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"Estimation Error in the Assessment of Financial Risk Exposure" 

 
Abstract 

 
Value at Risk and similar measures of financial risk exposure require predicting the tail 
of an asset returns distribution.  Assuming a specific form, such as the normal, for the 
distribution, the standard deviation (and possibly other parameters) are estimated from 
recent historical data and the tail cutoff value is computed.  But this standard procedure 
ignores estimation error, which we find to be substantial even under the best of 
conditions.  In practice, a "tail event" may represent a truly rare occurrence, or it may 
simply be a not-so-rare occurrence at a time when the predicted volatility underestimates 
the true volatility, due to sampling error.  This problem gets worse the further in the tail 
one is trying to predict.   
 
Using a simulation of 10,000 years of daily returns, we first examine estimation risk 
when volatility is an unknown constant parameter.  We then consider the more realistic, 
but more problematical, case of volatility that drifts stochastically over time.  This 
substantially increases estimation error, although strong mean reversion in the variance 
tends to dampen the effect.  Non-normal fat-tailed return shocks makes overall risk 
assessment much worse, especially in the extreme tails, but estimation error per se does 
not add much beyond the effect of tail fatness.  Using an exponentially weighted moving 
average to downweight older data hurts accuracy if volatility is constant or only slowly 
changing.  But with more volatile variance, an optimal decay rate emerges, with better 
performance for the most extreme tails being achieved using a relatively greater rate of 
downweighting. 
 
We first simulate non-overlapping independent samples, but in practical risk 
management, risk exposure is estimated day by day on a rolling basis.  This produces 
strong autocorrelation in the estimation errors, and bunching of apparently extreme 
events.  We find that with stochastic volatility, estimation error can increase the 
probabilities of multi-day events, like three 1% tail events in a row, by several orders of 
magnitude.  Finally, we report empirical results using 40 years of daily S&P 500 returns 
which confirm that the issues we have examined in simulations are also present in the 
real world.
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1.  Introduction 
 
Formal procedures for assessing exposure to financial risk, such as value at Risk (VaR), 
have become standard in recent years.1  Regulatory authorities are using them for setting 
capital requirements for banks and much research has been done to examine the 
performance of different methods.2,3  
 
In all cases, the effort involves predicting the size and/or frequency of low probability 
events--the tails of the probability distributions governing asset returns.  Statistical 
techniques are employed to estimate the relevant parameters of the underlying 
distribution.  A standard VaR calculation, for example, begins with the assumption that 
over a short horizon this distribution is normal (lognormal for end of period asset values).  
Recent historical data is used to estimate the volatility, and the mean is either estimated 
or, more typically, constrained to 0.4  The estimated parameter values are then plugged 
into a standard calculation, µ+σα= ˆˆVaR c   , where αc denotes the 5% or 1% critical 
value of the normal distribution (-1.645 or -2.326) and µσ ˆandˆ  are the sample volatility 
and mean ( 0ˆ =µ , if the mean is not calculated).5 
 
But the sample parameter values are only statistical estimates of the true parameters.  The 
standard procedure takes no account of the estimation error in these figures.  The 5% 
cutoff for the tail of a normal distribution is at -1.645 standard deviations, but when the 
sample volatility is an underestimate of the true volatility, there is more than 5% 
probability that the next observation will fall in the predicted 5% tail.  Moreover, the 
effect of sampling error increases the further into the tail one is trying to forecast.  In fact, 
under the assumption of normally distributed returns with constant mean and variance, 
the distribution of the next period return using estimated parameters is not normal at all, 
                                                 
1 Among many references, see: Hull [2002] ch. 16, for a textbook discussion; Jorion [1997]; or Risk 
Publications [1996]. Schachter's website gives an extensive bibliography on the subject. 
2 See Basle Committee on Bank Supervision [1996], for example. 
3 See, for example, Duffie and Pan [1997] or Kupiec [1995].  The Journal of Banking and Finance devoted 
its entire July 2002 issue to VaR-related research. 
4   In classical statistics, the best estimator for the mean return is the sample average, but the sampling error 
on this estimate is surprisingly large.  If an asset price follows a lognormal diffusion with mean µ and 
volatility σ, the sample average from a sample spanning T years has expected value µ and standard 
deviation σ T-1/2.  With a sample size like those typically used in VaR-type calculations, it is common for 
the sample average to make no sense economically:  It may be negative, which is inconsistent with market 
equilibrium for normal assets, or outlandishly large.  For example, with annual volatility of 20% and a 3-
month returns sample, the standard deviation of the sample average as an estimate of the true mean is  
 0.20 / (1/4)1/2 = 40%.  A confidence interval of 2 standard deviations on either side of the true mean, would 
cover µ  ±  80%.  Constraining the mean to 0 amounts to a kind of Bayesian procedure, with a strong prior 
that the true mean daily return for financial assets is much closer to 0 than to a value randomly drawn from 
the sampling distribution for the mean. 
5  Kupiec [1995] discusses the pros and cons of measuring VaR relative to zero, or relative to the expected 
value. 
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but rather, a Student-t distribution, which has fatter tails than the normal.6  Even the fact 
that the volatility parameter is obtained by taking the square root of the sample variance 
introduces a bias.  The sample variance is an unbiased estimate of the true variance, but 
due to Jensen's Inequality, the sample standard deviation is biased low as an estimate of 
the true volatility, because the square root is a concave function: 
 

σ=σ=σ<σ=σ 222 ]ˆ[E]ˆ[E]ˆ[E  
 
Estimation risk is an important factor in evaluating  statistical measures of risk exposure, 
that seems to be largely ignored in practical risk management.7 
 
We begin in the next section with an examination of this basic sampling problem.  But, 
while we will see that estimation risk is more serious than might have been recognized 
previously, the "Baseline case" with constant parameters and normally distributed return 
shocks actually represents the best situation one could reasonably hope for.   Since with 
constant parameters, the classical estimators for mean and volatility are consistent, the 
solution to estimation risk in the Baseline case is simply to use more data in the 
calculations.  Estimation error would be negligible from a sample of, say, 5 years of 
returns.  Although research has shown that more accurate volatility forecasts can often be 
obtained by using considerably longer historical returns samples than what is typical (see 
Figlewski [1997] or Green and Figlewski [1999]), this is not done in practice out of 
concern that volatility is not constant over time.   
 
A great deal of empirical evidence shows that volatility is not time-invariant (see, for 
example Schwert [1989].  Figure 1 plots the sample volatility for the S&P 500 stock 
index in a moving 63-day window from 1992 - 2002, during which time the sample 
volatility ranged from around 6.0 percent to over 33.0 percent.  If the true volatility drifts, 
extending a sample backward to bring in more, but older, data may simply contaminate 
the calculation.  Common practice is to use relatively short sample periods (generally less 
than a year), and often to downweight older observations relative to recent ones with a 
weighting technique such as an exponentially weighted moving average. 
 
The problem I focus on in this paper is how estimation risk affects our ability to predict 
the probabilities of rare events accurately when the parameters of the underlying returns 
process are nonstationary.  If we know the form of the returns distribution a priori, 
normal perhaps, then we can accumulate information quickly, since every observation 
drawn from that distribution will yield information about its tails.  On the other hand, if 
we do not know the distribution and simply want to tabulate an empirical distribution, we 
have to wait for many observations before we can learn much about the tails, because the 
world does not generate information about rare events very rapidly.  Now if the data 
                                                 
6 A proof is provided in the Appendix. 
7 The impact of estimation risk on optimal investment and portfolio choice was explored many years ago by 
Bawa, Brown and Klein [1979], but they did not address risk management per se.  Jorion [1996] raises the 
issue in a VaR context, but his focus is primarily on offering an alternative estimation technique that can 
improve accuracy in the case in which the true form of the returns distribution is known (e.g., normal) and 
the unknown parameters are assumed to be constant. 
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generating process itself is changing over time, estimating the empirical tails becomes 
much harder by either technique.  It also becomes much less tenable to assume that we 
know the form of the distribution a priori.   
 
I use simulation to explore the problem of evaluating risk exposure when the parameters 
of the underlying returns distribution vary stochastically over time.  In the next section, 
we begin by considering the problem of estimating risk exposure on a single data sample 
using standard techniques.  This gives a framework for thinking about the problem and 
introduces the measures of prediction accuracy that we will use throughout the paper.  
We then present simulation results to show the overall performance of the standard 
approach in a repeated sample, but with nonstochastic volatility.  Section 3 then extends 
the simulation to the case in which volatility evolves stochastically over time, following a  
mean-reverting square root process.  In Section 4, we examine the impact of non-
Gaussian return shocks, drawn from a fat-tailed Student-t distribution.  We also consider 
whether weighting past observations unequally using an exponentially weighted moving 
average can reduce the effect of estimation error.  Section 5 looks at the effect of 
autocorrelation in the errors when risk exposure is estimated from a rolling sample of 
returns, as is the common practice in real-world risk management.  We find that this 
exacerbates the problem of estimation risk, and can greatly increase the probabilities of 
multi-day events, such as three tail occurrences in a row.  In this section, we also 
compare our simulation results to estimation risk in the real world, using a rolling 
volatility estimate on 40 years of Standard and Poor's 500 Index returns. Section 6 
concludes. 
 
 
2.  Estimating Risk Exposure when Volatility is Constant 
 
To illustrate the nature of the forecasting problem and to introduce the type of analysis 
we will employ in the paper, this section looks at estimation error in using the standard 
VaR approach to predict the tails of a returns distribution when the underlying returns 
process is well-behaved.   
 
We assume the asset value follows a standard lognormal diffusion: 
 

(1)   dzdt
S
dS σ+µ=  

 
S is the value of the security (or asset, liability, portfolio, etc.) that we are interested in, 
constants µ and σ are the instantaneous mean and volatility, at annualized rates, and dz 
represents standard Brownian motion. 
 
For the simulation, we discretize (1) as 
 
(2)    )1,0(N~z~;tz~t)S/S(lnr tt1t1t ∆σ+∆µ== ++  
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The time interval ∆t represents one trading day, and is set to the value ∆t = 1/250.  We 
will refer to a period of 21 days as a "month," 63 days as "3 months" and 250 days as a 
"year." 
 
Value at Risk addresses the following question:  For a specified holding period (typically 
1 day) and probability level α, what is the return such that the probability of experiencing 
a worse return over the holding period is no more than α?  The process in (1) produces a 
normal returns distribution, for which the one-day 5% VaR is given by -1.645 σ / 250  
and 1% VaR = -2.326 σ / 250 .  Typically the minus sign is suppressed and VaR is 
stated as a positive number. 
 
Use of VaR as a practical tool for risk measurement has grown rapidly.  It is intuitive and 
relatively easy to calculate.  It suffers from a variety of shortcomings, however, including 
the problem that it is not a "coherent" risk measure, in the terminology of Artzner, et al 
[1999].  A practical difficulty is that while VaR specifies where the α-tail of the returns 
distribution begins, it says nothing about the distribution of outcomes that fall in the tail.  
A better (and coherent) measure of tail risk is the expected value of the return conditional 
on being in the α-tail.  This is called by various names, including "Conditional Value at 
Risk" (C-VaR), or "expected shortfall."  Figure 2 illustrates the two concepts for the 
standard normal distribution.  Our investigation of estimation error is not specifically tied 
to Value at Risk, but VaR is a useful concept in discussing the general problem of 
assessing the risk exposure associated with the occurrence of large, but low probability, 
adverse events. 
 
Let us first consider calculating the 1-day 5% and 1% VaR using a single 3-month 
sample of returns.  We simulated 63 consecutive returns from equation (2), with the true 
parameter values set to  µ = 0,  σ = 0.20.  The sample mean (which for this particular run 
turned out to be -30.75%, see footnote 4) was suppressed and the volatility was estimated 
from equation (3). 
 

(3)   ∑
=

=σ
63

1t

2
tr63

250ˆ  

 
 
This sample produced a volatility estimate %62.16ˆ =σ .  Multiplying by  
-1.645 / 250  and -2.326 / 250 , respectively, gave estimated 1-day values of  5% VaR 
= -1.73%,  1% VaR = -2.45%.  These are shown in Panel A of Table 1. 
 
Standard VaR focuses on the location of the extreme tail of the returns distribution.  But, 
because the sample volatility is an underestimate of the true volatility in this case, the 
predicted VaR values also underestimate the true values, which are -2.08% and -2.94%, 
respectively.  Figure 3, showing the left tails of the true and the estimated distributions, 
illustrates the sampling error problem graphically.  In this case, the 5% tail of the true 
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distribution starts at a loss of -2.08%, 0.35% larger than is predicted by the standard VaR 
calculation, and the average loss in the 5% tail is -2.61%, 0.44% worse than expected.   
 
Another way to think about the estimation error in this problem is in terms of the 
underprediction of the probability that the next period return will be worse than α, the 
target VaR probability.  Using the sample volatility, one would predict that there is only a 
5% probability of a loss worse than -1.73%.  But under the true distribution, the 
probability of a loss that large is actually 8.58%.  The last column in Table 1 gives the 
ratio of the true tail probability to the predicted probability.  For the 5% tail, the true 
probability is 1.72 times greater than the predicted 5%, and for the 1% tail, the ratio is 
2.66.  Figure 4 illustrates this way of evaluating estimation error. 
 
The 5% and 1% cutoff values, that are by far the most frequent choices in practical VaR 
applications, actually represent relatively common outcomes.  An event with a 5% 
probability will occur on average one time out of 20.  For daily returns, therefore, 5%-tail 
events should average more than one per month.  A 1% event should occur every few 
months, about 2 1/2 times a year.  While it is obviously important to be prepared for these 
events, a cautious risk manager needs to be concerned about losses that are less frequent 
but much more serious. 
 
Panel 1B of Table 1 extends the VaR calculations from Panel A into the more extreme 
tails of the returns distribution.  It shows that the farther one looks into the tail, the 
greater is the effect of the estimation error on the volatility parameter.  For example, 
while the actual 5% tail is -0.35% worse than predicted, the actual 0.5% tail is -0.55% 
worse and the 0.05% tail is -0.70% worse.  For these very low probability events, the 
probability ratio gives a clearer picture of the impact of estimation error than the location 
of the tail does.  The true probabilities are several times the predicted values, and the ratio 
increases for rarer events, such that a return that is predicted to occur only 1 time in 
10,000 is actually almost 10 times more likely than that. 
 
Another way to understand the probability results we are developing is in terms of how 
frequent an event with a given probability is.  Table 2 shows the frequency of occurrence 
for the tail values examined in Table 1, both the predicted frequencies using the sample 
volatility of 16.02%, and the true frequencies based on the true σ = 20%.  For example, 
an event with a probability of only 0.002 can be expected to occur on average every 2 
years (where, as mentioned above, we take a "year" to be 250 days).  Even a 1 in 10,000 
event falling in the 0.0001 tail happens on average every 40 years: not a common 
occurrence by any means, but not out of the range of concern for a prudent risk manager 
with a long term view. 
 
One can express the frequency of occurrence in a different way that takes into account 
the fact that the probability of an event on any given day is independent of the outcomes 
on other days.  Given the 1-day probability, we can calculate the likelihood that there will 
be no event over a period of K days.  If P is the probability of an event on a given day, 
the probability of no event in K days is (1 - P)K, making the probability that there will be 
at least one event in K days 
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(4)  q = 1 - (1 - P)K 
 
For a specified probability of occurrence q, equation (4) can be solved for Kq, the shortest 
time period such that the probability an event will be observed during that interval is 
greater than q. 
 
(5) Kq   =   log (1 - q) / log (1 - P) 
 
Table 2 presents predicted and true values for K50%, the shortest period going forward 
such that there is more than 50% probability that an event will be observed.  For example, 
a 1 in 1000 event will happen on average every 4 years, but there is more than 50% 
chance of one within the next 2.8 years.  An event in the 0.0002 tail of the distribution 
might not seem so unusual after all, if the odds are greater than 50/50 of seeing one in 
less than 14 years. 
 
What is more striking in Table 2 is how much the estimation error in using the sample 
volatility for this problem changes the calculation.  For example, given our parameters, 
an event whose probability is estimated to be 0.001 is actually more than 5 times more 
likely than predicted.  So, while an event is expected on average only every four years, 
the true frequency is one every 195 days, and there is more than 50% chance of an 
occurrence within less than 6 months.  A once-in-40-years 0.0001 event is actually more 
likely than not within less than 3 years. 
 
These VaR estimates and probabilities have all been computed from a single 63-day 
sample of returns, in which the sample volatility was substantially lower than the true 
value.  They do not represent the average forecasting performance for a standard VaR 
calculation.  In order to examine that much more relevant issue, we use equation (2) to 
simulate a long sequence of 2,500,000 consecutive returns and consider repeating the 
process of estimating volatility every 63 days from equation (3) (i.e., setting the estimate 
of the mean to zero).  The 2 1/2 million simulated days yields 39,682 non-overlapping 
63-day periods.  To maximize comparability across simulations based on different 
assumptions and a variety of estimation strategies, we use the same random seed in every 
simulation run throughout the paper. 
 
The estimated volatility is used to compute 1-day VaR and C-VaR values for the first day 
following the sample period.  The realized return for that day (simulated using the true 
volatility) is then converted into a number of standard deviations by dividing it by the 
predicted volatility.  That is, the return shocks are standardized by expressing them in 
terms of the forecasted standard deviations.  When the full set of returns data has been 
processed, for each value of α, we determine the location of the cutoff for the true α-tail 
(i.e., the number of predicted standard deviations that would have captured exactly α 
percent of the returns), the true mean return in that α-tail (true C-VaR) in units of σ̂ , and 
the actual percentage of returns that fell within the predicted α-tails (true probability). 
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Table 3 presents the results.  Overall, the root mean squared error (RMSE) in the 
volatility forecast is 0.0178.  This is approximately 9 percent of the true volatility value 
of 0.20.  How large this volatility forecast error is judged to be depends on what use is to 
be made of the estimate: for pricing options it may be considered quite large, but for 
assessing overall risk exposure, it seems at first glance to be relatively small.  Table 3 
shows that for the 10% and 5% tails, estimation error does not seriously affect the 
standard VaR calculation.  For example, the 5% VaR level is estimated to be -1.645 times 
the sample volatility, while in the simulation, the true 5% VaR was at -1.649 times the 
sample volatility and the C-VaR estimate was also very close to the true value.  The true 
probability of a return in the predicted 5% tail was 5.05%, only 1.01 times the predicted 
probability. 
 
Estimation error is a little greater for the 1% VaR calculation.  The actual 0.01-tail was at 
-2.384 standard deviations, and the true probability that the next period return would fall 
in the predicted 1% tail was actually 1.17%.  However, as we saw above, the effect of 
estimation error is greater for more extreme values of α.  For α = .0005 (a 1-in-2000, or 
once-in-8 years, event) the true probability is more than twice as large as predicted. 
 
The simulation results reported in Table 3, using a 63-day sample period and a constant 
value of 0.20 for the true volatility, will be our standard of comparison in later 
experiments, so we refer to this as the Baseline simulation. 
 
We have chosen a period of 3 months (63 trading days), which is a common sample size 
for estimating volatility.  RiskMetrics, for example, uses an exponentially weighted 
moving average for volatility on a historical sample of 74 days, with a decay rate of 0.94.  
That methodology puts about 99% of the weight on observations within the first 63 days.  
(We will examine the effect of downweighting old data in this calculation below.)  The 
reason to limit the data sample is to reduce the effect of time variation in the volatility.  
However, in the Baseline case, volatility is a constant parameter, so the way to reduce 
sampling error is simply to increase sample size.   
 
Table 4 shows the effect of varying the sample size from 21 days to 250 days, with Panel 
A showing the effect on the true cutoff values for the α-tail.  Panel B shows the ratios of 
true to predicted probabilities, which are plotted in  Figure 5.  With a fixed 2 1/2 million 
returns, the number of non-overlapping samples decreases with the sample length, 
increasing the sampling error in our simulated "true" tail values.   A 250-day sample 
would produce only 10,000 observations, making locating the 0.0001 tail problematical, 
so we increased the simulation sample size to 10 million for that run.  Even so, the 
expected number of 0.0001 tail events was only 4, leading one to suspect that Table 4 
may understate the true probability ratio for the α = 0.0001, K = 250 combination (there 
were no events in the predicted 0.0001 tail in the first 2 1/2 million returns runs, for 
example).  Sampling error probably also plays a significant role in our 125-day 
simulation, for which only 20,000 runs were used. Even so, the results indicate that using 
more data in the sample substantially reduces the problem of estimation error, making it 
relatively unimportant when volatility is estimated over the past year, until one gets out 
beyond the 0.001 tail. 
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Unfortunately, the Baseline case probably represents the best possible conditions for 
predicting the extreme tails of a returns distribution using the standard methodology.  The 
true distribution is normal, the true volatility is constant, and the true mean is 0, so 
computing sample volatility as if the sample mean were zero actually saves a degree of 
freedom by imposing a true constraint.  In the real world, it is safe to say that none of 
these conditions holds.  Predicting the standard deviation of next period's return requires 
aiming at a moving target, and it is no longer automatically true that a longer sample 
period produces a more accurate estimate.  Procedures that limit the amount of past data 
used, either simply cutting off the sample by using a fixed window, or downweighting 
older observations, may improve accuracy.  We now turn to the estimation problem when 
volatility is allowed to change over time. 
 
 
3.  Estimating Risk Exposure when Volatility is Time-Varying 
 
The returns model in equation (1) has become the workhorse of continuous-time asset 
pricing.  The empirical evidence suggests, however, that real-world asset price processes 
are more complex than this.  In this section we will consider the estimation problem when 
volatility varies stochastically over time. 
 
We will continue to leave aside the behavior of the drift term µ.  It is well-known that µ 
is hard to predict.  Moreover, the drift does not have a very large effect on volatility 
estimation when returns are sampled over short intervals, because it is of smaller order 
than the volatility ( tversust ∆∆ , for ∆t close to zero).  Only when the sample mean is 
very different from the true mean does it have much effect on the sample volatility. This 
is why substituting 0 for the sample mean is an adequate "fix" for the sampling error 
problem (even though it contradicts the principle that the true mean return for a normal 
asset in equilibrium should be positive, not 0). 
 
A variety of alternatives to (1) that allow volatility to change over time have been 
explored in the literature.  We will model time-varying volatility as a mean-reverting 
square root process, as in Heston [1993].  We regard this as a reasonable assumption, that 
will allow us to explore the estimation risk problem when the parameter of interest drifts 
over time, but it is only one of many alternatives.   
 
The model of the real world that I have in mind is one in which virtually nothing is ever 
truly stationary.  Even if a mean-reverting square root process were to be the best 
description for volatility movements, we should expect that the model parameters would 
drift over time.  And if we tried deal with the problem by building a model of the 
parameter drift, the parameters of the parameter-drift process would themselves be 
nonconstant.  In short, I believe that parameter drift is endemic to the financial system, 
and that one is always trying to predict the future value of a variable of interest using data 
drawn from a previous time, when its value was different.  Since we can not expect that 
important parameters will stand still while we measure them, our best hope is that 
information will arrive rapidly relative to the rate at which the parameters are changing, 
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so that forecast error can be limited.  It is this need for rapid information arrival that fails 
when we are trying to assess the probabilities of rare events. 
 
Equation (1) now becomes 
 

(6)   dzdt
S
dS

tσ+µ=  

 
(7)   tt V=σ  
 
(8)   dwVdt)VV(dV tt θ+−κ=  
 
V is the long run variance, κ is the rate of reversion of the current variance Vt toward 

that long run value, tVθ  is the volatility of the variance process and dw is a second 
Brownian motion, independent of dz.8   
 
Equations (6) and (8) are discretized for the simulation study as follows. 
 
 
(9) )1,0(N~z~;tz~tS/Slnr ttt1t1t ∆σ+∆µ== ++  
 
 

(10) )1,0(N~w~;tw~t)VV(V tt1t ∆θ+∆−κ=+  
 
 
In choosing values for mean reversion, κ, and the volatility of variance parameter, θ, in 
the simulation we must be aware of the Feller condition for overall stability of the 
variance process.9  For the variance process to remain positive over the long run, we must 
have 
 

(11)   
2

V
2θ>κ  

 
Otherwise, in finite time, variance converges to zero.  Although we choose parameter 
values that satisfy (11), in a discrete simulation of equation (10), we still get occasional 
random draws for  wt that would produce negative variances.  When that happens, we set 
Vt+1 to 10-8, essentially imposing the constraint that annual volatility can not be less than 
0.01%. 
                                                 
8 For equity returns, it is common to allow negative correlation between dz and dw, see for example 
Bakshi, et al [1997].  We do not do that here, in the interest of limiting the amount of results to be 
presented.  Explorations allowing correlation between return and variance shocks in this model did not 
indicate striking differences from the results presented here. 
9 See Feller [1951]. 
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Table 5 presents simulation results for the standard estimation technique examined above, 
but with volatility that evolves over time according to equation (10).  That is, the user is 
assumed to calculate sample volatility from the last 63 days of simulated returns as if it 
were a constant parameter. He then estimates the location of the α-tails of the period t+1 
returns distribution for a range of αs, treating the sample volatility as if it were the true 
volatility.  As in the Baseline simulation, Table 5 Panel A shows the true α-tails, 
expressed in terms of the estimated standard deviations; and Panel B gives the ratios of 
true to predicted probabilities.   
 
The first column in Panel A shows the theoretical tails for a normal distribution, which is 
what the user incorrectly assumes will apply to this problem (and which would be 
correct, if the true volatility could be used in the VaR calculation instead of the estimated 
volatility).  The second column reproduces the Baseline results for a 63-day sample.  
Runs 1-9 assume 4 different values for the variance mean-reversion parameter κ: 0.20, 
0.40, 1.0, and 2.5.  For each κ, we show two or three values for θ, with the largest one in 
each case being within 0.05 of a value that would violate the Feller condition. 
 
Not surprisingly, allowing variance to change over time increases the RMSE of the 
forecasted volatility, to about 2.3% when θ = 0.10 and to more than 3% with θ = 0.20.  
The cutoff values for the true α-tails are distinctly more negative than predicted.  Panel B 
shows the substantial impact on predicted probabilities of tail events.  As we suggested 
above, the Baseline simulation represents the best case for the standard approach to risk 
assessment. 
 
We do not know, however, what values of κ and θ would be typical for real world asset 
returns.  Bakshi, Cao, and Chen [1997] present estimation results for a variety of 
stochastic volatility models for the S&P 500 stock index, including one that is close to 
(10).  Their values are κ = 1.15 and θ = 0.39.  However, there are several serious 
qualifications, which make it not completely appropriate to take these values as good real 
world estimates for the parameters in our problem.  First, the parameter values are 
obtained by implying them out from S&P 500 index option prices, not by fitting them to 
actual returns data.  Second, the Bakshi et al specification of the returns process includes 
a strong negative correlation between dz and dw, while we have modeled them as 
independent.  Finally, with our value for long term variance, the combination of 
parameters in Bakshi, et al, would violate the Feller condition and cause the variance 
process to be unstable.   
 
Figure 6 plots the effect of volatility of variance on the true / predicted probability ratios.  
We set κ = 1.0 and plot the results for a range of θ values, from 0 (the Baseline case) to 
0.25.  (It may be useful to refer back to Table 2 to get a feel for what the errors in the 
estimated tail probabilities mean in practical terms.)   
 
In Figure 7, we examine the effect of changing variance mean reversion while holding θ 
fixed at 0.10.   It is not surprising that larger volatility of variance makes forecasting 
harder, as we see in Figure 6.  It is less clear what one should expect for the rate of 
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reversion toward long run variance.  On the one hand, a rapid rate of reversion tends to 
keep the process closer to its long term (constant) value, which should make forecasting 
easier.  On the other hand, a larger κ also means that when instantaneous variance differs 
from V , it will drift more rapidly over the sample period under the force of mean 
reversion, which could make post-sample forecasting harder.  As Figure 7 shows, the 
former effect appears to win out, at least with these parameter values: higher κ reduces 
the impact of estimation error in calculating the location of the α-tails.  Even so, in Table 
5 it is clear that, overall, time varying volatility makes the problem of assessing risk 
exposure worse. 
 
 
4.  Further Departures from the Standard Model 
 
The assumption that returns come from a normal distribution is widely made for 
mathematical convenience, but a large amount of statistical evidence indicates that the 
true distribution is more fat-tailed than the normal.  Time-variation in the variance would 
be one reason for apparent non-normality, of course.  But even when models with 
explicitly stochastic volatility are estimated, it often seems that the returns shocks are fat-
tailed. A convenient alternative to the normal is the Student-t distribution.  It has one 
additional parameter, the degrees of freedom( d.f.), that governs the tail behavior.  The 
distribution converges to the standard normal as d.f. goes to infinity, but for small values, 
the t-distribution is distinctly fatter-tailed than the normal.  In fact, in a t-distribution all 
moments greater than d.f. are infinite.  For example, a t(3) has finite mean, variance and 
skewness, but infinite kurtosis and higher moments.   
 
Table 6 examines the effect of drawing the disturbances in the returns equation from a t-
distribution with either 7 or 4 degrees of freedom, compared with normal (0,1) shocks.  
The shocks to the variance equation are still drawn from a normal distribution.  We 
consider three cases: constant parameters, stochastic volatility with a relatively low 
volatility of variance of 0.05 and slow mean reversion of 0.40, and more strongly 
stochastic volatility with θ = 0.20 and κ = 2.5.  The results show that fat-tailed 
disturbances from a t-distribution significantly worsen the underestimation of exposure to 
extreme returns.  Even with the low volatility of variance process, the true probability of 
experiencing a 0.0001-tail event is in excess of 20 times greater than is predicted under 
the assumption that returns are normal.  However, comparing across the different runs it 
becomes clear that this result is due much more to the tail-fatness of the t-distribution 
than to the problem of sampling error that we have been examining above.  Given the 
degrees of freedom in the distribution, allowing time variation in the volatility makes 
little difference to the results.  For example, with t(7) shocks, when variance is constant 
the true probability of a return in the 0.0001 tail is about 23 times the probability 
predicted from a normal distribution.  When variance has a volatility parameter θ = 0.05, 
the same multiple of about 23 applies, and increasing the volatility of variance to 0.20 
only moves the ratio to 25.5.  Assuming the returns distribution is normal when return 
shocks actually come from a t-distribution leads to huge underestimates of the exposure 
to large low probability events.  But the additional risk exposure that can be attributed to 
estimation risk is not very important. 
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The fact that variance is known to be time-varying has led to the use of alternative 
estimation techniques to reduce the problem.  Restricting the returns sample to a fixed 
window, such as 63 days, only makes sense because it is felt that more recent data give a 
better estimate of a moving parameter.  A fixed window imposes a rather artificial 
weighting of past data in the estimation, either 1 for an observation in the window, or 0 
for one outside the window.  A common alternative that downweights data more 
smoothly as it ages is to use an exponentially weighted moving average (EWMA).   
 
Under EWMA, each observation is downweighted at a fixed rate of decay as it ages.  The 
volatility estimate is given by 
 

(12) ∑∑ =
−

=
− λλ=σ maxK

1t
1tmaxK

1t
2

t
1t /)r(ˆ , 

 
where λ is the decay parameter and Kmax is the maximum lag included in the 
calculation.  RiskMetrics, which has made a profitable and influential business out of 
estimating volatilities and correlations for use in Value at Risk calculations, uses λ = 0.94 
and Kmax = 74 for all of its daily volatility estimates, the latter chosen because if an 
infinite number of past observations were available, the total weight applied to those 
more than 74 days old would be less than 1%.  We use Kmax = 63 here, which captures 
most of the weight of an infinite sample, with the fraction ranging from about 72% for λ 
= 0.98 to more than 99.8% for λ = 0.90.  According to RiskMetrics, tests on volatilities 
from a large number of return series indicate that λ = 0.94 seems to give the best average 
forecast performance (see RiskMetrics [1996]). 
 
An EWMA offers the possibility of extracting some volatility information from 
comparatively old data while recognizing that more recent data probably contains more 
information that is relevant for predicting next period's volatility.  The optimal decay 
factor should be a function of the rate of change of volatility and the size of the stochastic 
component.  A relatively large value for λ, close to 1.0, would be appropriate for a stable 
and slow moving variance process, while if volatility changes rapidly over time, one 
would like to reduce the weighting of older data by using a smaller λ.   
 
In Table 7, we present simulation results for three volatility regimes, comparing four 
decay factors.  In results not shown here, we found that varying the rate of mean 
reversion κ had very little effect on the estimation error in the tail estimates for this case.  
For example, with λ = 0.94 and θ = 0.10, κ values of 0.20, 1.0, and 2.5 produced forecast 
RMSEs of 0.0270, 0.0269, and 0.0267, respectively, and the 0.0001-tails fell at 4.269, 
4.277, and 4.273.  Given the minuscule effect of changing the rate of variance mean 
reversion over a broad range, we report only results with κ = 1.0.  θ values were set to 0 
(constant volatility), 0.05 (relatively stable variance) or 0.25 (volatile variance), and we 
considered λs of 1.0 (no downweighting in a fixed 63-day window), 0.97, 0.94 and 0.90. 
 
Not surprisingly, if volatility is constant, downweighting older data points simply throws 
away useful information, since every observation contains an equal amount of 
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information.  The RMSE results show that with θ = 0 forecast accuracy diminishes 
monotonically as λ is reduced from 1.0 to 0.90.  The tail statistics and probability ratios 
are consistent with this.  The same result holds for the low volatility of variance θ = 0.05 
regime.  However, in the high θ regime, the pattern is different.  Forecast accuracy is 
better for λ = 0.97 and λ = 0.94 than it is for either λ = 1.0 or λ = 0.90.  Evidently, in this 
case no downweighting (λ = 1.0) allows too much noise from obsolete data points into 
the calculation, while too much downweighting (λ = 0.90) excludes too much useful 
information that could have be extracted from observations that are not old enough to 
have lost their value.  This suggests that we would have found a similar result for the  
θ = 0.05 case, if we had checked λ values between 0.97 and 1.0. 
 
Figures 8 and 9 do just that, reporting the true / predicted probability ratios for the low 
and high θ regimes, respectively.  Figure 8 shows that while for the nearby 0.05 to 0.0005 
tails, the best performance is achieved with no downweighting (or at least, with a decay 
factor over 0.99), for the further 0.0002 and 0.0001 tails, it is better to use a decay factor 
of 0.99 than to weight each observation equally.  Figure 9 shows that this general pattern 
is similar and more pronounced when θ is relatively high.  The most extreme tails are 
estimated more accurately using EWMA, with a decay parameter of 0.92 or 0.94.  The 
nearer tails also are more accurate, but with less downweighting.  The best λ values are λ 
= 0.96 for the 0.01 tail and λ = 0.97 for the 0.05 tail.  Thus, EWMA appears to give some 
improvement in tail estimation under conditions of time-varying variance.  The overall 
impact of estimation error on predictions of risk exposure, however, is still very large. 
 
 
5.  Autocorrelation in the Volatility Forecast Errors from a Rolling Sample 
 
One feature of our research design that affects the results substantially is the fact that so 
far we used only non-overlapping samples.  This allowed us to compute the effect of 
estimation error on the predicted probabilities without the problem of serial dependence 
that overlapping samples would produce.  This is both good and bad.  We get better  
statistical behavior of our estimation with non-overlapping samples, but the forecasting 
problem that we are modeling is different from what risk managers face in the real world.  
A firm that uses VaR as a risk management tool will recompute volatility each day to 
estimate the exposure for the immediate future.  Each time, the most recent day's 
observation is added to the sample and the oldest day is dropped.  This means that the 
prediction error on date t will be highly correlated with the error on date t-1, perhaps 
generating a string of volatility underestimates, and multiple tail events.  This section 
explores that issue.   
 
We simulate 250,000 daily returns (1000 years) using the same procedures as above, but 
then consider estimating volatility from a rolling 63-day sample, updating each day.  This 
produces (250,000 - 63) = 249,937 1-day VaR forecasts, whose prediction errors will be 
serially correlated.  Table 8 presents results for the same set of parameter values as in 
Table 5.  Panel A shows the actual tail cutoff values and Panel B gives the probability 
ratios. 
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Average prediction accuracy, as measured by the root mean squared error of the volatility 
forecast, is very similar for the overlapping and non-overlapping samples.  Although 
there are periods when volatility is underestimated, which increases the likelihood of 
observing what appear to be multiple tail events within a short time interval, these times 
are balanced by periods of overestimated volatility, with a lower than expected chance of 
an event.  Overall, the RMSE of the volatility estimate is not affected very much.  In 
other words, using a rolling sample does not increase the bias of the volatility estimate.  
Nor does it seem to make much difference in the Baseline constant volatility case.  But 
once volatility is allowed to vary over time, the offsetting of under- and overestimates in 
the rolling sample does not produce offsetting errors in estimating the tails of the 
distribution.  Under stochastic volatility, a rolling sample produces substantially more tail 
events than were shown in Table 5. 
 
Panel B of Table 8 is set up to illustrate clearly the difference a rolling sample makes to 
risk estimation.  For each probability cutoff, we show the probability ratio for both the 
rolling sample and the corresponding non-overlapping sample result from Table 5.  It is 
evident that even a low value of θ leads to a substantial increase in the probability of a 
tail event, with the difference increasing as one looks further into the tail.  For example, 
with θ = 0.10 and κ = 0.4 (Run 4), a rolling 63-day sample would experience 58% more 
5% tails events than expected (versus only 3% more with no overlap).  But at the 1-in-a-
thousand 0.1% level, the rolling sample would produce more than 11 times as many 
events as expected, while the non-overlapping sample only experiences twice as many.  
A faster rate of volatility mean reversion κ mitigates the effect considerably, but even 
with κ = 2.5, a rolling sample still produces considerably larger tail probabilities than 
expected and than the non-overlapping sample does. 
 
So far we have been examining results only from simulations.  This raises the question of 
whether these experiments really reflect what happens in the real world.  To provide 
some evidence on this issue, I fitted rolling volatility forecasts on about 40 years of S&P 
500 stock index returns, and examined the tail predictions using the same kind of analysis 
we have been considering.  The sample period is July 2, 1962 through August 30, 2002, 
which yields 10113 observations.  Rolling estimations were done using returns from the 
previous 21, 63 and 250 days.  Table 9 presents the results. 
 
Table 9 shows clearly that the standard procedure of estimating volatility over a relatively 
short historical period and rolling the sample forward each day leads to serious 
underestimates of the tail probabilities in the real world, just as it does in our simulations.  
The more remote tails are underestimated to a larger degree, but even the 1% tail had 
more than 70% more events than were predicted.  One noteworthy feature here is that 
adding more data by going from 21 to 63 to 250 day estimation periods only improves the 
tail predictions very slightly.  This suggests that the problem is not just sampling error, 
which can be made to go away by using more data points, as was shown in Table 4.  
Time variation in the volatility, which does not go to zero with a longer estimation 
sample, is likely to be playing an important role, as well (and probably fat tails in the 
returns distribution, too). 
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Risk exposure is not limited to getting one really bad day.  When statistically independent 
volatility forecasts are produced from non-overlapping data, the probability of getting 
two tail events in a row is just the square of the probability of one event.  But with a 
rolling sample, the volatility forecast errors will be highly positively autocorrelated.  This 
will produce a much greater chance of getting multiple events over a short period than 
with independent forecasts.  Table 10 examines this phenomenon. 
 
Panel A presents results on the occurrence of two tail events in a row and Panel B does 
the same for three events in a row.  The Theoretical Probability is just the tail probability 
raised to the power 2 or 3.  The remaining columns show the probability ratios for other 
asset price processes.  The first is the constant volatility Baseline run.  These results show 
that sampling error alone leads to a substantially higher multi-day risk than expected.  For 
example, three 1% tail events in 3 days should be a one in a million event, but because of 
sampling error it is 12 times more probable than that, even when volatility is constant and 
returns are normal.   
 
The next four columns give the probability ratios for different values of θ and κ, ranging 
from a relatively low θ of 0.10 with κ of 0.2 or 1.0, to high values of θ = 0.40 and κ = 
2.50.  The effect is striking.  If either θ is high, or θ is moderate but mean reversion is 
slow, the probability of two or three events in a row grows sharply.  For both Run 1 and 
Run 4, the "one in a million" occurrence of three 1% tail events in a row is actually much 
closer to 1 in 1000--something that might happen about every 4 years on average. 
 
Finally, the last column gives statistics on actual multi-day tail events observed for the 
S&P 500 stock index over the 40 year sample period.  The results are not as extreme as 
some of the simulations, but are more extreme than others.  Three 5% tail events in a row, 
for example, should happen only once in 8000 days, or about 32 years.  But three in a 
row was actually almost 10 times more frequent than that, averaging 1 in about 3 1/2 
years. 
 
Panels C and D show the same kind of results for two relatively more likely multi-day tail 
events: 3 events in 5 days and 3 events in 10 days.  The theoretical probability of K 
events in N days can be computed directly from the binomial distribution, with the 
probability of a single event set equal to the tail cutoff. 
 
If α is the tail cutoff probability, the probability of observing K (or more) events in N 
days PK,N is given by 
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One thing that complicates the interpretation of these results a little is the fact that with a 
rolling estimation, the same events can be counted more than once.  For example, if there 
are three events in a row,  there will be 7 days in the sample in which those 3 events will 
fall within a 10 day window.  However, these "multiple counting" cases will tend to be 
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offset by multiple-under counting periods that will occur, as well.  Asymptotically, this 
should not bias the probability ratios as reported in Table 10.  Again, these results 
indicate that the use of a rolling sample to estimate sequential volatilities and risk 
exposures increases the problem of estimation risk. 
 
 
 
6.  Conclusion 
 
Use of statistical procedures to quantify exposure to financial risk has been spreading 
rapidly among real-world risk managers, with Value at Risk probably representing the 
single most common technique at present.  Many of the alternatives to VaR also involve 
trying to estimate the tails of a probability distribution of asset values or returns.  This 
effort inevitably entails estimation error, but the effect of that error is seldom considered 
explicitly.  We have seen that even with constant volatility and normal distributions, the 
best situation for the standard technique based on samples of a few months of historical 
data leads to substantial misestimation of tail probabilities.  The problem grows worse the 
farther into the extreme tails one looks. 
 
In the real world, it is not plausible to expect volatility to be time-invariant, and much 
empirical evidence indicates that it is not.  But when volatility changes stochastically 
over time, the estimation error in predicting the probabilities of rare events can get much 
larger, and the possibility of substantially increasing accuracy simply by using longer 
data samples disappears.  That is the general problem we have examined here.  Using an 
extensive simulation (10,000 years of daily returns), we found that events with 
probabilities on the order of 1 in 1000 or less can easily be twice as likely as predicted.  
This tends to happen when volatility is underpredicted because it has increased during the 
sample period, so the true volatility of tomorrow's return exceeds that of the data sample.  
The more volatile variance is, the worse the problem becomes. 
 
We extended the analysis to consider how things would change when the true returns 
distribution was more fat-tailed than the normal, as much evidence suggests it is.  
Drawing returns shocks from a t-distribution with either moderate or large tail fatness, we 
found that the estimation errors for the extreme tails grew enormously.  Events that 
would be predicted to occur on the order of once in a decade under a normal distribution 
can be more than 15 times more likely when shocks come from one of the t-distributions 
we looked at.  We also examined the alternative exponentially weighted moving average 
estimation strategy, which is used in practice to mitigate the expected instability of 
returns volatilities.  EWMA did improve predictive accuracy when volatility was strongly 
stochastic, especially for the remote tails which have focused on. 
 
The results reported above were obtained using only non-overlapping samples.  By 
contrast, real world risk managers who use VaR as a risk management tool will 
recompute volatility each day, adding in the most recent observation and dropping the 
oldest one from the sample.  The volatility prediction error on date t will be highly 
correlated with the error on date t-1, which can generate a string of volatility 



 

17  
 

underestimates, and multiple tail events.  Using a rolling sample for volatility estimation 
substantially increases the frequency of apparent tail events.  It also makes multiple 
events within a few days much more likely. 
 
One alternative approach to estimating volatility that is commonly used is historical 
simulation.  This involves analyzing past returns from a much longer sample period, 
typically several years, and simply tabulating the empirical returns distribution.  This may 
ameliorate some of the estimation risk problems that we have seen with parametric 
estimation on a short data sample.  For example, if return shocks are non-normal, using a 
long sample period will allow a better empirical fit to the actual tail behavior.  Also, if 
volatility varies stochastically but the rate of mean reversion is fairly rapid, a sample of 
several years may produce a reasonably good estimate of the ergodic distribution.  On the 
other hand, it is not possible to say anything about the remote tails from a limited sample.  
For example, in 2 years of data, one would not expect to see even one 0.1% event.  And 
the problem of serial correlation of the errors should be considerably worse.  Estimation 
risk in historical simulation as a strategy for assessing risk exposure will be explored in 
subsequent research. 
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Appendix 
 
Proof that when r is drawn from a normal distribution with constant mean and 
variance, the conditional distribution of rt+1, given {rt-K+1, ... , rt} is Student-t. 
 
The returns{rτ} are independent draws from a normal distribution with mean µ and 
standard deviation σ.   
 
We will use the following result from Theil [1971, p. 82].  Let X be a standardized 
normal variate, let Y2 have a χ2 distribution with K degrees of freedom, and let X and 

2YY += be independent.  Then Y/KX is distributed as Student-t with K degrees of 
freedom.  Here, X will be the standardized forecast error for rt+1 and Y will be the 
estimated standard deviation computed from the most recent K returns{rt-K+1, ..., rt}. 
 
Case 1:  Both mean and standard deviation are sample estimates. 
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The first post-sample return, rt+1, is independent of the returns used in computing the 
sample mean and variance.  The expected value of µ̂  is µ and variance of µ̂  is σ2/K.  
This means 

( rt+1 - µ̂ ) ~ N( 0, σ2 + σ2/K )    and    )1,0(N~
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From basic statistics, (e.g., Theil [1971], p. 91), we have  )1K(~
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Applying the result stated above and simplifying gives )1K(t~
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return rt+1 is distributed like a Student-t with K-1 degrees of freedom, but scaled up by the 

factor 
K

1K + .  It has the same zero mean as a t(K-1) variate but its standard deviation 

is larger, making the distribution a mean-preserving spread on a standard Student-t(K-1).  
The distribution of rt+1 has fatter tails than the normal, and because of the scaling factor 
each quantile in the tail (5%, 1%, etc.) is more negative than the corresponding quantile 
for a standard Student-t(K-1). 
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Case 2:  The sample mean is set to zero; only the standard deviation is estimated:  
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1ˆ .  If the true mean µ = 0, the constraint is true and a similar 

computation as in Case 1 yields )K(t~
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Case 3:  If the true mean is nonzero, suppressing calculation of the sample mean in the 
estimation procedure introduces a specification error and the proof does not go through.  

The sample variance is a biased estimate of the true variance and 
σ
+
ˆ

r 1t  will not satisfy the  

conditions of the theorem. 
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Table 1:  Estimating Value at Risk and Conditional Value at Risk on a 
Simulated 63-Day Sample of Returns 

 
One run of 63 consecutive returns was simulated from the discretized model 
 
(2) )1,0(N~z~;tz~tS/Slnr tt1t1t ∆σ+∆µ== ++  
 
with parameter values: µ  =  0.0%, σ  =  20.0%, ∆t  =  1 / 250 
 
Estimated values are based on the sample (zero mean) volatility estimate: %62.16ˆ 0mean =σ ; 
True values are based on the true  σ  =  20.0%. 
 
 
Panel A:  Estimated and True Values for Standard 5% and 1% VaR and C-VaR  
 

Probability Estimated 
VaR TrueVaR Estimated  

C-VaR True C-VaR True / Predicted 
Probability 

.05 -1.73% -2.08% -2.17% -2.61% 1.72 

.01 -2.45% -2.94% -2.81% -3.38% 2.66 
 
 
 
Panel B:  Estimated and True Risk Exposures for Extreme Tails 
 

Probability Estimated 
VaR True VaR Estimated  

C-VaR True C-VaR True / Predicted 
Probability 

.005 -2.71% -3.26% -3.05% -3.67% 3.23 

.002 -3.03% -3.64% -3.36% -4.05% 4.19 

.001 -3.25% -3.91% -3.49% -4.19% 5.12 

.0005 -3.46% -4.16% -3.68% -4.43% 6.25 

.0002 -3.72% -4.48% -3.91% -4.70% 8.16 

.0001 -3.91% -4.70% -4.21% -5.06% 9.98 
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Table 2:  Event Frequency as a Function of Event Probability 
 
The table shows the predicted and true frequency of events with a given predicted 
probability, based on the sample volatility.  One "year" is 250 "days." 
 
For a given probability, K50% is the time interval such that there is more than 50% 
probability of experiencing an event within that period. 
 
K50% is the solution to:  0.50 = 1 - (1 - P)K

50% , where P is the probability of an event. 
 
 
 

Probability 
Estimated 
Frequency 

1 / P 

Estimated  
K50% 

True P / 
Predicted P 

True 
Frequency 

  1 / P 
True K50% 

.05 20 days 14 days 1.72 12 days 8 days 

.01 100 days 69 days 2.66 38 days 26 days 

.005 200 days 139 days 3.23 62 days 43 days 

.002 2 years 1.4 years 4.19 119 days 83 days 

.001 4 years 2.8 years 5.12 195 days 136 days 

.0005 8 years 5.5 years 6.25 1.28 years 222 days 

.0002 20 years 13.9 years 8.16 2.45 years 1.7 years 

.0001 40 years 27.7 years 9.98 4.01 years 2.78 years 
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Table 3:  Constant Volatility Baseline Simulation  
 

Simulation:  Sequential returns are simulated for a period of 2,500,000 days (10,000 years). 
Estimation sample:  K = 63 days;  39,682 non-overlapping intervals. 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
 

 All tail statistics are reported in standard deviations. 
 

RMSE of volatility estimate = 0.0178 
 

 

Probability 
α 

α-Tail cutoff for 
Normal 

C-VaR for 
Normal 

Actual α-tail 
cutoff True C-VaR True Prob / 

Predicted Prob 

0.10 -1.282 -1.747 -1.285 -1.780 1.01 

0.05 -1.645 -2.062 -1.649 -2.107 1.01 

0.01 -2.326 -2.673 -2.384 -2.770 1.17 

0.005 -2.576 -2.898 -2.660 -3.041 1.23 

0.002 -2.878 -3.198 -3.015 -3.373 1.46 

0.001 -3.090 -3.316 -3.297 -3.599 1.76 

0.0005 -3.290 -3.499 -3.514 -3.802 2.03 

0.0002 -3.540 -3.716 -3.777 -4.120 2.21 

0.0001 -3.719 -4.003 -4.144 -4.317 2.37 
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Table 4:  Tail Cutoffs and Probability Ratios for Different Estimation Samples Sizes 

 
Simulation:  Sequential returns are simulated for a period of 2,500,000 days.  (10,000,000 days for K = 250) 
Estimation sample:  Non-overlapping samples of K days, K = 21, 42, 63, 125, 250 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 

 
 All tail statistics are reported in standard deviations. 
 
Panel A: Comparison of Tail Estimates 

 

 α-Tail cutoff for 
Normal 

Actual α-tail 
cutoff 
K = 21 

Actual α-tail 
cutoff 
K = 42 

Actual α-tail 
cutoff 
K = 63 

Actual α-tail 
cutoff 

K = 125 

Actual α-tail 
cutoff 

K = 250 
Runs  119047 59523 39682 20000 40000 

Forecast RMSE  0.0307 0.0219 0.0178 0.0127 0.0089 
       

Prob= 0.05 -1.645 -1.718 -1.668 -1.649 -1.666 -1.658 

0.01 -2.326 -2.534 -2.422 -2.384 -2.333 -2.349 

0.001 -3.090 -3.582 -3.251 -3.297 -3.043 -3.129 

0.0002 -3.540 -4.257 -3.758 -3.777 -3.706 -3.659 

0.0001 -3.719 -4.550 -3.982 -4.144 -3.879 -3.888 
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Table 4:  Tail Cutoffs and Probability Ratios for Different Estimation Samples Sizes, p.2 
 
 
   Panel B: Ratio of True Probability / Predicted Probability 

 

Probability 
α 

Probability ratio 
K = 21 

Probability ratio 
K = 42 

Probability ratio 
K = 63 

Probability ratio 
K = 125 

Probability ratio 
K = 250 

Prob= 0.05 1.15 1.05 1.01 1.04 1.03 

0.01 1.51 1.24 1.17 1.03 1.07 

0.001 3.03 1.71 1.76 0.85 1.14 

0.0002 5.43 1.99 2.21 1.55 1.66 

0.0001 6.94 2.54 2.37 1.93 1.64 
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Table 5:  Tail Cutoffs and Probability Ratios for Different θ and κ Values 
 

Simulation:  Sequential returns for 2,500,000 days; Estimation sample:  63 days; 39,682 non-overlapping periods 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
All tail statistics are reported in standard deviations. 
 
Panel A: Comparison of Tail Estimates 

 

 Normal Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

θ (Vol'y of 
variance) - 0 0.05 0.10 0.05 0.10 0.10 0.20 0.10 0.20 0.40 

κ (mean 
reversion) - 0 0.2 0.2 0.4 0.4 1.0 1.0 2.5 2.5 2.5 

RMSE - 0.0178 0.0193 0.0230 0.0192 0.0229 0.0227 0.0331 0.0222 0.0318 0.0545 

Prob= 0.05 -1.645 -1.649 -1.654 -1.663 -1.653 -1.659 -1.660 -1.684 -1.658 -1.674 -1.728 

0.01 -2.326 -2.384 -2.388 -2.414 -2.385 -2.398 -2.392 -2.504 -2.392 -2.455 -2.702 

0.002 -2.878 -3.015 -3.036 -3.107 -3.036 -3.091 -3.065 -3.239 -3.057 -3.183 -3.693 

0.001 -3.090 -3.297 -3.295 -3.401 -3.294 -3.383 -3.356 -3.580 -3.324 -3.448 -4.000 

0.0005 -3.290 -3.514 -3.538 -3.632 -3.534 -3.596 -3.582 -3.810 -3.587 -3.715 -4.397 

0.0002 -3.540 -3.777 -3.789 -3.912 -3.780 -3.770 -3.750 -4.225 -3.776 -3.944 -4.846 

0.0001 -3.719 -4.144 -3.928 -4.103 -3.942 -3.933 -3.915 -4.472 -3.957 -4.520 -5.261 
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Table 5:  Tail Cutoffs and Probability Ratios for Different θ and κ Values, p.2 
 

 
Panel B: Ratio of True Probability / Predicted Probability 
 

 

 Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

θ (Vol'y of 
variance) 0 0.05 0.10 0.05 0.10 0.10 0.20 0.10 0.20 0.40 

κ (mean 
reversion) 0 0.2 0.2 0.4 0.4 1.0 1.0 2.5 2.5 2.5 

           

Prob= 0.05 1.01 1.02 1.03 1.02 1.03 1.03 1.07 1.02 1.05 1.15 

0.01 1.17 1.14 1.26 1.15 1.21 1.19 1.43 1.19 1.32 1.86 

0.002 1.46 1.55 1.82 1.56 1.72 1.69 2.43 1.66 2.07 3.76 

0.001 1.76 1.70 2.12 1.70 2.03 1.88 2.95 1.84 2.34 5.56 

0.0005 2.03 2.02 2.69 2.05 2.36 2.18 3.59 2.17 3.12 7.57 

0.0002 2.21 2.39 3.50 2.39 3.27 3.06 5.36 2.70 4.05 12.65 

0.0001 2.37 2.45 3.35 2.40 2.59 2.95 7.07 2.70 4.94 19.06 
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Table 6:  Tail Cutoffs and Probability Ratios under Student-t Return Shocks 
 

Simulation:  Sequential returns for 2,500,000 days; Estimation sample:  63 days; 39,682 observations 
Return shocks are drawn from a Normal (0,1) and Student-t distributions with 7 and 4 degrees of freedom. 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
All tail statistics are reported in standard deviations. 
 
Panel A: Comparison of Tail Estimates 

 

 Normal Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 

θ - 0 0 0 0.05 0.05 0.05 0.20 0.20 0.20 

κ - 0 0 0 0.40 0.40 0.40 2.5 2.5 2.5 

Shocks - N(0,1) t(7) t(4) N(0,1) t(7) t(4) N(0,1) t(7) t(4) 

RMSE - 0.0178 0.0243 0.0389 0.0192 0.0254 0.0396 0.0318 0.0360 0.0473 

Prob= 0.05 -1.645 -1.649 -1.627 -1.580 -1.653 -1.633 -1.584 -1.674 -1.641 -1.595 

0.01 -2.326 -2.384 -2.615 -2.794 -2.385 -2.615 -2.802 -2.455 -2.710 -2.915 

0.002 -2.878 -3.015 -3.812 -4.712 -3.036 -3.855 -4.758 -3.183 -3.882 -4.778 

0.001 -3.090 -3.297 -4.362 -5.621 -3.294 -4.275 -5.539 -3.448 -4.332 -5.438 

0.0005 -3.290 -3.514 -4.683 -6.515 -3.534 -4.747 -6.484 -3.715 -4.949 -6.499 

0.0002 -3.540 -3.777 -5.499 -8.401 -3.780 -5.704 -8.144 -3.944 -5.884 -8.407 

0.0001 -3.719 -4.144 -6.774 -11.917 -3.942 -7.133 -12.548 -4.520 -7.324 -12.680 
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Table 6:  Tail Cutoffs and Probability Ratios under Student-t Return Shocks, p.2 
 

 Panel B: Ratio of True Probability / Predicted Probability 
 

 Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 

θ 0 0 0 0.05 0.05 0.05 0.20 0.20 0.20 

κ 0 0 0 0.40 0.40 0.40 2.5 2.5 2.5 

Shocks N(0,1) t(7) t(4) N(0,1) t(7) t(4) N(0,1) t(7) t(4) 

Prob= 0.05 1.01 0.98 0.91 1.02 0.98 0.92 1.05 0.99 0.93 

0.01 1.17 1.61 1.83 1.15 1.61 1.80 1.32 1.71 1.88 

0.002 1.46 3.43 4.64 1.56 3.54 4.74 2.07 4.08 5.13 

0.001 1.76 5.39 7.68 1.70 5.56 7.63 2.34 5.93 8.55 

0.0005 2.03 8.49 12.75 2.05 8.61 12.94 3.12 9.07 14.02 

0.0002 2.21 14.72 26.84 2.39 14.52 26.43 4.05 15.78 27.20 

0.0001 2.37 23.21 45.79 2.40 22.67 46.21 4.94 25.52 48.02 
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Table 7:  EWMA Volatility Tail Cutoffs and Probability Ratios 
Simulation:  Sequential returns for 2,500,000 days; Estimation sample:  63 days; 39,682 observations 
Volatility is calculated using an exponentially weighted moving average with decay factors D = 0.97, 0.94, 0.90 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
All tail statistics are reported in standard deviations. 

 
Panel A: Comparison of Tail Estimates 

 

 Normal Run 1 
Baseline Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 Run 12 

θ - 0 0 0 0 0.05 0.05 0.05 0.05 0.25 0.25 0.25 0.25 

κ - 0 0 0 0 1 1 1 1 1 1 1 1 

Decay - 1.0 0.97 0.94 0.90 1.0 0.97 0.94 0.90 1.0 0.97 0.94 0.90 

RMSE - 0.0178 0.0202 0.0251 0.0319 0.0191 0.0210 0.0256 0.0322 0.0390 0.0345 0.0340 0.0372 

Prob= 
0.05 -1.645 -1.649 -1.659 -1.676 -1.706 -1.651 -1.658 -1.676 -1.708 -1.705 -1.677 -1.685 -1.714 

0.01 -2.054 -2.097 -2.113 -2.146 -2.198 -2.093 -2.115 -2.136 -2.194 -2.195 -2.164 -2.176 -2.220 

0.002 -2.326 -2.384 -2.402 -2.444 -2.519 -2.379 -2.400 -2.442 -2.526 -2.602 -2.533 -2.513 -2.586 

0.001 -2.576 -2.660 -2.686 -2.746 -2.817 -2.683 -2.706 -2.733 -2.823 -2.944 -2.880 -2.860 -2.889 

0.0005 -2.878 -3.015 -3.024 -3.098 -3.164 -3.029 -3.043 -3.101 -3.163 -3.463 -3.303 -3.245 -3.320 

0.0002 -3.090 -3.297 -3.317 -3.348 -3.437 -3.298 -3.306 -3.319 -3.444 -3.748 -3.589 -3.581 -3.625 

0.0001 -3.290 -3.514 -3.529 -3.632 -3.809 -3.553 -3.538 -3.688 -3.817 -4.023 -3.799 -3.939 -4.214 
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Table 7:  EWMA Volatility Tail Cutoffs and Probability Ratios, p.2 
 

Panel B: Ratio of True Probability / Predicted Probability 
 

 Run 1 
Baseline Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 Run 12 

θ 0 0 0 0 0.05 0.05 0.05 0.05 0.25 0.25 0.25 0.25 

κ 0 0 0 0 1 1 1 1 1 1 1 1 

Decay 1.0 0.97 0.94 0.90 1.0 0.97 0.94 0.90 1.0 0.97 0.94 0.90 

Prob= 
0.05 1.01 1.03 1.06 1.14 1.01 1.02 1.06 1.14 1.11 1.06 1.09 1.14 

0.01 1.11 1.14 1.22 1.32 1.10 1.13 1.21 1.33 1.31 1.23 1.25 1.37 

0.002 1.17 1.20 1.33 1.52 1.15 1.21 1.32 1.54 1.56 1.45 1.51 1.64 

0.001 1.23 1.25 1.46 1.82 1.26 1.27 1.45 1.81 2.11 1.83 1.76 2.05 

0.0005 1.46 1.64 1.75 2.18 1.57 1.57 1.76 2.12 3.03 2.52 2.42 2.56 

0.0002 1.76 1.81 2.04 2.65 1.73 1.81 2.04 2.38 3.92 3.19 2.74 2.97 

0.0001 2.03 2.16 2.18 2.81 2.02 2.13 2.13 2.75 5.45 4.08 3.83 4.25 
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Table 8:  Tail Cutoffs and Probability Ratios for a 63-Day Rolling Sample  
with Different θ and κ Values 

 
Simulation:   Sequential simulated returns for 250,000 days;  Estimation sample:  63-day rolling sample 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
All tail statistics are reported in standard deviations. 
 
Panel A: Comparison of Tail Estimates 

 

 Normal Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

θ (Vol'y of 
variance) - 0 0.05 0.10 0.05 0.10 0.10 0.20 0.10 0.20 0.40 

κ (mean 
reversion) - 0 0.2 0.2 0.4 0.4 1.0 1.0 2.5 2.5 2.5 

RMSE - 0.0177 0.0188 0.0233 0.0192 0.0223 0.0224 0.0328 0.0219 0.0313 0.0540 

Prob= 0.05 -1.645 -1.660 -1.802 -2.169 -1.704 -1.987 -1.721 -2.039 -1.699 -1.797 -2.232 

0.01 -2.326 -2.384 -2.707 -3.889 -2.513 -3.199 -2.560 -3.390 -2.248 -2.720 -3.890 

0.002 -2.878 -2.998 -3.523 -6.482 -0.201 -4.504 -3.315 -4.967 -3.142 -3.621 -5.737 

0.001 -3.090 -3.200 -3.907 -7.924 -3.483 -5.133 -3.909 -5.710 -3.388 -4.054 -6.686 

0.0005 -3.290 -3.458 -4.306 -9.454 -3.749 -3.770 -4.282 -6.501 -3.622 -4.385 -7.499 

0.0002 -3.540 -3.719 -4.786 -12.070 -4.108 -6.687 -4.282 -7.884 -3.969 -4.871 -8.884 

0.0001 -3.719 -3.949 -5.102 -14.445 -4.925 -7.125 -4.662 -8.760 -4.223 -5.310 -10.283 
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Table 8:  Tail Cutoffs and Probability Ratios for a 63-Day Rolling Sample, p.2 

 
Panel B: Ratio of True Probability / Predicted Probability 

 

  Baseline Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

θ (Vol'y of 
variance)  0 0.05 0.10 0.05 0.10 0.10 0.20 0.10 0.20 0.40 

κ (mean 
reversion)  0 0.2 0.2 0.4 0.4 1.0 1.0 2.5 2.5 2.5 

No overlap 1.01 1.02 1.03 1.02 1.03 1.03 1.07 1.02 1.05 1.15 
Prob= 0.05 

overlap 1.03 1.30 1.80 1.12 1.58 1.15 1.64 1.09 1.30 1.88 
No overlap 1.17 1.14 1.26 1.15 1.21 1.19 1.43 1.19 1.32 1.86 

0.01 
overlap 1.16 2.03 4.25 1.49 3.17 1.58 3.52 1.40 2.00 4.52 
No overlap 1.46 1.55 1.82 1.56 1.72 1.69 2.43 1.66 2.07 3.76 

0.002 
overlap 1.41 3.62 12.09 2.28 7.56 2.56 8.98 1.84 3.86 12.95 
No overlap 1.76 1.70 2.12 1.70 2.03 1.88 2.95 1.84 2.34 5.56 

0.001 
overlap 1.50 4.74 19.99 2.66 11.41 3.20 14.01 2.26 5.08 20.96 
No overlap 2.03 2.02 2.69 2.05 2.36 2.18 3.59 2.17 3.12 7.57 

0.0005 
overlap 1.54 6.57 33.17 3.22 17.84 4.12 22.51 2.59 7.13 34.46 
No overlap 2.21 2.39 3.50 2.39 3.27 3.06 5.36 2.70 4.05 12.65 

0.0002 
overlap 1.90 9.74 66.48 4.48 32.19 6.06 42.61 3.04 11.54 68.40 
No overlap 2.37 2.45 3.35 2.40 2.59 2.95 7.07 2.70 4.94 19.06 

0.0001 
overlap 1.32 10.64 101.87 3.68 44.01 6.04 60.02 2.60 13.44 101.95 

 
 
Notes: "No overlap" lines duplicate results from Table 5, for comparison. 
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Table 9:  Realized Tail Events for the Standard and Poor's 500 Index 
 
 
Simulation:   Historical sample of returns on the S&P 500 Index July 2, 1992 - August 30, 2002 (10,113 days) 
Estimation sample:  63 day rolling sample;  Sample mean is not estimated 
 
 
 
 

Tail Probability Sample  .05 .02 .01 .005 .002 .001 .0005 .0002 .0001 
 

Events predicted 505 202 101 50 20 10 5 2 1 
Actual events 587 304 195 128 85 65 50 42 30 21-day 

Probability ratio 1.16 1.51 1.93 2.54 4.21 6.44 9.91 20.81 29.73 
 

Events predicted 502 201 100 50 20 10 5 2 1 
Actual events 548 283 184 130 75 59 43 30 22 63-day 

Probability ratio 1.09 1.41 1.83 2.59 3.73 5.87 8.56 14.93 21.89 
 

Events predicted 493 197 99 49 20 10 5 2 1 
Actual events 507 256 171 114 77 56 43 29 22 250-day 

Probability ratio 1.03 1.30 1.73 2.31 3.90 5.68 8.72 14.70 22.31 
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Table 10:  Probability Ratios for a 63-Day Rolling Sample  
with Different θ and κ Values 

 
Simulation:   Sequential simulated returns for 250,000 days; Historical sample 1992 - 
2002 for  S&P 500 Index (10,113 days);   
Estimation sample:  63 day rolling sample 
True Volatility: σ = 0.20; True mean: µ = 0;  Sample mean is not estimated 
 
Panel A: Two Events in Two Days 

 
Theoretical 
Probability Ratio of Realized Probability to Theoretical Probability 

 
Normal Baseline Run 1 Run 2 Run 3 Run 4 S&P500 

θ (Vol'y of 
variance) - 0 0.10 0.10 0.20 0.40 - 

κ (mean 
reversion) - 0 0.2 1.0 1.0 2.50 - 

Prob= 0.10 0.01 1.04 2.61 1.32 2.28 2.79 1.65 
0.05 0.0025 1.12 5.66 1.82 4.68 6.03 3.03 
0.02 0.00040 1.39 19.54 3.10 14.10 20.11 6.72 
0.01 0.00010 1.68 54.65 4.56 35.21 55.13 16.92 
0.005 0.000025 2.56 160.36 8.48 90.90 152.20 47.77 
0.002 0.000004 2.00 690.18 22.01 360.09 631.16 74.64 

 
Panel B: Three Events in Three Days 

 
Theoretical 
Probability Ratio of Realized Probability to Theoretical Probability 

 
Normal Baseline Run 1 Run 2 Run 3 Run 4 S&P500 

θ (Vol'y of 
variance) - 0 0.10 0.10 0.20 0.40 - 

κ (mean 
reversion) - 0 0.2 1.0 1.0 2.50 - 

Prob= 0.10 0.001 1.08 5.75 1.81 4.67 6.44 3.19 
0.05 0.0001 1.25 22.89 3.52 17.09 24.39 9.56 
0.02 0.000008 3.00 184.55 11.00 120.03 173.55 24.88 
0.01 0.000001 12.00 980.25 36.01 576.15 908.24 = 
0.005 1.25E-7 32.01 5665.5 160.0 2944.8 4641.2 = 
0.002 8.0E-9 = 59515.5 1000.3 26506.9 42010.9 = 
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Table 10:  Probability Ratios for a 63-Day Rolling Sample, continued 
 

 
Panel C: Three Events in Five Days 

 
Theoretical 
Probability Ratio of Realized Probability to Theoretical Probability 

 
Normal Baseline Run 1 Run 2 Run 3 Run 4 S&P500 

θ (Vol'y of 
variance) - 0 0.10 0.10 0.20 0.40 - 

κ (mean 
reversion) - 0 0.2 1.0 1.0 2.50 - 

Prob= 0.10 0.009 1.06 4.61 1.68 3.79 4.93 2.34 
0.05 0.0012 1.22 17.24 3.26 12.93 17.83 7.13 
0.02 0.00008 1.75 132.53 9.23 86.86 130.93 20.52 
0.01 0.000010 6.90 716.1 27.21 388.7 655.2 80.85 
0.005 1.24E-06 16.12 3873.2 77.4 1947.9 3354.0 481.5 
0.002 7.98E-08 = 41886.8 351.1 18159.3 34111.4 2496.3 

 
 
Panel D: Three Events in Ten Days 

 
Theoretical 
Probability Ratio of Realized Probability to Theoretical Probability 

 
Normal Baseline Run 1 Run 2 Run 3 Run 4 S&P500 

θ (Vol'y of 
variance) - 0 0.10 0.10 0.20 0.40 - 

κ (mean 
reversion) - 0 0.2 1.0 1.0 2.50 - 

Prob= 0.10 0.070 1.03 2.70 1.39 2.39 2.88 1.39 
0.05 0.0115 1.10 8.97 2.50 7.33 9.67 3.58 
0.02 0.00086 1.37 64.72 7.34 46.02 69.30 14.07 
0.01 0.000114 2.60 341.4 19.40 214.7 339.6 52.49 
0.005 1.46E-05 5.20 1895.0 62.7 1080.9 1840.2 231.8 
0.002 9.50E-07 = 20082.2 290.6 10171.7 18384.9 838.8 

 
 
Notes:  The symbol = in a cell indicates that there were no events observed in the sample 
and that the theoretically expected number of events in a sample of this size was also 0. 
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Figure 1
S&P 500 63-Day Volatility, 9/1/1992 - 8/30/2002
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Figure 2
Value at Risk and Conditional Value at Risk
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Figure 3
Left Tails of Predicted and True Returns Distributions
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Figure 4
Predicted and True Tail Probabilities
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Figure 5: Probability Ratios for Different Sample Sizes
Constant Volatility Baseline Runs
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Figure 6:  Volatility of Variance Effect on Probability Ratios
63-Day Estimates, Mean Reversion = 1.0
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Figure 7:  Volatility Mean Reversion Effect on Probability Ratio
63-Day Estimates, Volatility of Variance = 0.10
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Figure 8:  Probability Ratios with Different EWMA Decay Rates
Theta = 0.05, Kappa = 1.0, 63 Day Samples
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Figure 9: Probability Ratios with Different EWMA Decay Rates
Theta = 0.25, Kappa = 1.0, 63 Day Samples
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