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Abstract

Researchers such as Derman and Kani (1994), Dupire (1994), and Rubin-
stein (1994) have proposed a one-factor model for asset prices that is exactly
consistent with all European option prices. In this model, which we refer to as
the implied volatility function (IVF) model, the asset price volatility is a func-
tion of both time and the asset price. Practitioners often use the IVF model
to price exotic options. This paper explores the validity of this. It does so by
assuming a two-factor stochastic volatility model for the asset price and exam-
ining the way the IVF model prices compound options and barrier options. We
find the model works well for compound options, but sometimes gives rise to
large pricing errors for barrier options.

*We are grateful for the comments and suggestions of Angelo Melino, Thomas McCurdy and
Alan White. All errors are our responsibility.



1 Introduction

The Black—Scholes (1973) model and its extensions are widely used by the market to
price options. The usual approach is to imply volatilities from the prices of options
that trade actively and use them to price other options. This approach is possible
because volatility is the only unobservable parameter in the Black-Scholes pricing
formula.

This use of implied volatilities by the market makes sense only if all options (or
at least all options with the same expiration date) yield similar implied volatilities
at any given time. As Rubinstein (1994) points out, two implied volatilities can be
considered approximately the same if the economic consequences of using one rather
than the other are relatively benign in the sense of yielding small percentage errors
in option values.

Since the market crash of 1987, the implied volatilities calculated from different
options on the same stock or stock index have been systematically dependent on
the strike price. As the strike price increases, the implied volatility decreases. This
phenomenon is referred to as a volatility skew. Foreign exchange markets exhibit a
different pattern from equity markets. For a given maturity, the implied volatility is
a U-shaped function of the strike price. The implied volatility is lowest for an option
that is at or close to the money. It becomes progressively higher as an option moves
either in or out of the money. This is referred to as a volatility smile.

When implied volatilities for European options with a particular maturity are de-
pendent on the strike price, the risk—neutral probability distribution for the future
value of the asset is non-lognormal and the assumptions underlying the Black—Scholes
model do not hold. This makes it difficult for traders to price exotic options consis-
tently with standard options.

A number of authors have proposed extensions of the Black-Scholes model. For
example, Merton (1976) and Bates (1996) have proposed jump-diffusion models. He-
ston (1993), Hull and White (1987, 1988), and Stein and Stein (1995) have proposed
models where volatility follows a stochastic process. When parameters are chosen
appropriately these models produce Black—Scholes implied volatilities that have a
similar pattern to those observed in the market. Although the models are popular
among academic researchers, they are not widely used by practitioners. When valuing
exotic options, most practitioners like to use a model that exactly matches all the
observed market prices of options written on the same underlying asset. Research by
Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) shows that we can
construct a one-factor model with this property by making volatility a function of the
asset price and time. Following Rosenberg (2000), we will refer to this model as the
implied volatility function (IVF) model.

Dumas, Fleming and Whaley (1998) test the stationarity of the IVF model. They
show that there are significant errors when the IVF model is fitted to the market
at a particular time and then used to price options one week later. They also find



that the difference between the observed and predicted option prices is larger for
complex parameterizations of the volatility functions than for a constant volatility
specification. They conclude that the implied volatility model is not an improvement
over Black—Scholes as a description of how asset prices evolve. Recently Rosenberg
(2000) has proposed a model where the at-the-money implied volatility follows a
process dependent on asset returns and other volatilities are a function of the at-the-
money volatility. He carries out a similar test to Dumas, Fleming, and Whaley and
shows that his model performs well when compared to particular cases of the IVF
model.

We subject the IVF model to a different test — one that is more closely related
to the way it is used in practice. We test whether the model is useful as a tool for
relating the price of an exotic option to the prices of standard European options at
one particular time. We assume that the true model describing the evolution of asset
prices is a stochastic volatility model and that the market prices of all European
options are consistent with this model. We fit the IVF model to European option
prices and compare the prices it gives for particular exotic options with the prices
given by the stochastic volatility model.

We choose this somewhat artificial test of the model because there are very little
data on market prices of exotic options. The test is designed to determine whether the
IVF model gives good prices for a simple, relatively well-behaved, two-factor model.
If it does, we can be optimistic that it will work reasonably well for the complicated
processes driving asset prices in the real world. If it does not, we can reasonably
assume that it will not perform adequately as a pricing tool in the real world.

2 The Implied Volatility Function Model

In the Black-Scholes setting, an asset price, S, is assumed to follow a geometric
Brownian motion,

% = pdt + odz, (1)

The expected return on the asset, i, can be a function of the asset price and time,
the asset price volatility, o, is constant, and z follows a Wiener process. The market
is assumed to be frictionless with no arbitrage opportunities. The spot interest rate,
r, and yield on the asset, ¢, are assumed to be constant.

Under these and other technical assumptions, it can be shown that the price
c(S,t; K,T, o) at time ¢ of a European call option on the asset with strike price K
and maturity 7" is given by

(S, t; K,T,0) = e T VSN (dy) — e " TV KN(dy), (2)
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and N(z) is the cumulative probability that variable with a standardized normal
distribution is less than z. Equation (2) implies that there is a one-to-one correspon-
dence between call option prices and their volatilities. If the market price, ¢y, for
an European call option with a strike price K and maturity 7" is known, then there
is a unique volatility ojm;, such that

Cmkt = C(Sa t; K, T, Uimp)- (3)

This is known as the implied volatility. The value of iy, as a function of K and T
is referred to as the wvolatility matriz or volatility surface.

The Black-Scholes assumptions imply that oimp is independent of K and T'. In
practice, as already mentioned, oimp is found to vary systematically with the strike
price. In the foreign exchange market there is a volatility smile. The implied volatil-
ities for at-the-money options are typically lower than the implied volatilities of deep
out-of-the-money or deep in-the-money options on the same asset. In equity markets
there is a volatility skew. The Black-Scholes implied volatilities for options with the
same maturity date tend to decrease as the strike price increases. This phenomenon,
discussed in Jackwerth and Rubinstein (1996), has been a feature of equity markets
since the market crash in 1987.

The IVF model was proposed by Derman and Kani (1994), Dupire (1994), and
Rubinstein (1994) and extended by Andersen and Brotherton—Ratcliffe (1998). The
volatility of the underlying asset is assumed to be a deterministic function of both
time and underlying asset level. The risk-free interest rate, r, and the asset’s yield, g,
are assumed to be functions of time so that the risk-neutral process followed by the
asset price is

ds
<= [r(t) — q(t)]dt + o (S, t)dz.
Derivatives dependent on the asset price satisfy the differential equation
of of |1 202 0°f
L+ r(t) — a()S5E + 50(S,1257 5 5 = (1), (4

As shown by Dupire (1994) and Andersen and Brotherton—Ratcliffe (1998), there
is an analytic relationship between the volatility function and the prices of European
options with different strike prices and times to maturity. The relationship is:

28kat/3T + q(t)emis + [r(t) — ()| KOcmis /OK
K202¢py JOK? ’

o(K,T) = (5)
Once the volatility function in equation (5) has been determined, exotic option prices
can be obtained by solving differential equation (4) subject to appropriate boundary
conditions.



3 Potential Errors in the IVF Model

The IVF model is designed so that it values all European options correctly. This
means that the risk-neutral probability distribution of the asset price at all future
times, conditional on the asset price at time zero, is consistent with the market. This
in turn means that the IVF model correctly prices all derivatives that provide a single
payoff at a time 7" when the payoff is contingent only on the asset price at time 7.

There is no guarantee that the IVEF model prices other derivatives correctly. Con-
sider, for example, a compound option where the holder has the right at time 7} to
pay a prespecified amount of money, K7, to enter into a European option with strike
price, Ky, maturing at time 75. The decision to exercise at time 7 depends on the
asset price at time 77 and, possibly, other state variables. The payoff at time T3
depends on the asset price at time 7,. The value of the option therefore depends on
the joint probability distribution of the asset price at times 7} and 75. Because the
joint probability distribution of two variables is not uniquely determined from their
marginal distributions, the IVF model may be assuming a different joint probability
from the market.

To express this point more formally, define ¢,[t1,to, . . ., t,] as the joint probability
distribution of the asset price at times t;, t, ..., t,. The IVF model is designed so
that ¢1(t) is correct for all £, but this does not ensure that ¢,[t1,ts, ..., t,] is correct
for n > 1. In the case of the compound option just considered ¢;(77) and ¢, (75) are
correct, but this does not guarantee that ¢o(7},73) is correct.

The dependence of the price of some derivatives on the joint probability distri-
bution of the underlying asset price at different times is quite complex. Consider a
barrier option maturing at time 7 where the asset price is observed at times 77,
T,, ..., Ty for the purposes of determining whether the barrier has been hit. The
price of the option depends on ¢x|[T},T5,...,Tx]|. The IVF model is designed so that
¢1(T;) is correct for 1 < 7 < N, but this does not mean ¢y[11,75,...,Ty] is even
approximately correct.

4 Tests

To test the IVF model we assumed that the asset price is follows a two-factor stochas-
tic volatility model similar to the one developed by Heston (1993) so that

% = (r — q)dt + vdzs (6)
with
dv = k(0 — v)dt + £dzy, (7)

where zg and z, are Wiener processes with an instantaneous correlation p. The
parameters k, #, and £ are the mean-reversion rate, long-run average volatility, and



volatility of volatility, respectively, and are assumed to be constants. The spot rate,
r and the yield on the asset g are also assumed to be constant.

A valuation formula for the European call option price, ¢,(S,v,t; K,T), in this
model can be found through the inversion of characteristic functions of random vari-
ables. It takes the form:

cn(S,v,t; K, T) = e 1T DS(t)F, — e "I VKF,. (8)

where F; and F; are integrals that can be evaluated efficiently using numerical pro-
cedures such as quadrature. More details on the model can be found in Schobel and
Zhu (1998).

Our test of the IVF model consists of the following steps:

1. Price an exotic option using the stochastic volatility model in equations (6) and
(7). We denote this price by fire-

2. Fit the IVF model to the market prices of European call options that are given by
the model in equations (6) and (7).

3. Use the IVF model to price the exotic option. We denote this price by fiys-

4. Use the Black—Scholes model in equation (1) to price the exotic option. We denote
this price by fps.

2. Compare ftruea fivfa and fbs-

We considered the following two sets of parameters for the stochastic volatility model.

Parameter Set I: » = 5.9%, ¢ = 1.4%, v(0) = 0.25, k = 0.16, § = 0.3, £ = 0.09, and
p=—0.79.

Parameter Set II: » = 5.9%, ¢ = 3.5%, v(0) = 0.1285, k = 0.109, # = 0.1, £ = 0.0376,
and p = 0.1548.

To choose Parameter Set I, we used a least squares procedure to provide as close
a fit as possible to the volatility matrix for the S&P 500 reported in Andersen and
Brotherton—Ratcliffe (1998). To choose Parameter Set II, we use the same procedure
to provide as close a fit as possible to a volatility matrix for the U.S. dollar-Swiss franc
exchange rate provided to us by a large U.S. investment bank. The parameter sets
are, therefore, designed to give volatility matrices representative of those encountered
in practice for an equity index and a currency, respectively. The implied Black-Scholes
volatility matrices from the stochastic volatility model of (6) and (7) with Parameter
Sets I and II are shown in Tables 1 and 2.

We calculated the market prices of European call options, ¢y, using equation
(8). We fitted the IVF model to these prices by calculating ¢yt /0t, Ocpyi /0K, and
0?Cks/OK? from equation (8) and then using equation (5).

We considered two types of exotic options: a call-on-call compound option and
a knock-out barrier option. We used Monte Carlo simulation with 300 time steps



and 100,000 trials to estimate the prices of these options for the stochastic volatility
model.! For this purpose, equations (6) and (7) were discretized to

S; 2
In Sfl = (r—q— %) At + v;e; VAL, 9)
Vip1 — v = k(0 — v;) At + EeaV AL, (10)

where At is the length of the Monte Carlo simulation time step, S; and v; are the
asset price and its volatility at time iAt, and €; and e are random samples from two
unit normal distributions with correlation, p.

We estimated the prices given by the IVF model using the implicit Crank-Nicholson
finite difference method described in Andersen and Brotherton—Ratcliffe (1998). This
involves constructing a 120 x 70 rectangular grid of points in (z,t)-space where
x =1nS. The grid extends from time zero to the maturity of the exotic option, Ti,,s-
Define Tmin and Zmay as the lowest and highest z-values considered on the grid. (We
explain how these are determined later.) Boundary conditions determine the values
of the exotic option on the x = Ty, T = Ty and T = Ty, edges of the grid. The
differential equation (4) enables relationships to be established between the values of
the exotic option at the nodes at the i¢th time point and its values at the nodes at
the (i + 1)th time point. These relationships are used in conjunction with boundary
conditions to determine the value of the exotic option at all interior nodes of the grid
and its value at the nodes at time zero.

4.1 Compound Options

Our first test of the IVF model used a call-on-call compound option. This is an
option where the holder has the right at time 77 to pay K; and obtain a call option
to purchase the asset for a price K, at time Tp (T > 7). When using Monte
Carlo simulation to calculate fie, each trial involved using equations (9) and (10) to
calculate the asset price and its volatility at time 77. It was not necessary to simulate
beyond time 77 because the value of a European call option with strike price Ky and
maturity 75 can be calculated at time 7} using equation (8). Define S; ; and vy,; as
the asset price and volatility at time 77 on the jth trial, and w;; as the value at
time T} of a call option with strike price Ky maturing at 75 for the jth trial. From
equation (8):
Wi,; = Ch(Sl,j, V1,4, Tl, KQ, TQ)

The estimate of the true value of the option given by Monte Carlo simulation is:

—'I‘T1 N
N Zmax(wl,j - Kl, 0)
Jj=1
'To reduce the variance of the estimates, we used the antithetic variable technique described in
Boyle (1977).
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We calculated the IVF price for the compound option by building the finite differ-
ence grid out to time 75,. Between times 77 and 75, we used the grid to calculate the
price, w, of a European call option with strike price Ky maturing at time 75. This
enabled the value of the compound option at the nodes at time 7T} to be calculated
as max(w — K1,0). We then used the part of the grid between time zero and time
T7 to calculate the value of the compound option at time zero. We set Tmin = In Smin
and Tmax = 1N Smax Where Shin and Spax are very high and very low asset prices,
respectively. The boundary conditions we used were:

w = max(e” — Ky,0) when ¢t = Ty,

w = 0when z=2a,, and T} <t <75,
w = € — Koe "™ when z = Ty and Ty < t < T
fivt = 0when x =2y, and 0 <t < T,
fit = € — Koe ™ — e ™M when 4 = zmim and 0 < t < T.

The value of a compound option using the Black—Scholes model in equation (1)
was first produced by Geske (1979). Geske shows that at time zero:

fos = S(0)e™ 12 M (ay, by; /Ty /Ts) — Koe "2 M (ag, by; \/T1/Ts) — e " K N(ay)

where
X _ 2
@ = In[S(0)/5™] + (r Q+J/2)T1, as = a1 — oy/ 11,
g T]_
_ 2
b = RSO/ g+ T,

oVTy

and M (a,b; p), is the cumulative probability in a standardized bivariate normal dis-
tribution that the first variable is less than a and the second variable is less than b
when the coefficient of correlation between the variables is p. The variable S* is the
asset price at time 7 for which the price at time 7} of a European call option with
strike price Ky and maturity 75 equals K;. If the actual asset price is above S* at
time 77, the first option will be exercised; if it is not above S*, the compound option
expires worthless. In computing f,s we used the implied volatility of a European
option maturing at time 75, with a strike price of K.

Table 3 shows fiue and the percentage errors when the option price is approxi-
mated by fiy;r and fis for the case where T} = 1, To = 2, and K5 equals the initial
asset price. It considers a wide range of values of K;. The table shows that the IVF
model works very well. For compound options where the true price is greater than
1% of the initial asset price, the IVF price is within 2% of the true price. When
very high strike prices are used with Parameter Set II the error is higher, but this is
because the true price of the compound option is very low. Measured as a percent



of the initial asset price the absolute pricing error of the IVF model is never greater
than 0.08%.

The Black—Scholes model, on the other hand, performs quite badly. For high
values of the strike price, K, it significantly overprices the compound option in the
case of Parameter Set I and significantly underprices it in the case of Parameter Set
IT. The reason is that, when K; is high, the first call option is exercised only when
the asset price is very high at time 7). Consider first Parameter Set I. As shown
in Table 1, the implied volatility is a declining function of the strike price. (This
is the volatility skew phenomenon for a stock index described earlier). As a result
the probability distribution of the asset price at time 77 has a fatter left tail and a
thinner right tail than a lognormal distribution when the latter is calculated using
the at-the-money volatility, and very high asset prices are much less likely than they
are under the Black-Scholes model. This means that the first option is much more
likely to be exercised in the Black—Scholes world than in the assumed true world.
Consider next Parameter Set II. As shown in Table 2, the implied volatility is a U-
shaped function. (This is the volatility smile phenomenon for a currency described
earlier.) The results in the probability distribution of the asset price having fatter left
and right tails than a lognormal distribution when the latter is calculated using the
at-the-money volatility, and very high asset prices are much more likely than they are
under the Black—Scholes model. This means that the first option is much less likely
to be exercised in the Black—Scholes world than in the assumed true world.

Practitioners sometimes try to make the Black—Scholes model work for compound
options by adjusting the volatility. Sometimes they use two different volatilities, one
for the period between time zero and time 7 and the other for the period between time
T; and time Ty. There is of course some volatility (or pair of volatilities) that will give
the correct price for any given compound option. But the price of a compound option
given by the Black-Scholes model is highly sensitive to the volatility and any procedure
that involves estimating the “correct” volatility is dangerous and liable to give rise to
significant errors. Based on the tests reported here and other similar tests we have
carried out, the IVF model provides a satisfactory approach to valuing compound
options for the two-factor model we have considered. This is encouraging, but of
course it provides no guarantee that the model will work well for more complicated
multifactor models.

4.2 Barrier Options

The second exotic option we consider is a knock-out barrier call option. This is a
European call option with strike price K and maturity 7" that ceases to exist if the
asset price reaches a barrier level, H. When the barrier is greater than the initial
asset price, the option is referred to as an up-and-out call; when the barrier is less
than the initial asset price, it is referred to as a down-and-out call.

When using Monte Carlo simulation to calculate fi..., each trial involved using



equations (9) and (10) simulate a path for the asset price between time zero and time
T. For an up-and-out (down-and-out) option, if for any i, the asset price is above
(below) H at time 1At on the jth trial the payoff from the barrier option is set equal
to zero on that trial. Otherwise the payoff from the barrier option is max[S(T) — K, 0]
at time 7. The estimate of fi. is the arithmetic mean of the payoffs on all trials
discounted from time 7" to time zero at rate r.2

We calculated the IVF price for the barrier option by building the finite difference
grid out to time 7. In the case of a up-and-out option, we set Zmax = In(H) and
Tmin = In Spin Where Spin is a very low asset price; in the case of a down-and-out
option, we set Tmin = In(H) and Tmax = In Spax Where Spayx is very high asset price.
For an up-and-out call option, the boundary conditions are:

fivv = max(e® — K5,0) when ¢t =T,
fivi = Owhenz>In(H)and 0<t<T,
fit = Owhenz =2x,,and 0 <t<T.
For a down-and-out call, the boundary conditions are the similar except that
five =€ — Ko™ when = Zmax.

The value of knock-out options using the Black—Scholes assumption in equation
(1) was first produced by Merton (1973). He showed that at time zero, the price of a
down-and-out call option is

fos = S(O)N(di)e™™ — KN(dz)e™™" = S(0)e™""[H/S(0)]*N(y)
+Ke "T[H/S(0)]* 2N(y — oVT),
and that the price of an up-and-out call is
fos = S(0)e""[N(d)) = N(21)] = KeT[N(dy) = N(z1 — oVT)]
+5(0)e™ " [H/S(0)]A[N(=y) — N(~y1)]
—Ke "T[H/S(0)] *[N(—y + oV'T) = N(—y, + oVT)],

where
\ = r—q—{;02/2’
o
In{ H? K
L WEYSOKY o

oVT

In[S(0)/H
T = 7[ 0/ ]-f-/\a\/i
oVT
In[H/S(0
Ty = 7[ / ()]—i-)\ax/i
oVT
2To improve computational efficiency we applied the correction for discrete observations in
Broadie, Glasserman, and Kou (1997).
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and d; and dj are as in equation (2). In computing fi,s we used the implied volatility
of a regular European call option with strike price K maturing at time 7.

Tables 4 and 5 shows fi,e and the percentage errors when the option is approx-
imated by fiyt and fis for the cases where K are 90% and 100% of the initial asset
price. We consider a wide range of values for the barrier H. (When H > 100 the
option is an up-and-out call; when H < 100 it is a down and out call.) A compar-
ison of Table 3 with Tables 4 and 5 shows that the IVF model does not perform
as well as for barrier options as it does for compound options. For example, when
H = 98 for Parameter Set I and H = 110 for Parameter Set II, the errors are high
in both absolute terms and percentage terms. The Black—Scholes model sometimes
works better and sometimes works worse than the IVF model and is clearly not a
satisfactory alternative. Based on these and other similar tests we have carried out,
the IVF model does not always give satisfactory prices for barrier options. A more
sophisticated multifactor model appears necessary to handle these types of options
adequately.

5 Summary

The implied volatilities of European call options with different strike prices and ma-
turities define the unconditional probability distribution of the underlying asset price
at all future times. The IVF model matches these volatilities exactly. It, therefore,
also matches the unconditional probability distribution for the asset price at all future
times. An exotic option, whose payoff is contingent on the asset at just one future
time is, therefore, correctly priced by the IVF model. Unfortunately, many exotic
options depend on the joint probability distribution of the asset price at two or more
times. There is no guarantee that the IVF model will provide a reasonably accurate
representation of these joint distributions.

In this paper we test the IVF model by assuming that the the asset price follows
a stochastic volatility model and then comparing the prices of compound options and
barrier options with those given by the IVF model. We find that the IVF model
gives reasonably good results for compound options. The results for barrier options
are much less satisfactory. The IVF model does not recover enough aspects of the
dynamic features of the asset price process to give reasonably accurate prices for some
combinations of the strike price and barrier level. A more sophisticated multifactor
model appears to be necessary to handle barrier options adequately.

Academics tend to have different views from traders on how models should be
used. Academics prefer stationary models where parameters are not functions of
time. Traders consider it important to exactly fit all observed market prices and
are prepared to tolerate a high degree of nonstationarity to achieve this objective.
This paper has tested one nonstationary model that is popular among traders. It has
produced evidence to show that there is an element of data over-fitting in the model
and it should be used with caution.
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Table 1: Volatility matrix for Parameter Set 1. K=strike price as a percent of the

initial asset price; T=time to maturity.

T\K | 60.00 70.00 80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 130.00

140.00

0.175 | 33.48 29.67 28.06 27.31 26.58 25.87 25.16 24.47 23.79 23.13 22.48 21.29
0.425 | 31.35 29.71 28.20 27.47 26.76 26.07 25.39 24.71 24.05 23.40 22.77 21.56
0.695 | 31.40 29.82 28.34 27.64 26.95 26.27 25.61 24.95 24.31 23.68 23.06 21.88
0.940 | 31.46 29.91 28.47 27.78 27.11 26.45 25.8 25.17 24.54 23.93 23.33 22.17
1.000 | 31.48 29.94 28.50 27.82 27.15 26.49 25.85 25.22 24.60 23.99 23.39 22.24
1.500 | 31.59 30.11 28.74 28.08 27.45 26.82 26.21 25.61 25.02 24.45 23.88 22.78
2.000 | 31.69 30.27 28.95 28.32 27.71 27.12 26.54 25.97 25.41 24.86 24.32 23.28
3.000 | 31.85 30.53 29.31 28.73 28.18 27.63 27.10 26.58 26.08 25.58 25.09 24.15
4.000 | 31.97 30.74 29.61 29.08 28.56 28.06 27.57 27.10 26.63 26.18 25.74 24.89
5.000 | 32.07 30.91 29.86 29.36 28.88 28.42 27.97 27.53 27.11 26.69 26.29 25.51

21.35
20.49
20.81
21.11
21.18
21.76
22.30
23.26
24.07
24.76

The parameters for the stochastic volatility model used in generating this
table are: 7 = 5.9%, ¢ = 1.4%, vg = 0.0114, x = 0.16, = 0.3, £ = 0.09, and
p = —0.79. The volatility matrix is similar to that for an equity index

Table 2: Volatility matrix for Parameter Set II. K=strike price as a percent of the

initial asset price; T=time to maturity.

T\K | 60.00 70.00 80.00 85.00 90.00 95.00 100.00 105.00 110.00 115.00 120.00 130.00

140.00

0.175 | 32.30 23.03 14.56 12.85 12.73 12.75 12.83 12.96 13.13 13.32 13.56 16.16
0.425 | 21.13 14.97 12.90 12.77 12.72 12.74 12.81 12.93 13.09 13.27 13.46 13.88
0.695 | 16.80 13.44 12.89 12.77 12.71 12.72 12.79 12.90 13.06 13.23 13.42 13.81
0.940 | 14.86 13.32 12.89 12.76 12.70 12.71 12.77 12.88 13.02 13.19 13.37 13.76
1.000 | 16.46 13.31 12.89 12.76 12.70 12.70 12.76 12.87 13.02 13.18 13.36 13.74
1.500 | 17.94 13.30 12.89 12.76 12.69 12.68 12.73 12.82 12.96 13.11 13.29 13.65
2.000 | 17.83 13.30 12.89 12.76 12.69 12.67 12.70 12.78 12.90 13.05 13.21 13.56
3.000 | 17.82 13.30 12.91 12.77 12.68 12.65 12.66 12.72 12.81 12.94 13.08 13.40
4.000 | 18.15 13.31 12.92 12.78 12.69 12.64 12.63 12.67 12.74 12.84 12.97 13.25
5.000 | 18.71 13.31 12.93 12.80 12.70 12.64 12.62 12.63 12.69 12.77 12.87 13.13

21.10
14.50
14.20
14.14
14.12
14.02
13.92
13.73
13.56
13.41

The parameters for the stochastic volatility model used in generating this
table are: r = 5.9%, ¢ = 3.5%, vy = 0.1285, k = 0.1090, 6 = 0.10, & =
0.0376, and p = 0.1548. The volatility matrix is similar to that for a foreign
currency
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Table 3: Numerical Results for Compound Options. Parameter Set I gives a volatil-
ity matrix similar to that obtained from options on an equity index (See Table 1).
Parameter Set II gives a volatility matrix similar to that obtained from options on a
foreign currency (see Table 2)

Strike Parameter Set I Parameter Set II
K True Price IVF % Error BS % Error || True Price IVF % Error BS % Error
3.45 15.45 -0.05 0.43 6.24 -0.95 -0.72
5.90 13.60 -0.14 1.23 4.82 -1.64 -1.76
8.35 11.93 -0.25 2.47 3.70 -1.67 -3.13
10.80 10.42 -0.36 4.14 2.83 -1.73 -4.78
13.25 9.07 -0.45 6.28 2.14 -1.63 -6.77
15.70 7.85 -0.54 8.99 1.62 -1.42 -9.22
18.15 6.76 -0.53 12.31 1.21 -1.07 -12.13
20.60 5.79 -0.59 16.34 0.90 -0.77 -15.49
23.05 4.92 -0.47 21.14 0.67 -1.04 -19.49
25.50 4.16 -0.36 26.93 0.50 -0.80 -24.05
27.95 3.50 -0.26 33.77 0.37 0.81 -28.72
30.40 2.92 -0.14 41.89 0.27 1.47 -33.82
32.85 2.417 0.00 51.39 0.20 1.00 -39.00
35.30 1.99 0.25 62.58 0.15 2.74 -43.84
37.75 1.623 0.62 75.85 0.11 4.67 -49.53
40.20 1.32 1.06 91.48 0.08 5.13 -55.13
42.65 1.06 1.42 110.02 0.056 7.02 -59.65
45.10 0.84 1.68 131.75 0.04 7.14 -64.29

The table shows the true price as a percent of the initial asset price, and the percentage
error when this is approximated using the IVF model and the Black—Scholes model. The
maturity of the first option, 71, is 1 year; the maturity of the second option, T», is 2 years;
the second strike price, Ko equals the initial asset price; the first strike price K; is shown

in the table as a percentage of the initial asset price.
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Table 4: Numerical Results for Knock-Out Barrier Options when the Strike Price is
90% of the Initial Asset Price. Parameter Set I gives a volatility matrix similar to
that obtained from options on an equity index (See Table 1). Parameter Set II gives
a volatility matrix similar to that obtained from options on a foreign currency (see

Table 2)
Barrier Parameter Set I Parameter Set II
H True Price IVF % Error BS % Error | True Price IVF % Error BS % Error
50 24.00 0.09 0.18 14.94 0.07 0.02
60 23.77 -0.06 0.64 14.94 0.04 0.02
70 22.69 0.00 1.67 14.93 0.09 0.05
80 19.74 -0.42 0.75 14.72 0.33 0.37
90 12.97 -0.69 -3.44 12.08 -0.75 -0.57
92 10.95 -0.74 -4.67 10.58 -0.51 -0.09
94 8.72 -1.20 -6.54 8.67 -0.56 0.10
96 6.18 -1.84 -8.75 6.32 -1.32 -0.08
98 3.36 -4.08 -12.84 3.42 -1.44 0.50
102 0.01 -31.92 -19.81 0.09 -23.14 -28.20
104 0.03 -26.60 -17.49 0.26 -21.65 -26.61
106 0.06 -25.91 -20.02 0.52 -18.28 -22.92
108 0.11 -26.61 -23.54 0.87 -16.81 -20.16
110 0.18 -24.16 -24.84 1.32 -14.33 -17.43
120 1.01 -18.54 -31.40 4.42 -6.62 -4.37
130 2.90 -13.85 -36.74 7.74 -2.71 3.58
140 5.91 -10.39 -40.49 10.41 -1.37 6.40
150 9.66 -8.15 -42.35 12.19 -0.52 6.81

The table shows the true price as a percent of the initial asset price, and the percentage
error when this is approximated using the IVF model and the Black—Scholes model. The
barrier is shown in the table as a percent of the initial asset price.
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Table 5: Same as Table 4, except that the strike price equals the initial asset price.

Barrier Parameter Set I Parameter S et II
H True Price IVF % Error BS % Error || True Price IVF % Error BS % Error
50 18.40 0.07 0.13 8.93 0.01 0.02
60 18.29 -0.05 0.54 8.93 0.01 0.02
70 17.61 0.11 2.12 8.93 0.02 0.04
80 15.61 -0.25 2.79 8.86 0.39 0.42
90 10.55 -0.54 0.52 7.72 0.48 0.37
92 8.96 -0.59 -0.37 6.91 1.14 1.10
94 7.18 -0.97 -1.91 5.84 1.11 1.10
96 5.12 -1.64 -3.091 4.39 0.30 0.64
98 2.80 -3.90 -7.96 2.45 0.04 0.88
102 0.00 n.a. n.a. 0.00 n.a. n.a.
104 0.00 -42.41 -9.93 0.01 -46.41 -34.04
106 0.00 -36.50 -19.52 0.03 -33.51 -29.92
108 0.01 -40.69 -28.23 0.09 -30.36 -25.62
110 0.03 -32.00 -27.10 0.19 -24.08 -21.73
120 0.34 -24.21 -33.29 1.44 -10.56 -4.18
130 1.39 -18.08 -38.61 3.41 -4.36 6.64
140 3.40 -13.40 -42.20 5.27 -2.33 10.12
150 6.20 -10.18 -43.88 6.62 -0.90 10.38
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