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Does the Failure of the Expectations Hypothesis Matter for
Long-Term Investors?

Abstract

We consider the consumption and portfolio choice problem of a long-run

investor when the term structure is affine and when the investor has access to

nominal bonds and a stock portfolio. In the presence of unhedgeable inflation

risk, there exist multiple pricing kernels that produce the same bond prices,

but a unique pricing kernel equal to the marginal utility of the investor. We

apply our method to a three-factor Gaussian model with a time-varying price

of risk that captures the failure of the expectations hypothesis seen in the

data. We extend this model to account for time-varying expected inflation, and

estimate the model with both inflation and term structure data. The estimates

imply that the bond portfolio for the long-run investor looks very different from

the portfolio of a mean-variance optimizer. In particular, the desire to hedge

changes in term premia generates large hedging demands for long-term bonds.
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1 Introduction

The expectations hypothesis of interest rates states that the premium on long-term

bonds over short-term bonds is constant over time. According to this hypothesis,

there are no particularly good times to invest in long-term bonds relative to short-

term bonds, nor are there particularly bad times. Long-term bonds will always offer

the same expected excess return.

While the expectations hypothesis is theoretically appealing, it has consistently

failed in U.S. postwar data. Fama and Bliss (1987) and Campbell and Shiller (1991),

among others, show that expected excess returns on long-term bonds (term premia)

do vary over time, and moreover, it is possible to predict excess returns on bonds

using observables such as the forward rate or the term spread. This paper explores

the consequences of the failure of the expectations hypothesis for long-term investors.

We estimate a three-factor affine term structure model similar to that proposed

in Dai and Singleton (2002a) and Duffee (2002) that accounts for the fact that excess

bond returns are predictable. We then solve for the optimal portfolio for an investor

taking this term structure as given. Bond market predictability will clearly affect

the mean-variance efficient portfolio, but the consequences for long-horizon investors

go beyond this. Merton (1971) shows that when investment opportunities are time-

varying, a mean-variance efficient portfolio is generally sub-optimal. Long-horizon

investors wish to hedge changes in the investment opportunity set; depending on the

level of risk aversion, the investor may want more or less wealth when investment

opportunities deteriorate than when they improve. As we will show, investors gain

by hedging time-variation in the term premia. Thus the investor’s bond portfolio

looks different from that dictated by mean-variance efficiency.

Despite the obvious importance of bonds to investors, as well as the strength

of the empirical findings mentioned above, recent literature on portfolio choice has

focused almost exclusively on predictability in stock returns. As shown by Fama

and French (1989) and Campbell and Shiller (1988), the price-dividend ratio pre-

dicts excess stock returns with a negative sign. Based on this finding, a num-

ber of studies (e.g. Balduzzi and Lynch (1999), Barberis (2000), Brandt (1999),

Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999), Liu (1999)

and Wachter (2002a)) document gains from timing the stock market based on the

price-dividend ratio, and from hedging time-variation in expected stock returns. One

result of this literature is that when investors have relative risk aversion greater than

one, hedging demands dictate that their allocation to stock should increase with the
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horizon. A natural question to ask is whether the same mechanism is at work for

bond returns. Just as stock prices are negatively correlated with increases in future

risk premia on stocks, bond prices are negatively correlated with increases in future

risk premia on bonds.1 This intuition suggests that time-variation in risk premia

would cause the optimal portfolio allocation to long-term bonds to increase with

horizon.

In the case where the investor allocates wealth between a long and a short-term

bond, we show that this intuition holds. Hedging demands induced by time-variation

in risk premia more than double the investor’s allocation to the long-term bond.

Moreover, we find large horizon effects. The investor with a horizon of twenty

years holds a much greater percentage of his wealth in long-term bonds than an

investor with a horizon of ten years. In the case of multiple long-term bonds, the

mean-variance efficient portfolio often consists of a long and short position in long-

term bonds. This occurs because of the high positive correlation between bonds of

different maturities implied by the model and found in the data. Hedging demands

induced by time-varying risk premia generally make the allocation to long-term

bonds more extreme. We find that following a myopic strategy and, in particular,

failing to hedge time variation in risk premia carries a high cost for the investor in

terms of certainty equivalent returns.

Our framework generalizes previous studies of portfolio choice when real interest

rates vary over time and there is inflation. Brennan and Xia (2002) and Campbell

and Viceira (2001) estimate a two-factor Vasicek (1977) term structure model and

determine optimal bond portfolios. Both of these studies assume that risk premia

on bonds and stocks are constant.2 Our study also relates to that of Campbell,

Chan, and Viceira (2002) who estimate a vector-autoregression (VAR) including

the returns on a long-term bond, a stock index, the dividend yield and the yield

spread. Campbell et al. derive an approximate solution to the optimal portfolio

choice problem when asset returns are described by the VAR. The advantage of

1We consider U.S. government bonds that are not subject to default risk. Nonetheless, we use

risk premia and term premia interchangeably, as we do not take a stand on the source of the premia.
2Other work on bond returns and portfolio choice includes Brennan and Xia (2000) and Sorensen

(1999), who assume that interest rates are Vasicek, and Liu (1999) and Schroder and Skiadas (1999)

who assumes general affine dynamics. These studies assume that bonds are indexed, or equivalently,

that there is no inflation. Xia (2002) examines the welfare consequences of limited access to nominal

bonds under a Vasicek model. Wachter (2002b) shows under general conditions that as risk aversion

approaches infinity, the investor’s allocation approaches 100% in a long-term indexed bond. None

of these papers explore the consequences of bond return predictability.
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the VAR approach is that it captures predictability in bond and stock returns in

a relatively simple way. The disadvantage is that the term structure is not well-

defined; it is necessary to assume that the investor only has access to those bonds

included in the VAR. Moreover, estimating bond returns using a VAR gives up the

extra information resulting from the no-arbitrage restriction on bonds, namely that

bonds have to pay their (nominal) face value when they mature.

Rather than modeling bond return predictability using a VAR, we follow the

affine bond pricing literature (e.g. Dai and Singleton (2000, 2002a) and Duffee

(2002)) and specify a nominal pricing kernel.3 The drift and diffusion of the pricing

kernel is driven by three underlying factors which follow a multivariate Ornstein-

Uhlenbeck process. The price of risk is a linear function of the state variables. Thus

the model is in the “essentially affine” class proposed by Duffee (2002), and shown

by Dai and Singleton (2002a) to capture the pattern of bond predictability in the

data.

As a necessary step to showing the implications of affine term structure models

for investors, we show how parameters of the inflation process can be jointly esti-

mated with term structure parameters. This joint estimation produces a series for

expected inflation that explains a surprisingly high percentage of the variance of re-

alized inflation. This result has implications not only for portfolio choice problems,

but for the estimation of term structure models more generally.

The remainder of the paper is organized as follows. Section 2 describes the

general form of an economy where nominal bond prices are affine, and there exists

equity and unhedgeable inflation. Section 3 derives a closed-form solution for op-

timal portfolio choice when the investor has utility over terminal wealth and over

intermediate consumption. When inflation is introduced, the pricing kernel that

determines asset prices is not unique; from the point of view of the investor it is

not well-defined. As He and Pearson (1991) show, there is a unique pricing kernel

that gives the marginal utility process for the investor.4 We derive a closed-form

expression for this pricing kernel when incompleteness results from inflation. This

expression holds regardless of the form of the term structure. Section 4 uses max-

3For recent surveys of this literature, see Piazzesi (2002) and Dai and Singleton (2002b).
4Liu and Pan (2002) and Schroder and Skiadas (1999) also associate the pricing kernel in the

economy with the pricing kernel for the investor. In these models, markets are complete, so a

unique pricing kernel exists. Schroder and Skiadas (2002) extend the results of Schroder and

Skiadas (1999) to cases of incomplete markets. They do not consider the case of incompleteness

arising from inflation, which is the focus of our theoretical results.
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imum likelihood to estimate the parameters of the process, and demonstrates that

the model provides a good fit to term structure data and to inflation. Section 5 dis-

cusses the properties of the optimal portfolio for the parameters we have estimated

and calculates certainty equivalent losses resulting from sub-optimal strategies.

2 The Economy

As in the affine term structure literature, we specify an exogenous nominal pricing

kernel. Because our purpose is modeling predictability in excess bond returns and,

as Dai and Singleton (2002a) and Duffee (2002) show, a Gaussian model is best

suited for this purpose, we will assume that all variables are homoscedastic.5

Let dz denote a d× 1 vector of independent Brownian motions. Let r(t) denote

the instantaneous nominal riskfree rate. We assume that

r(X(t), t) = δ0 + δX(t), (1)

where X(t) is an m × 1 vector of state variables that follow the process

dX(t) = K(θ − X(t)) dt + σX dz(t), (2)

where σX is an m× d matrix of constants. Suppose there exists a price of risk Λ(t)

that is linear in X(t):

Λ(t) = λ1 + λ2X(t), (3)

where λ1 is d × 1 and λ2 is d × m. When λ2 = 0d×m, the price of risk is constant

and the model is a multifactor version of Vasicek (1977). Given a process for the

interest rate r and the price of risk Λ, the pricing kernel is given by:

dφ(t)

φ(t)
= −r(t) dt − Λ(t)> dz. (4)

The pricing kernel determines the price of an asset based on its nominal payoff.

5Fisher (1998) shows that a two-factor Gaussian model can partially replicate the failure of the

expectations hypothesis, but does not make comparisons across models. Bansal and Zhou (2002)

show that a regime-switching is also successful at capturing the failure of the expectations hypothesis

in the data. Ahn, Dittmar, and Gallant (2002) discuss an affine-quadratic class of models which, as

Brandt and Chapman (2002) show, is also capable of accounting for the expectations hypothesis.

Extensions of the results in this paper to quadratic models and models with regime shifts will be

considered in future work.
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In this economy, bond yields are affine in the state variables X(t). Let P (X(t), t, s)

denote the price of such a bond maturing at s > t. Then P equals the present dis-

counted value of the bond payoff, namely $1:

P (X(t), t, s) = φ(t)−1Et [φ(s)]

As shown by Duffie and Kan (1996) nominal bond prices take the form:

P (X(t), t, s) = exp {A2(s − t)X(t) + A1(s − t)} , (5)

where A2(τ) and A1(τ) solve a system of ordinary differential equations given in

Appendix A. Bond yields are given by

y(X(t), t, s) = − 1

s − t
log P (X(t), t, s)

= − 1

s − t
(A2(s − t)X(t) + A1(s − t)) (6)

The dynamics of bond prices follow from Ito’s lemma:

dP (t)

P (t)
=

{

−A′
2(τ)X(t) − A′

1(τ) + A2(τ)K(θ − X(t)) +
1

2
A2(τ)σXσX

>A2(τ)>
}

dt

+ A2(τ)σX dz. (7)

The expression for the drift of bond prices can be simplified by applying the expres-

sions for A2 and A1 given in Appendix A:

dP (t)

P (t)
= (A2(τ)σXΛ(t) + r(t)) dt + A2(τ)σX dz.

Equation (7) shows that bond prices vary with the state variables X(t). The

correlation between bond prices and state variables depends on the maturity of the

bond through the function A2(τ). We will assume (without loss of generality) that δ,

K, σX , and Λ are such that there are as many non-redundant bonds in the economy

as state variables. If this is not the case, then one of the state variables can be

removed with no impact on bond prices. With slight abuse of notation, we let P (t)

denote a vector of m bond prices, with A2 the m×m matrix with rows equal to the

corresponding values of A2(τ).

Our framework allows for the existence of other assets besides bonds. For con-

creteness, we assume there exists a stock portfolio with price dynamics

dS(t)

S(t)
= (σSΛ + r) dt + σS dz, (8)
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The row vector σS is assumed to be linearly independent of the rows of σX , so that

the stock is not spanned by bonds. We can then group the existing assets into the

vector process:
(

dP (t)

dS(t)

)

= diag

(

P

S

)

(µ(t) dt + σ dz), (9)

where

σ =

(

A2σX

σS

)

, (10)

and µ is such that

(µ − ιr) = σΛ (11)

with ι equal to an (m + 1)× 1 vector of ones. Because we have assumed there exist

m non-redundant bonds, and because the stock is not redundant, the variance-

covariance matrix of the assets, σσ> is invertible.

Equation (11) shows why this specification allows for predictable excess returns.

Because Λ is a function of the state variables X(t), the instantaneous expected excess

return µ− r will also be a function of X(t). The structure of λ2 will determine how

quantities that are correlated with the state variables, such as the yield spread,

predict asset returns.

So far, we have described the nominal economy. Because we are interested in

the strategies for an investor who cares about real wealth, it is necessary to define

a process for the price level. Define a stochastic price level Π(t) such that

dΠ(t)

Π(t)
= π(X(t), t) dt + σΠ dz. (12)

It is assumed that π(t) is affine in the state variables. In particular:6

π(t) = ζ0 + ζX(t). (13)

It may at first seem unnatural to require that expected inflation be a linear function

of the state variables. However, it is no different than defining the underlying

variables as the real interest rate and an expected inflation process. For example,

Brennan, Wang, and Xia (2002) and Campbell and Viceira (2001) consider complete-

market economies where a real riskfree rate exists, and where the real riskfree rate

and the expected inflation rate jointly follow a multivariate Ornstein-Uhlenbeck

6It is sufficient for the portfolio choice results to require that r(t) − π(t) is an affine function.

However, (1) is required to achieve affine bond prices.
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process. We could redefine our state variables so that the first state variable is given

by π, the expected inflation rate, and the second state variable by r − π, which

in a model of complete markets and constant risk premia, is a constant plus the

real riskfree rate. The model would be the same as what we have now, only the

notation would be different. The formulation (13) has the econometric advantage

that it allows us to estimate these processes as a sum of orthogonal state variables.

It is also convenient in the case of incomplete markets where, as we discuss further

below, a real riskfree rate does not exist.

While we started by defining a pricing kernel for nominal assets, we could have

equivalently defined payoffs in real terms, and defined a pricing kernel for real assets.

In fact, any nominal pricing kernel φ(t) is associated with a “real” pricing kernel.

For an asset with nominal value V (s) at time s, the price at time t (assuming the

asset pays no dividends between t and s) equals

V (t) = Et

[

φ(s)

φ(t)
V (s)

]

. (14)

It follows directly from (14) that for the real payoff V (s)/Π(s),

V (t)

Π(t)
= Et

[

φ(s)Π(s)

φ(t)Π(t)

(

V (s)

Π(s)

)]

. (15)

Therefore φ(t)Π(t) is a valid pricing kernel when asset prices are expressed in real

terms. This also follows from the interpretation of φ(t) as a system of Arrow-

Debreu state prices. Normalizing φ(0) = 1 and Π(0) = 1, φ(t) is a ratio of units of

consumption at time 0 to dollars at time t. Then φ(t)Π(t) is a ratio of consumption

at time 0 to consumption at time t. We choose to model prices in nominal rather

than real terms for ease of comparison to the affine term structure literature.

Given that nominal prices can be transformed into real prices, one may ask

whether the inflation process (12) plays a substantive role in the analysis. It does,

as long as we assume, realistically, that the price level cannot be perfectly hedged by

trading in the underlying assets. When Π cannot be perfectly hedged, there exists

an asset that is riskless is nominal terms but not in real terms. Because markets are

incomplete, inflation matters.

The connection between market incompleteness and the lack of a real riskfree

rate can also be seen from the real pricing kernel associated with the price of risk

Λ. From Ito’s lemma, it follows that

d(φ(t)Π(t))

φ(t)Π(t)
= (−r(t) + π(t) − σΠΛ(t)) dt + (σΠ − Λ(t)) dz (16)
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If a real riskfree rate were to exist, its real return must equal −r + π(t) − σΠΛ(t),

the drift of the real pricing kernel. Note however that σΠΛ(t) is not well-defined

if markets are incomplete. In particular, we could replace Λ by some other price

of risk Λ̃. As long as σXΛ̃ and σSΛ̃ were the same as σXΛ and σSΛ, then Λ and

Λ̃ would result in the same asset prices. However, they would in general lead to

different values of σΠΛ, and thus different real riskfree rates.

In what follows, it will be useful to distinguish the unique price of risk that both

prices, and is spanned by, the underlying assets:

Λ∗ = σ>
(

σσ>
)−1

σΛ = σ>
(

σσ>
)−1

(µ − rι). (17)

The last equality shows that Λ∗ is not dependent on which pricing kernel Λ, is

chosen, as long as Λ correctly prices the underlying assets. One reason Λ∗ is useful

is that its norm is equal to the maximal Sharpe ratio:

max
σ

σΛ∗

√
σσ>

=
(Λ∗)>Λ∗

√

(Λ∗)>Λ∗
=

√

(Λ∗)>Λ∗,

which follows from the Cauchy inequality. The maximum Sharpe ratio is always

positive, even if Λ∗ is not; this is because an investor can take both short and long

positions in any asset. Because we have assumed homoscedasticity, Λ∗ has the same

functional form as Λ, with

λ∗
1 = σ>(σσ>)−1σλ1 (18)

λ∗
2 = σ>(σσ>)−1σλ2. (19)

replacing λ1 and λ2 in (3).

The investment opportunity set can be summarized as follows. The investor

has access to an asset with riskless nominal return r, and m + 1 risky assets whose

nominal price dynamics are described by (9), (10), (11). Nominal markets are

complete in that there exists a full term structure of nominal bonds.7 However, real

markets are incomplete, because no asset spans unexpected inflation. Equivalently,

there is no asset that is riskless in real terms.

3 Optimal portfolio choice

In this section, we derive the optimal portfolio allocation for an investor who takes

bond and stock prices as given. Section 3.1 describes the general form of the solution
7Below we will also consider cases where the investor has access to only a subset of the bonds

(incomplete nominal markets).
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when there is unexpected inflation. Section 3.2 specializes to the case of an affine

term structure.

3.1 Complete nominal markets: General results

We first solve the portfolio choice problem for an investor with power utility over ter-

minal wealth at date T , and then generalize to the case of consumption withdrawal.

We assume that the investor solves:

max
W (T )>0

Et

[

(W (T )/Π(T ))1−γ

1 − γ

]

, (20)

such that W (T ) can be achieved by taking positions in the underlying assets with

initial wealth W (0):

dW (t)

W (t)
= w(t)>(µ(t) − r(t)ι) dt + r(t) dt + w(t)>σ(t) dz (21)

where w(t) is an (m + 1) × 1 vector of portfolio weights that satisfies integrability

conditions. To disallow doubling strategies, we require that W (t) > 0 for all t (see

Dybvig and Huang (1988)).

To solve this problem, it is convenient to use the martingale technique of Cox and

Huang (1989), Karatzas, Lehoczky, and Shreve (1987) and Pliska (1986) generalized

to the case of incomplete markets by He and Pearson (1991). He and Pearson show

that, for some endogenous pricing kernel, the dynamic budget constraint (21) can

be replaced by a static budget constraint. Let φν(t) denote this endogenous pricing

kernel. Given the pricing kernel φν(t), the static budget constraint equals:

E [φν(T )W (T )] = W (0). (22)

Therefore, for some Lagrange multiplier l, the investor’s first-order condition equals

W (T )−γ

Π(T )1−γ
= lφν(T ),

and the optimal terminal wealth policy is given by

W (T ) =
(

lφν(T )Π(T )1−γ
)− 1

γ . (23)

Substituting back into (22) gives the expression for l.8

8Solving (22) for l implies

l = W (0)−γ
(

E
(

φν(T )
1− 1

γ Π(T )
1− 1

γ

))γ

.
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The investor’s terminal wealth policy has an economic interpretation. Rearrang-

ing,
W (T )

Π(T )
= (lφν(T )Π(T ))

− 1
γ . (24)

The left hand side is equal to real wealth. The term in the parenthesis on the

right hand side is proportional to φν(T )Π(T ). This equals the real pricing kernel

corresponding to the nominal kernel φν . Thus (24) states that the greater the price

of a given state, the less the agent will consume in that state. The lower the risk

aversion (γ), the more the agent adjusts terminal wealth in response to changes in

the state-price density. Note however, that φν is also implicitly a function of γ.

The optimal portfolio allocation is derived using (23). Following Cox and Huang

(1989), define a new state variable equal to the real wealth of the log utility investor.

In our environment with inflation, this state variable equals:

Z(t) = (lφν(t)Π(t))−1 . (25)

No-arbitrage implies that wealth at time t must equal the present discounted value of

wealth at time T , where the discounting is accomplished by the state-price density:

W (t) = φν(t)
−1Et

[

φν(T )Π(T )Z(T )
1
γ

]

= Π(t)Z(t)Et

[

Z(T )
1
γ
−1

]

. (26)

The next theorem characterizes the optimal wealth and portfolio weights.

Theorem 1 Assume that the investor has utility over terminal wealth with coeffi-

cient of relative risk aversion γ. At time t, optimal wealth takes the form

W (t) = Π(t)Z(t)
1
γ F (X(t), t, T ), (27)

where Z(t) is given by (25). The minmax pricing kernel equals

dφν

φν
= −r dt − (Λ∗ + ν)>dz,

with

ν = (1 − γ)
(

σΠ − (σΠσ>)(σσ>)−1σ
)>

. (28)
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The function F satisfies the partial differential equation

1 − γ

γ
(r − π)F + FX

(

K(θ − X) +
1

γ
σX(Λ∗ + ν) +

γ − 1

γ
σXσ>

Π

)

+ Ft +

1

2

(

1

γ

1 − γ

γ
((Λ∗ + ν)>(Λ∗ + ν) + σ>

ΠσΠ)F + tr
(

FXXσXσ>
X

)

)

=

γ − 1

γ
σΠ(Λ∗ + ν)F + FXσX(Λ∗ + ν), (29)

with boundary condition F (X(T ), T, T ) = 1.9 The optimal portfolio allocation equals

w(t) =
1

γ
(σσ>)−1(µ − ιr) +

(

1 − 1

γ

)

(σσ>)−1(σσ>
Π)

+ (σσ>)−1(σσ>
X)

1

F
(FX)> . (30)

The remainder of the investor’s wealth, 1−w(t)>ι, is invested in the nominal riskfree

asset.

The proof is given in Appendix B. The minmax price of risk equals the price of risk

spanned by the existing assets Λ∗, plus an adjustment term. The adjustment, ν,

equals 1−γ times the unhedgeable part of inflation risk. ν is thus an investor-specific

measure of market incompleteness.

Equation (30) shows that the investor can be viewed as investing in m + 2 risky

asset “funds”. The first fund is the portfolio that is instantaneously mean-variance

efficient. It is straightforward to check that this portfolio achieves the maximum

Sharpe ratio
√

(Λ∗)>Λ∗. The second fund adjusts for the fact that the first fund is

mean-variance efficient in nominal rather than real terms. Together, these portfolios

constitute what is known as “myopic demand”, namely the optimal allocation if the

investor ignores the future investment opportunity set.

It is the last term in (30) that is the focus of this study. This term represents

the sum of the m hedge portfolios:

(σσ>)−1(σσ>
X)

1

F
(FX)> =

1

F

M
∑

j=1

(σσ>)−1(σσ>
Xj

)FXj

Hedge portfolio j is formed by projecting state variable j onto the available assets.

Scaling the portfolio is the sensitivity of wealth to state variables j, 1
F

(

FXj

)>
. If

9tr(·) denotes the trace. FXX is the m × m matrix of second derivatives.
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increases in state variable j increase wealth in the future, then the investor allocates

a positive amount to the hedge portfolio (σσ>)−1(σσ>
Xj

), a negative amount if the

effect on wealth is negative. Because we have assumed that there are as many

non-redundant bonds as state variables, it is possible to completely hedge the state

variables by trading in the underlying assets. Moreover, hedging demand for bonds

will be nonzero. Because bonds are the discounted value of $1, their prices covary

with the variables that affect the investment opportunity set, namely X(t).

Also of interest is the investor’s indirect utility. Cox and Huang (1989) show that

it is possible to derive indirect utility from the expression for wealth. Corollary 2

generalizes this result to the case where there is unexpected inflation (and specializes

to the case of power utility):

Corollary 2 Define the investor’s indirect utility function as follows:

J(W (t), Π(t), X(t), t, T ) = Et

[

1

1 − γ

(

W (T )

Π(T )

)1−γ
]

(31)

Then J(W, Π, X, t, T ) takes the form

J(W (t), Π(t), X(t), t, T ) =
1

1 − γ

(

W (t)

Π(t)

)1−γ

F (X(t), t, T )γ

where F (X(t), t, T ) is defined in Theorem 1.

The proof of Corollary 2 can be found in Appendix B.

These results generalize to the case where the investor has utility over consump-

tion between times 0 and T . At each time, besides allocating wealth among assets,

the investor also decides what proportion of wealth to consume. The investor solves

max E

[∫ T

0
e−ρt (c(t)/Π(t))1−γ

1 − γ
dt

]

(32)

s.t. dW (t) =
(

w(t)> (µ(t) − r(t) ι) + r(t)
)

W (t) dt + w(t)>σW (t) dz − c(t) dt

W (T ) ≥ 0

As shown in Wachter (2002a), computing the solution to this case does not

require solving a new partial differential equation.10 As in the case of terminal
10While the results in Wachter (2002a) assumed that markets were complete, the same reasoning

can be applied here because the adjustment for incomplete markets in the minmax pricing kernel

(28) takes a particularly simple form.

14



wealth, the dynamic problem can be recast as static problem for an endogenous

pricing kernel. Using arguments similar to those in the proof of Theorem 1, it

can be shown that, when the only market incompleteness comes from inflation, the

investor-specific pricing kernel (φν) for the case of intermediate consumption takes

the same form as the investor-specific pricing kernel for terminal wealth. The static

budget constraint is therefore equal to:

E

[∫ T

0
c(t)φν(t) dt

]

= W (0) (33)

The following corollary describes the form of the investor’s consumption policy,

optimal wealth, and portfolio allocation.

Corollary 3 The optimal consumption policy c(t) satisfies:

c(t)

Π(t)
= (lφν(t)Π(t))

− 1
γ e

− ρ
γ

t
, (34)

where l is the Lagrange multiplier that allows (33) to hold. Optimal wealth is given

by

W (t) = Z(t)
1
γ Π(t)

∫ T

t

F (X(t), t, s)e
− ρ

γ
(s−t)

ds, (35)

where Z(t) is defined by (25), and F satisfies the partial differential equation (29)

The optimal portfolio weights are given by (30) with F replaced by
∫ T

t
Fe

− ρ
γ
(s−t)

.

Theorem 1 generalizes the well-known result that the price of risk and the riskfree

rate are sufficient statistics for the investment opportunity set when markets are

complete. Unless either the price of risk or the interest rate vary, the optimal

portfolio rule is myopic. Moreover, if two economies have the same process for the

price of risk and riskfree rate, the optimal consumption and wealth process of the

agent will be the same, even though the weights will depend on the specific assets

that trade.

Theorem 1 shows that in the setting of unhedgeable inflation risk, the minmax

price of risk Λ∗+ν and the difference between the nominal interest rate and expected

inflation r−π are sufficient statistics for the investment opportunity set. Assuming

that both of these are constants results in a function F that is identically 1, as the

partial differential equation (29) shows. Not only does time-variation in the price

of risk matter, but so does ν, the component of inflation risk that investors are not

able to hedge. The other important quantity for investors is r−π. For convenience,
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we will abuse terminology slightly and refer to this as the real riskfree rate, keeping

in mind that no asset that is riskfree in real terms exists.11

3.2 Portfolio allocation when the nominal term structure is affine

Theorem 1, Corollary 2, and Corollary 3 do not require that bond yields be affine.

They hold generally, as long as the investor has power utility over terminal wealth.

The following corollary explicitly solves for the portfolio weights, given the assump-

tions on Λ, r, and π.

Corollary 4 Assume Λ and r−π are linear in the state variables X(t), and that in-

flation and asset prices are homoscedastic, and the investor has utility over terminal

wealth given by (20). Then F takes the form:

F (X(t), t, T ) = exp

{

1

γ

(

1

2
X(t)>B3(τ)X(t) + B2(τ)X(t) + B1(τ)

)}

, (36)

where τ = T −t and the matrix B3, the vector B2, and the scalar B1 satisfy a system

of ordinary differential equations. The optimal portfolio rule equals:

w(t) =
1

γ
(σσ>)−1(µ − ιr) +

γ − 1

γ
(σσ>)−1(σσ>

Π) +

1

γ
(σσ>)−1(σσ>

X)

(

B3(τ) + B3(τ)>

2
X(t) + B2(τ)>

)

. (37)

The remainder of the investor’s wealth, 1−w(t)>ι, is invested in the nominal riskfree

asset.

The proof of Corollary 4 and the differential equations for B3, B2, and B1 can

be found in Appendix B. A noteworthy special case arises when risk premia are

constant. Then B3(τ) = 0, as can be checked by setting λ∗
2 = 0 into the differential

equation for B3. The optimal portfolio allocation is constant, and F is exponential-

affine. A two-factor version of this case is considered by Brennan and Xia (2002).

Why do time-varying risk premia produce a functional form that is exponential-

quadratic? As Campbell and Viceira (1999) discuss, the reason is that the investor

can profit both when risk premia σΛ are especially high and positive, and when they

are especially low and negative. A function for wealth that is quadratic in X(t)

11Indeed, the results in Section 2 show that this will only be the real riskfree rate if markets are

completed such that the price of inflation risk is zero.
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captures this quality. Note that exponential-quadratic wealth implies a portfolio

rule that is linear in the state variables.

Using Corollary 3, it is also possible to write down an explicit formula for the

optimal portfolio for an investor with utility over consumption.

Corollary 5 Assume Λ and r − π are linear in the state variables X(t), and that

inflation and asset prices are homoscedastic. Suppose the investor has utility over

consumption. The optimal portfolio weights equal:

w(t) =
1

γ
(σσ>)−1(µ − ιr) +

γ − 1

γ
(σσ>)−1(σσ>

Π) +

1

γ
(σσ>)−1(σσ>

X)





∫ T

t
F (t, t + τ)

(

1
2(B3(τ) + B3(τ)>)X(t) + B2(τ)>

)

e
− ρ

γ
τ
dτ

∫ T

t
F (t, t + τ)e

− ρ
γ

τ
dτ





The results above show that wealth, indirect utility, and the optimal allocation

are available in closed form up to the solution of ordinary differential equations. In

the following sections, we estimate the parameters of the model and evaluate the

implications for portfolio choice.

4 Estimation

The previous sections described optimal portfolio choice when the nominal term

structure is affine and the investor has access to stock as well as bonds. In this

section we estimate a three-factor term structure model that has been shown to

perform well in out-of-sample forecasting (Duffee (2002)), and in replicating the

failure of the expectations hypothesis seen in the data (Dai and Singleton (2002a))12.

Our estimation differs from that in previous studies in that we incorporate data on

equity returns, and most importantly, on inflation.

As Dai and Singleton (2000) discuss, the processes for X, Λ and r have too many

degrees of freedom to be identified by the data. For example, it is not possible to

simultaneously identify θ and δ0. For a given number of factors, Dai and Singleton

(2000) specify a canonical form that can be identified. We follow their approach,

12In the notation of these papers, the model we estimate is known as A0(3), because it contains

three factors and no square root processes.
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modified as necessary for inflation and stock returns. We assume

θ = 03×1

σX =
[

01×3 I3×3 01×3

]

.

In addition, the canonical form requires that K be lower triangular. To reduce the

number of parameters required for estimation, and to ameliorate concerns of over-

fitting, we estimate the preferred model of Duffee (2002), which involves setting

some elements of K and of λ2 to zero, as described further below.

We make the assumption that realized inflation is instantaneously uncorrelated

with bond prices:

σΠ = [ σΠ(1) 01×4 ]. (38)

In addition we assume that stock prices and inflation are instantaneously uncorre-

lated, but allow the covariance between stocks and bonds to be unrestricted:

σS = [ 0 σS(1) σS(2) σS(3) σS(4) ]

Even though inflation is instantaneously uncorrelated with stock and bond prices,

over finite intervals, it will in general be correlated with both. The implications of

our continuous-time processes for data observed at finite intervals is discussed in

Appendix C.

An advantage of assuming this form of σ and σΠ is that it simplifies the estima-

tion of λ∗
1 and λ∗

2. We define

λ∗
1 = [ 0 λ∗

1(1) . . . λ∗
1(4) ]>

and similarly

λ∗
2 =















0 0 0

λ∗
2(1,1) . . . λ∗

2(1,3)
...

...

λ∗
2(4,1) . . . λ∗

2(4,3)















We make this assumptions for two reasons. First, as discussed in Section 2, the

price of inflation risk is indeterminate. Because σΠ takes the form (38), this says

that the first entry of Λ, and hence the first entry of λ1 and the first row of λ2 are

indeterminate. Fixing these entries at a constant value allows Λ to be identified.

Second, optimal portfolio choice requires an estimate of Λ∗, the unique price of risk

spanned by asset returns. Setting the indeterminate entries to zero insures that Λ
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equals Λ∗, rather than some other valid price of risk. In addition, we assume that

excess stock returns are not predictable, though this is easy to relax. Bond data pin

down three dimensions of Λ∗, and the equity premium determines the fourth.

Our bond data consist of monthly observations on zero-coupon yields for 3

month, 6 month, 1, 2, 5, and 10 year U.S. government bonds. The bond data

is available from the website of Gregory Duffee. Monthly observations on the CPI

and on returns on a broad stock index are available from CRSP. The sample begins

in 1952 and ends in 1998. Following Duffee (2002), we assume that prices on the 3

month, 1 year, and 5-year bonds are measured with normally distributed errors. We

then estimate the parameters of the model using maximum likelihood as described

in Appendix C.

Table 1 describes the results from our estimation. Because the yields are in

annual terms, time is in years. The parameters ζ0 and δ0 equal the sample means of

inflation and the nominal interest rate. Both of these parameters equal their sample

means from the data. While this may seem like a natural property, as Campbell and

Viceira (2001) discuss, it is not guaranteed that the models fit the time series mean.

In fact, the affine models investigated by Duffee (2002) all result in a sample mean

for the nominal interest rate that is too low.13 Surprisingly, including inflation in the

estimation helps to estimate this parameter. Table 1 also shows that the volatility

of the inflation residual σΠ is estimated to be 0.93%. This is close to, but smaller

than the volatility of realized inflation in the data (1.17%). This makes sense; the

state variables add information and reduce the variance of unexplained volatility.

Other than δ0 described above, the parameters that we estimate for the term

structure are very close to those found by Duffee (2002).14 The components of λ∗
1 are

significantly negative, but estimated with noise. As shown by (3), λ∗
1 corresponds

to the mean of the price of risk corresponding to each state variable. Because bond

prices load negatively on the state variables, negative values of λ∗
1 imply positive,

but noisy, average risk premia on bonds. The estimates of λ∗
2 imply that two factors

determine time-varying risk premia on bonds. The first is given by the transitory

factor X2, while the second is a linear combination of X1, X2 and X3, and hence

is more persistent. The final panel of Table 1 shows the estimated risk premium

13Duffee ends his sample in 1994. This does not account for the difference however. We estimate

the A0(3) model without inflation, and find δ0 = 4.4%, even when we include the last four years of

the sample.
14The variance covariance matrix for the errors, which we do not report, is nearly identical to

that found by Duffee (2002).
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on equity to be 7.5%, with large standard errors. The second, third and fourth

elements of σS are nonzero, and the second and fourth are significantly negative.

This implies a nonzero correlation between stock and bond returns, and suggests

(because bonds depend negatively on the state variables) that this correlation will

be positive. Indeed, Table 2, which shows the correlations between the assets, shows

that the correlation between bonds and stocks is about 0.2. The five and the ten-year

bond are very highly correlated, as are the five and the one-year bond.

Figures 1-3 illustrate the implications of the model for average yield spreads,

standard deviations of yield spreads, and Campbell-Shiller long-rate regressions.

Each figure plots the values in the data (“sample”) and the values implied by the

model and the parameters in Table 1 (“population”). Following Dai and Singleton

(2002a), we construct 95% confidence bands by simulating 500 sample paths from

our model with length equal to the sample path in the data. Figures 1 and 2 show

that the model implies average yield spreads and standard deviations of yield spreads

close to those found in the data. The confidence bands reflect the well-known result

that means are estimated much more imprecisely than variances. In both cases,

the data falls well within the error bands implied by the model. We conclude that

the model does a reasonable job of fitting the cross-sectional moments of bond yiels

– not a guarantee as the model must fit cross-sectional and time-series moments

together.

Because our aim is to study the implications of the expectations puzzle for

investors, it is especially important to determine whether the model accounts for

the expectations puzzle found in the data. To do so, we follow the approach of Dai

and Singleton (2002a) and check whether the model replicates the empirical findings

of Campbell and Shiller (1991). Dai and Singleton explain the connection between

the Campbell-Shiller regressions and time-variation in risk premia in detail.

Figure 3 plots the slope coefficients from regressions of quarterly changes in

yields on the scaled yield spread, as described in Campbell and Shiller (1991). If

the expectations hypothesis held, the coefficients would be identically equal to 1.

Instead, Campbell and Shiller find coefficients that are negative and decrease with

maturity. Figure 3 replicates this result in our data, and shows that the model

captures both the negative coefficients and the downward slope. Except for values

at the very short end of the term structure, the data falls within the 95% confidence

bands implied by the model. It is apparent from Figure 3 that the model captures

the failure of the expectations hypothesis found in the data. To the extent that the
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failure of the expectations hypothesis is a bit less extreme in the model than the

data, we may understate the implications for long-run investors.15

Figure 4 plots the time series of monthly realized inflation, and our expected

inflation series constructed from the state variables using the relationship

π(t) = ζ0 + ζX(t),

where values for ζ0 and ζ come from the maximum likelihood estimation described

above, and are given in Table 1. Our joint estimation procedure allows inflation to

influence the dynamics of state variables. In practice, however, this effect is small,

and except for the effect on δ0 described above, our parameter values are close to

what we would find by first estimating the term structure model, and then regressing

realized inflation on the factors. This latter strategy would, of course, understate

the standard errors on ζ.

Figure 4 shows that our expected inflation series does a surprisingly good job in

accounting for changes in realized inflation. In fact, expected inflation accounts for

37% of the variance of realized inflation. It is worth emphasizing that these results

come about even though the factors X(t) are linear combinations of yields alone.

Thus long-term bond yields contain substantial information about future inflation.

Figure 5 plots the time series for the nominal interest rate r(t) implied by the

parameters estimated in Table 1. While not shown in the graph, r(t) is essentially

equal to the three-month yield. Also shown in Figure 5 is expected inflation π(t).

Both series are highly persistent, and become larger and more volatile in the late

1970’s to the early 1980’s. The difference between the nominal interest rate r(t)

and π(t), which we informally refer to as the real interest rate, is positive through

nearly the entire sample. Thus the expected inflation and real riskfree rate implied

by the model have reasonable time-series properties.

The results in Section 3 show that the real interest rate and the price of risk

Λ are the important quantities for investors. Figure 6 plots the time series of risk
15The literature has identified a number of econometric difficulties with this regression. Non-

exogenous regressors bias the coefficients upward, causing the hypothesis to be rejected less strongly

than it should be (Bekaert, Hodrick, and Marshall (1997), Stambaugh (1999)), while Peso problems

(Bekaert, Hodrick, and Marshall (2001)) result in increased dispersion of the estimates, leading the

model to be rejected too strongly. Bekaert and Hodrick (2001) argue that standard tests tend to

reject the null of the expectations hypothesis even when it is true. They find, however, that the

data remain inconsistent with the expectations hypothesis, even after adjusting for small-sample

properties. Accounting for these biases within the investment decision is beyond the scope of this

manuscript, but will be pursued in future work.
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premia (a linear transformation of Λ) for the one, five, and ten year bonds implied

by the model. As Figure 6 shows, risk premia are highly volatile, especially in the

latter half of the sample. Table 1 implies that there are two factors driving risk

premia: the first is the highly transitory second state variable, the second is a linear

combination of all three state variables that is much more persistent. Nonetheless,

all three risk premia appear to move closely together. This is consistent with the

findings of Cochrane and Piazzesi (2002), who show that a single factor can explain

much of the time-variation in expected excess returns on bonds.

Taking the results in this section together, we conclude that our model succeeds

in capturing important features of the term structure and of inflation. The next

section considers the implications of our parameter estimates for portfolio choice.

5 Portfolio choice under the failure of the Expectations

Hypothesis

This section combines the theoretical results from Section 3 with the parameter es-

timates from Section 4 to evaluate the implications of the failure of the expectations

hypothesis for long-horizon investors. The failure of the expectations hypothesis can

affect the optimal portfolio in two possible ways. First, the myopic (mean-variance

efficient) component of the optimal portfolio, 1
γ
(σσ>)−1(µ− ιr), depends directly on

risk premia. If risk premia vary, so will myopic demand. Second, time-varying risk

premia imply that investment opportunities vary over time (as long as changes in

risk premia are not directly offset by changes in volatility). As Merton (1971) shows,

the investor hedges these changes in the investment opportunity set, implying that

the optimal allocation is not mean-variance efficient. Hedging demand causes the

optimal portfolio for a long-horizon investor to differ from the optimal portfolio for

an investor with a short horizon. Both effects are present in theory. The question

is, are they economically significant?

5.1 Optimal allocation between a long-term bond and the nominal

riskfree asset

To investigate the effect of time-varying risk premia on optimal portfolios, we first

consider the case where the investor has access to a single long-term bond and a

nominally riskfree asset. This case allows us to temporarily abstract from questions

pertaining to the optimal composition of the bond portfolio, and focus on the horizon
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properties taking the composition as given. The results in Theorem 1 apply only

to the case where nominal markets are complete, namely when there are the same

number of long-term bonds as state variables. However, they are easily modified for

the case of incomplete nominal markets. Optimal wealth and allocation to long-term

bonds still take the same form as in Corollary 4. Theorem 1 and Corollary 4 are

extended to the incomplete-market case in Appendix C.16

Figure 7 plots the optimal allocation for the investor who allocates wealth be-

tween a five-year bond and the nominally riskfree asset. The investor is assumed to

have utility over wealth at the end of the horizon, and risk aversion γ of 10. Both

myopic demand and hedging demand depend on the current premia on bonds over

the riskfree rate. Thus the optimal allocation is a function of the state as well as

horizon. In order to understand how the optimal portfolio varies with the state,

we plot the optimal allocation when the state variables are equal to their long-run

mean of zero, and then we vary each state variable by two unconditional standard

deviations. The results are similar in each case, so we discuss only the effects of

varying X1.
17

The parameter estimates in Table 1 imply that the price of risk Λ is increasing

in X1: λ2(3,1) > 0. Therefore bond premia are decreasing in X1 because bond prices

are negatively correlated with the state variables. The risk premium on the ten-year

bond equals 2% per annum when the state variables are at their long-run mean, 11%

when X1 is two standard deviations below its long-run mean, and -7% when X1 is

two standard deviations above its long-run mean.

Not surprisingly, Figure 7 shows that the lower is X1 (and the greater are risk

premia), the greater is the myopic allocation to the five-year bond. The myopic

(mean-variance efficient) allocation is equal to the y-intercept, because, under power

utility, the myopic allocation is independent of horizon. In the case of a single risky

asset, the myopic allocation takes a simple form: it is proportional to the risk

premium divided by the variance. The higher the risk premium, the greater the

myopic allocation.

16The results for utility over consumption (Corollary 5) have no straightforward extension.
17The unconditional variance-covariance matrix of the state variables can be calculated using the

results of Appendix E. The unconditional standard deviation is 0.93 for X1, 0.39 for X2, and 3.0 for

X3. Varying X3 has smaller effects on myopic demand, which can be seen by comparing 0.93λ2(3, 1)

to 3λ2(3, 3). Because X3 is a more persistent variable, the effects on hedging demand are larger.

By contrast, X2 has a larger effect on risk premia, and thus on myopic demand. However, its effects

on hedging demand are smaller because it is much less persistent.
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There are also strong horizon effects for long-term bonds. For values of X1

implying positive risk premia, the allocation to the five-year bond rises steadily

with the horizon. When risk premia are negative (implying a negative allocation

to the five-year bond), the optimal allocation initially falls, but then rises after a

horizon of about one year. The difference between short-horizon and long-horizon

investors is economically large; when X1 is at its long-run mean, the myopic investor

allocates 40% of his wealth to the long-term bond. An investor with a horizon of 20

years, by contrast, allocates over 100% of his wealth to the long-term bond.

Is it the failure of the expectations hypothesis that leads a long-horizon investor

to allocate more wealth to the long-term bond? As discussed in Section 3, hedging

demand arises from two sources. One is time-variation in risk premia (the failure of

the expectations hypothesis). The other is time-variation in the real riskfree rate,

r − π. To further understand hedging demand, we consider each of these effects in

isolation.

First we consider the optimal allocation when the investor has the correct myopic

demand, but sets hedging demand assuming that risk premia are constant. Thus

the optimal allocation corresponds to (37), with λ2 set equal to zero in the ordinary

differential equations defining B3(τ) and B2(τ). As noted in Section 3, B3(τ) ≡ 0

when λ2 = 0. When the investor only hedges changes in the real interest rate,

hedging demand is constant over time.

In Figure 7, the allocation when the investor hedges only the real riskfree rate

is marked with circles. The optimal allocation is still increasing in horizon, but

by much less than the optimal allocation. If a ten-year investor hedged only time-

variation in the riskfree rate, he would put about 50% of his wealth in the long-term

bond, rather than 80%. Clearly time variation in risk premia has a large effect on

the optimal portfolio.

What causes the upward slope when the investor hedges the real riskfree rate?

Hedging demand represents the investor’s desire to hedge changes in the investment

opportunity set. A multiperiod investor chooses the optimal portfolio not only to

maximize his Sharpe ratio, but also so that realizations in his wealth have the “right”

correlation with the real interest rate. If γ > 1, the investor has lower marginal

utility of wealth when the real interest rate is high; the income effect dominates

(a higher real interest rate makes him richer, he can afford a lower payoff in those

states). If γ < 1, the investor has lower marginal utility of wealth when the real

interest rate is low; the substitution effect dominates (wealth is more valuable when
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the interest rate is higher because it can be invested at a higher rate). Suppose for

concreteness that γ > 1. Then the investor will over-weight (relative to the mean-

variance efficient allocation) assets that have a negative covariance with changes in

the interest rate. These assets pay off when the interest rate is low, thus giving the

investor more wealth when marginal utility for wealth is highest.

A number of studies have argued (e.g. Brennan and Xia (2000), Sorensen (1999),

Wachter (2002b)) that a time-varying riskfree rate leads investors with longer hori-

zons to allocate a greater percentage of their portfolio to long-term bonds. According

to this argument, long-term bonds are negatively correlated with the interest rate,

and thus should be over-weighted in the portfolios of investors with risk aversion

greater than one. The limitation with this argument is that it requires bonds to be

real. Nominal bonds are negatively correlated with the nominal interest rate, but

the investor desires to hedge the real interest rate r−π, and nominal bonds may not

be negatively correlated with the real interest rate. For our calibration, long-term

bonds are indeed negatively correlated with the real interest rate, though it is im-

portant to note that this is an empirical, not a theoretical result. Thus the investor

with risk aversion greater than one chooses to increase her allocation to long-term

bonds relative to the myopic portfolio. Because changes in the real riskfree rate are

persistent, the longer the investor’s horizon, the greater the effect of the riskfree

rate on indirect utility, and the larger is hedging demand.

We now consider the optimal allocation when the investor hedges the risk pre-

mium, but not the riskfree rate. This is calculated by setting ζ = δ in the equations

for B3, B2, and B1. This allocation is shown in Figure 7 and marked with plus

signs. Note that time-varying risk premia also cause hedging demand to increase

when risk premia are positive. When risk premia are negative, hedging demand is

negative at short horizons and positive at long horizons.

The intuition is similar to that for a time-varying interest rate. Consider the case

of a single risky asset, and suppose that the risk premium on this asset is positive,

so that the investor holds a positive amount in his portfolio. The income effect leads

the investor to prefer assets that fall in price when the risk premium rises, because

he can afford to have less wealth when there are greater investment opportunities.

The substitution effect leads the investor to prefer assets that rise in price when the

risk premium rises, because wealth can be invested at a higher rate. For γ > 1,

the first effect dominates, for γ < 1, the second effect dominates. Supposing that

γ > 1, the investor will over-weight an asset that has a negative correlation with
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the risk premium. Because the return on a bond is negatively correlated with its

risk premium, this effect leads the investor to allocate more to long-term bonds.

Changes in risk premia are persistent, as are changes to the real interest rates.

Thus the longer is the investor’s horizon, the greater is hedging demand, and the

larger is the total allocation to the long-term bond.

This reasoning also explains why hedging demand for the long-term bond can

be negative. Figure 7 shows that when risk premia are negative, hedging demand

arising from time-variation in risk premia causes the allocation to fall in the horizon

before increasing again. Thus hedging demand is negative for some investors. When

the investor is short the long-term bond, decreases in the risk premium represent im-

provements in the investment opportunity set. In order to hedge these changes, the

investor has a more negative allocation to long-term bonds than the myopic investor.

However, rather than steadily decreasing in the horizon, hedging demand begins to

increase after a horizon of about two years, and eventually becomes positive.

Campbell and Viceira (1999) and Kim and Omberg (1996) noted the same effect

for allocations to stocks. If the risk premium on stocks was negative and close

to zero, hedging demand would still be positive. The precise value where hedging

demand switched signs was horizon-dependent. This is because if risk premia are

negative but close to zero, increases, rather than decreases represent improvements

in investment opportunities. This counter-intuitive result arises because the average

risk premium is positive. Because the risk premium reverts to its long-term average,

if the risk premium is negative, it must pass through zero. A long-horizon investor

cares not only about risk premia today, but risk premia at every point in the future

as well. All else equal, a long-term investor would prefer positive risk premia because

they are likely to stay positive, rather than going through zero, which is the least

advantageous value for the investor. Figure 7 shows that this effect is operative in

the case of bonds as well.

The solid line in Figure 7 plots the fully optimal allocation. This allocation is

not simply a sum of the two effects mentioned above; it arises from a nonlinear

interaction between them. Because the investor uses the long-term bond to hedge

time-variation in the real riskfree rate, she has an additional reason to prefer positive

risk premia in the long run. This effect, and the effect described in the paragraph

above, imply that when the risk premium is small and negative, the investor with

a sufficiently long horizon would prefer it to become positive, rather than more

negative. To hedge the possibility that risk premia fall further, the investor allocates
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more wealth to the long-term bond; hedging demands are positive. Mathematically,

this can be seen from the equation for B2(τ) in Appendix B. From (30), it follows

that if B2(τ) were zero, then the hedging demand as a function of X1 would be

symmetric around zero. This is not the case because λ∗
1 > 0, namely because the

mean risk premium is not zero but positive, and because δ − ζ 6= 0, namely that

the real interest rate is time-varying.18 Thus because risk premia are positive on

average, and because bond returns are negatively correlated with the real interest

rate, hedging demand may be positive even when myopic demand is negative.

This section has shown that accounting for time-variation in the risk premia on

long-term bonds has two effects on the investor’s optimal portfolio. First, it induces

investors to time the bond market. A lower risk premium on a long-term bond leads

the investor to allocate less wealth to the bond at all horizons. The second effect

arises from the investor’s wish to hedge changes in the risk premium. This causes

the optimal portfolio to increase with horizon. This effect is qualitatively large.

Thus the failure of the expectations hypothesis “matters” for long-term investors,

at least in the case where the investor has access to a single long-term bond. The

following section generalizes these results to the case where the investor has access

to multiple long-term bonds.

5.2 Optimal allocation to multiple long-term bonds

Figure 8 plots the optimal allocation when the investor has access to a three-year

bond, a ten-year bond, and a nominally riskless asset. As in the previous section,

we determine the optimal allocation for the long-run mean of the state variables,

and for the state variables plus and minus one standard deviation. We report only

the effects of varying X1.

For all three values of the state variable, the myopic portfolio consists of a short

position in at least one of the bonds. These leveraged positions arise because of the

correlation structure of bond returns implied by the model (and found in the data).

Table 2 shows the implied correlations in bond returns (Panel A), and correlations of

monthly log bond returns from the data (Panel B).19 As Table 2 shows, bonds at all

maturities are highly correlated. Thus any estimated difference in the risk-return

18Note that σΠλ∗
2 = 0.

19Because yield data is unavailable for all maturities, the correlations in Panel B rely on approx-

imating the yield on the 9 year, 11-month bond with the yield on the ten-year bond. Thus the

correlations in Panel B are essentially correlations between changes in yields.
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trade-off between the three and ten-year bond leads the investor to leverage the

bonds off one another. In the context of a time-varying real interest rate, Brennan

and Xia (2002) and Campbell and Viceira (2001) also find that the investor takes

highly levered positions in long-term bonds.

When risk premia are high and positive, the investor takes a leveraged position

in the ten-year bond, financed by a short position in the three-year bond and the

riskfree asset. In this case, hedging demand makes the myopic allocation more

extreme. Because the investor has a long position in the ten-year bond, decreases

in the risk premium on the ten-year bond reflect deteriorations in the investment

opportunity set. The investor hedges these changes in risk premia by allocating

more to the ten-year bond. Because the investor has a short position in the three-

year bond, increases in the risk premium reflect deteriorations in the investment

opportunity set. Thus the investor allocates less to the three-year bond.

When risk premia are positive but closer to zero, the optimal allocation changes.

Now the risk-return trade-offs are such that the myopic portfolio consists of a positive

fraction of wealth in the three-year bond and a negative fraction in the ten-year

bond. Hedging demands also reverse in sign. For short horizons, hedging demand

is positive for the three-year bond and negative for the ten-year bond. At long

horizons, however, hedging demand is positive for both the ten and the three year

bonds. As we show below, the hedging demand is non-monotonic in horizon because

the investor also hedges time-variation in the real interest rate.

Finally, when risk premia are negative, the investor holds a positive position in

the three-year bond and a negative position in the ten-year bond. Hedging demands

cause these positions to become more extreme. Investment opportunities deteriorate

when the risk premium on the ten-year bond rises or the risk premium on the three-

year bond falls. The investor chooses the optimal portfolio so that wealth is higher

when this occurs. Note that the optimal allocation levels off and slightly decreases

in magnitude as a function of horizon.

As discussed above, the non-monotonicity in hedging demands occur because

the investor hedges both risk premia and the real interest rate. Figure 9 separates

out these effects. The left panel shows the allocation when the investor hedges risk

premia but not the real riskfree rate. At short horizons, the allocation is similar

to the optimal allocation shown in Figure 8. Note however that the allocation is

now monotonic in horizon. Time variation in risk premia unambiguously cause the

optimal allocation to be more extreme than the myopic allocation.
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The right panel in Figure 9 shows the allocation when the investor hedges only

time-variation in the real riskfree rate, but not time-variation in risk premia. This

allocation was discussed in more detail in Section 5.1 in the context of allocation

to a single long-term bond. When the investor hedges only the real riskfree rate,

hedging demands are much smaller in magnitude than when the investor hedges

time-variation in risk premia. Hedging demand does not depend on the value of the

state variables, and is positive for both the three and the five-year bond. Moreover,

hedging demand increases monotonically with horizon. The optimal allocation,

shown in Figure 8, clearly results from the interaction between time-variation in

the riskfree rate and time-variation in risk premia. It does not arise from simply

adding one to the other.

Figure 10 examines the case where the investor has access to three long-term

bonds. Because the nominal market is complete in this last case, it does not matter

for the investor’s utility or wealth which three bonds are chosen. Thus without loss

of generality, we assume that the investor has access to a one, five, and ten-year

bond, as well as the nominally riskless asset. The caveat stated above for the case

where the investor has access to two bonds applies to an even greater extent in this

case. Because the three bonds are so highly correlated, the investor can achieve

(perceived) high Sharpe ratios while taking on less risk than when he had access to

fewer bonds. This leads to a highly leveraged myopic portfolio.

The results in this case have much in common with the result from the two-

bond case. In general, hedging demand causes the optimal portfolio to be more

extreme than the myopic portfolio. When risk premia are positive, the myopic

allocation consists of a positive position in the ten-year bond and a negative position

in the five-year bond. Hedging demand increases in horizon for the ten-year bond

and decreases for the five-year bond. When risk premia are negative, the myopic

allocation for the ten-year bond is below that for the five-year bond.20 Hedging

demand takes the opposite sign as when risk premia are positive: it is negative for

the ten-year bond and positive for the five-year bond. As in the case of two long-

term bonds, hedging demand is non-monotonic at long horizons. This is again the

result of time-variation in the real riskfree rate. When this effect is taken away, as in

the two-bond case, the optimal allocation flattens as the horizon lengthens. In one

sense, the three-bond case is more complicated. The investor always takes a long

20For the parameter values we consider, they are both negative. When risk premia become more

negative, however, the allocation to the ten-year bond is negative and the five-year bond is positive
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position in the one-year bond, regardless of the risk premium. Hedging demand for

the one-year bond is generally opposite in sign to that of the five-year bond; it does

not depend on whether the investor is long or short the one-year bond. The one-year

bond may help the investor isolate the component of the ten and five-year bonds

that are correlated with future expected returns, rather than hedge time-variation

in the one-year bond itself.

In this section, we have assumed that equities are unavailable. We have re-

peated the analysis assuming the investor can also hold stock, with the parameters

estimated in Table 1. In the two and three-bond cases, stock has a negligible effect

on the optimal portfolio, because the opportunities in stock are small compared to

those available from going long and short bonds. In the one-bond case, the availabil-

ity of stock causes the optimal allocation to the bond to fall when the risk premium

on the bond is positive and to rise when it is negative. However, the mean allocation

to the long-term bond is still positive, and the results we report are qualitatively

unchanged.

5.3 Utility costs of sub-optimal strategies

In order to assess the economic importance of the failure of the expectations hypoth-

esis, we calculate utility costs under strategies that fail to take it into account. Two

sub-optimal strategies are considered. In the first, the investor chooses the myopic

(mean-variance efficient) portfolio. This is the strategy the investor would choose

if he were solving a static problem; thus the utility cost of following this strategy

represents the cost of treating the multi-period problem as static. It would also

be possible to consider an even more sub-optimal strategy: one where the investor

fails to recognize that the optimal myopic portfolio varies over time. It turns out

that the indirect utility of following this strategy approaches negative infinity for

many parameter values. Campbell and Viceira (1999) also find that in the case of

predictability of stock returns, the unconditional myopic strategy results in infinite

utility costs. Because we find high utility costs to following even the conditional

myopic strategy, and because the costs of the unconditional myopic strategy are

higher still, we do not report the costs associated with the unconditional myopic

strategy.

The second strategy we evaluate is closer to the optimum than the myopic strat-

egy. For this strategy, the investor chooses the myopic portfolio correctly, but hedges

only time-variation in the real interest rate, not time-variation in risk premia on
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bonds. The optimal portfolio rule when the investor follows this strategy was dis-

cussed in Section 5.1. For both the first strategy and the second strategy, the optimal

portfolio rule takes the form

ŵ(t) = α0 + α1X(t) (39)

For the first strategy,

α0 =
1

γ
(σσ>)−1σλ1 +

γ − 1

γ
(σσ>)−1(σσ>

Π)

α1 =
1

γ
(σσ>)−1σλ2

For the second strategy,

α0 =
1

γ
(σσ>)−1σλ1 +

γ − 1

γ
(σσ>)−1(σσ>

Π) +
1

γ
(σσ>)−1(σσ>

X)B∗
2(τ)>

α1 =
1

γ
(σσ>)−1σλ2

where B∗
2(τ) is given by (53) in the case of complete nominal markets and (57) in

the case of incomplete incomplete markets, with λ∗
2 set equal to zero. Note that

B3(τ) = 0 if λ∗
2 = 0.

To calculate utility costs, we solve for indirect utility (31) when the investor

follows a strategy of the form (39). Because indirect utility is an expectation of

future direct utility it is a martingale and thus has zero drift. From the Markov

property it is a function of wealth, the price level, X(t), and the horizon. Thus

indirect utility corresponding to the strategy ŵ(t) must satisfy the partial differential

equation:

Jt + LJ = 0 (40)

where L is the infinitesimal generator of J given by

LJ = JW W (ŵ>(µ − rι) + r) + JXµX + JΠΠπ +

JWXWŵ(t)>σσ>
X + JWΠWΠσW σ>

Π + JXΠΠσXσ>
Π

+
1

2
JWW W 2ŵ>σσ>ŵ +

1

2
JΠΠΠ2σΠσ>

Π +
1

2
tr(JXXσXσ>

X) (41)

For the cases where the allocation is linear in X(t), the solution of (40) takes the

same form as indirect utility when an investor follows an optimal strategy. Namely:

Ĵ(W (t), Π(t), X(t), t, T ) =
1

1 − γ

(

W (t)

Π(t)

)1−γ

Ĥ(X(t), t, T ),
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where Ĥ(X(t), t, T ) is exponential quadratic. The coefficients solve ordinary differ-

ential equations given in Appendix D.

We are interested in the amount by which we would have to increase the wealth

of an investor following a sub-optimal strategy so that he has expected utility equal

to that of an investor who follows an optimal strategy. Let

Ĵ(W (0), Π(0), X(0), 0, T ) =
1

1 − γ

(

W (0)

Π(0)

)1−γ

Ĥ(X(0), 0, T ).

equal the indirect utility from following a sub-optimal strategy. The certainty-

equivalent gain from following the optimal strategy equals

CER(X(0), 0, T ) =

(

H(X(0), 0, T )

Ĥ(X(0), 0, T )

) 1
1−γ

.

When γ > 1, H < Ĥ, implying that the investor requires more wealth to be as well

off following the sub-optimal strategy.

Figure 11 plots the certainty-equivalent gain from following the optimal strategy

when the investor allocates wealth between the riskfree asset and a five-year bond

for various levels of risk aversion. Lines without circles represent the certainty equiv-

alent gain relative to the myopic strategy; lines with circles represent the certainty

equivalent gain relative to the strategy where the investor hedges only the real risk-

free rate. For a given value of risk aversion γ, the line with circles lies below the line

without, because the strategy of hedging only the interest rate is less sub-optimal

than the myopic strategy.

Even for the one-bond case, the gains from following the optimal strategy are

economically large. Relative to the myopic allocation, the gains for an investor with

a horizon of twenty years are 8% for a risk aversion of 4, 13% for risk aversion of

10, and 24% of wealth for a risk aversion of 25. Relative to the allocation where the

investor hedges only the riskfree rate, the gains are smaller but still significant. For

risk aversions of 4 and 10, the gains are 5% of wealth. For a risk aversion of 25, the

gain is 7% of wealth.

Figures 12 and 13 show the gain from following the optimal strategy when the

investor has access to two and three long-term bonds respectively. In these cases, the

gains from hedging time-variation in risk premia are larger than when the investor

has access to only one long-term bond. For example, an investor with relative risk

aversion of 10 and a horizon of twenty years who has access to two long-term bonds

would require a 30% increase in wealth to be as well off following the myopic strategy,
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and a 20% increase in wealth to be as well of following the strategy where she hedges

only the real interest rate. The gains for an investor who has access to three bonds

are even larger.

This section has shown that following a strategy that is optimal for a one-period

investor carries high utility costs if the true problem is multi-period. The multi-

period problem differs from the single-period problem for two reasons. First, the

optimal portfolio hedges time-variation in the real interest rate r − π, second, the

optimal portfolio hedges time-variation in risk premia. We find that both are im-

portant in the sense that the costs associated with only hedging time-variation in

the real interest rate are very high. This effect does not rely on the investor taking

large offsetting positions in bonds of different maturities; it is present even when

the investor allocates wealth between the nominally riskfree asset and the long-term

bond. Thus the failure of the expectations hypothesis is important for long-term in-

vestors; treating risk premia as if they will be constant over the life of the investment

results in economically significant costs.

6 Conclusion

We have shown that the failure of the expectations hypothesis has potentially im-

portant consequences for the portfolios of long-term investors. For an investor who

allocates wealth between a long and a short-term bond, time-variation in risk pre-

mia induces hedging demand that is large and positive. We find that long horizon

investors should hold a greater fraction of their portfolio in the long-term bond; an

effect that persists beyond a horizon of twenty years. When the investor has access

to multiple long-term bonds, hedging demands make the optimal allocation more

extreme. We find that failing to hedge time-variation in return predictability carries

large certainty equivalent costs for the long-term investor.

We establish these results by extending the affine term structure literature to

account for expected inflation. Jointly estimating a process for inflation and bond

prices produces a series for expected inflation that can account for a large portion

of the variance of realized inflation, even though it is constructed from bond yields

alone. Including inflation in the estimation actually allows the term structure model

to be estimated more accurately.

Our framework is rich enough to include time-variation in the real interest rate,

in risk premia on stock returns, and in expected inflation, but at the same time
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admits explicit solutions in near-to-closed form. Multiple extensions of our model

are possible. For example, we have assumed for simplicity that the equity premium

is constant. We could easily extend our results to the case where stock returns

are predictable by the yield spread, as well as the dividend-yield. Ait-Sahalia and

Brandt (2001) show that investors are unable to hedge changes in the yield spread

using stocks alone, due to the low contemporaneous correlation between stocks and

bond yields. Our results suggest that bonds could play an important role in hedging

changes in risk premia on stocks. We could also modify our model to allow for

parameter uncertainty, as in Barberis (2000), or learning, as in Xia (2002). Clearly

there are important aspects of the portfolio choice problem that we do not address.

Transaction costs, parameter uncertainty, and non-expected utility preferences have

all been fruitfully explored in the context of stock-return predictability. Bonds

present a similar, yet richer framework to explore these same issues.
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Appendix

A Bond Prices

Following Cox, Ingersoll, and Ross (1985), we assume that bond prices are smooth

functions of the state variables X(t) and of time. That is, P (X(t), t, T ) ∈ C2,1(RM×
[0,∞]). No-arbitrage implies that P satisfies

PXK(θ − X(t)) +
1

2
tr

(

PXXσXσ>
X

)

+ Pt − r(t)P = PXσXΛ(t) (42)

with boundary condition P (X(t), t, t) = 0. Equation (42) follows from equating the

instantaneous expected excess return to the volatility multiplied by the price of risk.

Conjecture that

P (X(t), t, T ) = exp {A2(τ)X(t) + A1(τ)} , (43)

where τ = T − t. Substituting back into (42) and matching coefficients on X(t) and

the constants, produces the following system of ordinary differential equations for

the row vector A2(τ) and the scalar A1(τ):

A′
2(τ) = −A2(τ) (K + σXλ2) − δ (44)

A′
1(τ) = A2(τ) (Kθ − σXλ1) +

1

2
A2(τ)σXσX

>A2(τ)> − δ0 (45)

The boundary conditions are A2(0) = 01×m and A1(0) = 0.

B Optimal portfolio allocation

Proof of Theorem 1:

It follows from the Markov property of (Π, Z, X) that wealth may be written as

G(Π(t), Z(t), X(t), t, T ) = W (t)

= Π(t)Z(t)
1
γ F (X(t), t, T )

Because wealth is an asset, it satisfies a no-arbitrage differential equation analogous

to that of bonds. Applying Ito’s lemma to G and matching the instantaneous

expected excess return on wealth to its volatility times the price of risk produces:21

LG + Gt − rG =
(

GZZ((Λ∗ + ν)> − σΠ) + GΠΠσΠ + GXσX

)

(Λ∗ + ν), (46)

21From Ito’s lemma we can write

dZ(t) = µZ dt + σZ dz
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LG = ZGZµZ + GΠΠπ + GXK(θ − X) + ZGZXσXσ>
Z + ΠGΠXσXσ>

Π +

1

2

(

Z2GZZσZσ>
Z + Π2GΠΠσΠσ>

Π + tr
(

GXXσXσ>
X

))

,

with boundary condition

G(Π(T ), Z(T ), X(T ), T, T ) = Π(T )Z(T )
1
γ .

Note that the no-arbitrage relationship for G only holds for the min-max pricing

kernel φν , while, by the bond pricing equation holds for any pricing kernel. Substi-

tuting (27) into (46) results in the partial differential equation for F given in the

text.

In order that optimal wealth satisfy the dynamic budget constraint (21), the

diffusion terms from the two processes must match. Therefore the price of risk and

the optimal portfolio must jointly satisfy:

1

γ
(Λ∗ + ν)> +

γ − 1

γ
σΠ +

FX

F
σX = α>σ, (47)

where α is the N × 1 vector of portfolio weights. The left-hand side follows from

Ito’s lemma applied to G. Inflation risk σΠ is not spanned by the row vectors of σ,

thus for general ν, this equation will not have a solution.

We need to find ν so that the unhedgeable part of σΠ drops out.22 Rewrite σΠ

as

σΠ = (σΠσ>)(σσ>)−1σ +
(

σΠ − (σΠσ>)(σσ>)−1σ
)

. (48)

The first term is the projection of σΠ onto the traded assets. The second term is

orthogonal to the traded assets. In order for (55) to have a solution, ν must satisfy

1

γ
ν> =

1 − γ

γ

(

σΠ − (σΠσ>)(σσ>)−1σ
)

Therefore,

ν = (1 − γ)
(

σ>
Π − σ>(σσ>)−1σσ>

Π

)>

. (49)

with

µZ =
(

r(t) − π(t) + (Λ∗ + ν)>(Λ∗ + ν) + σΠσ
>
Π + σΠΛ

)

Z(t)

σZ = ((Λ∗ + ν)> − σΠ)Z(t)

22ν does not have to cancel out the unhedgeable parts of Λ∗, because the columns of Λ∗ are

spanned by the rows of σ. In fact, this is the reason for defining Λ∗ as a projection of Λ onto the

available assets.
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Because ν is orthogonal to the basis assets, Λ∗ + ν, where Λ∗ is given by (17), is

indeed a valid price of risk.

Substituting (49) back into (55) produces23

1

γ
(µ − ιr)>(σσ>)−1σ +

γ − 1

γ
(σΠσ>)(σσ>)−1σ +

1

F
FX(σXσ>)(σσ>)−1σ = α>σ.

The equation for the optimal allocation (30) follows from multiplying both sides of

the equation by σ>(σσ>)−1 and taking the transpose. This completes the proof of

Theorem 1. 2

Proof of Corollary 2:

The argument follows that of Cox and Huang (1989), generalized to the case of

unexpected inflation. The investor’s problem at time 0 can equivalently be written

as

max
W (t)>0

E0 [J(W (t), Π(t), X(t), t, T )]

subject to the static budget constraint. The first order condition is given by

JW (t) = lφν̂(t)
−1

where φν̂(t) is the min-max pricing kernel. We do not know a priori that φν̂ = φν .

As is well-known, the solution to (31) takes the form:

J(W (t), Π(t), X(t), t, T ) =
1

1 − γ

(

W (t)

Π(t)

)1−γ

H(X(t), t, T ). (50)

Our goal is to prove the relationship between the functions H and F .

Define Ẑ analogously to (25) as:

Ẑ(t) = (lφν̂(t)Π(t))−1 .

Then the investor’s first-order condition can be re-written as

JW (t) = Ẑ(t)−1Π(t)−1

23Because σX is spanned by the rows of σ,

σX = (σXσ
>)(σσ

>)−1
σ

This is the only place in the argument where we need that the rows of σ span σX . If we drop this

assumption, then we have two layers of market incompleteness. We could use similar arguments,

except that η would be endogenous.
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Substituting in from (50) implies that

W (t) = Ẑ(t)
1
γ Π(t)H(X(t), t, T )

1
γ . (51)

Because W (t) is an asset, it must satisfy partial differential equation (46). Com-

paring (51) with (27), it follows that H
1
γ and ν̂ must jointly satisfy the partial

differential equations (29) and (55). Therefore, ν̂ must equal ν and H
1
γ must equal

F . 2

Proof of Corollary 4:

To solve for F , we conjecture the form of it and then we verify. Our conjecture

is that

F (X(t), t, T ) = exp

{

1

γ

(

1

2
X>

t B3(τ)Xt + B2(τ)Xt + B1(τ)

)}

where τ = T − t, B1(τ) is a matrix, B2(τ) is a row vector, and B3(τ) is a scalar.

Plugging the hypothesized solution back into the PDE (29) and matching coefficients

on X>
t [ · ] Xt, Xt, and the constant terms, leads to a system of ordinary differential

equations:

B′
3(τ) = (B3(τ) + B3(τ)>)

[(

1

γ
− 1

)

σXλ∗
2 − K

]

+ (
1

4γ
(B3(τ) + B3(τ)>)σXσX

>(B3(τ) + B3(τ)>) +

(

1

γ
− 1

)

λ∗
2
>λ∗

2 (52)

B′
2(τ) = B2(τ)

[(

1

γ
− 1

)

σXλ∗
2 − K +

1

2γ
σXσX

>(B3(τ) + B3(τ)>)

]

+

1

2

[

θ>K> +

(

1

γ
− 1

)

λ∗
1
>σX

> +

(

1 − 1

γ

)

σΠσ>
X

]

(B3(τ) + B3(τ)>)

+ (1 − γ)(δ − ζ) +

(

1

γ
− 1

)

λ∗
1
>λ∗

2 + (γ − 1)σΠλ∗
2 (53)

B′
1(τ) = B2(τ)

[

Kθ +

(

1

γ
− 1

)

σXλ∗
1 +

(

1 − 1

γ

)

σXσΠ
>

]

+
1

2γ
B2(τ)σXσX

>B2(τ)> +
1

4
tr

(

(B3(τ) + B3(τ)>)σXσX
>
)

+
1

2

(

1

γ
− 1

)

(λ∗
1
>λ∗

1 + ν∗>ν∗) +
γ

2
σΠσ>

Π

+ (1 − γ)σΠλ∗
1 + (1 − γ)(δ0 − ζ0) (54)
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C Optimal portfolio allocation under incomplete nominal markets

This Appendix modifies the results above to the case where the investor has fewer

bonds than state variables. In this case, nominal markets are incomplete. To deter-

mine the minmax price of risk in this case we start from the equation:

1

γ
(Λ∗ + ν)> +

γ − 1

γ
σΠ +

FX

F
σX = w>σ, (55)

We then project σΠ and σX on the available assets:

σΠ = (σΠσ>)(σσ>)−1σ + (σΠ − (σΠσ>)(σσ>)−1σ)

σX = (σXσ>)(σσ>)−1σ + (σX − (σXσ>)(σσ>)−1σ).

It is useful to define the residual of the projections as

(σΠ
⊥) = σΠ − (σΠσ>)(σσ>)−1σ

(σX
⊥) = σX − (σXσ>)(σσ>)−1σ

Following the same reasoning as before we find that ν takes the form

ν = (1 − γ)
(

σΠ − (σΠσ>)(σσ>)−1σ
)>

− γ
(

σX − (σXσ>)(σσ>)−1σ
)> FX

>

F
.

Substituting into the PDE for F in Theorem 1 we find the following ODE’s:

B′
3(τ) = { } +

(

1

γ
− 1

) (

1

4
(B3(τ) + B3(τ)>)(σX

⊥)(σX
⊥)

>
(B3(τ) + B3(τ)>)

)

−
(

1

γ
− 1

) (

1

2
(B3(τ) + B3(τ)>)σX(σX

⊥)
>
(B3(τ) + B3(τ)>)

)

(56)

B′
2(τ) = { } +

(

1

γ
− 1

) (

1 − γ

2
(σΠ

⊥)σ>
X(B3(τ) + B3(τ)>) − B2(τ)σX(σX

⊥)
>
(B3(τ) + B3(τ)>)

)

+

(

1

γ
− 1

) (

1

2
(B2(τ)(σX

⊥) − (1 − γ)(σΠ
⊥))(σX

⊥)
>
(B3(τ) + B3(τ)>)

)

+
γ − 1

2
σΠ(σX

⊥)(B3(τ) + B3(τ)>) (57)
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B′
1(τ) = { } +

(

1

γ
− 1

)

B2(τ)σX

(

(1 − γ)(σΠ
⊥) − (σX

⊥)B2(τ)
)>

+

1

2

1 − γ

γ
B2(τ)(σX

⊥)(σX
⊥)

>
B2(τ)> −

(

1

γ
− 1

)

(1 − γ)B2(τ)(σX
⊥)(σΠ

⊥)
>
+

(γ − 1)σΠ(σX
⊥)

>
B2(τ)> (58)

The terms { } represents the quantity on the right hand side of equations (52),

(53), and (54) respectively.

Note that when markets are complete, the new terms on the right hand side of

(56), (57), and (58) reduce to zero. In particular, (σΠ
⊥)σ>

X = 0 because σ>
X is now

within the span of σ.

D Indirect utility for sub-optimal strategies.

It follows from the partial differential equation (40) that indirect utility takes the

form:

J(W (t), Π(t), X(t), T ) =
1

1 − γ

(

W (t)

Π(t)

)1−γ

H(X(t), t, T ).

where H(X(t), t, T ) satisfies the partial differential equation

Ht + (1 − γ)H
(

w(t)>(µ(t) − ιr(t)) + r(t) − π(t)
)

− γHw(t)>σσ>w(t) − (1 − γ)Hw(t)>σσ>
Π − γ − 2

2
HσΠσ>

Π

+HX

(

K(θ − X(t)) + (1 − γ)σXσ>w(t) − (1 − γ)σXσ>
Π

)

+
1

2
tr(HXXσXσ>

X) = 0.

(59)

Of interest is indirect utility when the investor follows a myopic strategy, and a

strategy that optimally hedges time-variation in the real interest rate, but not time-

variation in risk premia. Both strategies can be expressed as

w(t) = α0 + α1X(t), (60)

for some constant scalar α0 and vector α1. When the trading strategy can be

expressed as (60), it follows from (59) that H(X(t), t, T ) is exponential quadratic:

H(X(t), t, T ) = exp
{

X(t)>Γ3X(t) + Γ2X(t) + Γ1

}

.

where Γ3, Γ2, and Γ1 satisfy the following system of ordinary differential equations:

Γ′
3 = (Γ3 + Γ>

3 )
[

(1 − γ)σXσ>α1 − K
]

+
Γ3 + Γ>

3

2
σXσ>

X

Γ3 + Γ>
3

2

+ 2(1 − γ)α>
1 σλ2 − γ(1 − γ)α>

1 σσ>α1 (61)
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Γ′
2 = Γ2

[

(1 − γ)σXσ>α1 + σXσX
>Γ3 + Γ>

3

2
− K

]

+
[

θ>K> + (1 − γ)α>
0 σσ>

X − (1 − γ)σΠσ>
X

] Γ3 + Γ>
3

2

+ (1 − γ)
[

α>
0 σλ2 + δ − ζ + λ>

1 σ>α1

]

− (1 − γ)2σΠσ>α1 − γ(1 − γ)α>
0 σσ>α0

(62)

Γ′
1 = Γ2

[

Kθ + (1 − γ)σXσ>α0 − (1 − γ)σXσΠ
>
]

+
1

2
Γ2σXσX

>Γ>
2

+ (1 − γ)(α>
0 σλ1 + δ0 − ζ0) − (1 − γ)2σΠσ>α0 −

γ(1 − γ)

2
α>

0 σσ>α0

− (1 − γ)(γ − 2)

2
σΠσΠ

> +
1

2
tr

(

Γ3 + Γ>
3

2
σXσ>

X

)

(63)

E Estimation

This section extends the results of Duffee (2002) to include inflation and stock return

data in the estimation of bond yields. For convenience, it is assumed that the state

variables are Gaussian (as in the body of the paper). Duffee’s quasi-maximum

likelihood results for square-root models can be extended in a similar fashion. In

what follows, let eQ denote the matrix exponential of Q, let (xi)i denote the diagonal

matrix with diagonal elements xi, and let (xi,j)i,j denote the matrix with the (i, j)

element equal to xi,j . It is assumed that K is diagonalizable.

Let Y (t) denote the vector of perfectly observed yields at time t. Namely

Y (t) =









y(X(t), t, τ1)
...

y(X(t), t, τm)









for maturities (τ1, · · · , τm), where y is defined in (6). Let Ỹ denote the vector

of yields which are observed imperfectly. From (5), it follows that the perfectly

observed yields can be inverted to find the state variables:

X(t) = L−1
1 (Y (t) − L0) .

where L1 is an m × m matrix with row i given by −A2(τi)/τi, and L0 is a vector

with elements −A1(τi)/τi. Let f(· | ·) denote (with slight abuse of notation), the
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conditional likelihood function. Then the likelihood function for yields can be related

to the likelihood function for the state variables by

f(Y (t + 1), Π(t + 1), S(t + 1) | Y (t), Π(t), S(t)) =

1

det [L1]
f(X(t + 1), Π(t + 1), S(t + 1) | X(t), Π(t), S(t)). (64)

Let ε(t) denote the observation errors on the yields that are not perfectly observed.

We assume that ε(t) is independent of innovations to the state variables or to infla-

tion. Under this assumption, the full likelihood is given by:

lt(Θ) = log f(Y (t), Π(t), S(t) | Y (t − 1), Π(t − 1), S(t − 1)) +

log f(Ỹ (t) | Y (t), Π(t), S(t))

= log f(Y (t), Π(t), S(t) | Y (t − 1), Π(t − 1), S(t − 1)) + log f(ε(t) | Y (t))

It therefore suffices to specify f(X(t + 1), Π(t + 1) | X(t), Π(t)).

We show that f(log Π(t + 1), X(t + 1), log S(t + 1) | log Π(t), X(t), log S(t)) is

multivariate normal, and calculate the mean and variance. Consider the augmented

state vector

X̂(t) =







log Π(t)

X(t)

log S(t)







Then we can write the continuous time dynamics of this vector as

dX̂(t) = (κ1X̂ + κ2)dt + σ
X̂

dz, (65)

where

κ1 =







0 ζ 0

0 −K 0

0 η + δ 0






, κ2 =







ζ0 − 1
2σΠσΠ

>

Kθ

η0 + δ0 − 1
2σSσS

>






, σ

X̂
=







σΠ

σX

σS







Applying Ito’s lemma to the process e−κ1tX̂t, it follows that:

X̂(T ) = eκ1(T−t)X̂t +

∫ T

t

eκ1(T−s)κ2 ds +

∫ T

t

eκ1(T−s)σ
X̂

dw(s). (66)

Which shows that X̂T is normally distributed conditional on X̂t.

If K can be diagonalizable, κ1 can also be diagonalizable, with the first and last

eigenvalues equal to 0, and the remaining eigenvalues equal to that of K. Let U be

such that

κ1 = UDU−1, D diagonal.
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From the definition of the matrix exponential and (66), it follows that

Et(X̂(T )) = eκ1(T−t)X̂(t) +

(∫ T

t

UeD(T−s)U−1 ds

)

κ2.

Note that eD(T−t) =
(

edi(T−t)
)

i
. Performing the integration element-by-element

produces:

Et(X̂(T )) = eκ1(T−t)X̂t + U (f(di, T − t))i U
−1κ2.

where

f(di, T − t) =

{

− 1
di

(1 − edi(T−t)) di 6= 0

T − t di = 0

This completes the derivation of the conditional mean.

From (66), the conditional variance satisfies:

Vart(X̂(T )) = Et

[

(∫ T

t

eκ1(T−u)σ
X̂

dwu

) (∫ T

t

eκ1(T−u)σ
X̂

dwu

)>
]

=

= Et

[∫ T

t

eκ1(T−u)σ
X̂

σ>

X̂
eκ1(T−u)> du

]

=

=

∫ T

t

eκ1(T−u)σ
X̂

σ>

X̂

(

eκ1(T−u)
)>

du.

Let Ω = U−1σ
X̂

σ>

X̂
(U−1)>. Integrating the above equation element-by-element

produces:

Vart(X̂(T )) =

∫ T

t

UeD(T−u)ΩeD(T−u)U> du

= U [g(di, dj , T − u)Ωi,j ]i,j U>,

where

g(di, dj , T − t) =

{

− 1
di+dj

(1 − e(di+dj)(T−t)) di 6= 0 or dj 6= 0

T − t di = dj = 0

This completes the derivation of the conditional variance-covariance matrix.
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Table 1: Parameter estimates

Parameter values for the three-factor model described in Section 3 are estimated using

monthly data on bond yields, inflation, and stock returns from 1952-1998. The risk premium

on the stock index is assumed to be constant. Outer product standard errors are given in

parentheses. Parameter values are in natural units.

Inflation

Parameters 1 2 3

σΠ 0.0093 (0.0002)

ζ0 0.042 (0.026)

ζi 0.018 (0.002) 0.018 (0.004) 0.0074 (0.0006)

Bond

Parameters 1 2 3

δ0 0.058 (0.034)

δi 0.0182 (0.0003) 0.0074 (0.001) 0.0098 (0.0003)

K1,i 0.576 (0.026) 0 0

K2,i 0 3.308 (0.371) 0

K3,i -0.375 (0.167) 0 0.076 (0.053)

λ∗
1,i -0.553 (0.208) -0.243 (0.048) -0.209 (0.048)

λ∗
2(1,i) 0 1.752 (0.068) 0

λ∗
2(2,i) 0 -1.790 (0.372) 0

λ∗
2(3,i) 0.485 (0.172) 0.347 (0.094) -0.075 (0.053)

Stock

Parameters 1 2 3 4

σSΛ 0.075 (0.025)

σS -0.013 (0.006) 0.006 (0.006) -0.030 (0.006) 0.143 (0.003)
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Table 2: Asset Correlations

Conditional correlations of asset prices implies by the parameter values in Table 1. Corre-

lations are constructed using the instantaneous variance-covariance matrix σσ>, where σ is

defined as in (10).

Panel A: Model

1-year Bond 5-year Bond 10-year Bond Stock

1.000 0.880 0.744 0.194

1.000 0.950 0.210

1.000 0.215

1.000

Panel B: Data

1-year Bond 5-year Bond 10-year Bond Stock

1.000 0.853 0.734 0.190

1.000 0.932 0.192

1.000 0.214

1.000
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Figure 1: Model-implied mean yield spreads, calculated using the parameters in

Table 1. Yields are in annual terms, and defined as in (6). The short-term yield has

maturity of 3 months. “Sample” refers to yield spreads calculated using data form

1953-1998 on bonds of selected maturities.
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Figure 2: Yield spread standard deviations implied by the model and the parameters

in Table 1. Yields are in annual terms, and defined as in (6). The short-term yield

has maturity of 3 months. “Sample” refers to yield spreads calculated using data

form 1953-1998 on bonds of selected maturities.
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Figure 3: Model-implied coefficients on Campbell-Shiller (1991) long-rate regres-

sions. Quarterly changes in yields y(t, s) − y(t + 1
4 , s) are regressed on the spread

between the (s − t) -year bond, and the 3-month bond, scaled by 1/(4(s − t) − 1).

“Sample” refers to yield spreads calculated using data form 1953-1998 on bonds of

selected maturities.
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Figure 4: Realized log inflation (from CRSP) and expected inflation implied by the

parameters in Table 1.
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Figure 5: Nominal interest rates and expected inflation implied by the parameters

in Table 1.
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Figure 6: Risk premia (in annual percentages) on long-term bonds implied by the

parameters in Table 1.
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Figure 7: Optimal allocation between the five-year bond and the nominal riskfree

asset. Shown on the graph is the optimal allocation to the five-year bond; allocation

to the riskfree asset is one minus this quantity. Allocation is plotted as a function

of horizon for the investor with utility over terminal wealth. Lines without circles

plot the optimal allocation, lines with circles plot the allocation when the investor

hedges only the riskfree rate. Lines with plus signs plot the allocation when the

investor hedges only the risk premium. X2 and X3 are set equal to zero while X1 is

varied by plus and minus two unconditional standard deviations. Risk premia are

positive for X1 = −1.9 and 0, and negative for X1 = 1.9.
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Figure 8: Optimal allocation between the ten-year and three-year bond and the

nominal riskfree asset. Allocation to the three and ten-year bonds is plotted as a

function of horizon for the investor with utility over terminal wealth. X2 and X3 are

set equal to zero while X1 is varied by plus and minus two unconditional standard

deviation. “Premium” refers to the risk premium on the 10-year bond.
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Figure 9: Allocation between the ten-year and three-year bond and the nominal

riskfree asset when the investor hedges only risk premia (left panel) and when the

investor hedges only the real riskfree rate (right panel). Allocation is plotted as a

function of horizon for the investor with utility over terminal wealth. X2 and X3 are

set equal to zero while X1 is varied by plus and minus two unconditional standard

deviation. “Premium” refers to the risk premium on the 10-year bond.
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Figure 10: Optimal allocation between three bonds and the nominal riskfree asset.

Allocation to the one, three, and ten-year bonds is plotted as a function of horizon

for the investor with utility over terminal wealth. X2 and X3 are set equal to

zero while X1 is varied by plus and minus two unconditional standard deviation.

“Premium” refers to the risk premium on the 10-year bond.
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Figure 11: Certainty equivalents for sub-optimal strategies when the investor allo-

cates wealth between a single long-term bond and the riskfree asset. Lines without

circles represent the percent increase in wealth needed to make a myopic investor

as well off as an investor who follows the optimal strategy. Lines with circles rep-

resent the percent increase in wealth needed to make an investor who hedges only

the time-variation in the real interest rate as well off as in investor who follows an

optimal strategy. γ refers to relative risk aversion. Certainty equivalents for γ = 1

are identically equal to 1. Certainty equivalents for the investor who hedges only

time-variation in the riskfree rate are nearly equal for γ = 4 and γ = 10.
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Figure 12: Certainty equivalents for sub-optimal strategies when the investor allo-

cates wealth between a two long-term bonds and the riskfree asset. Lines without

circles represent the percent increase in wealth needed to make a myopic investor

as well off as an investor who follows the optimal strategy. Lines with circles rep-

resent the percent increase in wealth needed to make an investor who hedges only

the time-variation in the real interest rate as well off as in investor who follows an

optimal strategy. γ refers to relative risk aversion. Certainty equivalents for γ = 1

are identically equal to 1.
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Figure 13: Certainty equivalents for sub-optimal strategies when the investor allo-

cates wealth between a three long-term bonds and the riskfree asset. Lines without

circles represent the percent increase in wealth needed to make a myopic investor

as well off as an investor who follows the optimal strategy. Lines with circles rep-

resent the percent increase in wealth needed to make an investor who hedges only

the time-variation in the real interest rate as well off as in investor who follows an

optimal strategy. γ refers to relative risk aversion. Certainty equivalents for γ = 1

are identically equal to 1.
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