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Liquidity in the Futures Pits:  
Inferring Market Dynamics from Incomplete Data 

Abstract 

 Motivated by economic models of sequential trade, empirical analyses of market 

dynamics frequently estimate liquidity as the coefficient of signed order flow in a price-

change regression. This paper implements such an analysis for futures transaction data 

from pit trading. To deal with the absence of timely bid and ask quotes (which are used to 

sign trades in most equity-market studies), this paper proposes new techniques based on 

Markov chain Monte Carlo estimation.  

 The model is estimated for four representative Chicago Mercantile Exchange 

contracts. The highest liquidity (lowest order flow coefficient) is found for the S&P 

index. Liquidity for the Euro and UK £ contracts is somewhat lower. The pork belly 

contract exhibits the least liquidity. 
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1. Introduction 

US futures exchanges utilize a physically convened open outcry trading 

mechanism that poses particular challenges to the measurement of trading costs, order 

impacts and other attributes of liquidity.  The present perspective, based on sequential 

trade models of asymmetric information, is very similar to the approach widely used in 

equity studies. Specifically, quote setters post bid and/or offer quotes, potential traders 

arrive and buy or sell, and after any trade, quotes are revised. This logic supports 

dynamic models in which price changes are regressed against order flows that are signed 

(positively for buyer-initiated and negatively for seller-initiated orders). 1  

These specifications, however, make strong demands on market data. 

Construction of signed order flow generally requires data for both transactions (price and 

volume) and quotes (bid and ask). While quote data are commonly available for equity 

markets, and markets that are organized as electronic limit order books, they are not 

generally available for open outcry markets. Specifically, bids and offers in futures pits 

expire (unless hit) virtually instantaneously, and are therefore seldom recorded.  

The analysis of futures trading in the present paper is based on a novel 

econometric approach that facilitates estimation of rich microstructure models from 

limited data.  In this approach, the bid, ask and, most importantly, the direction (sign) of a 

given trade are viewed as latent, unobserved variables. I sign a trade, or, (more 

accurately) derive a probability density for the sign of the trade, conditional on the model 

and all observed data. 

This is essentially the modeling perspective of Glosten and Harris (1988). The 

present analysis generalizes their model in numerous respects, and suggests a new 

direction in estimation approach. Glosten and Harris use a non-linear state-space, 

                                                 
1 Theoretical analyses include Glosten and Milgrom (1985), Easley and O'Hara (1992a); 
Easley and O'Hara (1991); Easley and O'Hara (1987); Easley and O'Hara (1992b) and 
O'Hara (1995). Representative empirical studies include Hasbrouck (1991a); Hasbrouck 
(1996a); Huang and Stoll (1994); Huang and Stoll (1997) and Madhavan, Richardson, 
and Roomans (1997). 
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maximum likelihood approach. This paper implements a Bayesian analysis using a 

Markov chain Monte Carlo (MCMC) estimator, the Gibbs sampler, which is attractive 

both analytically and computationally.2 Bayesian methods are usually employed to 

incorporate prior beliefs about parameters. The more compelling motivation for the use 

of Bayesian methods in the present case, however, lies in the analytical and 

computational ease with which latent variables (such as the unobserved trade direction) 

may be incorporated. 

The paper presents analyses for the CME pork belly, Euro, UK £ and S&P 500 

index contracts, for two microstructure specifications. The first is a variant of the Roll 

(1984) model. This is a useful starting point due to its simplicity and the availability of an 

alternative estimation technique, the (standard) moment approach. The second 

specification allows for price discreteness, clustering and trade-price impacts. The 

estimates of this model for the four contracts suggest substantial (and presumably 

informational) effects of trades on prices, non-informational costs of market-making that 

are small relative to the tick size, and (for the pork-belly and S&P contracts) significant 

price clustering. Taking the price impact coefficient as a summary measure of liquidity, 

the S&P contract is the most liquid, followed by the two currency contracts, and the pork 

belly contract is the least liquid. 

Excellent prior studies of futures market liquidity are available. Those based on 

transaction-level data include Laux and Senchack (1992) and Ma, Peterson, and Sears 

(1992). These analyses employ moment-based estimates of the Roll model. For the 

present data, moment estimates are significantly higher than the corresponding MCMC 

estimates. The Roll model does not allow for informational price impacts.  Manaster and 

                                                 
2 Bayesian MCMC applications in market microstructure include Hasbrouck (1999b) and 
Ball and Chordia (2001). The techniques have also been used extensively in the analysis 
of stochastic volatility models (Shephard (1993); Engle (1994); Jacquier, Polson, and 
Rossi (1994); Kim, Shephard, and Chib (1998); Jones (2002)). For textbook expositions, 
see Carlin and Louis (1996), Gamerman (1997), and Kim and Nelson (2000). Other 
useful introductory materials include: Gilks, Richardson, and Spiegelhalter (1996) (for a 
concise overview of MCMC techniques), Casella and George (1992) (for the Gibbs 
sampler) and Chib and Greenberg (1996) (for applications in econometrics). 
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Mann (1996) and Locke and Venkatesh (1997) use Computerized Trade Reconstruction 

(CTR) data. These data (which are not publicly available) establish trader identity, permit 

tracking of trader positions, and so support a range of interesting analyses concerning 

inventory control. Manaster and Mann also estimate order impacts contingent on class of 

trader. Identification of a buyer and seller does not, however, establish who initiated the 

trade (in the sense of the sequential trade models), i.e., which party hit or lifted the bid or 

ask exposed by the other.  

 The paper is organized as follows. The next section summarizes trading 

procedures and some key features of the futures data. The paper then treats a simple and 

familiar microstructure construct (the Roll (1984) model of the bid-ask spread) from both 

conventional and modern Bayesian approaches (Section 3). A more comprehensive and 

realistic model that incorporates asymmetric information, discreteness and clustering is 

presented in Section 4. Section 5 covers results for the futures contracts. Section 6 

discusses extensions. A brief summary concludes the paper in Section 7. 

2. Institutional background and preliminary features of the data 

The Chicago Mercantile Exchange is a major U.S. futures exchange. Their web 

site (at www.cme.com) provides a comprehensive description of the Exchange, 

instruments, trading mechanisms and data (including that used in the present study). The 

trading arrangements at the CME are typical of U.S. futures exchanges. Traders interact 

face-to-face on the exchange floor. They compete by shouting and signing acceptable 

price/trade combinations. There is no presumption that a bid or offer is good until 

explicitly canceled or modified. A trader who wishes to signal ongoing availability of a 

price may continually repeat a bid or offer. This transience does not, however, invalidate 

the sequential trade framework, since we are still in a world where the quote setter moves 

first and the (potential) “market order” trader follows. 

An observer on the floor sees bids, offers and trades. In real time, however, off-

floor participants must rely on the electronically disseminated tick data. The reported 

price is the most current trade price. This is updated only when a trade at a new price 
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occurs. This differs from the last sale reporting practices in U.S. equities markets, 

wherein a trade is reported even if it is at the same price as the previous trade. Smith and 

Whaley (1994) discuss estimators of the Roll bid-ask spread using time and sales data. 

The data used in the present study are drawn from the CME’s volume-tick files, 

and consist of time-stamped trade prices and volumes. These data encompass all trades 

(not just those with nonzero price changes), and thus constitute a record substantially 

similar to what researchers employ from the U.S. equity market’s Consolidated 

Transaction System. The sample consists of trading data for one month for four 

representative contracts. The contracts are: pork bellies (an important agricultural 

commodity); the Euro (the dominant currency contract); the UK £ (an actively traded 

non-EMU currency); and the S&P 500 index (the dominant stock index contract). 

These data are synthesized from tick reports, clearing records and audit 

information. They are essentially the computerized trade reconstruction (CTR) data used 

by Manaster and Mann (1996), Ferguson, Mann, and Schneck (1998) and others, with 

trader identifications suppressed. Because the CTR data are constructed from clearing 

records, there are not likely to be many spurious or omitted trades. The time stamps 

assigned to the trades, however, are less certain. The empirical specifications used here 

derive from the sequential trade models. For present purposes, therefore, errors in time 

stamps are most serious when they reorder the trades. This concern cannot be summarily 

dismissed. Current reporting practices, however, are considerably improved over earlier 

procedures.3  Indeterminate time assignments in CTR data generally appear as clustering 

in the time reports of trades with the CME’s fifteen-minute reporting windows. The time 

reports in this sample are indeed clustered at one- and fifteen-minute intervals. Although 

discernible, however, the clustering is not highly pronounced. This suggests that time 

stamps are not being systematically shifted in a large and obvious way.  

                                                 
3 The trade time is generally the time stamp of execution in the pit. This is bracketed by 
two other time stamps entered by the broker’s clerk: a stamp when the order was received 
from the customer and another when the execution report was received. 
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Table 1

Table 1

 describes various features of the analyzed contracts. Of particular 

relevance for the paper are the tick sizes. As a proportion of the contract price, they are 

often dramatically lower than those commonly encountered in equity markets. A tick of 

$1/16 is 0.125% of a $50 stock. This is somewhat greater than that of any of the futures 

contracts. The standard deviation of the price change measured in ticks, however, is 

relatively small. This suggests that the tick size is not negligible relative to phenomena of 

economic interest, and furthermore suggests the importance of modeling discreteness. 

 also describes the scale and timing of the transactions. For sheer pace of 

trading activity, the S&P composite contract stands out. It exhibits an average 

intertransaction time of only five seconds. Trades frequently occurred within the same 

second. The economic framework of the sequential trade models generally assumes that 

trade reports are instantaneously disseminated and evaluated. In the S&P index pit, at 

least, an individual trader’s information set is unlikely to be this current. 

This preliminary analysis suggests the following considerations for modeling 

strategy. First, motivated by the economic sequential trade models, it seems desirable (as 

in the equity market studies) to allow for trade-driven price impacts of both a transient 

(cost-related) and permanent (informational) nature. The results of this section suggest 

that in addition, discreteness is important because the tick size is generally on the same 

scale as intertransaction volatility.  

3. The Bayesian approach to estimation of microstructure models 

This section discusses the essentials of modern Bayesian estimation in the context 

of market microstructure analyses. By virtue of its simplicity and familiarity, the Roll 

(1984) model of the bid-ask spread is a convenient starting point. The discussion presents 

the model, classical and Bayesian approaches to estimation, and the application to the 

futures market data. 

a. The basic Roll model 

A variant of the Roll model is as follows. Let the efficient price be denoted Mt. Its 

logarithm  is assumed to evolve as a normal random walk: (logtm = )tM
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  ( )2
1  where the  are i.i.d. 0,t t t t um m u u N σ−= + . (1) 

The term “efficient price” is used here in the sense common to the sequential trade 

models, i.e., the expected terminal value of the security conditional on all public 

information (including the trade history). The ut reflect new public information. The (log) 

bid and ask prices are given as 

  t t

t t

b m c
a m c
= −
= +

 (2) 

where c is the nonnegative half-spread. In this framework, c is the execution cost paid by 

the active buyer or seller, presently reported by equity markets in conformance with SEC 

rule 11ac1-5 (U.S. Securities and Exchange Commission (2001)). Under additional 

assumptions (absence of asymmetric information, fixed trading costs, competition among 

dealers, etc.), c will be equal to the cost of market making, but this interpretation is not 

necessary to motivate the model.  

The direction of the incoming order is given by the Bernoulli random 

variable { }1, 1tq ∈ − + , where –1 indicates an order to sell (to the quote-setter) and +1 

indicates an order to buy (from the quote-setter). Buys and sells are assumed equally 

probable. In the standard implementation, qt is assumed independent of , i.e., 

that the direction of the trade is independent of the efficient price movement. This 

assumption is restrictive because it rules out the asymmetric information aspects of the 

sequential trade models. It is relaxed in later sections. Depending on qt, the (log) 

transaction price is either at the bid or the ask: 

tm u∆ = t

  
if 1
if 1

t t
t

t t

b q
p

a q
= −

=  = +
 (3) 

 The model parameters are c and uσ . Inference is based on a time series sample of 

trade prices { }1 2, , , Tp p p p= … . The following sections describe method-of-moments 

classical and Bayesian approaches to estimation. In the present application, both 

approaches assume that the dynamic model given in this section is the correct one. 

Although both approaches can accommodate model uncertainty, the present treatment 

does not develop this aspect of the problem. 
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b. The conventional (method of moments) approach 

The model implies 

  ( )1 1t t t t t t tp m c q m c q c q u− −∆ = + − + = ∆ + ,  (4) 

from which it follows that: 

  ( )
( )

2 2

2
1

2
,

t u

t t

Var p c
Cov p p c

σ

−

∆ = +
∆ ∆ = −

 (5) 

The corresponding sample estimates for the variance and autocovariance imply estimates 

for σu and c that possess all the usual properties of GMM estimators, including 

consistency and asymptotic normality. Moment estimation for this model is relatively 

easy to implement and often satisfactory. 

c. Bayesian estimation 

 The Bayesian perspective departs most fundamentally from classical approaches 

in that parameters are viewed as random variables. This randomness reflects the 

statistician’s uncertainty, however, and most emphatically does not imply that parameters 

are stochastic within a data sample. Thus in the present model neither c nor σu is time-

varying. The prior distributions impound the initial parameter uncertainty. Estimation 

involves construction of parameter posteriors, which are conditional on the observed data 

and incorporate all of the information in the observations 

 Bayesian analyses are often motivated as a means for incorporating prior beliefs, 

and are often criticized for sensitivity to choice of prior distributions. In the present 

applications, neither of these points is a major consideration. The parameter priors are 

essentially uninformative; the posteriors are essentially “data dominated”.4    

                                                 
4 In one interesting respect the parameter prior is substantive, however. Economic logic 
dictates . The statistical structure of the model actually forces the first-order 
autocovariance in equation (5) to be nonpositive irrespective of the sign of c. In sample 
data, however, this property is sometimes violated. In his examination of U.S. stock data, 
for example, Roll finds that autocovariance estimates based on 21 daily returns are 
positive roughly half the time. Harris (1990b) notes that positive sample autocovariances 
will often arise even if the model is correctly specified. Our conviction that  is a 
prior belief, and as such is most naturally incorporated in a Bayesian framework. 

0c ≥

0c ≥
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 The more important motivation for a Bayesian approach here derives from the 

power of modern Bayesian techniques for accommodating latent (unobserved) data. 

Latent data in the Roll model include bids, asks and trade direction indicators. These 

quantities are not artificial features of a statistical model, but are instead constructs that 

are economically and structurally meaningful. These latent data are suppressed in the 

GMM estimation. GMM procedures are also limited by the difficulty of computing 

moments in richer and more realistic models. 

 The Roll model has two parameters (c and σu) and T latent data values: 

{ }1 2, , , Tq q q q= … . The full posterior over parameters and latent data is summarized by 

the distribution function ( , ,uF c q pσ ) . There is here (and generally) no tractable closed-

form representation for this function. Instead, it is characterized by simulation, using 

techniques that do not require a closed-form representation.  

 Most of the simulations used in the present paper are Gibbs samplers. The Gibbs 

sampler is an iterative procedure. An iteration is generally termed a “sweep”. Initially, 

i.e., notationally at the end of sweep 0j = , the parameters and latent data are set to any 

values (subject only to feasibility). Denote these initial values { }(0) (0) (0), ,uc qσ . The steps 

in the first sweep (  are:  )
p

1j =

1. Draw  ( )(1) (0) (0) from | , ,uc f c qσ

2. Draw ( )(1) (1) (0) from , ,u uf c q pσ σ  

3. Draw ( )(1) (1) (1) from , ,uq f q c σ p  

Note that all draws are from “full conditional distributions”. That is, all parameters and 

latent data except for the component being drawn are taken as given. The next iteration 

starts with a draw of ( ) ( ) ( )2 1 conditional on ,  and uc σ 1q p . Repeating this n times, we 

generate a sequence of draws { }2,, ,j j j
uc qσ  for j=1,. . .,n. The Gibbs principle ensures 

that the limiting distribution of the nth draw ( )as n →∞  is ( ), ,uF c q pσ , the desired 

posterior. From an estimation perspective, the limiting draw for any parameter is 

distributed in accordance with the corresponding marginal posterior. For example, the 

limiting density of c(n) is ( )|f c p .  
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 How large must n be? The Gibbs sampler is essentially a Markov chain, and the 

desired distribution is its limiting distribution. Intuitively, n must be sufficiently large that 

dependence on the initial conditions (the starting values) becomes vanishingly small. 

Furthermore, the cyclic nature of the Gibbs sampler generally means that successive 

draws are dependent. Fortunately, inference does not generally require independent 

draws. The c  draws, for example, may be viewed as dependent draws from the 

parameter posterior. Population parameters of the posterior may be estimated using the 

methods of standard time series analysis. For example, the sample mean of the c  is a 

consistent estimate of 

( )j

( )j

[ ]|E c p ; the sample variance is a consistent estimate of [ ]|c pVar , 

and so on.5  

 The number of draws is limited by computational resources, not sample size. 

Furthermore, the limiting distribution (as the number of draws increases) is the exact 

small-sample posterior for the given data sample. Finally, suppose that we are interested 

in some continuous function of the model parameters, ( ), ug c σ . For a set of parameter 

draws, { }( ) ( ), : 1, ,j j
uc jσ = … n , the corresponding sequence ( ){ }( ) ( ), : 1, ,j j

u j nσ = …g c  

generally has as its limiting distribution the posterior for ( )u,g c σ . Transformations of 

model parameters are often used in this paper to facilitate presentation and discussion of 

results. 

 The power of Bayesian analysis using the Gibbs sampler derives from the fact 

that the full conditional distributions are often tractable. In the present case, for example, 

conditional on q, eq. (4) can be treated as a simple regression specification in which c and 

σu are the coefficient and residual dispersion, respectively. The normal linear regression 

model is a standard Bayesian estimation problem, and it is common practice to use a 

                                                 
5 Of course, determination of the precision of these estimates must take into account the 
observational dependencies. The standard error of the mean estimate, for example, can be 
computed using that standard spectral correction described in Hamilton (1994). 
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normal prior for the coefficients and an inverted gamma prior for the residual dispersion.6 

For q, the model suggests obvious priors, specifically 1tq = ±  with equal probability. 

d. Application to the futures market data 

The model discussed above was estimated for the four representative CME 

contracts using 10,000 draws of the Gibbs sampler. The computational details of the 

draws are described in the appendix to this paper.  

The model parameters are c and σu. To expedite the discussion, the exhibits 

summarize c, σu and a level version of the cost parameter C c P≡ × , where P is the 

average price level (in ticks). Figure 1 depicts histograms of the parameter draws, which 

represent (in the limit) the parameter posteriors. These are visually well-defined, 

unimodal and concentrated. Table 2 reports summary statistics (labeled “Bayes, q 

simulated”). 

To place the estimates in perspective, note that we can impute an approximate 

annualized volatility for the contracts as ( ) ( )250 .u trading days Avg daily tradesσ × × . 

This is an intraday estimate; it excludes overnight price changes. The pork belly contract 

averaged 194 trades (Table 1), implying an annualized value of 45%. Values for the 

Euro, UK £ and S&P are 6%, 5% and 27%. The C estimates are uniformly less than the 

tick size, which motivates a more thorough modeling of discreteness. 

 By way of comparison, Table 2 also reports conventional moment estimates of the 

model. For the volatility parameter, the Bayesian and moment estimates are fairly close 

(with the exception of the S&P contract.  In the case of the cost parameters (c and C), 

however, the moment estimates are substantially higher than the Bayesian estimates.  

 The estimates can be reconciled by considering the different ways in which the 

two approaches use the sample data. Eq. (5) implies ( )1,t tov p p −= − ∆ ∆c C . In a sense, 

                                                 
6 For the analyses reported in the paper, the prior for c was ( )2,N µ σ  with 0µ =  and 

, restricted to the positive domain; the prior for 2 10σ = 6 2
uσ  was inverted gamma with 

. 1210−α β= =



Page 11 

therefore, the moment approach attributes the entire price-change autocovariance to cost. 

More generally, though, from eq. (4), 

 ( ) ( ) 2
1 1 1 1,t t t t t t t t t tCov p p Eu u c Eu q Eu q c E q q− − − −∆ ∆ = + ∆ + ∆ + ∆ ∆ 1−  .(6) 

The structural independence assumptions imply that all of the terms on the r.h.s. vanish, 

except for the last (which is equal to –1). The Bayesian approach uses the independence 

assumptions in deriving the simulation densities, but independence is not imposed on the 

simulated u and q processes. Most importantly, the sample estimates of  for the 

simulated values are consistently negative, and the magnitudes can essentially explain the 

inflation of the moment estimates relative to the Bayesian estimates.

1t tEu u −

7 That the estimates 

of  are non-zero can be viewed as a small-sample effect that would presumably 

vanish in a large sample. From this perspective, the Bayesian estimates are likely to be 

superior because the simulated posteriors are exact small sample distributions. 

1t tEu u −

e. Further perspectives on signing trades 

Given the importance attached by the sequential trade models to order direction, it 

is not surprising that this arises as a perennial concern in microstructure modeling. In the 

NYSE’s unusually-detailed TORQ dataset (Hasbrouck (1992); Hasbrouck (1996b)), it is 

possible to associate many trades with the actual underlying orders. More commonly, 

however, trade direction is inferred from related price data. As noted in the introduction, 

the usual practice is to sign trades by reference to the prevailing quotes (see Hasbrouck 

and Ho (1987), Hasbrouck (1988), Lee and Ready (1991) and Odders-White (1997)). 

In the absence of quote data, one plausible alternative procedure involves 

assigning trade direction based on a tick test. That is, 1tq = +  if the price change is an 

uptick or zero-uptick; q  on a downtick or zero-downtick. The limitations of this 1t = −

                                                 

6

7 In the case of the pork belly contract, for example, the estimate for 
. Using the Bayesian estimate for ( )1, 0.038t tCorr u u − = − 2 4.1 10uσ

−= ×

1t tE p p −∆ ∆ = −

, the implied 

. Together with the sample estimate and the 
maintained assumption that 

7
1 1.56 10t tEu u −
− = − × 72.4 10−×

1 0t t t tEu q Eu q −= =

( )42.52 10−×

, eq. (6) implies , which is 

close to the Bayesian estimate . 

410−2.9c = ×
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procedure can be illustrated in a Bayesian framework by fixing the qt at the values 

implied by the tick rule, and drawing c and σu in the usual fashion. The resulting 

posterior means (labeled “Bayes, q fixed” in Table 2) differ in some respects from the full 

(“q simulated”) results. In particular, the “q fixed” estimates for the cost parameters of 

the pork belly and S&P contracts are much higher than the full Bayesian (or moment) 

estimates. This is a reflection of the fact that signing-by-tick attributes too much of a 

given price change to the direction of the trade.8    

From an econometric perspective, the tick rule is improper because it induces 

correlation between measurement errors in qt and the model disturbance. Nevertheless, 

we seem to be drawing inferences about trade direction in the Bayesian analysis that are 

very similar. A pattern of successive price upticks, for example, will be viewed as a 

procession of “buy” orders. It might therefore appear that the present analysis falls to the 

same objections as the proposed naïve one. 

There are, however, two crucial differences. First, the present procedure does not 

assign to a trade a single direction that is used in all subsequent computations. Instead, it 

imputes a probability density over both (buy and sell) alternatives. In this sense, the 

procedure explicitly models the measurement error (uncertainty) concerning trade 

direction. In the second place, the trade directions and model parameters are estimated 

jointly. This essentially allows uncertainty about model parameters to affect uncertainty 

about trade direction. We are still, of course, assuming that the model is correctly 

specified. But we do not assume “full knowledge” (i.e., correct parameter estimates) of 

the model in the process of assigning trade direction. 

4. Extensions 

 The simplicity of the Roll model makes it appropriate for exposition and 

comparative analysis. Bayesian MCMC approaches readily generalize, however, to more 

realistic models. This section describes such a richer model. 

                                                 
8 I am indebted to Ken Kavajecz for suggesting this illustration. 
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a. Trade effects on the efficient price 

The basic model described in the last section assumes that the innovation to the 

efficient price is independent of the direction of the incoming order, i.e., that the quote 

setter infers nothing from this order. This is highly restrictive. An essential characteristic 

of the sequential trade models is the possibility that the incoming order signals the 

trader’s private information, and that the quote setter will use this signal in updating her 

bid and ask. In lieu of eq. (1), therefore, the evolution of the efficient price might be 

specified as: 

  1
0

J

t t t j j
j

m m q uλ− −
=

t= +∑ +

tu

 (7) 

The λj are impact coefficients (generally positive), and the summation allows for lagged 

effects. The data in the present study contain trade volumes, and we therefore employ the 

somewhat broader specification: 

  
0

J

t t j j t j
j

m q vλ− −
=

∆ =∑ +  (8) 

Here, 1t tVolume ′ =  v  and λj is a ( )1 2×  coefficient vector. This allows for an 

intercept and concavity in the trade impact. The estimations in this paper use J=5. Note 

that if eq. (7) is used in lieu of eq. (1), the timing convention that the bid and ask quotes 

are set with respect to mt implies that the cost parameter c does not impound asymmetric 

information costs. 

b. Discreteness 

In the models considered to this point, bids, asks and transaction prices are 

considered to be continuous random variables. In fact, virtually all markets constrain the 

support of these quotes to a discrete lattice defined as integer multiples of the “tick” or 

“pip”. The tick size is of economic interest because it is related to the cost of achieving 

time priority, and therefore to the supply of liquidity (Harris (1997a); Harris (1997b)). 

From a data-modeling perspective, the tick size is important because it is often (and in the 

present application) similar in magnitude to the spread and short-term price movements.  
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Harris (1990a) suggests a latent-variable model of rounded transaction prices. 

Hasbrouck (1999a) surveys this and other approaches, and proposes the model used 

below. Specifically: 

  
[ ]
[ ]

Floor

Ceiling
t t

t t

B M C

A M C

= −

= +
 (9) 

where Bt and At are the level bid and ask and ( )expt tM m= . [ ]Floor ⋅  and [ ]Ce  

round their arguments asymmetrically, down and up (respectively) to the next grid point. 

The data are scaled so that the tick size is unity. Quote discreteness in the model (and in 

reality) is imposed on the level prices. The cost parameter C is now stated in level terms 

and is assumed to be nonnegative. In the Roll model, this parameter is interpreted as the 

execution cost paid by the initiator of the trade. It is more natural in the present 

specification to view C as the non-informational cost of market-making, i.e. a cost borne 

by the liquidity supplier. The asymmetric rounding ensures that this cost is covered on 

each trade. The mapping to the observed prices is: 

iling ⋅

  
if 1
if 1

t t
t

t t

A q
P

B q
= +

=  = −
 (10) 

c. Clustering 

A phenomenon closely related to discreteness is clustering, the tendency of trades 

(and presumably quotes) to cluster on “natural” multiples of the minimum tick. The 

futures prices in the sample sometimes exhibit pronounced clustering. To see this, note 

that with uniformly distributed prices rounded to the nearest tick, the proportion of prices 

we would expect to see lying on a κ-multiple of the tick size is 1/κ. If the actual 

proportion in a sample is fκ  then the excessive clustering (actual less expectation) is 

(1Cf fκ κ κ= − ) . Table 3 reports clustering frequency percentages for the sample 

contracts. Clustering is most extreme (on κ = 2) in the pork belly contract. There is 

modest clustering on κ= 5 for the S&P contract, while the currency prices are not 

strikingly clustered.  

 Economic explanations for clustering vary. Harris (1994); Harris (1991) suggest 

that negotiating parties may adopt a supra-minimum tick convention as a device for 
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reducing the number of rounds of bargaining. It is also suggested, however, that when 

there are barriers to entry in the provision of liquidity services, clustering may serve as an 

implicit collusive coordination mechanism (Kandel and Marx (1997) and Dutta and 

Madhavan (1997)). This has been most strongly alleged for the Nasdaq dealer market 

prior to the reforms in the mid 1990s.9 

Hasbrouck (1999b) suggests that quote clustering be attributed to an implicit 

effective tick. The effective tick, denoted Kt, is a natural multiple of the minimum tick 

that arises as a trading convention or from individual preference. Clustering is imposed 

on the (unobserved) bid and ask quotes by using generalized rounding functions: 

  
[ ]
[ ]

Floor ,

Ceiling ,
t t

t t

B M C K

A M C

= −

= +
t

tK
 (11) 

where Kt denotes the tick-multiple to which rounding will occur. In economic terms, Kt is 

the implicit tick size. (For example, Kt = 2 implies rounding to even numbers.)  While Kt 

might be modeled in a very general fashion, the specifications estimated here will allow 

for only two possible values: one (that is, the regular tick increment) and κ, a single 

dominant multiple. As in Hasbrouck (1999b), it is convenient to assume an i.i.d. 

Bernoulli distribution: 

  
( )1, w. prob. 1

, w. prob. t

k
K

kκ
−

= 


 (12) 

The Bernoulli probability parameter k may be interpreted as the clustering intensity. It is 

distinct from the proportion of prices that occur on κ-tick multiples because some of 

these occurrences would arise with simple (unclustered) rounding. The prior for k was 

Beta(a, b) with , i.e., uniform between zero and one. 1/ 2a b= =

d. Summary 

 The full model consists of efficient price dynamics given in equation (8); the 

implicit tick specification (12); the rounding transformation for the bid and ask quotes 

                                                 
9 The literature on clustering at Nasdaq is large. Key references include Christie, Harris, 
and Schultz (1994); Schwert (1997). 
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(11); and the transaction price realization (10). The observed data are the trade prices and 

volumes { },tP volumet . The latent data are the efficient prices, trade direction indicators 

and implicit tick sizes { }, ,t t tm q K . The model parameters are { }2
0, , , ,...,u JC kσ λ λ . The 

clustering statistics reported above suggest taking κ= 2 for the pork belly contract 

(“clustering on even prices”) and κ= 5 for the S&P contract. The currency contract prices 

are not markedly clustered, but for the sake of estimating all specifications in parallel for 

all contracts, I allow κ= 5. 

 From a structural economic perspective, the components of the model strongly 

resemble other pre-existing empirical formulations of the sequential trade models. The  

specification of the efficient price and related trade impacts (8) is similar to those used in 

Glosten and Harris (1988), George, Kaul, and Nimalendran (1991); Hasbrouck (1991b), 

Huang and Stoll (1994); Huang and Stoll (1997) and Madhavan, Richardson, and 

Roomans (1997), among others. Except in the framework of Glosten and Harris, 

however, the transaction price is a linear function of other structural variables. In the 

present model, the mapping from efficient to transaction prices is mediated by the 

nonlinear and stochastic rounding transformations that generate bids and asks.  

5. Application to the futures data 

 The comprehensive model described in the last section was estimated for the four 

representative contracts.  

a. Parameter estimates. 

  reports parameter estimates. From an economic viewpoint, the most 

interesting are those that asses trade impacts (the λs). For brevity, only the sums are 

reported. The sums of λIntercept and λSlope are positive, with the exception of λSlope for the 

UK £.  The estimated trade effects may be characterized in two ways. First,  

graphs the implied price impact functions. The vertical scale is approximately the 

proportional price change in basis points associated with a purchase of a given number of 

contracts. This is the cumulative impact (i.e., through lag 5), although the changes for all 

contracts were substantially complete after the second period. For a trade of a given size, 

Table 4

Figure 2
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the price impact is relatively large for the pork belly contract, but low for the currency 

and S&P contracts. 

 Secondly, recall that the efficient price dynamics are the given by the linear 

specification in eq.(8). The coefficient of determination in this specification is a useful 

summary measure of the relative importance of trades in explaining (efficient) price 

volatility. This coefficient is denoted , by analogy with the usual regression R2. 

The logic of the sequential trade models suggests this is a summary measure of 

information asymmetry (Hasbrouck (1991b)).  reports the estimates. They are 

relatively high for the pork belly contract (61%), the Euro (53%), and the UK £ (67%), 

but lower for the S&P (8%). To put this in context, a corresponding value for an NYSE 

equity might be around 30-40% percent (Hasbrouck (1991b)). 

2
,m TradesR∆

Table 4

 These interpretations are contingent on the assumption that the estimated trade 

impacts are permanent. In this context, it must be admitted that the models are short-run 

specifications. They may not detect reversals or reversions that occur over intervals 

longer than the five lagged trades, as might be implied by inventory control. Reversions 

would, of course, imply that the estimated permanent impacts are overstated. 

 Estimates of cost parameter C are dramatically lower than the corresponding  

estimates for the basic Roll model (cf. Table 2). In fact, graphs of the C posteriors for the 

present model (not shown) suggest that the bulk of the probability mass was quite near 

zero. Alternative estimates (not shown) indicate that for the present model, when C is 

constrained to zero, estimates of other parameters are little affected. 

 These findings admit a simple explanation. In the present model, bid and ask 

quotes arise from rounding transformations applied to latent continuous variables 

(including C). That the C posteriors are massed near zero suggests that the rounding 

transformations suffice to account for the observed data. Alternatively, it appears that C 

is so small relative to the tick size, that it cannot be well-characterized by the relatively 

coarse price data.  
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 The estimates of clustering intensity parameter k are generally consistent with the 

relative clustering propensities described in Table 3: high for the pork belly and S&P 

contracts; low for the currency contracts. 

b. Discussion 

 The economic models of sequential trade identify permanent trade price impacts 

with asymmetric information, private information that can be revealed in the price only 

through trade. From this perspective, it is perhaps not surprising that a significant 

proportion of volatility in the pork belly market originates from trades. There are, for this 

contract, few alternative sources of price discovery. 

 In currency markets, however, the prevailing view ascribes a distinctly subsidiary 

role for futures trading.10 Lyons (2001) comments, “In FX … the futures market is much 

smaller than the spot market; it is unlikely that a significant share of price determination 

occurs there.” The futures contract is often supposed to serve as a hedging and 

speculation vehicle for participants too small to obtain easy access to the larger market. 

One would therefore expect currency futures prices to follow passively the path 

established in the interbank market. From this perspective, the high explanatory power of 

trades is surprising. 

 The interbank market, however, is a low-transparency venue. The public record of 

the interbank market is limited to indicative (nonfirm) bids and offers. Trades that occur 

on the electronic book systems are visible only to other subscribers (essentially the large 

intermarket banks themselves). Neither trades occurring directly between two participants 

nor those mediated by brokers are publicly reported. The usefulness of the Reuters 

indicative quotes as a timely, high-resolution signal for futures price discovery appears 

doubtful. It seems reasonable to hypothesize that some trades in the futures market are 

driven by information that may have originated in the interbank market (such as 

knowledge of a recent interbank trade), and is “private” in the sense of not being widely 

                                                 
10 Recent microstructure studies of the latter include Lyons (1997); Lyons (1995); 
Goodhart, Ito, and Payne (1996) and Evans (2002). 
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reported. Although remaining (in a sense) a subsidiary player in this market, the futures 

market may be serving as the primary forum of public price discovery. 

 For the S&P contract, the quantity-impact functions ( ) and the  

values ( ) suggest a role for trades that is extremely, perhaps implausibly, low. 

While the cash market exists as a meaningful alternative for price discovery, the stock 

index futures market is customarily viewed as originating the primary signals of common 

factor equity movements. Both the numerous studies documenting index price leadership 

in the futures markets, and the studies that address regulatory concerns support this view.  

2
,m tradesR∆Figure 2

Table 4

 In considering model adequacy for this contract, it is noteworthy that the index 

futures market is substantially more active than the others. Section 2 noted an average 

intertrade time of five seconds and raised the possibility of associated informational 

delays. In principle, estimation is not affected by real-time frequency of trading.  

However, high activity undoubtedly places stress on the reporting and data collection 

systems. This increases the likelihood that the reported transactions are not correctly 

sequenced. The noise introduced by sequencing errors might well attenuate the estimated 

trade impacts. 

 Finally, trade price impact studies in equity markets generally find asymmetries 

between purchases and sales with purchases having the larger impact (Holthausen, 

Leftwich, and Mayers (1987); Holthausen, Leftwich, and Mayers (1990); Chan and 

Lakonishok (1993); Chan and Lakonishok (1995)).  This possibility suggests generalizing 

eq. (8) to: 

   (13) 
0 0

J J

t t j j t j t j j t j t
j j

m q v q vλ λ+ + − −
− − − −

= =

∆ = + +∑ ∑ u

)where  and (0,t tq Max q+ = ( )0,tq Min q− = t  are the positive and negative parts of qt. To 

investigate this specification without incurring the complexity of a full Gibbs sampler, eq. 

(13) was estimated using the qt generated in the estimation of the symmetric model. The 

distributions of the buy and sell impact coefficients ( )and j jλ λ+ −  were found to be very 

similar. 
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6. Other extensions and modifications 

 The MCMC approach is sufficiently general to accommodate numerous useful 

generalizations of the present models, including random costs of quote exposure, 

stochastic volatility, and stochastic liquidity. Such extensions are facilitated by the 

modularity of the MCMC framework. The basic building block is a draw (simulation) 

from a “full conditional” density. In such a simulation, with the exception of the 

particular variable being drawn, all other latent data and parameters, including those that 

are stochastic in the full model specification, are provisionally taken as fixed. 

 A model may offer great economic appeal and even simplicity in its conditional 

distributions, however, and still severely tax the ability of the data to meaningfully 

identify the parameters. Estimates of costs and trade impacts in the present family of 

models, for example, are sensitive to how discreteness and clustering are modeled. 

 As a further example, it is sensible to generalize the Roll model to allow 

stochastic costs of quote exposure, i.e. to replace the time-invariant parameter c with a 

stochastic process { }tc . It is certainly possible to reliably estimate such models when the 

bid and ask quotes are observed, as in U.S. equities (Hasbrouck (1999a)) or foreign 

exchange (Hasbrouck (1999b)).   

 Estimation is more difficult, however, when inference is attempted solely from  

transaction prices. With the present data, for example, I attempted to estimate models 

under the assumption that ( ) (
. . .

2log ~ ,
i i d

t cC N )cµ σ . The Gibbs samplers exhibited poor 

mixing and convergence properties. This is perhaps not surprising. As in the basic Roll 

model, the only nonzero second-order moments of price changes are the variance and 

first-order autocovariance. These are obviously insufficient to identify the three 

parameters { }2 2, ,c c uµ σ σ . In fact, identification requires fourth moments of price changes, 

and, for determining distributional properties, eighth moments. Even when these 

moments exist, sampling may be problematic.11   

                                                 
11 Alternatively, Ball and Chordia (2001) estimate a modification of a spread model 
suggested in Hasbrouck (1999a) that allows for autoregressive dependence in Ct. The 
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7. Conclusions 

This paper proposes and implements powerful strategies to estimate empirical 

microstructure models when the data consist of trade prices or alternatively, prices and 

volumes. The specifications apply the signed return/signed order flow regressions 

common in equity market studies to a setting in which there is no record of the quotes, 

and therefore no straightforward way to sign trades as buyer- or seller-initiated. The 

analysis is made possible by recent advances in Markov chain Monte Carlo estimation 

(MCMC), which simplify inference in dynamic latent (unobserved) variable models. In 

the present applications, the latent data are the trade signs. These are simulated, 

conditional on the structure of the model and the observed data. The techniques are 

Bayesian, but except in one respect (noted below) the priors used in the analyses are not 

informative. 

The paper presents an analysis of four representative futures contracts traded on 

the Chicago Mercantile Exchange: pork bellies, the S&P Composite Index and two 

currency contracts (the Euro and the UK £). The first application involves a variant of the 

Roll (1984) model of transaction prices subject to bid-ask effects.  For the data samples in 

this paper, for comparison purposes, this model can also be estimated using the standard 

moment-based approaches. For all contracts, both MCMC and moment approaches yield 

similar estimates of the long-run volatility. The MCMC estimates of the effective 

execution costs (the half-spread), however, are substantially smaller than the 

corresponding moment estimates. This appears to reflect the fact that the moment 

approach attributes all of the sample price-change autocovariance to the execution cost. 

The MCMC approach does not force this attribution. As there are no direct observations 

of the parameter, it is not possible to say for certain which estimate is closer to the truth. 

It is worth noting, however, that if the model is correctly specified, the MCMC parameter 

posteriors are exact small-sample distributions. The moment estimates in contrast are 

valid only asymptotically, and may therefore be less robust in finite samples. 

                                                                                                                                                 
smoothing in this model appears to greatly enhance identification and performance of the 
Gibbs sampler.  
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The only respect in which the MCMC parameter priors are informative is that the 

execution cost is constrained to be positive. This property is economically sensible. 

Furthermore, the ability to estimate the Roll model subject to this requirement extends the 

usefulness of this model to the many data samples in which moment estimates are 

infeasible. In monthly samples of daily stock return data, for example, only about half the 

samples yield feasible estimates. Thus, the MCMC approach shows promise in 

establishing execution cost estimates in historical and international security datasets 

which contain only transaction prices. Hasbrouck (2003) shows that Gibbs estimates of 

execution cost based on daily CRSP data are highly correlated with estimates derived 

from detailed trade and quote (NYSE TAQ) data from 1993 to 2001. Furthermore, the 

Gibbs cost estimates constructed for the full daily CRSP sample (1962 onwards) are 

positively related to excess returns. 

The full specification estimated in this paper is a structural model of bid and ask 

quotes and trades that incorporates discreteness, clustering and asymmetric information. 

In application to the four contracts, several significant results emerge. 

First, the estimates imply statistically and economically significant effects of 

signed orders on prices for the pork belly, Euro and pound contracts. If these order 

impacts are permanent, the estimates suggest that roughly half of the long-term price 

volatility in these contracts is attributable to trades, and by implication, the private 

information signals contained in these trades. The present specifications are short term, 

however, covering only five lagged trades. They lack the power to detect reversions or 

reversals in the price impacts extending over significantly longer intervals, as might be 

implied by inventory effects. For the S&P contract, estimated order impacts are low, and 

less than ten percent of the volatility can be attributed to trades. 

This first result is broadly consistent with empirical analyses of equities (which 

are based on richer data records). Taking the order impact coefficients as measures of 

liquidity, the S&P contract is the most liquid. An order of roughly 50 contracts 

(corresponding to roughly $16.5 Million in underlying value) moves the price by only 

about one basis point. The pork belly contract is the least liquid: one contract (about 
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$23,000 in underlying value) moves the price by about ten basis points. The currency 

contracts lie between these extremes. 

Second, the non-informational costs of market making are substantially smaller 

than the tick size (price increment). The relative coarseness of the price data precludes 

precise estimation. 

Third, the estimates imply price clustering (affinity for natural multiples of the 

minimum tick) that is very strong for the pork belly contract, moderate for the S&P 

contract and negligible for the currency contracts. It is not determined whether this 

clustering arises from negotiation-cost minimization or market power of floor traders. 

The relatively high liquidity found for the S&P contract is unsurprising. This 

market is widely acknowledged to be extremely active. An index, furthermore, diversifies 

the private information found in the individual components (Subrahmanyam (1991)). The 

low estimated trade impacts found in the present analysis, however, might also result 

from incorrect trade sequencing, due to a reporting system that is taxed by the rapid pace 

of activity. 

For the currency contracts, the strong contribution of trades to price volatility 

suggests that that futures trading contributes significantly to the price discovery process. 

This runs counter to the conventional wisdom that price determination in foreign 

exchange occurs in the interbank spot/forward market. Transparency in the interbank 

market, however, is low. Given that interbank trades are not reported, it is perhaps not 

surprising that the publicly-reported (though smaller) futures trades play a substantial role 

in price discovery. 

Finally, the present models analyses by no means exploit the full potential of the 

approach. The structure of a Gibbs sampler is essentially modular, and adding a new 

feature often involves little more than adding a new step in each sweep. Extensions that 

might be desirable in some applications would include stochastic volatility and multiple 

securities. Furthermore, the present techniques are potentially applicable not only to 

security markets, but also to markets for nonfinancial assets, products and services. 
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Table 1. Contract Descriptions and Summary Sample Statistics 

Contracts traded on the Chicago Mercantile Exchange for the indicated underlying and 

maturity. 

 Contract 

 Pork Bellies Euro FX UK£ S&P 500 

Expiration month Feb. 2000 Sep. 1999 Sep. 1999 Sep. 1999 

Trading sample month Sep. 1999 Aug. 1999 Aug. 1999 Aug. 1999 

Number of Trading Days 20 22 22 22 

Total Number of Trades 3,882 9,869 9,414 106,402 

Average Price 57.83 1.06 1.61 1,331.67 

Price Units Cents/Lb US$/Euro US$/UK£ Index Pts 

Tick  0.025 0.0001 0.0002 0.1 

Average Tick/Price 0.043% 0.009% 0.012% 0.008% 

Size of Contract 40,000 Lb 125,000 Eu 62,500 £ $250 x Index 

Average Dollar Value ($1,000) 23.1 132.8 10.05 332.9 

Std. Dev. of price change  
(log price × 10,000) 20.6 1.9 1.67 2.5 

Std. Dev. of price change (ticks) 4.79 1.99 1.3 3.30 

Average daily trades 194 449 428 4,836 

Avg time between trade (sec.) 70.8 53.9 56.5 5.1 

Distribution of trade sizes: 

Min 1 1 1 1 

25%’ile 1 2 1 2 

Median 2 4 3 6 

75%’ile 3 10 8 18 

Max 140 420 374 713 
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Table 2. Estimates of the Roll Model. 

Sample of CME contracts described in Table 1. σu is the standard deviation of the log 

efficient price changes; c is the (log) half-spread; C is the half-spread in ticks. Estimates 

labeled “Bayes, q simulated” are Gibbs sampler estimates in which the trade direction 

indicators q are conditionally simulated. Results are based on 10,000 sweeps of the 

sampler, with the first 2,000 discarded. Standard errors of the posterior means (SEM’s) 

are corrected for autocorrelation in the draws (using spectral averages). The alternate 

estimates labeled “Bayes, q fixed” are Gibbs sampler estimates in which the q are 

assigned using a tick rule. Moment estimates are the conventional autocovariance-based 

estimates of the model.  

  Primary Estimates  Alternative Estimates 

  Bayes, q simulated 
 

Moment 
 Bayes,  

q fixed 

Contract Parameter 
Posterior 

Mean SEM 
Posterior 
Std. Dev. 

Point 
Estimate 

 Posterior 
Mean 

Pork 
Belly 

10,000uσ ×  20.24 0.0118 0.312 19.41 
 

20.58 

 10,000c×  2.52 0.0516 0.930 4.86  9.22 

 C (ticks) 0.58 0.0119 0.215 1.12  2.13 

Euro 10,000uσ ×  1.86 0.0005 0.016 1.79  1.87 

 10,000c×  0.17 0.0033 0.053 0.40  0.24 

 C (ticks) 0.18 0.0035 0.057 0.43  0.25 

UK £ 10,000uσ ×  1.60 0.0007 0.018 1.54  1.67 

 10,000c×  0.34 0.0017 0.036 0.47  0.24 

 C (ticks) 0.28 0.0014 0.029 0.37  0.19 

S&P  10,000uσ ×  2.47 0.0001 0.006 1.30  2.48 

 10,000c×  0.13 0.0005 0.013 1.49  3.46 

 C (ticks) 0.17 0.0006 0.017 1.99  4.61 
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Table 3. Excess Transaction Price Clustering 

All CME trades in the indicated contracts from January 5 to January 16, 1998. The 

clustering frequency is 1f fκ κ κ= −  where fκ is the sample frequency of trades prices 

that fall on a κ-multiple of the minimum tick. (Since 1/κ  is the expected value under the 

null hypothesis of uniformly distributed prices, Cfκ measures excess clustering.) 

( )C

Tick 
Multiple κ 

Pork 
Bellies Euro UK £ S&P 500 

2 39% 2% 0% 3% 

4 30% 1% 0% 1% 

5 2% 3% 2% 28% 

8 16% 1% 0% 1% 

10 11% 2% 1% 15% 
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Table 4. Estimates of the Clustered Asymmetric Information Model 

Sample of CME contracts described in Table 1. The log efficient price dynamics are 

where 5

0t t i i t ii
m q vλ− −=

∆ = +∑ tu ( ), ,i i Intercept i Slopeλ λ λ=  and ( )1t i tv volume−
′= . 

is the explained variance in this specification. C is the implicit quote exposure 
cost; k is the clustering intensity; κ is the clustering multiple. Estimates are based on 
2,000 Gibbs sweeps with the first 400 discarded. Standard errors of the posterior means 
(SEM) are corrected for autocorrelation in the draws (using spectral averages). 

2
,m TradesR∆

Contract Parameter Post. Mean SEM Post. Std. Dev. 
Pork Belly  10,000uσ ×  13.4926 0.0130 0.2096 
(κ= 2) C (ticks) 0.3996 0.0200 0.1943 
 k 0.7839 0.0004 0.0101 

 , 10,000i Interceptλ ×∑  6.3902 0.0909 1.4365 

 , 10,000i Slopeλ ×∑  1.9517 0.0456 0.7812 

 
2

,m TradesR∆  0.6113 0.0007 0.0089 
Euro 10,000uσ ×  1.3115 0.0006 0.0119 
(κ= 5) C (ticks) 0.0143 0.0012 0.0136 
 k 0.0258 0.0006 0.0061 

 , 10,000i Interceptλ ×∑  2.4854 0.0088 0.1068 

 , 10,000i Slopeλ ×∑
2

 0.0110 0.0017 0.0237 

 ,m TradesR∆  0.5333 0.0003 0.0053 
UK £ 10,000uσ ×  1.0258 0.0006 0.0106 
(κ= 5) C (ticks) 0.0077 0.0006 0.0076 
 k 0.0023 0.0001 0.0008 

 , 10,000i Interceptλ ×∑  1.9128 0.0057 0.0775 

 , 10,000i Slopeλ ×∑
2

 -0.0197 0.0018 0.0242 

 ,m TradesR∆  0.6658 0.0003 0.0049 
S & P  10,000uσ ×  2.2703 0.0012 0.0126 
(κ= 5) C (ticks) 0.0841 0.0201 0.1906 
 k 0.3179 0.0004 0.0042 

 , 10,000i Interceptλ ×∑  0.4535 0.0132 0.1299 

 , 10,000i Slopeλ ×∑
2

 0.0767 0.0006 0.0098 

 ,m TradesR∆  0.0783 0.0028 0.0262 
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Figure 1. Posterior Distributions for the Basic Roll Model. 

Sample of CME contracts described in Table 1. σu is the standard deviation of the log 

efficient price changes; c is the (log) half-spread; C is the half-spread in ticks. Histograms 

are based on 10,000 sweeps of the Gibbs sampler, with the first 2,000 discarded.  
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Figure 2. Implied Trade Price Impacts 

Cumulative impact of a buy order on the log efficient price as a function of order size. 

Estimates based on clustered asymmetric information model with trade impact terms 

(through lag five). Dashed line indicates approximate tick size. 
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