorlet can be described in a similar manner.  

 

Since the interest rate over the first period is known, there is no caplet corresponding to the first 

period of the cap. For example, a 2-year cap on the 3-month LIBOR rate, with 8 quarterly periods 

over its life, would consist of 7 caplets, the first one expiring in 3 months, and the last one in 1 

year and 9 months. Thus, the underlying interest rate for the first period is the interest rate on the 

valuation date. 

 

2.1 Hedging interest rate caps and floors 

 

Since caplets and floorlets are essentially options on the forward interest rate, they can be hedged 

with appropriate positions in the LIBOR forward market. In practice, they are most commonly 

hedged using the short term interest rate futures contract, the Eurocurrency futures contract, e.g. 

Eurodollar futures, due to the liquidity of the futures market, as well as availability of contracts 

up to a maturity of 10 years, in increments of 3 months. Strictly speaking, interest rate forward 

contracts are similar to, but not exactly the same as interest rate futures contracts. The difference 

between the two is due to the negative convexity of the forward contract.6  This convexity 

difference affects the hedge ratio as discussed further below. The price of an interest rate futures 

contract on the expiration date is defined as 100 – the spot interest rate on that date. Hence, a 

short position in a caplet (floorlet) can be hedged by going short (long) an appropriate number of 

futures contracts. The hedge position of the cap (floor) is the sum of the hedge positions for the 

                                                           
5 Interest rate caps and floors for various maturities and reference rates in all the major currencies are 
traded in the over-the-counter (OTC) markets. The most common reference rate in the case of U.S. dollar 
caps/floors is the 3-month LIBOR. 
6 For details, see Gupta and Subrahmanyam (2000). 
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individual caplets (floorlets) in the cap (floor), i.e., a series of futures contracts of the appropriate 

maturities, the futures strip. 

 

The hedge position is constructed by first computing the change in the price of the caplets for a 

unit (say 1 basis point) change in the forward rate, relative to the number of futures contracts of 

appropriate maturity that give the same change in value for the same unit change in the forward 

rate. This is the “delta” or hedge ratio for the caplet. In the context of a particular term structure 

model, the delta can sometimes be defined in closed form. A portfolio of a short position in a cap 

and a short position in an appropriate number of futures contracts is locally insensitive to changes 

in the forward rate, thus making it “delta-neutral.” In theory, this delta-neutral hedge requires 

continuous rebalancing to reflect the changing market conditions. In practice, however, only 

discrete rebalancing is possible. The accuracy of a delta hedge depends on how well the model’s 

assumptions are in line with the actual movements in interest rates. 

 

A caplet/floorlet can also be gamma-hedged in addition to being delta-hedged, by taking 

positions in a variety of LIBOR options. Gamma is the second derivative of the price of the 

caplet/floorlet with respect to a change in the interest rate. Gamma hedging refers to hedging 

against changes in the hedge ratio.  Setting up a gamma-neutral hedge results in a lower hedge 

slippage over time. However, in principle, the accuracy of the gamma hedge in the context of a 

particular model could be different from the accuracy of the delta hedge within the same model. 

Therefore, the hedging performance of the models could be different if they were evaluated using 

both delta and gamma hedging, instead of just delta hedging. In this paper, the term structure 

models are tested based only on their delta hedging effectiveness. 

 

In constructing the delta hedge for a caplet/floorlet with interest rate futures contracts, the hedge 

position must take into account two factors. First, the caplet/floorlet payoff is discounted at a rate 

that is uncertain at the initial valuation date. The stochastic discounting results in a convexity 

effect, which affects the pricing of the caplet/floorlet, but not that of the futures contract.7 Hence, 

the hedge position has to be adjusted for the convexity of caps/floors. Second, the expiration 

dates of the futures contracts generally do not coincide with the expiration dates of the individual 

caplets (floorlets) in the cap (floor). Therefore, using futures, a perfect delta hedge is not possible, 

even for an infinitesimally short period of time. The hedge is implemented using the two futures 

contracts with maturity dates on either side of the expiration date of the caplet/floorlet being 

                                                           
7  Futures contracts are settled based on the price on the expiration date and hence are unaffected by the 
stochastic nature of the discount rate. 
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hedged, to form a synthetic position in a hypothetical futures contract expiring on the caplet 

expiration date. 

 

The hedging for these contracts can be done either “within the model” or “outside the model.” 

The “within the model” hedge neutralizes the exposure only to the model driving factor(s), 

which, in the case of a one-factor model, is the spot or the forward rate. The “outside the model” 

hedge is determined by calculating price changes with respect to exogenous shocks, which, per se, 

would have a virtually zero probability of occurrence within the model itself.8 This “outside the 

model” procedure is, hence, conceptually internally inconsistent and inappropriate when testing 

one model against another.9 The “within the model” hedge tests give very useful indications 

about the realism of the model itself. The discussion about “delta-hedging” in the previous 

paragraphs of this section deals only with “within the model” hedging. This is the type of 

hedging that is empirically examined in this paper. 

 

2.2 Testing the static vs the dynamic accuracy of models 

 

The fundamental motivation for testing the static accuracy of models is to examine whether they 

are capable of predicting future option prices conditional on term structure information. This 

capability is best evaluated by the ex-ante price predictive ability of the model. It is important for 

valuation models to capture information from current market observables, and translate them 

into accurate option prices. Towards this end, in this study, models are calibrated based on the 

market data on term structure parameters as well as option prices at time t-1, on the previous 

day. Then, term structure information on date t  (the current day) is incorporated into the 

estimated model, and option prices are estimated at date t.  Then, the accuracy of the predicted 

option prices is judged by comparing them with the actual observed option prices. This is a 

“static” test of the models, in the sense that current option prices are used to calibrate the model 

and price the same option one period later. This test does not examine whether the changes in 

option prices and the ability to hedge them are in line with the model’s predictions.  

 

The dynamic tests of these models examine the fundamental assumption underlying the 

construction of arbitrage-free pricing models, which is the possibility of replication of the option 

                                                           
8 Examples of such exogenous shocks include jumps in the yield curve or in individual forward rates, 
changes in the volatilities of interest rates, etc. These are ruled out within the structure of most of the 
models examined in this paper. 
9  From a practitioner’s viewpoint, this inconsistency may be less important than the actual  performance of 
the hedge. 
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by a portfolio of other securities that are sensitive to the same source(s) of uncertainty.10 A test of 

the dynamic accuracy of these models can be constructed by examining the accuracy of local 

replication portfolios. This test is conducted by constructing a hedge based on a given model, and 

examining how the hedge performs over a small time interval. An accurate model to hedge 

interest rate exposures must produce price changes similar to those observed in the market, 

conditional on the changes of its state variables. Hence, the hedging tests are indicative of the 

extent to which the term structure models capture the future movements in the yield curve, i.e., 

the dynamics of the term structure. In principle, it is possible for a model to perform well in static 

tests and yet fail in dynamic tests, since the two types of tests are measuring different attributes of 

the model. 

 

In arbitrage-free term structure models, the input parameters are allowed to change over time. 

The parameter vector is re-estimated each time the option prices are observed in order to fit a 

snapshot of market observables. This procedure is more permissive than the one dictated by the 

assumption that parameters are either constant or time-dependent in a deterministic way. It 

allows parameters to behave like pseudo-stochastic variables, despite not being assumed as such 

in the formulation of the model’s stochastic structure. In this paper, we examine the “local” 

accuracy of term structure models; hence, it is not necessary to impose any parametric restrictions 

on the models. 

 

2.4   Overview of term structure models for pricing caps/floors 

 

The interest-rate derivatives market consists of instruments that are based on different market 

interest rates. Interest rate swaps and FRAs are priced based on the level of different segments of 

the yield curve; caps and floors are priced based on the level and the volatility of (i.e., the diagonal 

elements of the covariance matrix among) the different forward rates. Swaptions are priced based 

on both the diagonal and the off-diagonal elements of the same covariance matrix, i.e., they also 

price the correlations among the forward rates. Since caps and floors do not price the correlations 

among forward rates, it appears, at first glance, that one-factor models might be sufficiently 

accurate in pricing them, and the added numerical complexity of multi-factor models (in 

                                                           
10 With continuous trading and continuous state variable sample paths, the only sensitivities that matter for 
hedging are the deltas, since higher order sensitivities can be shown to be negligible with continuous re-
balancing. 
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particular, two-factor models) may not be justified.11  This is also one of the key questions that 

this paper seeks to answer. 

 

There are a large number of term structure models for the valuation of interest-rate derivatives. 

They can broadly be categorized into two groups. The first one models the dynamics of the 

instantaneous or discrete-time spot interest rate (spot rate models), and the second, models the 

arbitrage-free evolution of the entire term structure of forward rates (forward rate models).  

 

In the first group of models (spot rate models), the entire term structure is inferred from the 

evolution of the spot short-term interest rate (and, in case of two-factor models, by another factor 

such as the long-term interest rate, the spread, the volatility factor, or the futures premium). This 

includes the traditional models by Vasicek (1977), Brennan and Schwartz (1979), Cox, Ingersoll 

and Ross (1985), Longstaff and Schwartz (1992), Stapleton and Subrahmanyam (1999) and others. 

However, the equilibrium models such as those by Vasicek (1977), Brennan and Schwartz (1979) 

and Cox, Ingersoll and Ross (1985) determine the term structure endogenously; hence, they do 

not fit the current term structure exactly. This implies that the models may permit arbitrage 

opportunities across zero coupon bonds, even prior to pricing derivatives. Since they may 

misprice the underlying discount bonds themselves, the error introduced in the prices of 

derivatives based on these bonds is potentially accentuated. Due to the inability of these models 

in pricing derivatives satisfactorily, they could be modified to match the term structure exactly in 

an arbitrage-free framework by making one or more of the parameters time-varying. These are 

the models by Hull and White (1990), Black, Derman and Toy (1990), Black and Karasinski (1991), 

Peterson, Stapleton and Subrahmanyam (1999) and others. These no-arbitrage models take the 

current term structure as an input rather than an output, thus making the yield curve consistent 

with the observed prices of discount bonds. 

 

The approach of modeling the forward, rather than the spot, interest rates was pioneered by Ho 

and Lee (1986). Ho and Lee take as given the prices of discount bonds of all maturities and model 

the subsequent evolution of this price vector to preclude arbitrage opportunities. This is 

equivalent to modeling the forward interest rate curve, which was the approach used by HJM 

(1990b) in extending and generalizing the work of Ho and Lee in a continuous time framework. 

HJM model the instantaneous forward-rate curve with a fixed number of unspecified factors that 

drive the dynamics of these forward-rates. The form of the forward rate changes can be specified 

                                                           
11 One-factor term structure models imply perfectly correlated spot/forward rates, while two-factor (and 
multi-factor) models allow for imperfect correlation between spot/forward rates of different maturities. 
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almost arbitrarily. In fact, many of the processes specified for the evolution of the spot interest 

rate can be treated as special cases of HJM models by appropriately specifying the volatility 

function of the forward interest rates. For example, specifying the volatility as an exponential 

function of the time to maturity gives rise to the Ornstein-Uhlenbeck process as assumed by 

Vasicek (1977).12 A constant volatility results in the continuous time version of the Ho and Lee 

model. In these two cases, closed form solutions are available for discount bonds and option 

prices. 

 

In the case of spot rate models, all the other rates are derived from the evolution of the spot rate. 

In order to incorporate realistic correlation levels across the term structure, additional factors 

have to be introduced in the form of another stochastic variable such as the long term rate, short 

rate volatility, the slope of the term structure, the mean-reversion parameter, etc. In contrast, the 

HJM framework allows the forward rates maturing at various fixed points in time to evolve 

simultaneously. The forward rate curve evolution can be modeled as being driven by any number 

of stochastic variables or factors. In theory, each of the forward rates could be driven by a 

separate stochastic variable yielding as many factors as there are forward rates. This allows the 

incorporation of correlations through appropriate specification of the volatility functions for each 

of the factors.  

 

In this paper, we analyze the comparative performance of various one-factor and two-factor spot 

rate and forward rate models. The spot rate models analyzed are the one-factor Hull and White 

(HW, 1990) and Black and Karasinski (BK, 1991) models. In the forward rate class, one-factor and 

two-factor models are analyzed. The HJM framework is used to implement different assumptions 

about the distribution of the underlying forward rate, through appropriate specification of the 

volatility functions.13 

 

Spot rate models 

 

There is a large variety of spot rate models in the literature. They can be adapted to the current 

term structure of interest rates and volatilities by making the parameters of the stochastic 

processes time-dependent. These time-dependent parameters are determined in a way such that 

both the endogenous term and volatility structures fit the observed ones exactly.  

                                                           
12See Appendix A for a proof. 
13 In the HJM framework, the two-factor model nests the corresponding one-factor model, thus making it 
easier to compare the results of the two alternative specifications and infer the impact of introducing a 
second stochastic factor. 
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A generalized one-factor spot rate specification, that explicitly includes mean reversion, has the 

form: 

[ ] dzdtraftrdf σθ +−= )()()(     (3) 

where 

f(r) = some function f of the short rate r, 

θ(t) = a function of time chosen so that the model provides an exact fit to the initial term 

     structure, usually interpreted as a time-varying mean, 

a = mean- reversion parameter, 

σ = volatility parameter. 

 

Two special cases of the above model are in widespread use. When f(r)=r, the resultant model is 

the HW model (also referred to as the extended-Vasicek model) 

[ ] dzdtartdr σθ +−= )(            (4) 

f(r)=ln(r) leads to the BK model 

[ ] dzdtratrd σθ +−= ln)(ln      (5) 

The volatility parameter, σ, determines the overall level of volatility, while the reversion 

parameter, a, determines the relative volatilities of long and short rates. The probability 

distribution of short rate is Gaussian in the HW model and lognormal in the BK model. 

 

In this paper, these models are estimated in two different ways. In the first implementation, the 

mean-reversion parameter ‘a’ and the short rate volatility ‘σ’ are both held constant. Therefore, 

the models are estimated with only one time-dependent parameter such that it fits the current 

term structure exactly. The remaining parameters of the process are determined so as to achieve a 

‘best fit’ to the observed volatility term structure. The drawback with this implementation is that 

by keeping the reversion and volatility parameters constant, the model does not fit the current 

cap/floor prices exactly, which results in an inherent mispricing to start with. The advantage of 

keeping the parameters constant is the resultant stability of parameter estimates as well as the 

stationarity of the volatility term structure. 

 

To understand the effect of making the parameters time varying, the second implementation of 

these models is done by making the reversion and volatility parameters time varying. This allows 

the models more degrees of freedom to make the current interest rate tree fit the prices of 

caps/floors as well. However, fitting to option prices has implications for the future evolution of 
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the term structure. Making two or more parameters time varying may result in unstable 

parameter estimates and implausible future evolutions of the term structure.14 This would be 

reflected in poor out-of-sample performance of these models. Hence, there is a tradeoff between a 

perfect fit of the current term structure of volatility and the stationarity of the model parameters. 

 

Forward rate models 

 

In the forward rate models, the HJM framework allows the valuation of contingent claims 

without having to estimate the market price of risk or any drift parameters. The drift is 

completely defined by the volatility parameters. By appropriately specifying the volatility 

structure, virtually any interest rate distribution can be studied. This framework lends itself very 

well to the comparative evaluation of one-factor and two-factor models as the two-factor model 

nests the one-factor model, which can be easily obtained by setting the second volatility 

parameter to zero. Hence, a single estimation of the volatility parameters is sufficient to 

implement both the models. All other models require separate estimation of the model 

parameters for the one-factor and two-factor versions. Also, the HJM framework matches the 

current term structure, by construction; hence, it does not lead to mispricing the underlying 

discount bonds. 

 

Let f(t,T) be the forward interest rate at date t for instantaneous riskless borrowing or lending at 

date T. The HJM approach models the evolution of the entire instantaneous forward rate curve, 

driven by a fixed number of unspecified factors. Forward interest rates of every maturity T 

evolve simultaneously according to the stochastic differential equation 

∑
=

+=
n

i
ii tdWTtfTtdtTtTtdf

1
)()),(,,(,.),(),( σµ    (6) 

Where Wi(t) are n independent one-dimensional Brownian motions and µ(t,T,.) and σi(t,T,f(t,T)) 

are the drift and volatility coefficients for the forward interest rate of maturity T. 15 The volatility 

coefficient represents the instantaneous standard deviation (at date t) of the forward interest rate 

of maturity T, and can be chosen arbitrarily. For each choice of volatility functions σi(t,T,f(t,T)), 

                                                           
14 This non-stationarity would be more problematic for instruments whose prices depend on future 
volatility term structures (like American/Bermudan options, spread options captions, etc.). For standard 
caps and floors, as in this paper, this is less important. 
15 The drift coefficient for each maturity T depends on forward interest rates of all other maturities, the 
dependence being represented by “.” as the third argument of µ(t,T,.). 
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the drift of the forward rates under the risk-neutral measure is uniquely determined by the no-

arbitrage condition  

dsstfstTtfTtTt
n

i

T

t
ii∑ ∫

=

=
1

)),(,,()),(,,(,.),( σσµ    (7) 

The drift term for the forward rate maturing at T depends on the instantaneous standard 

deviation of all forward rates maturing between t and T. The choice of the volatility function 

σi(t,T,f(t,T)) determines the interest rate process that describes the stochastic evolution of the 

entire term structure. If the volatility function is stochastic, it makes the interest rate process non-

Markovian, and no closed-form solutions are possible for discount bonds or options. Hence, it is 

necessary to restrict the nature of the volatility functions in order to obtain manageable solutions. 

 

The volatility functions analyzed in this paper, σi(t,T,f(t,T)), are time invariant functions. In these 

functions, the volatility depends on t and T only though T-t. Therefore, given a term structure at 

time t, the form of its subsequent evolution through time depends only on the term structure, not 

on the specific calendar date t. Even with this restriction, a rich class of volatility structures can be 

analyzed. In this paper, for reasons of stability of parameter estimation, we analyze only one- and 

two-parameter volatility functions. The volatility functions, and hence the implied models, 

analyzed in this paper are as follows:  

 

One-factor models: 

1. Absolute: σ(.) = σ0 ,16 

2. Linear Absolute: σ(.) = [σ0 + σ1(T-t)] , 

3. Exponential: σ(.) = σ0 exp[-λ(T-t)] ,17 

4. Square root: σ(.) = σ0 f(t,T)1/2 , 

5. Proportional: σ(.) = σ0 f(t,T) ,18 

6. Linear proportional: σ(.) = [σ0 + σ1(T-t)]f(t,T). 

 

Two-factor models: 

1. Absolute:  σ1(.) = σ1  

σ2(.) = σ2 , 

                                                           
16 This form of volatility specification leads to the continuous-time version of the Ho-Lee model, with 
Gaussian interest rates. 
17 This form of volatility specification yields the Ornstein-Uhlenbeck process for the spot interest rate as 
assumed by Vasicek (1977) and Hull-White (1990). 
18 The HJM framework requires that the volatility functions be bounded. Hence this volatility function is 
capped at a sufficiently high level of f*, such that there is no effect on prices. 
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2. Proportional:  σ1(.) = σ1 f(t,T)  

σ2(.) = σ2 f(t,T),11 

 

3.   Model estimation and implementation 
 

The empirical estimation of the spot rate models (HW and BK) is implemented by constructing a 

lattice for the short-term interest rate.19 The current term structure is estimated from spot LIBOR 

rates and Eurodollar futures prices, as explained in Appendix B. The volatility parameter σ and 

the mean-reversion parameter a are chosen so as to provide a “best fit” to the market prices of 

caps and floors, by minimizing the sum of squared residuals. 

 

Forward rate models are implemented under the HJM framework, with specific volatility 

functions, to ensure that the interest-rate process is Markovian, i.e., path independent. Path-

independence renders the implementation of a term structure model infeasible, in general, except 

for special cases. These special cases include models in which interest rates are assumed to be 

normally distributed, or where the volatility structures meet certain conditions to remove path 

dependence.20 Further, from a computational perspective, option prices cannot, in general, be 

represented as solutions to partial differential equations, because of the need to model multiple 

points on the term structure; this leads to complex boundary conditions with multiple state 

variables. Due to these reasons, the models in this paper are implemented using discrete-time, 

non-recombining trees, which are computationally efficient.  

 

The forward rate process described above is arbitrage-free only in continuous time and, therefore, 

cannot be directly used to construct a discrete-time tree for the evolution of the forward curve. 

Therefore, the drift term in the forward rate process needs to be reformulated in discrete time.21 

The derivation of the drift term for the discrete-time approximation of the forward rate process 

for the one- and two-factor models is explained in Appendix C. 

 

 

                                                           
19 Details of the trinomial lattice construction methodology can be obtained from Hull and White (1994). 
20 Ritchken and Sankarasubramanian (1995) have identified the necessary and sufficient conditions on 
volatility structures that capture the path dependence by a single sufficient statistic (which represents the 
accumulated variance of the forward rate upto the current date), thus making the evolution of the term 
structure Markovian with respect to two state variables. 
21 The discrete time no-arbitrage conditions for the drift term have been adapted from Jarrow (1996) and 
Radhakrishnan (1998). 
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4. Methodology 
 

This paper tests the static and dynamic accuracy of interest rate option pricing models by their 

pricing and hedging performance. In addition to the valuation performance measures, three other 

criteria are used to assess these models:  

1) the stability of the parameters and the model performance over time,  

2) the presence of systematic biases in the pricing and hedging errors, and  

3) the relative complexity and difficulty in estimating the models, including numerical 

efficiency. 

 

4.1   Empirical design for testing static accuracy 

 

In these tests, the comparative performance of the models for pricing caps/floors is evaluated by 

analyzing the magnitude of the out-of-sample cross-sectional pricing errors. As explained in 

section 2.4, the models are first estimated using constant parameters such that the models fit the 

current term structure exactly, but the volatility structure approximately (in a least squares 

sense). In the second estimation, the parameters in the models are made time-varying so that the 

models fit the volatility term structure exactly as well, by calibration to the observed prices of 

caps/floors. To examine the out-of-sample pricing performance of each model, the prices of 

interest rate caps and floors at date ti are used to calibrate the term structure model and back out 

the requisite implied parameters. Using these implied parameter values and the current term 

structure at date ti+1, the prices of caps and floors are computed at date ti+1. The observed market 

price is then subtracted from the model-based price, to compute both the absolute pricing error 

and the percentage pricing error. This procedure is repeated for each cap and floor in the sample, 

to compute the average absolute and the average percentage pricing errors as well as their 

standard deviations. These steps are followed separately for each of the models being evaluated. 

Then, the absolute as well as percentage pricing errors are segmented by type of option (cap or 

floor), “moneyness” (in-the-money, at-the-money, and out-of-the-money) and maturity to test for 

systematic biases and patterns in the pricing errors. The coefficients of correlation between the 

pricing errors across the various models are also computed to examine how the models perform 

with respect to each other. 

 

The cross-sectional pricing performance of the models is further examined using two different 

calibration methods. The objective of estimating pricing errors using alternative calibration 

methods is to test the robustness of the pricing results to estimation methodology. In the first one, 
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the prices of ATM caps (of all maturities) are used to calibrate the term structure model.22 This 

model is then used to price the away-from-the-money caps of all maturities on the same day. The 

same procedure is repeated for the floors. The model prices are compared with market prices and 

the errors are analyzed in a manner similar to the one before. In the second method, the cap 

prices (of all strike rates and maturities) are generated using the models calibrated to floor prices 

(of all strike rates and maturities), and floor prices generated by calibrating the models to cap 

prices. These two tests are strictly cross-sectional in nature, as the prices of options on one day are 

used to price other options on the same day, while in the earlier procedure, the prices of options 

on the previous day were used to estimate current option prices.    

 

To study the possible systematic biases in the pricing performance of the models in more detail, 

the pricing errors for these models are analyzed. The market price of the cap/floor is regressed on 

its model forecast price to analyze the mispricing and identify the model that is most consistent 

with data. 

 

4.2   Empirical design for testing dynamic accuracy 

 

These tests evaluate the comparative performance of the models in hedging caps/floors. This is 

implemented by analyzing the magnitude of the out-of-sample cross-sectional hedging errors. To 

examine the hedging performance of the models, the term structure models are calibrated at date 

ti using the current prices of interest rate caps and floors, and the requisite parameters are backed 

out. Using the current term structure of interest rates as well as spot cap/floor prices, the hedge 

portfolio is constructed. The hedge portfolio is constructed separately for caps and floors. Each of 

these hedge portfolios consists of caps (or floors) of the 4 maturities (2-, 3-, 4- and 5-years), across 

the 4 strike prices, and the appropriate number of Eurodollar futures contracts. Using this hedge 

portfolio, the hedging error is computed at date ti+k, to reflect a k-day rebalancing interval. The 

hedging error corresponds to the change in the value of the hedge portfolio over this one day. In 

order to test for the effect of the rebalancing interval, the hedging errors are computed using a 

five-day and a twenty-day rebalancing interval.23 In both the cases, the procedure is repeated for 

each model, and the hedging errors are analyzed. 

                                                           
22 The ATM cap is taken to be the one with the strike that is closest to ATM, since, in general, no fixed strike 
cap (or floor) will be exactly ATM. 
23 A five-day rebalancing interval corresponds to weekly portfolio rebalancing, while a twenty-day 
rebalancing interval approximates monthly rebalancing. The results using daily rebalancing are not 
reported in the paper as there was very little hedge slippage over one trading day, thereby leading to 
almost perfect hedging using any model. Longer term rebalancing intervals provide a more stringent test of 
the extent to which the dynamics of the underlying interest rate are embedded in the model. The longer 
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5.   Data 

 

The data for this study consists of daily prices of USD caps and floors, for a ten-month period 

(March 1 – December 31, 1998), across four different strike rates (6.5%, 7%, 7.5%, 8% for caps, and 

5%, 5.5%, 6%, 6.5% for floors) and four maturities (2-, 3-, 4-, and 5-year). This data was obtained 

from Bloomberg Financial Markets. 

 

Table 1 presents descriptive statistics of the data set. The data consists of cap and floor prices 

across the different maturities and strike rates for each maturity (6.5%, 7%, 7.5%, and 8% for caps 

and 5%, 5.5%, 6%, and 6.5% for floors). The sample period consists of 219 trading days of daily 

data, from March 1 to December 31, 1998. 24 The prices of the contracts are expressed in basis 

points, i.e., a price of 1bp implies that the price of the contract for a notional principal of $10,000 is 

$1. The average, minimum and maximum price of the respective contracts over the sample period 

are reported in this table. The table indicates that the prices of both caps and floors increase, on 

average, with maturity.  The prices of caps (floors)  decrease (increase) with the strike rate. 

 

It should be noted that our sample period witnessed considerable volatility in the global fixed 

income markets.  Several major events triggered by the Russian default and the LTCM crisis 

jolted the fixed income cash and derivatives markets. Hence, the dollar cap and floor markets 

experienced greater variation in prices than usual.  This is fortuitous since it implies that the 

empirical tests of the various models are that much more stringent and, as a result, our 

conclusions are likely to be robust. 

 

Since interest rate caps and floors are contracts with specific maturity periods rather than specific 

maturity dates, a complication arises while doing the hedging tests. For these tests, we need the 

market prices of the original cap/floor contract that was hedged using futures. However, each 

day the reported prices of caps and floors refer to prices of new contracts of corresponding 

maturities, and not to the prices of the contracts quoted before. Hence, there is no market price 

series for any individual cap/floor contract. For example, consider a 5-year cap quoted at date ti, 

which is also hedged at date ti. To evaluate the performance of this hedge at date ti+1, we need the 

price of the same cap at date ti+1, i.e. at date ti+1, we need the price of a cap expiring in 5 years less 

one day. However, the cap price that is observed at date ti+1 is the price of a new cap expiring in 5 

                                                                                                                                                                             
rebalancing intervals are in line with the spirit of capital adequacy regulations based on the guidelines of 
the Bank for International Settlements. 
24 Therefore, there are 218 days for which the model forecasts are compared with market prices. 
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years, not 5 years less one day. This data problem is not specific to just caps and floors – it is 

present for all OTC contracts that are fixed maturity rather than fixed maturity date contracts.  

 

To overcome this problem, we construct a price series for each cap/floor contract, each day, until 

the expiration of the contract. The current term structure and the current term structure of 

volatilities (from the current prices of caps/floors) are used to price the original cap/floor 

contract each day. This price is used as a surrogate for the market price of the cap/floor contract 

on that particular day. This price is a model price, and not a real market price. However, the 

hedging performance tests are still useful in identifying models that can set up more accurate 

hedges for the cap/floor contracts. At the very least, the tests will evaluate models in terms of 

their internal consistency in terms of hedging performance. 

 

6.   Results 
 

This section examines the results obtained for all models. The models are estimated each day 

using the current term structure of volatility from cap/floor prices.  

 

6.1   Parameter stability 

 

To examine the stability of the parameters of the estimated models, summary statistics for the 

estimated parameters are reported in table 2. The parameter estimates across models are not 

directly comparable for several reasons. First, the models use different factors (spot rates and 

forward rates), with some of them being two-factor models. Second, the drift and volatility 

functions differ in functional form. Third, the number of parameters estimated varies across 

models. However, the stability of these parameters can be inferred from the estimate of the 

coefficient of variation for each parameter. 

 

Our results show that there is some variation in parameter estimates across time. By definition, 

the models posit that the drift and volatility parameters are constant. One explanation for this 

divergence from theory is that there is a second or third factor driving the evolution of rates, 

which is manifesting itself in the form of time-varying parameters. Possible candidates for the 

additional factor could be stochastic volatility, or a curvature factor. In our results, though the 

parameters vary over time, they are stable. The coefficient of variation for most parameters is 

below 0.5, and for many parameters it is below 0.33. The mean, standard deviation, coefficient of 

variation, minimum value and the maximum value of the parameters are reported in table 2.  
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The stability of the parameter estimates can be judged by looking at the coefficient of variation of 

the estimates over the sample period. A coefficient of variation below 0.5 indicates that the 

volatility of the parameter estimate was less than half of the mean estimate; thus, the parameter 

was fairly stable over the sample period. For the one-factor and the two-factor models, the 

parameter values are more stable for one-parameter models, while the coefficients of variation are 

significantly higher for the two-parameter models. In the case of spot rate models, the mean- 

reversion rate has a small absolute value and high standard error relative to the mean estimate, 

indicating that it is observed with significant error. In the forward rate models, the slope 

parameters for the linear absolute and linear proportional models have very high coefficients of 

variation and very small absolute values, making their estimates less reliable. The exponent 

parameter in the exponential model also has a high coefficient of variation. These results indicate 

that adding more parameters to the model improves the ability of the model to fit prices, but 

significantly hampers the stability of the estimated model. This is also the reason why no model 

with more than two parameters was analyzed in this study. Therefore, from a practical 

perspective, the one-parameter one-factor models provide accurate, stable results as far as the 

model parameters are concerned.  

 

6.2   Pricing performance 

 

The tests for the comparative pricing performance of the models are implemented using the 

methodology described in section 4.1. The results for these tests are reported in tables 3, 4, 5, 6, 

and 7. These results are for out-of-sample fits of model-based prices to the observed market 

prices. 25   

 

The summary statistics of the forecast errors are presented in table 3. These provide a first 

impression about the empirical quality of the models. The average absolute error is below 1 bp for 

caps, indicating a very small bias in the models. For floors, the error is close to 3 bp for the 

absolute and linear absolute forward rate models, while it is less than 1 bp for the other models. A 

similar pattern is observed in average percentage errors, which are less than 2% in most of the 

                                                           
25 Note that these models use one or two parameters estimated out-of-sample to simultaneously generate 16 
cap and 16 floor prices each day. In terms of the number of options, the models price 304 caplets (19 caplets 
for 4 maturities and 4 strikes each) and 304 floorlets (19 floorlets for 4 maturities and 4 strikes each) every 
day. 
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cases, indicating a very small bias. Since the bid-ask spread in these markets is of the order of 2 

bp, the fit of the models is good.  

 

The average absolute errors and the average absolute percentage errors display a clear pattern. 

First, the average absolute errors are higher for floors than for caps. The reason for this is the 

higher average price of floors in the sample, as compared to the average price of caps. The 

average absolute percentage errors are roughly similar for caps and floors. Second, within the 

class of one-factor models, the absolute errors are highest for the constant volatility forward rate 

model (3.5 bp for caps and 6.8 bp for floors) and lowest for the proportional (lognormal) forward 

rate model (1.2 bp for caps and 2.7 bp for floors). All the other models fall in between these 

models, in terms of prediction errors.26 The two-factor models have marginally lower pricing 

errors as compared to the one-factor models that they nest. For example, the two-factor lognormal 

model has an average absolute error of 1.1 bp for caps and 2.4 bp for floors, as compared to 1.2 bp 

and 2.7 bp respectively for the one-factor lognormal model. Note that the percentage errors are 

lower for floors although they have higher absolute errors, again because, on average, the floors 

in the data sample have higher prices, as compared to caps. Also, the spot rate models with time-

varying parameters have considerably lower pricing errors for caps as well as floors, as compared 

to those for the models with constant parameters. Making the parameters time varying brings 

down the errors to almost the level of two-factor models. In this case, the time-varying 

parameters appear to be acting as “pseudo-factors.” 

 

It is interesting to note the differences between the performance of the spot rate models and their 

equivalent forward rate specifications. The errors for the spot rate models are slightly higher than 

those for their equivalent forward rate models. The Gaussian HW model is mathematically 

equivalent to the exponential volatility forward rate model. Theoretically, they should result in 

identical error patterns. However, the implementation methodologies for the two specifications 

are different, which causes the divergence in results. A similar pattern is observed for the BK 

model and its forward rate counterpart, the proportional volatility model.27 

 

                                                           
26 The linear proportional model has a slightly lower average pricing error (2.5 bp) for floors. However, it is 
a two-parameter model, for which the parameter estimates are more volatile than the corresponding one-
parameter model that it nests. 
27 Note that, unlike the HW and exponential volatility forward rate models, the BK model in not 
mathematically equivalent to the proportional volatility forward rate model. The BK model implies 
lognormal spot rates, while the proportional volatility model implies lognormal forward rates, which are 
not equivalent (although they are approximately similar). 
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Table 4 presents the correlation between the pricing errors for the different models. The pricing 

errors for the models are computed by averaging the difference between the model prices and the 

observed market prices for all the caps/floors priced each day. The correlations are reported 

separately for caps and floors. There is a common component in the errors for all the models, 

which can be due to data noise, presence of other factors, etc. However, the correlations are 

higher within one-parameter and two-parameter models; this emphasizes the importance of the 

number of parameters in determining the behavior of the models. The correlations are also higher 

within the spot rate and the forward rate models, and within one-factor and two-factor models. 

Moreover, the correlations are slightly lower for floors as compared to caps. One possible reason 

for this result is the higher average price for floors, that results in larger absolute errors, and 

hence a lower correlation between them.  

 

Tables 5 and 6 present the absolute and percentage errors for the caps/floors for all the models, 

for the cross-sectional tests using different calibration methods. For results in table 5, the models 

are first calibrated using ATM cap/floor prices, and then the ITM and OTM cap/floor prices are 

estimated. The absolute and percentage errors in this case are lower than those in table 3, where 

the models are calibrated using cap/floor prices from the previous day. However, across models, 

the pattern of errors is similar to those in table 3. Within the one-factor models, the lognormal 

forward rate model has the lowest pricing errors, while the constant volatility Gaussian model 

has the highest error. Again, the spot rate models with time-varying parameters have much lower 

pricing errors. The two-factor models have marginally lower pricing errors than the one-factor 

models that they nest. The pricing errors are lowered further in table 6, where the models are 

calibrated using caps to estimate floor prices, and using floors to estimate cap prices. Across 

models, the pattern of errors is still similar to the previous tables. The magnitudes of the pricing 

errors from the cross-sectional tests reinforce the conclusion that lognormal interest rate models 

are more accurate in pricing caps and floors, and that two-factor models are only marginally 

better than one-factor models for pricing these options. The results from the two alternative 

calibration methods for the models reaffirm that the pricing results reported in table 3 are robust 

to changes in model calibration methods. They also show that calibrating models to current 

option prices (as done in tables 5 and 6) and to a full range of strike rates (done only in table 6) 

results in more accurate pricing performance.  

 

Figures 1 and 2 present the plots of the percentage errors for the models, as a function of their 

strikes. All the models tend to overprice short-dated caps/floors and under-price long-dated 

ones. However, the over- and under-pricing patterns are different for one-parameter and two-
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parameter models. The one-parameter models tend to compensate the over-pricing of short-dated 

options by under-pricing long-dated options. The two-parameter models display a slight hump at 

the 3 yr maturity stage. They overprice medium-term caps/floors more than the short-term ones, 

and then compensate by under-pricing the long-dated caps/floors. In terms of fitting errors, the 

two-parameter models are a marginally better fit than the one-parameter models that they nest.  

 

To study the systematic biases in more detail, the following cross-sectional regression model is 

estimated for caps and floors separately: 

(Market Price)t = β0 + β1 (Model Forecast Price)t + εt      (8) 
 
The results of this estimation are presented in table 7. The objective of this estimation is to identify 

which model is most consistent with the data. The slope coefficients (β1) are very close to one for 

all the models, with a very high R-square value, which shows that the average prediction error in 

the models is quite small. Also, the β1 coefficient is slightly greater than one for floors, and 

slightly smaller than one for caps, for most of the models. Similarly, the β0 coefficient is negative 

for floors and positive for caps, across all models. Thus, the models tend to overprice floors and 

underprice caps, which is consistent with the results reported earlier in this section. The spot rate 

models with time-varying parameters show slightly different results - they tend to overprice 

options. In the time-varying implementations, caps are being underpriced less, while floors are 

being overpriced more. 

 

More significantly, the patterns of mispricing display a clear skew across strike rates, for all 

maturities. All the models tend to over-price in-the-money (low strike) caps and underprice out-

of-the-money (high strike) caps. In the case of floors, the models underprice out-of-the-money 

(low strike) and overprice in-the-money (high strike). These patterns are consistent across all 

maturities. The skew is the greatest for the constant volatility (Ho-Lee Gaussian model) and the 

least for the proportional volatility models (one-factor and two-factor lognormal models). For the 

square root volatility model, in which the distribution of the underlying rate is chi-square (which 

is less skewed than lognormal), the extent of skew in the pricing errors is also in between the 

Gaussian and the lognormal models. These patterns are similar for caps and floors, and are 

consistent across spot rate and forward rate models, as well as one-factor and two-factor models.  

 

This negative skew in the pricing errors is consistent with the hypothesis that fatter right tails in 

the distribution of the underlying interest rate would lead to under-pricing in out-of-the-money 

caps and floors.  The results indicate that the risk-neutral distribution of the underlying interest 

rate has a thinner left tail and a fatter right tail than the assumed distribution for any of these 
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models. The partial correction of the skew by the lognormal model suggests that a skew greater 

than that in the lognormal distribution may help to predict away-from-the-money cap and floor 

prices better. 

 

A comparison of the results for the one-factor models with those for the two-factor models shows 

that fitting the skew in the distribution of the underlying interest rate improves the static 

performance of the model more than that achieved by introducing another stochastic factor in the 

model. For example, the average pricing error for the one-factor lognormal model (1.2 bp for caps 

and 2.7 bp for floors) is much less than the average pricing errors for the two-factor Gaussian 

model (2.6 bp for caps and 5.0 bp for floors).  

 

6.3 Hedging performance 

 

The tests for the comparative dynamic accuracy of the models are done using the methodology 

described in section 4.2. The results for this analysis are presented in table 8. The accuracy of 

hedging, and hence the accuracy of replication of the interest rate options, differs significantly 

across term structure models. The average percentage hedging errors reported in table 8 show 

that 2-factor models perform significantly better than one-factor models in hedging interest rate 

risk in caps and floors. The difference is more significant for longer rebalancing intervals. With a 

5-day rebalancing interval, most one-factor model hedges result in an average percentage error of 

about 0.5% of the hedge portfolio value in caps, and about 0.5%-0.8% in floors. In the case of two-

factor models, the 5-day average percentage error is reduced to less than 0.2%. With a 20-day 

rebalancing interval, the average percentage hedging error reduces from 1.6%-3% for various 

one-factor models to 0.5%-0.7% for the two-factor models. Interestingly, the hedging results for 

the time-varying implementation of the spot rate models is very different from the pricing results 

- making the parameters time-varying actually leads to consistently larger hedging errors, 

indicating that the stability of model parameter estimation is important for accurate hedging 

performance. The hedging errors are evidence of the overall effectiveness of the interest rate 

hedges created by the models over time. Hence, the hedging performance reflects the dynamic 

accuracy of the various term structure models. 

 

Within the class of one-factor and two-factor models, the hedging errors do depict the trend 

observed in the pricing errors, of a higher skew in the underlying distribution leading to smaller 

errors. For example, for the 5-day rebalancing interval, the average percentage error for caps goes 

down from 0.68% for the Gaussian one-factor forward rate model to 0.33% for the lognormal one-



 27

factor forward rate model. Similarly, for the 20-day rebalancing interval, the error goes down 

from 2.44% to 1.62%, respectively. However, adding a second stochastic factor leads to a much 

larger reduction in the hedging errors. This result is different from the pricing results where 

fitting the skew correctly dominated the introduction of a second stochastic factor. The Gaussian 

two-factor forward rate model has an average percentage error of 0.19% for 5-day rebalancing 

and 0.54% for 20-day rebalancing, which is significantly lower than those for the one-factor 

lognormal forward rate model. 

 

In previous research, principal component analysis of interest rates changes reveals the various 

factors that drive the evolution of the term structure.28 The first factor is interpreted as “level” 

factor capturing parallel shifts in the term structure, and has been shown to contribute about 92% 

of the overall explained variance of interest rate changes. The second factor, interpreted as a 

“twist” factor in the yield curve, incorporating changes in the slope of the term structure, has 

been shown to contribute another 7% of the overall explained variance of interest rate changes.29 

The results in this paper show that, for accurate hedging of interest rate caps and floors, it is not 

enough to correctly model just the first factor. Modeling the second factor allows the 

incorporation of expected twists in the yield curve while determining state variable sensitivities, 

thereby leading to more accurate hedging. This also constitutes evidence against claims in the 

literature, that correctly specified and calibrated one-factor models can replace multi-factor 

models for hedging purposes.30 

 

7. Conclusions 
 

A variety of models of interest rate dynamics have been proposed in the literature to value 

interest rate contingent claims. While there has been substantial theoretical research on models to 

value these claims, their empirical validity has not been tested with equal rigor. This paper 

presents extensive empirical tests of the static and dynamic accuracy of term structure models in 

the interest rate cap and floor markets. The paper also examines, probably for the first time in the 

literature, actual price data for caps and floors across strike rates, with maturities extending out to 

5 years. 

 

                                                           
28 See, for example, Brown and Schaefer (1994) and Rebonato (1998). 
29 The third factor, interpreted as the “curvature” factor, incorporates changes in the curvature of the term 
structure, and explains most of the residual 1% variance of interest rate changes. This third factor may be 
important for pricing swaptions and bond options, but not for pricing interest rate caps and floors.  
30 See, for example, Hull and White (1990), and Buser, Hendershott and Sanders (1990). 
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Alternative one-factor and two factor models are examined based on the accuracy of their out-of-

sample price prediction, and their ability to hedge caps and floors. Within the class of one-factor 

models, two spot rate and six forward rate specifications are analyzed. For two-factor models, 

two forward rate specifications are examined. In terms of the static tests, the one-factor lognormal 

(proportional volatility) forward rate model is found to outperform the other competing one-

factor models in pricing accuracy. The estimated parameters of this model are more stable than 

those for corresponding two-parameter models, indicating that one-parameter models result in 

more robust estimation. In contrast, the pricing errors allowing for time-varying implementation 

of the one-factor models are at the level of those for the two-factor models: the time-varying 

parameters appear to be acting as “pseudo-factors.” However, making the parameters time-

varying actually leads to consistently larger hedging errors, indicating that the stability of model 

parameter estimation is important for accurate hedging performance. 

 

More significantly, the lognormal assumption in the distribution of the underlying forward rate 

leads to a smaller “skew” in pricing errors across strike rates, as compared to the errors obtained 

by using a Gaussian interest rate process. The pricing accuracy of two-factor models is found to 

be only marginally better than the corresponding one-factor models that they nest. Therefore, the 

results show that a positive skew in the distribution of the underlying rate helps to explain away-

from-the-money cap and floor prices more accurately, while the introduction of a second 

stochastic factor has only a marginal impact on pricing caps and floor.  

 

On the other hand, the tests for dynamic accuracy of these models show that two-factor models 

are more effective in hedging the interest rate risk in caps and floors. While fitting the skew 

improves hedging performance marginally, introducing a second stochastic factor in the term 

structure model leads to significantly more accurate hedging. Two factor models allow a better 

representation of the dynamic evolution of the yield curve, by incorporating expected changes in 

the slope of the term structure. Since the interest rate dynamics embedded in two-factor models is 

closer to the one driving the actual economic environment, as compared to one-factor models, 

they are more accurate in hedging interest rate caps and floors. This is also evidence against 

claims in the literature that correctly specified and calibrated one-factor models could replace 

multi-factor models for hedging. 

 

So what are the implications of these results for the pricing and hedging of caps and floors in 

particular, and interest rate contingent claims in general? For interest rate caps and floors, one-

factor lognormal models have been found to be sufficiently accurate in pricing performance. 
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However, even for these plain-vanilla options, there is a need to use two-factor models for 

accurate hedging. Therefore, for consistent pricing and hedging within a book, even for plain-

vanilla options like caps and floors, there is evidence that strongly suggests using two-factor 

models, over and above fitting the skew in the underlying interest rate distribution. Whether 

there is need for a third factor driving the term structure is still an open question for research.31 

Introducing more stochastic factors in the model makes computations more time consuming, so 

there is a trade-off between the cost of implementing a model and the stability of the model 

parameters, on the one hand, and its accuracy, on the other. However, for consistent pricing and 

hedging of the interest rate exposures of more complicated interest rate contingent claims like 

swaptions and yield spread options, there may be significant benefits to using term structure 

models with three or more factors.  We defer these issues to be explored in future research. 

                                                           
31 Litterman and Scheinkman (1991) report that the third factor, modeling changes in the curvature of the 
term structure, is important in explaining price changes. 
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Appendix A 

 

Equivalence of the exponential volatility, single-factor HJM model and the 

Vasicek model 
 

An exponential forward rate volatility function in the HJM framework is mathematically 

equivalent to a Gaussian spot rate process with mean reversion, as in the HW model. Consider 

the volatility function in the HJM model as follows 

( ))(exp),( tTaTt −−= σσ        (A.1) 

The drift term is then given by 
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The forward rate process in the HJM framework is 

dzTtdtTtTtdf ),(),(),( σµ +=              (A.3) 

On integrating and setting T=t, we get the spot rate process as follows 
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Using Fubini’s theorem on the deterministic and the stochastic integrals, the differential spot rate 

process is then given by 
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Substituting for the drift and volatility, integrating, and solving algebraically, we get 
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which is the Hull-White spot rate process, expressed as 

[ ] dzdtartdr σθ +−= )( ,    (A.7) 

with the time-varying mean given by 
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Appendix B 

 

Estimation of the current term structure 

 

The current LIBOR term structure is estimated using spot LIBORs and Eurodollar futures prices. 

Theoretically, market swap rates can also be used along with spot LIBORs to estimate the LIBOR 

term structure. However, swap rates are available only for maturities of 2, 3, 4, 5, 7, and 10 years, 

while Eurodollar futures prices are available for maturities upto 10 years in increments of three 

months, which allows the computation of LIBOR zero rates with much higher accuracy. 

Moreover, Eurodollar futures contracts are extremely liquid with very high trading volumes and 

open interest. Hence, they are likely to reflect the best available information about the term 

structure of interest rates.  

 

The spot market data are used to accurately define the curvature of the LIBOR yield curve, going 

out to the first futures expiration date (0-3 months, depending on the date). Beyond that date, 

Eurodollar futures prices are used to estimate the yield curve going out to 10 years. The yield 

curve thus obtained is then corrected for convexity. It is well known that, in the presence of 

stochastic interest rates, the implied forward rates are lower than futures rates, due to convexity 

in the payoffs of forward contracts.32  Hence, the convexity adjustments are estimated for each 

futures contract maturity, and then subtracted from the futures yield curve to obtain the 

convexity-corrected LIBOR zero curve. The cubic spline interpolation method is used to define 

the complete shape of the yield curve as a smooth function of maturity.  

                                                           
32 See Gupta and Subrahmanyam (2000) for a detailed description of convexity adjustments, and the 
methods that can be used to estimate them. 
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Appendix C 

 

Derivation of the drift term for the discrete-time approximation of the forward 

rate processes 

 
The forward rate process in the HJM framework is arbitrage free only in continuous time. Hence, 

for discrete time implementations of the model, the drift term for the process needs to be 

reformulated, for the one- and two-factor models. 

 

Discretization of a one-factor process leads to two branches at each node of the tree. In the 

discrete economy, let hn be the time step from time tn to tn+1. Given that the forward rate process is 

in state st at time tn, it can be in one of the following two states (up or down) at time tn+1: 
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where µ(.) is the drift and σ(.) is the volatility function of the forward rate process f. The maturity 

of the forward rate, T, can take on any value between t and the maximum maturity assumed in 

the term structure to generate as many forward rates as desired, within the constraints of 

computational limitations.  

 

In this framework, discount bond prices are given by 
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These discount bond prices evolve in the following manner: 
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Given the above processes, for the forward rates and the discount bond prices, pu(.) and pd(.) can 

be represented in terms of the µ(.) and σ(.) functions. 
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Using the money market account as the numeraire implies that all bond prices grow at the 

riskless rate, f(tn,tn). Therefore, the martingale condition applied to the discrete framework 

requires that 

[ ]),().,(),( 11 TtPttPETtP nnntn ++=               (C.4) 

i.e., 
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This is a system of N equations, where N is the number of forward rates  at time tn, that can be 

solved recursively to get the expression of the drift term, µ(.), in each of the N forward rate 

processes: 
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Using a specific functional form for the volatility function σ(.), the drift from the equation above 

and the forward rate process evolution, the HJM interest rate tree can now be constructed. 

 

For the two-factor process, discretization requires three branches at each node of the tree. The 

forward rate process is represented in a manner similar to the one-factor case, as follows: 
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Using the money market account as the numeraire and applying the martingale condition, the 

drift function in discrete time is given by 



 34

∑

∑

∑
∑

∑

−

+=
−

−

+=

+=

+=

+=

−

−





























































−+


















−+









−

=

1

1
1

1

1
22

1

1
22

1

1
12

1

1
12

1

1

);,(1                          

);,(2exp

);,(2exp

);,(exp

);,(exp

ln1);,(

T

nj
njtjn

Tn

T

nj
njtjn

T

nj
njtjn

T

nj
njtjn

T

nj
njtjn

Tn
tn

hhstt
hh

hhstt

hhstt

hhstt

hhstt

hh
sTt

n

n

n

n

n

n

µ

σ

σ
σ

σ

µ

……..(C.8) 

 

As in the one-factor case, the HJM tree can now be constructed using any specific form for the 

volatility function.33 

                                                           
33 The HJM tree is non-recombining, due to the non-Markovian nature of the forward rate process for most 
volatility structures. Hence, from a numerical implementation perspective, the exploding number of 
terminal nodes in the tree imposes a limit on the number of time steps that can be used for a general 
volatility structure. In the usual binomial tree, the burden on computer memory and computing power is 
enormous since each node has to carry the values of the entire forward rate vector. Therefore, in this paper, 
a recursive algorithm proposed by Das (1998) is used. This algorithm eliminates the need for storing the 
entire forward rate tree in the memory, by following each sample path to its conclusion in a recursive 
manner. This frees up memory space, potentially allowing a relatively large number of time steps to be 
used, within the constraints of computing time, and also speeds up computation. See Das (1998) for details 
of the recursive algorithm. 
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Table 1 
 

This table presents descriptive statistics of the data set used in this paper. The data consists of cap 
and floor prices across 4 different maturities (2-, 3-, 4-, and 5-year) and across 4 different strike 
rates, for each maturity (6.5%, 7%, 7.5%, and 8% for caps and 5%, 5.5%, 6%, and 6.5% for floors). 
The sample period consists of 219 trading days of daily data, from March 1 to December 31, 1998. 
The prices of the contracts are expressed in basis points, i.e., a price of 1bp implies that the price 
of the contract for a notional principal of $10,000 is $1. The average, minimum and maximum 
price of the respective contracts over the sample period are reported in this table. 
 
 6.5% Caps 7% Caps 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 16 37 72 117 8 22 47 82 

Min 4 13 32 57 2 8 21 42 

Max 33 64 109 164 18 38 74 120 

 7.5% Caps 8% Caps 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 4 13 31 57 3 8 20 40 

Min 2 3 12 29 1 2 8 21 

Max 10 24 55 94 5 17 41 75 

 5% Floors 5.5% Floors 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 37 132 163 197 67 186 234 284 

Min 7 80 98 115 20 112 143 169 

Max 129 267 328 385 190 359 445 523 

 6% Floors 6.5% Floors 

 2 yr 3 yr 4 yr 5 yr 2 yr 3 yr 4 yr 5 yr 

Mean 116 262 332 401 182 363 461 557 

Min 51 166 213 254 106 251 322 385 

Max 262 465 580 682 341 583 731 864 
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Table 2 
 

This table presents summary statistics for the parameter estimates for the one-factor and two-factor spot 
rate and forward rate models tested in this paper. The summary statistics for each parameter are computed 
using daily parameter estimates over the sample period, March 1 - December 31, 1998. The models are 
estimated each day over the 219 day sample period, by calibrating them to the market prices of caps and 
floors across four different maturities (2-, 3-, 4-, and 5-year) and across four different strike rates for each 
maturity (6.5%, 7%, 7.5%, 8% for caps, and 5%, 5.5%, 6%, 6.5% for floors).  
 

Model Parameter Mean Min Max s.d. c.v. 

Spot Rate Models 

a 0.045 0 0.088 0.027 0.61 Hull and White 

σ 0.0109 0.0051 0.0172 0.0035 0.32 

 
a 0.055 0 0.097 0.025 0.45 Black and Karasinski 

σ 0.194 0.131 0.284 0.056 0.29 

Forward Rate Models – One Factor 

Absolute σ0 0.0113 0.0075 0.0214 0.0035 0.31 

 
σ0 0.0098 0.0031 0.018 0.0043 0.44 Linear Absolute 

σ1 0.0007 -0.0029 0.053 0.0018 2.6 

 
σ0 0.0141 0.0086 0.0251 0.0038 0.27 Exponential 

λ 0.0382 0.0006 0.0715 0.021 0.55 

 
Square Root σ0 0.0456 0.0273 0.0874 0.0105 0.23 

 
Proportional σ0 0.1851 0.1169 0.2741 0.0407 0.22 

 
σ0 0.1759 0.0799 0.2632 0.0721 0.41 Linear Proportional 

σ1 0.0053 -0.0005 0.0138 0.0037 0.70 

Forward Rate Models –Two Factor 

σ1 0.0051 0.0021 0.0107 0.0023 0.45 Absolute 

σ2 0.0101 0.0039 0.0206 0.0047 0.47 

 

σ1 0.0894 0.0513 0.1374 0.0277 0.31 Proportional 

σ2 0.1621 0.0906 0.2591 0.0438 0.27 
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Table 3 
 

This table presents summary statistics for the forecast errors (in basis points and percentage terms) for the 
one-factor and two-factor spot rate and forward rate models analyzed in the paper. The average error is 
defined as the predicted model price minus the observed market price, averaged for the 32 caps and floors 
(4 strike rates each for caps and floors, for each of the 4 maturities) over the 219 days (March-December, 
1998) for which the study was done. The average percentage error is defined as the (model price – market 
price)/market price, averaged in a similar way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg 
% Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -1.0 2.3 -1.8% 6.9% 1.0 4.6 -1.3% 5.3% 

HW - time varying -0.2 1.3 -0.9% 4.5% 2.5 3.9 0.5% 3.8% 

Black & Karasinski 0.1 1.4 0% 4.3% -0.1 3.0 -1.3% 3.1% 

BK - time varying 0.4 1.1 0.7% 3.3% 0.2 2.5 -0.7% 2.4% 

Forward Rate Models – One Factor 

Absolute 0.8 3.5 1.4% 10.1% 2.9 6.8 -0.3% 6.0% 

Linear Absolute 0.1 2.3 -0.2% 6.9% 2.6 6.2 -0.7% 6.4% 

Exponential -1.2 2.1 -2.3% 6.3% 0.7 4.4 -1.4% 5.1% 

Square Root -1.2 1.7 -2.3% 4.9% 0.5 3.8 -1.0% 3.9% 

Proportional 0.1 1.2 0% 4.0% -0.1 2.7 -1.3% 2.9% 

Linear Proportional 0.2 1.2 0.6% 3.9% -0.1 2.5 -1.1% 2.7% 

Forward Rate Models – Two Factor 

Absolute 0.8 2.6 1.4% 7.8% 2.3 5.0 -0.1% 4.6% 

Proportional 0.05 1.1 0% 3.7% -0.1 2.4 -1.1% 2.6% 
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Table 4 
 

This table presents the correlation coefficients between the out-of-sample pricing errors for caps and floors 
for the models tested in this paper. There are a total of 219 observations for each model, corresponding to 
each day over the sample period, March 1 - December 31, 1998. The pricing error is defined as the model 
price minus the observed market price, averaged across the 32 caps and floors priced on that day (4 strike 
rates each for caps and floors, for each of the 4 maturities). 
 

Model HW HW 
(II) 

BK BK 
(II) 

Abs. 
(1-fac) 

Linear 
Abs. 

Exp. Square 
Root 

Prop. 
(1-fac) 

Linear 
Prop. 

Abs. 
(2-fac) 

Prop. 
(2-fac) 

Caps 

HW 1            

HW (II) 0.94 1           

BK 0.87 0.83 1          

BK (II) 0.79 0.81 0.92 1         

Abs. (1-fac) 0.81 0.77 0.54 0.59 1        

Linear Abs. 0.69 0.72 0.49 0.61 0.71 1       

Exponential 0.95 0.91 0.57 0.66 0.68 0.91 1      

Square root 0.53 0.63 0.76 0.75 0.89 0.72 0.72 1     

Prop. (1-fac) 0.57 0.61 0.96 0.98 0.86 0.75 0.70 0.97 1    

Linear Prop. 0.42 0.50 0.92 0.94 0.63 0.96 0.87 0.75 0.69 1   

Abs. (2-fac) 0.49 0.48 0.43 0.56 0.82 0.71 0.59 0.54 0.55 0.48 1  

Prop. (2-fac) 0.41 0.47 0.65 0.69 0.63 0.58 0.51 0.46 0.92 0.81 0.77 1 

Floors 

HW 1            

HW (II) 0.95 1           

BK 0.84 0.82 1          

BK (II) 0.79 0.75 0.94 1         

Abs. (1-fac) 0.78 0.71 0.59 0.64 1        

Linear Abs. 0.65 0.66 0.45 0.51 0.69 1       

Exponential 0.95 0.87 0.54 0.55 0.61 0.88 1      

Square root 0.61 0.72 0.71 0.69 0.85 0.68 0.65 1     

Prop. (1-fac) 0.56 0.63 0.98 0.93 0.84 0.74 0.66 0.96 1    

Linear Prop. 0.49 0.44 0.91 0.90 0.59 0.94 0.83 0.69 0.62 1   

Abs. (2-fac) 0.47 0.46 0.49 0.48 0.79 0.74 0.52 0.51 0.57 0.44 1  

Prop. (2-fac) 0.44 0.51 0.59 0.55 0.63 0.61 0.48 0.41 0.89 0.75 0.72 1 
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Table 5 
 

This table presents summary statistics for the cross-sectional out-of-sample forecast errors (in basis points 
and percentage terms) for the one-factor and two-factor spot rate and forward rate models. The models are 
calibrated using the prices of ATM options (out of the 4 strike rates, the one that is closest to ATM). Then, 
the prices of the away-from-the-money (ITM and OTM) caps and floors are estimated using the models (for 
the 3 remaining strike rates). This is done for all maturities, and for caps and floors separately. The average 
error is defined as the predicted model price minus the observed market price, averaged for the 12 
caps/floors (the 3 remaining strike rates for each of the 4 maturities) over the 219 days (March-December, 
1998) for which the study was done. The average percentage error is defined as the (model price – market 
price)/market price, averaged in a similar way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg 
% Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -0.7 1.8 -1.3% 4.9% 0.8 3.3 -0.8% 3.7% 

HW - time varying 0.1 1.1 0% 3.3% 1.9 3.0 0.1% 3.0% 

Black & Karasinski 0.1 0.9 0.1% 2.6% 0 1.9 -0.8% 1.9% 

BK - time varying 0.4 0.7 0.5% 1.9% 1.2 1.7 0.1% 1.5% 

Forward Rate Models – One Factor 

Absolute 0.6 2.7 1.2% 7.8% 2.2 5.2 -0.2% 4.5% 

Linear Absolute 0.1 1.8 0.1% 5.1% 2.0 4.5 -0.5% 4.7% 

Exponential -0.9 1.6 -1.6% 4.5% 0.5 3.4 -1.0% 3.8% 

Square Root -0.9 1.2 -1.7% 3.4% 0.4 3.0 -0.7% 2.9% 

Proportional 0.1 0.9 0% 2.4% -0.04 1.9 -0.8% 1.9% 

Linear Proportional -0.1 0.8 0.1% 2.4% 0.05 1.8 -0.6% 1.8% 

Forward Rate Models – Two Factor 

Absolute 0.5 1.7 0.8% 5.0% 1.5 3.4 -0.2% 3.1% 

Proportional 0.02 0.6 0% 1.9% -0.06 1.5 -0.7% 1.6% 

 
 



 43

Table 6 
 

This table presents summary statistics for the cross-sectional out-of-sample forecast errors (in basis points 
and percentage terms) for the one-factor and two-factor spot rate and forward rate models. For pricing caps, 
the models are calibrated using the current prices of floors, and vice-versa. The average error is defined as 
the predicted model price minus the observed market price, averaged for the 16 caps or floors (4 strike rates 
for each of the 4 maturities) over the 219 days (March-December, 1998) for which the study was done. The 
average percentage error is defined as the (model price – market price)/market price, averaged in a similar 
way. 
 

Caps Floors Model 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg 
% Abs 
Error 

Avg 
Error 
(bp) 

Avg Abs 
Error 
(bp) 

Avg 
% 

Error 

Avg % 
Abs 

Error 
Spot Rate Models 

Hull and White -0.5 1.2 -0.9% 3.5% 0.6 2.3 -0.6% 2.5% 

HW - time varying 0.2 0.8 0.1% 2.5% 1.3 2.0 0.1% 2.0% 

Black & Karasinski 0.1 0.6 0.1% 1.8% 0 1.2 -0.5% 1.2% 

BK - time varying 0.3 0.5 0.5% 1.3% 0.3 0.9 -0.2% 0.9% 

Forward Rate Models – One Factor 

Absolute 0.5 2.0 0.9% 5.7% 1.6 3.7 -0.2% 3.2% 

Linear Absolute 0.1 1.3 0.1% 3.8% 1.5 3.3 -0.4% 3.3% 

Exponential -0.6 1.1 -1.1% 3.2% 0.3 2.3 -0.7% 2.6% 

Square Root -0.6 0.8 -1.1% 2.3% 0.3 2.0 -0.5% 1.9% 

Proportional 0.04 0.5 0% 1.5% -0.02 1.2 -0.5% 1.2% 

Linear Proportional -0.1 0.5 0% 1.4% 0.03 1.1 -0.4% 1.1% 

Forward Rate Models – Two Factor 

Absolute 0.4 1.2 0.6% 3.5% 0.9 2.0 -0.1% 1.9% 

Proportional 0.02 0.4 0% 1.1% -0.04 0.9 -0.4% 0.9% 
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Table 7 
 

This table presents results for model performance by estimating the following regression model for each of 
the one-factor and two-factor models examined in the paper: 
 

(Market Price)t = β0 + β1 (Model Forecast Price)t + εt 
 
The model and market prices of the caps and floors are expressed in basis points, for the 219 daily 
observations during the sample period March-December, 1998. All the caps (6.5%, 7%, 7.5%, and 8% strike) 
and floors (5%, 5.5%, 6%, 6.5%) for each of the four maturities (2-, 3-, 4-, and 5-year) are used in the 
regression model to test for biases in model performance. 
 

Caps Floors  
Model  

β0 
 

β1 
 

R2 
 

β0 
 

β1 
 

R2 

Spot Rate Models 

Hull and White 2.538 0.971 0.978 -1.153 1.012 0.983 

HW - time varying 1.107 0.988 0.991 -2.213 1.029 0.994 

Black & Karasinski 0.083 1.002 0.994 -0.094 0.997 0.991 

BK - time varying -0.671 1.015 0.996 -1.379 1.021 0.997 

Forward Rate Models:  One-Factor 

Absolute -0.094 1.007 0.977 -3.217 1.025 0.972 

Linear Absolute 0.065 1.002 0.989 -2.439 1.019 0.979 

Exponential 2.812 0.968 0.986 -0.466 1.003 0.985 

Square Root 2.972 0.963 0.982 -0.328 1.002 0.984 

Proportional 0.039 1.001 0.993 0.049 0.998 0.995 

Linear Proportional 0.070 1.003 0.994 -0.055 0.997 0.995 

Forward Rate Models:  Two-Factor 

Absolute -0.046 1.008 0.988 -2.057 1.017 0.980 

Proportional 0.015 1.000 0.997 -0.028 0.999 0.998 
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Table 8 
 

This table presents summary statistics for the hedging errors for the one-factor and two-factor spot rate and 
forward rate models analyzed. The hedging error is defined as the percentage change in the value of the 
hedge portfolio over a 5-day and a 20-day rebalancing interval. This error is averaged over the 219 days 
(March-December, 1998) for which the study was done. The hedge portfolio consists of one each of all the 
caps (floors) in the sample, across the four strike rates and the four maturities, and the appropriate 
Eurodollar futures contracts. 
 

Caps Floors 
5-day rebal. 20-day rebal. 5-day rebal. 20-day rebal. 

 
Model 

Avg. 
% 

Error 

Avg. 
% Abs 
Error 

Avg. 
% 

Error 

Avg. 
% Abs 
Error 

Avg. 
% 

Error 

Avg. 
% Abs 
Error 

Avg. 
% 

Error 

Avg. 
% Abs 
Error 

Spot Rate Models 

Hull and White 0.05% 0.56% 0.17% 2.67% 0.03% 0.76% 0.22% 3.04% 

HW - time varying 0.04% 0.51% 0.29% 3.22% 0.05% 0.59% 0.35% 4.22% 

Black & Karasinski -0.03% 0.41% -0.09% 2.05% 0.06% 0.58% 0.19% 2.41% 

BK - time varying -0.12% 0.32% 0.03% 2.11% 0.11% 0.53% 0.25% 2.78% 

Forward Rate Models – One Factor 

Absolute 0.08% 0.68% 0.07% 2.44% 0.12% 0.81% 0.04% 3.15% 

Linear Absolute 0.11% 0.52% 0.13% 2.23% 0.09% 0.75% 0.14% 2.57% 

Exponential -0.09% 0.41% -0.14% 1.91% -0.05% 0.56% -0.13% 2.72% 

Square Root 0.10% 0.46% 0.21% 1.98% -0.13% 0.44% -0.08% 2.16% 

Proportional 0.04% 0.33% 0.07% 1.62% 0.07% 0.31% 0.11% 1.55% 

Linear Proportional 0.04% 0.37% 0.08% 1.67% 0.05% 0.29% 0.09% 1.69% 

Forward Rate Models – Two Factor 

Absolute 0.02% 0.19% 0.05% 0.54% 0.01% 0.16% 0.02% 0.74% 

Proportional 0.02% 0.11% 0.04% 0.47% -0.02% 0.15% -0.01% 0.49% 
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Figure 1 
 

These figures present the average percentage pricing errors in predicting the prices of caps, using the one-
factor and two-factor spot rate and forward rate models. The errors presented pertain to caps of 2-, 3-, 4- 
and 5-year maturity for strike rates of 6.5%, 7%, 7.5% and 8%. These errors are averaged over the 219 
trading day sample period, March 1 - December 31, 1998.  
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Figure 2 
 

These figures present the average percentage pricing errors in predicting the prices of floors, using the spot 
rate and forward rate models. The errors presented pertain to floors of 2-, 3-, 4- and 5-year maturity for 
strike rates of 5%, 5.5%, 6% and 6.5%. These errors are averaged over the 219 trading day sample period, 
March 1 - December 31, 1998. 
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