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 Financial Econometrics is simply the application of econometric tools to financial 

data.  For many years, least squares techniques provided satisfactory tools. Stock market 

forecasts, efficient market tests, and even tests of portfolio models such as the CAPM and 

APT were essentially implemented with least squares on cleverly manipulated data sets.  

More recently, however, the field has developed its individual character as new statistical 

tools have been invented to analyze new questions. 

 In this short overview, I would like to suggest a framework that includes much of 

the recent literature and important tools of Financial Econometrics.  Let tP  be a vector of 

asset prices observed at time t, and let tF  be the information set known to the 

econometrician at time t which automatically must include these prices.  Corresponding 

to the price change and dividend payment from t to t+k is a return vector t,ktR + .  A 

central concern of financial econometrics is to discover the joint conditional density 

( )tkt FPf + .  Estimates of the conditional mean, ( )kttt/kt PE ++ =µ  of this density were 

used to test the efficient markets hypothesis, which, in its simplest form, supposed that 

expected excess returns should be zero.  New econometric methods were then introduced 

to estimate the conditional variances and covariances, 

( )( )'PPE t/ktktt/ktkttt,kt +++++ −−= µµΩ  of these prices and returns.  The first models 

were the ARCH and GARCH models of Engle(1982) and Bollerslev(1986) and then the 

stochastic volatility models of Taylor(1986) and Harvey, Ruiz and Shepherd(1994). 

Multivariate GARCH methods were implemented by Bollerslev, Engle and 

Wooldridge(1988), Bollerslev(1990), and Engle and Kroner(1996).   Engle and 

Gonzales-Rivera(1991) allowed general non-normal errors but a paper by Hansen(1994) 

is one of the few successful efforts to estimate time varying higher moments of this 

density.  In response to the needs of regulators and risk managers for calculations of 

Value at Risk,  new methods now are being designed to examine the tails of this 
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distribution. It is not clear whether the tails have the same dynamic behavior as the rest of 

the distribution as would be assumed by GARCH style models.  The new models include 

the Hybrid model of Boudoukh, Richardson and Whitelaw(1998), the CAViaR model of 

Engle and Manganelli(1999), and extreme value theory estimation of tail shapes as in 

Embrechts, Kluppelberg and Mikosch (1997), and McNiel and Frey(2000). 

This collection of methods has generally been successful in parameterizing and 

estimating conditional densities.  The most significant unsolved problem is the 

multivariate extension of many of these methods.  Although various multivariate 

GARCH models have been proposed, there is no consensus on simple models that are 

satisfactory for big problems.  There has been little work on multivariate tail properties or 

other conditional moments.   There is intriguing evidence of interesting non-linearities in 

correlation.  A second important extension that is receiving a great amount of attention, is 

the development of methods to use intra-daily data and ultimately transactions data, 

called by Engle(2000) ultra-high-frequency data, to improve estimation of conditional 

densities.  

 All these methods are focussed on moments of the empirical conditional density, 

f.  However another object of interest is the risk neutral conditional density, f*, which is 

the set of probabilities of returns or prices under which an agent would value assets by 

their discounted expected value.   This density is known to exist and to be given by  

(1) ( ) ( ) ( )tktkt
1

ttkt FPfPmbFP*f ++
−

+ =  

if and only if there are no arbitrage opportunities.  The positive function m is the pricing 

kernel, interpreted as price per unit probability, which is unique if markets are complete.  

The scalar ( )mEb tt =  ensures that f* is a density.  The risk neutral density has the 

property that assets with payoff ( )ktPg +  should have a price  

(2) ( ) ( ) ( ) ( ) ( ) ( )( )kttttttt Pg*EbduFu*fugbduFufugumS +=== ∫∫  

Since this formula applies to all assets including ones with a sure payment, it is clear that 

tb  is the price of a pure discount bond. When g is the identity, it gives an expression for 

the risk premium for the underlying asset.  When the payoff function is 

(3) ( ) }0,KPmax{Pg ktkt −= ++ ,  

 this expression prices European Call Options.   
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Two different strands of financial econometrics have approached the option-

pricing problem.  The first observes options data and infers f* ;  the second  specifies m, 

estimates f , and computes the option price. The estimation of f* is sometimes called 

arbitrage free pricing, since the existence of a density which prices all assets, insures no 

arbitrage opportunities.  A variety of methods have been proposed which involve some 

interpolation of options prices to all strikes and then inversion of (2) to get f*.  See for 

example Shimko(1993) and Rubinstein(1994). These methods have no implication for 

risk management as the density  f* is simply estimated at each point in time and may 

have any sort of time series behavior.  For a dramatic demonstration, see Dumas Fleming 

and Whaley(1998).   

The second approach is closer to conventional econometric research.  It is typical 

to appeal to the Black and Scholes continuous hedging argument and Girsanov’s 

Theorem to infer the pricing kernel, however much recent research which is aimed 

directly at parameterizing and estimating m , has shown that this may be too simple a 

specification to replicate the properties of options prices.  See for example Jackwerth and 

Rubinstein(1996) and Rosenberg and Engle(1999). 

An important class of models assumes that the true data generating process is a 

continuous time diffusion process.  In this case both the empirical and risk neutral density 

can be computed.  Black and Scholes derived their options pricing model based upon 

geometric Brownian motion but many other models have been proposed and have their 

own options prices.  The econometric problem is to estimate the parameters of the 

diffusion process based upon the discretely observed data. It has generally been found 

that simple diffusion processes do not fit observed data so interest has focussed on mean 

reverting processes such as Ornstein-Uhlenbeck,  jump diffusions, and affine family 

models such as the square root diffusion .  The econometrics of these models is difficult, 

often requiring simulated method of moments or characteristic function estimation. There 

is a challenge here in finding a satisfactory diffusion model that also supports option 

pricing.  However, models that are most convenient for option pricing incorporate the 

assumption that options are redundant assets and perhaps this is not the case. 

The use of higher and higher frequency data potentially could provide information 

on the appropriate class of diffusion models to use for pricing both underlying and 
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derivative assets.  To analyze uhf data, it is necessary to model not only the 

characteristics of each trade, but also the timing.  Engle and Russell(1998) introduce the 

Autoregressive Conditional Duration model that estimates the distribution of arrival times 

for the next event conditional on all past information.  Dufour and Engle(2000) following 

Hasbrouck’s (1993) vector autoregression, show that the more frequent the transactions, 

the greater the volatility and price response to trades and transaction arrivals are 

predictable based upon economic variables such as the bid ask spread. Econometric 

models of transactions, quotes, prices and volumes support many of the implications of 

market microstructure theory.  Potentially these models should yield valuable information 

for market designers and risk managers.  These models may also serve as underlying data 

generating processes for calculating empirical and risk neutral density forecasts and 

consequently for options pricing.  This is an important challenge for models of empirical 

microstructure. 
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