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1 Introduction

Applied economists (including ourselves) are generally content to study theoretical agents
whose preferences are additive over time and across states of nature. One version goes
like this: Time is discrete, with dates t = 0, 1, 2, . . .. At each t > 0, an event zt is drawn
from a finite set Z, following an initial event z0. The t-period history of events is denoted
by zt = (z0, z1, . . . , zt) and the set of possible t-histories by Zt. The evolution of events
and histories is conveniently illustrated by an event tree, as in Figure 1, with each branch
representing an event and each node a history or state. Environments like this, involving
time and uncertainty, are the starting point for most of modern macroeconomics and finance.
A typical agent in such a setting has preferences over payoffs c(zt) for each possible history.
A general set of preferences might be represented by a utility function U({c(zt)}). More
common, however, is to impose the additive expected utility structure

U({c(zt)}) =
∞∑

t=0

βt
∑

zt∈Zt

p(zt)u[c(zt)] = E0

∞∑

t=0

βtu(ct), (1)

where 0 < β < 1, p(zt) is the probability of history zt, and u is a period/state utility
function. These preferences are remarkably parsimonious: behavior over time and across
states depends solely on the discount factor β, the probabilities p, and the function u.

Although (1) remains the norm throughout economics, there has been extraordinary
theoretical progress over the last fifty years (and particularly the last twenty five) in devel-
oping alternatives. Some of these alternatives were developed to account for the anomalous
predictions of expected utility in experimental work. Others arose from advances in the
pure theory of intertemporal choice. Whatever their origin, they offer greater flexibility
along several dimensions, often with only a modest increase in analytical difficulty.

What follows is a user’s guide, intended to serve as an introduction and instruction
manual for economists studying problems in which the structure of preferences may play
an important role. Our goal is to describe exotic preferences to mainstream economists:
preferences over time, preferences across states or histories, and (especially) combinations
of the two. We take an overtly practical approach, downplaying or ignoring altogether the
many technical issues that arise in specifying preferences in dynamic stochastic settings,
including their axiomatic foundations. (References are provided in Appendix A for those
who are interested.) We generally assume without comment that preferences can be rep-
resented by increasing, (weakly) concave functions, with enough smoothness and boundary
conditions to generate interior solutions to optimizations. We focus instead on applications,
using tractable functional forms to revisit some classic problems: consumption and saving,
portfolio choice, asset pricing, and Pareto optimal allocations. In most cases, we use utility
functions that are homogeneous of degree one (hence invariant to scale) with constant elas-
ticities (think power utility). These functions are the workhorses of macroeconomics and
finance, so little is lost by restricting ourselves in this way.

You might well ask: Why bother? Indeed, we will not be surprised if most economists
continue to use (1) most of the time. Exotic preferences, however, have a number of potential
advantages that we believe will lead to much wider application than we’ve seen to date.
One is more flexible functional forms for approximating features of data — the equity



premium, for example. Another is the ability to ask questions that have no counterpart in
the additive model. How should we make decisions if we don’t know the probability model
that generates the data? Can preferences be dynamically inconsistent? If they are, how
do we make decisions? What is the appropriate welfare criterion? Can we think of some
choices as tempting us away from better ones? Each of these advantages raises further
questions: Are exotic preferences observationally equivalent to additive preferences? If not,
how do we identify their parameters? Are they an excuse for free parameters? Do we even
care whether behavior is derived from preferences?

These questions run through a series of non-additive preference models. In Section 2, we
discuss time preference in a deterministic setting, comparing Koopmans’ time aggregator to
the traditional time-additive structure. In Section 3, we describe alternatives to expected
utility in a static setting, using a certainty-equivalent function to summarize preference
toward risk. We argue that the Chew-Dekel class extends expected utility in useful directions
without sacrificing analytical and empirical convenience. In Section 4, we put time and
risk preference together in a Kreps-Porteus aggregator, which leads to a useful separation
between time and risk preference. Dynamic extensions of Chew-Dekel preferences follow
the well-worn path of Epstein and Zin. In Section 5, we consider risk-sensitive and robust
control, whose application to economics is associated with the work of Hansen and Sargent.
Section 6 is devoted to ambiguity, in which agents face uncertainty over probabilities as
well as states. We describe Gilboa and Schmeidler’s “max-min” utility for static settings
and Epstein and Schneider’s recursive extension to dynamic settings. In Section 7, we turn
to “hyperbolic discounting” and provide an interpretation based on Gul and Pesendorfer’s
“temptation” preferences. The final section is devoted to a broader discussion of the role
and value of exotic preferences in economics.

A word on notation and terminology: We typically denote parameters by Greek letters
and functions and variables by Latin letters. We denote derivatives with subscripts; thus V2

refers to the derivative of V with respect to its second argument. In a stationary dynamic
programming problem, J is a value function and a prime (′) distinguishes a future value
from a current value. The abbreviation “iid” means independent and identically distributed
and NID(x, y) means normally and independently distributed with mean x and variance y.

2 Time

Time preference is a natural starting point for macroeconomists, since so much of our
subject is concerned with dynamics. Suppose there is no risk and (for this paragraph
only) ct is one-dimensional. Preferences might then be characterized by a general utility
function U({ct}). A common measure of time preference in this setting is the marginal rate
of substitution between consumption at two consecutive dates (ct and ct+1, say) along a
constant consumption path (ct = c for all t). If the marginal rate of substitution is

MRSt,t+1 =
∂U/∂ct+1

∂U/∂ct
,

then time preference is captured by the discount factor

β(c) ≡ MRSt,t+1(c).
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(Picture the slope, −1/β, of an indifference curve along the “45-degree line.”) If β(c) is less
than one, the agent is said to be impatient: she requires more than one unit of consumption
at t + 1 to induce her to give up one unit at t. For the traditional time-additive utility
function,

U({ct}) =
∞∑

t=0

βtu(ct), (2)

β(c) = β < 1 regardless of the value of c, so impatience is built in and constant. The rest
of this section is concerned with preferences in which the discount factor can vary with the
level of consumption.

Koopmans’ time aggregator

Koopmans (1960) derives a class of stationary recursive preferences by imposing conditions
on a general utility function U for a multi-dimensional consumption vector c. Our approach
and terminology follow Johnsen and Donaldson (1985). Preferences at all dates come from
the same “date-zero” utility function U . As a result, they are dynamically consistent by
construction: preferences over consumption streams starting at any future date t are con-
sistent with U . Following Koopmans, let tc ≡ (ct, ct+1, . . .) be an infinite consumption
sequence starting at t. Then we might write utility from date t = 0 on as

U(0c) = U(c0, 1c).

Koopmans’ first condition is history-independence: preferences over sequences tc do not
depend on consumption at dates prior to t. Without this condition, an agent making
sequential decisions would need to keep track of the history of consumption choices to be
able to make future choices consistent with U . The marginal rate of substitution between
consumption at two arbitrary dates could depend, in general, on consumption at all dates
past, present, and future. History-independence rules out dependence on the past. With
it, the utility function can be expressed in the form

U(0c) = V [c0, U1(1c)]

for some time aggregator V . As a result, choices over 1c do not depend on c0. (Note,
for example, that marginal rates of substitution between elements of 1c do not depend on
c0.) Koopmans’ second condition is future independence: preferences over ct do not depend
on t+1c. (In Koopmans’ terminology, the first and second conditions together imply that
preferences over the present (ct) and future (t+1c) are independent .) This is trivially true if
ct is a scalar, but a restriction on preferences otherwise. The two conditions together imply
that utility can be written

U(0c) = V [u(c0), U1(1c)]

for some functions V and u, which defines u as a composite commodity for consumption at
a specific date. Koopmans’ third condition is that preferences are stationary (the same at
all dates). The three conditions together imply that utility can be written in the stationary
recursive form,

U(tc) = V [u(ct), U(t+1c)] (3)
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for all dates t. This is a generalization of the traditional utility function (2), where (evi-
dently) V (u, U) = u+βU or the equivalent. As in traditional utility theory, preferences are
unchanged when we apply a monotonic transformation to U : if Û = f(U) for f increasing,
then we replace the aggregator V with V̂ (u, Û) = f(V [u, f−1(Û)]).

In the Koopmans class of preferences represented by (3), time preference is a property
of the time aggregator V . Consider our measure of time preference for the composite
commodity u. If Ut and ut represent U(tc) and u(ct), respectively, then

Ut = V (ut, Ut+1) = V [ut, V (ut+1, Ut+2)].

The marginal rate of substitution between ut and ut+1 is therefore

MRSt,t+1 =
V2(ut, Ut+1)V1(ut+1, Ut+2)

V1(ut, Ut+1)
.

A constant consumption path with period utility u is defined by U = V (u, U), implying
U = g(u) = V [u, g(u)] for some function g. (Koopmans calls g the correspondence function.)
The discount factor is therefore β(u) = V2[u, g(u)]. You might verify for yourself that V2 is
invariant to increasing transformations of U .

In modern applications, we generally work in reverse order: we specify a period utility
function u and a time aggregator V and use them to characterize the overall utility function
U . Any U constructed this way defines preferences that are dynamically consistent, history
independent, future independent, and stationary. In contrast to time-additive preferences
(2), discounting depends on the level of utility u. To get a sense of how this works, consider
the behavior of V2. If preferences are increasing in consumption, u must be increasing in
c and V must be increasing in both arguments. If we consider sequences with constant
consumption, U must be increasing in u, so that

g1(u) = V1[u, g(u)] + V2[u, g(u)]g1(u) =
V1[u, g(u)]

1 − V2[u, g(u)]
> 0.

Since V1 > 0, 0 < V2[u, g(u)] < 1: the discount factor is between zero and one and depends
(in general) on u. Many economists impose an additional condition of increasing marginal
impatience: V2[u, g(u)] is decreasing in u, or

V21[u, g(u)] + V22[u, g(u)]g1(u) = V21[u, g(u)] + V22[u, g(u)]
V1[u, g(u)]

1 − V2[u, g(u)]
< 0.

In applications, this condition is typically used to generate stability of steady states.

Two variants of Koopmans’ structure have been widely used by macroeconomists. One
was proposed by Uzawa (1968), who suggested a continuous-time version of

V (u, U) = u + β(u)U.

(In his model, β(u) = exp[−δ(u)].) Since V21 = 0, increasing marginal impatience is
simply β1(u) < 0 (equivalently, δ1(u) > 0). Another is used by Epstein and Hynes (1983),
Lucas and Stokey (1984), and Shi (1993), who generalize Koopmans by omitting the future
independence condition. The resulting aggregator is V (c, U), rather than V (u, U), which
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allows choice over c to depend on U . If c is a scalar, this is equivalent to (3) (set u(c) = c),
but otherwise need not be. An example is

V (c, U) = u(c) + β(c)U,

where there is no particular relationship between the functions u and β.

Examples

Example 1 (growth and fiscal policy). In the traditional growth model, Koopmans prefer-
ences can change both the steady state and the short-run dynamics. Suppose the period
utility function is u(c) and the time aggregator is V (u, U ′) = u + β(u)U ′, with u increasing
and concave and β1(u) < 0. Gross output y is produced with capital k using an increasing
concave technology f . The resource constraint is y = f(k) = c + k′ + g, where c is con-
sumption, k′ is tomorrow’s capital stock, and g is government purchases (constant). The
Bellman equation is

J(k) = max
k′

u[f(k) − k′ − g] + β(u[f(k) − k′ − g])J(k′).

The first-order and envelope conditions are

u1(c){1 + β1[u(c)]J(k′)} = β[u(c)]J1(k
′)

J1(k) = u1(c)f1(k){1 + β1[u(c)]J(k′)},

which together imply J1(k) = β[u(c)]J1(k
′)f1(k). In a steady state, 1 = β(u[f(k) − k −

g])f1(k).

One clear difference from the traditional model is the role of preferences in determining
the steady state. With constant β, the steady state capital stock solves βf1(k) = 1; u is
irrelevant. With recursive preferences, the steady state solves β(u[f(k) − k − g])f1(k) = 1,
which depends on u through its impact on β. Consider the impact of an increase in g. With
traditional preferences, the steady state capital stock doesn’t change, so any increase in g
is balanced by an equal decrease in c. With recursive preferences and increasing marginal
impatience, an increase in g reduces current utility and therefore raises the discount factor.
The initial drop in c is therefore larger than in the traditional case. In the resulting steady
state, the increase in g leads to an increase in k and a decline in c that is smaller than the
increase in g. The magnitude of the decline depends on β1, the sensitivity of the discount
factor to current utility. [Adapted from Dolmas and Wynne (1998).]

Example 2 (optimal allocations). Time preference affects the optimal allocation of consump-
tion among agents over time. Consider an economy with a constant aggregate endowment y
of a single good, to be divided between two agents with Koopmans preferences, represented
here by the aggregators V (the first agent) and W (the second). A Pareto optimal allocation
is summarized by the Bellman equation

J(w) = max
c,w′

V [y − c, J(w′)]

subject to
W (c, w′) ≥ w.
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Note that both consumption c and promised utility w pertain to the second agent. If λ is
the Lagrange multiplier on the constraint, the first-order and envelope conditions are

V1[y − c, J(w′)] = λW1(c, w
′)

V2[y − c, J(w′)]J1(w
′) + λW2(c, w

′) = 0

J1(w) = −λ.

If agents’ preferences are additive with the same discount factor β, then the second and
third equations imply J1(w

′)/J1(w) = W2(c, w
′)/V2[y − c, J(w′)] = β/β = 1: an optimal

allocation places the same weight λ = −J1(w) on the second agent’s utility at all dates and
promised utility w is constant. If preferences are additive and β2 > β1 (the second agent is
more patient), then J1(w

′)/J1(w) = β2/β1 > 1: an optimal allocation increases the weight
over time on the second, more patient agent and raises her promised utility (w′ > w). In the
more general Koopmans setting, the dynamics depend on the time aggregators V and W .
The allocation converges to a steady state if both aggregators exhibit increasing marginal
impatience and future utility is a normal good. [Adapted from Lucas and Stokey (1984).]

Example 3 (long-run properties of a small open economy). Small open economies with
perfect capital mobility raise difficulties with the existence of a steady state that can be
resolved by endogenizing the discount factor. We represent preferences over sequences of
consumption c and leisure 1 − n with a period utility function u(c, 1 − n) and a time
aggregator V (c, 1 − n, U) = u(c, 1 − n) + β(c, 1 − n)U . Let output be produced with labor
using the linear technology y = θn, where θ is a productivity parameter. The economy’s
resource constraint is y = c + x, where x is net exports. The agent can borrow and lend in
international capital markets at gross interest rate r, giving rise to the budget constraint
a′ = r(a + x) = r(a + θn − c). The Bellman equation is

J(a) = max
c,n

u(c, 1 − n) + β(c, 1 − n)J [r(a + θn − c)].

The first-order and envelope conditions are:

u1 + β1J(a′) = βJ1(a
′)

u2 + β2J(a′) = βJ1(a
′)θ

J1(a) = βJ1(a
′)r.

The last equation tells us that in a steady state, β(c, 1−n)r = 1. With constant discounting,
there is no steady state, but with more general discounting schemes the form of discounting
determines the steady state and its response to changes in the environment. Here the
long-run impact of a change in (say) θ (the “wage”) depends on the form of β. Suppose
β is a function of n only. Then the steady state condition β(1 − n)r = 1 determines n
independently of θ! More generally, the long-run impact on n of a change in θ depends on
the form of the discount function β(c, 1 − n). [Adapted from Epstein and Hynes (1983),
Mendoza (1991), Obstfeld (1981), Schmitt-Grohe and Uribe (2002), and Shi (1994).]

Example 4 (dynamically inconsistent preferences). Suppose preferences “from date t on”
are given by:

Ut(tc) = u(ct) + δβu(ct+1) + δβ2u(ct+2) + δβ3u(ct+3) + · · · ,
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with 0 < δ ≤ 1. When δ = 1 this reduces to the time-additive utility function (2).
Otherwise, we discount utility in periods t + 1, t + 2, t + 3, . . . by δβ, δβ2, δβ3, . . .. A little
effort should convince you that these preferences cannot be put into stationary recursive
form. In fact, they are dynamically inconsistent in the sense that preferences over (say)
(ct+1, ct+2) at date t are different from preferences at t+1. (Note, for example, the marginal
rates of substitution between ct+1 and ct+2 at t and t + 1.) This structure is ruled out by
Koopmans, who begins with the presumption of a consistent set of preferences. We’ll return
to this example in Section 7. [Adapted from Harris and Laibson (2003) and Phelps and
Pollack (1968).]

3 Risk

Our next topic is risk, which we consider initially in a static setting. Our theoretical
agent makes choices that have risky consequences or payoffs and has preferences over those
consequences and their probabilities. To be specific, let us say that the state z is drawn
with probability p(z) from the finite set Z = {1, 2, . . . , Z}. Consequences (c, say) depend
on the state. Having read Debreu’s Theory of Value or the like, we might guess that with
the appropriate technical conditions the agent’s preferences can be represented by a utility
function of state-contingent consequences (“consumption”):

U({c(z)}) = U [c(1), c(2), . . . , c(Z)].

At this level of generality there is no mention of probabilities, although we can well imagine
that the probabilities of the various states will show up somehow in U , as they do in
(1). In this section, we regard the probabilities as known, which you might think of as
an assumption of “risk” or “rational expectations.” We consider unknown probabilities
(“ambiguity”) in Sections 5 and 6.

We prefer to work with a different (but equivalent) representation of preferences. Sup-
pose, for the time being, that c is a scalar; very little of the theory depends on this, but it
streamlines the presentation. We define the certainty equivalent of a set of consequences as
a certain consequence µ that gives the same level of utility:

U(µ, µ, . . . , µ) = U [c(1), c(2), . . . , c(Z)].

If U is increasing in all its arguments, we can solve this for the certainty-equivalent function
µ({c(z)}). Clearly µ represents the same preferences as U , but we find its form particularly
useful. For one thing, it expresses utility in payoff (“consumption”) units. For another,
it summarizes behavior toward risk directly: since the certainty equivalent of a sure thing
is itself, the impact of risk is simply the difference between the certainty equivalent and
expected consumption.

The traditional approach to preferences in this setting is expected utility, which takes
the form

U({c(z)}) =
∑

z

p(s)u[c(z)] = Eu(c),

or

µ({c(z)}) = u−1

(
∑

z

p(z)u[c(z)]

)

= u−1 [Eu(c)] ,
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a special case of (1). Preferences of this form are used in virtually all macroeconomic
theory, but decades of experimental research have documented numerous difficulties with
it. Among them: people seem more averse to bad outcomes than expected utility implies.
See, for example, the summaries in Kreps (1988, ch 14) and Starmer (2000). We suggest
the broader Chew-Dekel class of risk preferences, which allows us to account for some of
the empirical anomalies of expected utility without giving up its analytical tractability.

The Chew-Dekel risk aggregator

Chew (1983, 1989) and Dekel (1986) derive a class of risk preferences that generalizes
expected utility, yet leads to first-order conditions that are linear in probabilities, hence
easily solved and amenable to econometric analysis. In the Chew-Dekel class, the certainty
equivalent function µ for a set of payoffs and probabilities {c(z), p(z)} is defined implicitly
by a risk aggregator M satisfying

µ =
∑

z

p(z)M [c(z), µ]. (4)

(This is Epstein and Zin’s (1989) equation (3.10) with M ≡ F + µ.) Chew (1983, 1989)
and Dekel (1986, Section 2) show that such preferences satisfy a weaker condition than
the notorious independence axiom that underlies expected utility. We assume M has the
following properties: (i) M(m, m) = m (sure things are their own certainty equivalents),
(ii) M is increasing in its first argument (first-order stochastic dominance), (iii) M is concave
in its first argument (risk aversion), and (iv) M(kc, km) = kM(c, m) for k > 0 (linear
homogeneity). Most of the analytical convenience of the Chew-Dekel class follows from the
linearity of equation (4) in probabilities.

In the examples that follow, we focus our attention on the following tractable members
of the Chew-Dekel class:

• Expected utility. A version with constant relative risk aversion is implied by

M(c, m) = cαm1−α/α + m(1 − 1/α).

If α ≤ 1, M satisfies the conditions outlined above. Applying (4), we find

µ =

(
∑

z

p(z)c(z)α

)1/α

,

the usual expected utility with a power utility function.

• Weighted utility. Chew (1983) suggests a relatively easy way to generalize expected
utility given (4): weight the probabilities by a function of outcomes. A constant-
elasticity version follows from

M(c, m) = (c/m)γcαm1−α/α + m[1 − (c/m)γ/α].

For M to be increasing and concave in c in a neighborhood of m, the parameters must
satisfy either (a) 0 < γ < 1 and α + γ < 0 or (b) γ < 0 and 0 < α + γ < 1. Note
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that (a) implies α < 0, (b) implies α > 0, and both imply α + 2γ < 1. The associated
certainty equivalent function is

µα =

∑
z p(z)c(z)γ+α

∑
x p(x)c(x)γ

=
∑

z

p̂(z)c(z)α,

where

p̂(z) =
p(z)c(z)γ

∑
x p(x)c(x)γ

.

This version highlights the impact of bad outcomes: they get greater weight than with
expected utility if γ < 0, less weight otherwise.

• Disappointment aversion. Gul (1991) proposes another model that increases sensitiv-
ity to bad events (“disappointments”). Preferences are defined by the risk aggregator

M(c, m) =

{
cαm1−α/α + m(1 − 1/α) c ≥ m
cαm1−α/α + m(1 − 1/α) + δ(cαm1−α − m)/α c < m

with δ ≥ 0. When δ = 0 this reduces to expected utility. Otherwise, disappointment
aversion places additional weight on outcomes worse than the certainty equivalent.
The certainty equivalent function satisfies

µα =
∑

z

p(z)c(z)α + δ
∑

z

p(z)I[c(z) < µ][c(z)α − µα] =
∑

z

p̂(z)c(z)α,

where I(x) is an indicator function that equals one if x is true and zero otherwise and

p̂(z) =

(
1 + δI[c(z) < µ]

1 + δ
∑

x p(x)I[c(x) < µ]

)
p(z).

It differs from weighted utility in scaling up the probabilities of all bad events by the
same factor, and scaling down the probabilities of good events by a complementary
factor, with good and bad defined as better and worse than the certainty equivalent.
All three expressions highlight the recursive nature of the risk aggregator M : we need
to know the certainty equivalent to know which states are bad so that we can compute
the certainty equivalent (and so on).

Each of these models is described in Epstein and Zin (2001). Other tractable preferences
include semi-weighted utility (Epstein and Zin, 2001), generalized disappointment aversion
(Routledge and Zin, 2003), and rank-dependent preferences (Epstein and Zin, 1990). All
but the last one are members of the Chew-Dekel class.

One source of intuition about these preferences is their state-space indifference curves,
examples of which are pictured in Figure 2. For the purpose of illustration, suppose there are
two equally likely states (Z = 2, p(1) = p(2) = 1/2). The 45-degree line represents certainty
(c(1) = c(2)). Since preferences are linear homogeneous, the unit indifference curve (µ = 1)
completely characterizes preferences. For expected utility, the unit indifference curve is

µ(EU) = [0.5c(1)α + 0.5c(2)α]1/α = 1.

9



This is the usual convex arc with a slope of minus one (the odds ratio) at the 45-degree line.
As we decrease α, the arc becomes more convex. For weighted utility, the unit indifference
curve is

µ(WU) =

[
c(1)γ+α + c(2)γ+α

c(1)γ + c(2)γ

]1/α

= 1.

Drawn for the same value of α and a modest negative value of γ, it is more convex than
expected utility, suggesting greater risk aversion. With disappointment aversion, the equa-
tion governing the indifference curve depends on whether c(1) is larger or smaller than c(2).
If it’s smaller (so that z = 1 is the bad state), the indifference curve is

µ(DA) =

[(
1 + δ

2 + δ

)
c(1)α +

(
1

2 + δ

)
c(2)α

]1/α

= 1.

If it’s larger, we switch the two states around. To express this more compactly, define sets
of transformed probabilities, p̂1 = [(1 + δ)/(2 + δ), 1/(2 + δ)] (when z = 1 is the bad state)
and p̂2 = [1/(2 + δ), (1 + δ)/(2 + δ)] (when z = 2 is the bad state). Then the indifference
curve can be expressed [

min
i

∑

z

p̂i(z)c(z)α

]1/α

= 1.

We’ll see something similar in Section 6. For now, note that the indifference curve is
the upper envelope of two curves based on different sets of probabilities. The envelope is
denoted by a solid line, and the extensions of the two curves by dashed lines. The result is
an indifference curve with a kink at the 45-degree line, where the bad state switches. (As
we cross from below, the bad state switches from 2 to 1.)

Another source of intuition is the sensitivity of certainty equivalents to small risks.
For the two-state case discussed above, consider the certainty equivalent of the outcome
c(1) = 1 − σ and c(2) = 1 + σ for small σ > 0, thereby defining the certainty equivalent
as a function of σ. How much does a small increase in σ reduce µ? For expected utility, a
second-order Taylor series expansion of µ(σ) around σ = 0 is

µ(EU) ≈ 1 − (1 − α)σ2/2.

This familiar bit of mathematics suggests 1−α as a measure of risk aversion. For weighted
utility, a similar approximation yields

µ(WU) ≈ 1 − (1 − α − 2γ)σ2/2,

which suggests 1−α−2γ as a measure of risk aversion. Note that neither expected utility nor
weighted utility has a linear term: agents with these preferences are effectively indifferent
to very small risks. For disappointment aversion, however, the Taylor series expansion is

µ(DA) ≈ 1 −

(
δ

2 + δ

)
σ − (1 − α)

(
4 + 4δ

4 + 4δ + δ2

)
σ2/2.

The linear term tells us that disappointment aversion exhibits first-order risk aversion, a
consequence of the kink in the indifference curve.
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Examples

Example 5 (certainty equivalents for log-normal risks). We illustrate the behavior of Chew-
Dekel preferences in an environment in which the impact of risk on utility is particu-
larly transparent. Define the risk premium on a risky consumption distribution by rp ≡
log[E(c)/µ(c)], the logarithmic difference between consumption’s expectation and its cer-

tainty equivalent. Suppose consumption is log-normal: log c(z) = κ1 + κ
1/2
2 z, with z dis-

tributed N(0,1). Recall that if log x ∼ N(a, b), then log E(x) = a+b/2 (“Ito’s lemma,” equa-
tion (42) of Appendix B). Since log c ∼ N(κ1, κ2), expected consumption is exp(κ1 +κ2/2).
Similarly, the certainty equivalent for expected utility is µ = exp(κ1 + ακ2/2) and the risk
premium is rp = (1−α)κ2/2. The proportionality factor (1−α) is the traditional coefficient
of relative risk aversion. Weighted utility is not quite kosher in this context (M is concave
only in a neighborhood of µ), but the example nevertheless gives us a sense of its properties.
Using similar methods, we find that the certainty equivalent is µ = exp(κ1 + (α + 2γ)κ2/2)
and the risk premium is rp = (1 − α − 2γ)κ2/2. Note that the risk premium is the same
as expected utility with parameter α′ = α + 2γ. This equivalence of expected utility and
weighted utility doesn’t extend to other distributions, but it suggests that we might find
some difficulty distinguishing between the two in practice. For disappointment aversion, we
find the certainty equivalent using mathematics much like that underlying the Black-Scholes
formula:

µα = eακ1+α2κ2/2 + δ

[

eακ1+α2κ2/2Φ

(
log µ − κ1 − ακ2

κ
1/2
2

)

− Φ

(
log µ − κ1

κ
1/2
2

)]

,

where Φ is the standard normal distribution function; see equation (41) in Appendix B.
Apparently the risk premium is no longer proportional to κ2. We show this in Figure 3,
where we graph rp against κ2 for all three preferences using the same parameter values
as Figure 2 (α = δ = 0.5, γ = −0.25). As you might expect, disappointment aversion
implies proportionately greater aversion to small risks than large ones; in this respect it
is qualitatively different from expected utility and weighted utility. Routledge and Zin’s
(2003) generalized disappointment aversion does the reverse: it generates greater aversion
to large risks. Different sensitivity to large and small risks provides a possible method to
distinguish such preferences from expected utility.

Example 6 (portfolio choice with Chew-Dekel preferences). One strength of the Chew-Dekel
class is that it leads to first-order conditions that are easily solved and used in econometric
work. Consider an agent with initial net assets a0 who invests fractions w in a risky asset
with (gross) return r(z) in state z and 1 − w in a risk-free asset with return r0. For an
arbitrary choice of w, consumption in state z is c(z) = a0[r0 + w(r(z) − r0)]. The portfolio
choice problem might then be written

max
w

µ[a0{r0 + w(r(z) − r0)}] = a0 max
w

µ[r0 + w(r(z) − r0)],

the second equality stemming from the linear homogeneity of µ. The direct approach to
this problem is to choose w to maximize µ, and in some cases we’ll do that. For the
general Chew-Dekel class, however, we may not have an explicit expression for the certainty
equivalent function. In those cases, we use equation (4):

max
w

µ[{r0 + w(r(z) − r0)}] = max
w

∑

z

p(z)M [r0 + w(r(z) − r0), µ
∗],
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where µ∗ is the maximized value of the certainty equivalent function. The problem on the
right-hand side has first-order condition

∑

z

p(z)M1[r0 +w(r(z)−r0), µ
∗][r(z)−r0] = E [M1(r0 + w(r − r0), µ

∗)(r − r0)] = 0. (5)

(There are M2 terms, too, but you might verify for yourself that they can be eliminated.)
We find the optimal portfolio by solving the first-order condition and (4) simultaneously for
w and µ∗. The same conditions can also be used in econometric work to estimate preference
parameters.

To see how you might use (5) to determine w, consider a numerical example with two
equally-likely states and returns r0 = 1.01, r(1) = 0.90, and r(2) = 1.24 (the “equity
premium” is 6%). With expected utility, the first-order condition is

(µ∗)α−1(1 − β)
∑

z

p(z) (r0 + w[r(z) − r0])
α−1 [r(z) − r0] = 0.

µ∗ drops out and we can solve for w independently. For α = 0.5, the solution is w = 4.791,
which implies µ∗ = 1.154. The result is the dual of the equity premium puzzle: with modest
risk aversion, the observed equity premium induces a huge long position in the risky asset,
financed by borrowing. With disappointment aversion, the first-order condition is

(1 + δ)p(1) (r0 + w[r(1) − r0])
α−1 [r(1) − r0]

+p(2) (r0 + w[r(2) − r0])
α−1 [r(2) − r0] = 0,

since z = 1 is the bad state. For δ = 0.5, w = 2.147 and µ∗ = 1.037. [Adapted from Epstein
and Zin (1989, 2001).]

Example 7 (portfolio choice with rank-dependent preferences). Rank-dependent preferences
are an interesting alternative to the Chew-Dekel class. We rank states so that the payoffs
c(z) are increasing in z and define the certainty equivalent function by

µ = u−1

(
∑

z

(g[P (z)] − g[P (z − 1)]) u[c(z)]

)

= u−1

(
∑

z

p̂(z)u[c(z)]

)

,

where g is an increasing function satisfying g(0) = 0 and g(1) = 1, P (z) =
∑z

u=1 p(u) is
the cumulative distribution function, and p̂(z) = g[P (z)] − g[P (z − 1)] is a transformed
probability. If g(p) = p, this is simply expected utility. If g is concave, these preferences
exhibit risk aversion even if u is linear, However, since µ is nonlinear in probabilities it cannot
be expressed in Chew-Dekel form. At the end of this section, we discuss the difficulties this
raises for econometric estimation. In the portfolio choice problem, the first-order condition
is ∑

z

p̂(z)u1[c(z)][r(z) − r0] = 0, (6)

which is readily solved if we know the probabilities. [Adapted from Epstein and Zin (1990)
and Yaari (1987).]

Example 8 (risk sharing). Consider a Pareto problem with two agents who divide a given
risky aggregate endowment y(z). If their certainty equivalent functions are identical and
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homogeneous of degree one, each agent consumes the same fraction of the aggregate en-
dowment in all states. The problem is more interesting if the agents have different pref-
erences. Let us say that two agents, indexed by i, have certainty equivalent functions
µi[ci(z)]. A Pareto optimal allocation solves: choose {c1(z), c2(z)} to maximize µ1 subject
to c1(z) + c2(z) ≤ y(z) and µ2 ≥ µ̄ for some number µ̄. If λ is the Lagrange multiplier on
the second constraint, the first-order conditions have the form

∂µ1

∂c1(z)
= λ

∂µ2

∂c2(z)
.

With Chew-Dekel risk preferences, the derivatives have the form:

∂µi

∂ci(z)
= p(z)M i

1[c
i(z), µi] +

∑

x

p(x)M i
2[c

i(x), µi]
∂µi

∂ci(z)

= p(z)M i
1[c

i(z), µi]/(1 −
∑

x

p(x)M i
2[c

i(x), µi]).

This expression is not particularly user-friendly, but in principle we can solve it numerically
for specific functional forms. With expected (power) utility, an optimal allocation solves

[µ1]1−α1 [y(z) − c2(z)]α1−1 = λ[µ2]1−α2c2(z)α2−1,

which implies allocation rules that we can express in the form ci = si(y)y. If we substitute
into the optimality condition and differentiate, we find ds1/dy > 0 if α1 > α2: the less risk
averse agent absorbs a disproportionate share of the risk.

Discussion: moment conditions for preference parameters

One of the most useful features of Chew-Dekel preferences is how easily they can be used
in econometric work. Since the risk aggregator (4) is linear in probabilities, we can apply
method of moments estimators directly to first-order conditions.

In a typical method of moments estimator, a vector-valued function f of data x and a
vector of parameters θ of equal dimension satisfies the moment condition

Ef(x, θ0) = 0, (7)

where θ = θ0 is the parameter vector that generated the data. A method of moments
estimator θT for a sample of size T replaces the population mean with the sample mean:

T−1
T∑

t=1

f(xt, θT ) = 0.

Under reasonably general conditions, a law of large numbers implies that the sample mean
converges to the population mean and θT converges to θ0. When the environment permits
a central limit theorem, we can also derive an asymptotic normal distribution for θT . If the
number of moment conditions (the dimension of f) is greater than the number of parameters
(the dimension of θ), we can apply a generalized method of moments estimator with similar
properties; see Hansen (1982).
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The portfolio choice problem with Chew-Dekel preferences has exactly this form if the
number of preference parameters is no greater than the number of risky assets. For each
risky asset i there is a moment condition,

fi(x, θ) = M1(c, µ
∗)(ri − r0),

analogous to equation (5). In the static case, we also need to estimate µ∗, which we do
using (4) as an additional moment condition. (In a dynamic setting, a homothetic time
aggregator allows us to replace µ∗ with a function of consumption growth; see equation
(13).)

Outside the Chew-Dekel class, estimation is a more complex activity. First-order condi-
tions are no longer linear in probabilities and do not lead to moment conditions in the form
of equation (7). To estimate, say, equation (6) for rank-dependent preferences, we need a
different estimation strategy. One possibility is a simulated method of moments estima-
tor, which involves something like the following: (i) conjecture a probability distribution
and parameter values; (ii) given these values, solve the portfolio problem for decision rules;
(iii) calculate (perhaps through simulation) moments of the decision rule and compare them
to moments observed in the data; (iv) if the two sets of moments are sufficiently close, stop;
otherwise, modify parameter values and return to step (i). All of this can be done, but it
highlights the econometric convenience of Chew-Dekel risk preferences.

4 Time and risk

We are now in a position to describe non-additive preferences in a dynamic stochastic
environment like that illustrated by Figure 1. You might guess that the process of specifying
preferences over time and states of nature is simply a combination of the two. In fact, the
combination raises additional issues that are not be readily apparent. We touch on some of
them here; others come up in the next two sections.

Recursive preferences

Consider the structure of preferences in a dynamic stochastic environment. In the tradition
of Kreps and Porteus (1978), Johnsen and Donaldson (1985), and Epstein and Zin (1989),
we represent a class of recursive preferences by

Ut = V [ut, µt(Ut+1)], (8)

where Ut is short-hand for utility starting at some date-t history zt, Ut+1 refers to utilities
for histories zt+1 = (zt, zt+1) stemming from zt, ut is date-t utility, V is a time aggregator,
and µt is a certainty-equivalent function based on the conditional probabilities p(zt+1|z

t).
This structure is suggested by Kreps and Porteus (1978) for expected utility certainty
equivalent functions. Epstein and Zin (1989) extend their work to stationary infinite-horizon
settings and propose the more general Chew-Dekel class of risk preferences. As in Section 2,
such preferences are dynamically consistent, history independent, future independent, and
stationary. They are also conditionally independent in the sense of Johnsen and Donaldson
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(1985): preferences over choices at any history at date t (z̄t, for example) do not depend on
other histories that may have (but did not) occur (zt 6= z̄t). You can see this in Figure 1:
If we are now at the node marked (A), then preferences do not depend on consumption at
nodes stemming from (B) denoting histories that can no longer occur.

If equation (8) seems obvious, think again. If you hadn’t read the previous paragraph
or its sources, you might just as easily propose

Ut = µt[V (ut, Ut+1)],

another seemingly natural combination of time and risk preference. This combination,
however, has a serious flaw: it implies dynamically inconsistent preferences unless it reduces
to (1). See Kreps and Porteus (1978) and Epstein and Zin (1989, Section 4). File away for
later the idea that the combination of time and risk preference can raise subtle dynamic
consistency issues.

We refer to the combination of the recursive structure (8) and an expected utility cer-
tainty equivalent as Kreps-Porteus preferences. A popular parametric example consists of
the constant elasticity aggregator,

V [u, µ(U)] = [(1 − β)uρ + βµ(U)ρ]1/ρ , (9)

and the “power certainty equivalent,”

µ(U) = [E(Uα)]1/α, (10)

with ρ, α < 1. Equations (9) and (10) are homogeneous of degree one with constant discount
factor β. This is more restrictive than the aggregators we considered in Section 2, but linear
homogeneity rules out more general discounting schemes: it implies that indifference curves
have the same slope along any ray from the origin, so their slope along the 45-degree line
must be the same, too. If U is constant, the weights (1 − β) and β define U = u as the
(steady state) level of utility. It is common to refer to 1 − α as the coefficient of relative
risk aversion and 1/(1 − ρ) as the intertemporal elasticity of substitution. If ρ = α, the
model is equivalent to one satisfying (1) and intertemporal substitution is the inverse of
risk aversion. More generally, the Kreps-Porteus structure allows us to specify risk aversion
and intertemporal substitution independently. Further, a Kreps-Porteus agent prefers early
resolution of risk if α < ρ; see Epstein and Zin (1989, Section 4). This separation of
risk aversion and intertemporal substitution has proved to be not only a useful empirical
generalization, but an important source of intuition about the properties of dynamic models.

We can generate further flexibility by combining (8) with a Chew-Dekel risk aggregator
(4), thereby introducing Chew-Dekel risk preferences to dynamic environments. We refer
to this combination as Epstein-Zin preferences.

Examples

Example 9 (Weil’s model of precautionary saving). We say consumption-saving models gen-
erate precautionary saving if risk decreases consumption as a function of current assets. In
the canonical consumption problem with additive preferences, income risk has this effect
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if the period utility function u has constant k ≡ u111u1/(u11)
2 > 0. See, for example,

Ljungqvist and Sargent (2000, pp 390-393). Both power utility and exponential utility
satisfy this condition. With power utility (u(c) = cα/α), k = (α − 2)(α − 1), which is
positive for α < 1 and therefore implies precautionary saving. (In the next section we
look at quadratic utility, which effectively sets α = 2, implying k = 0 and no precaution-
ary saving.) Similarly, with exponential utility (u(c) = − exp(−αc)), k = 1 > 0. With
Kreps-Porteus preferences we can address a somewhat different question: Does precaution-
ary saving depend on intertemporal substitution, risk aversion, or both? To answer this
question, consider the problem characterized by the Bellman equation

J(a) = max
c

{
(1 − β)cρ + βµ[J(a′)]ρ

}1/ρ

subject to the budget constraint a′ = r(a− c)+ y′, where µ(x) = −α−1 log E exp(−αx) and
{yt} ∼ NID(κ1, κ2). The exponential certainty equivalent µ is not homogeneous of degree
one, but it is analytically convenient for problems with additive risk. The parameters satisfy
ρ ≤ 1, α ≥ 0, r > 1, and β1/(1−ρ)rρ/(1−ρ) < 1. Of particular interest are ρ, which governs
intertemporal substitution, and α, which governs risk aversion.

The value function in this example is linear with parameters that can be determined
by the time-honored guess-and-verify method. We guess (we’ve seen this problem before)
J(a) = A + Ba for parameters (A, B) to be determined. The certainty equivalent of future
utility is

µ[J(a′)] = µ[A + Br(a − c) + By′] = A + Br(a − c) + Bκ1 − αB2κ2/2, (11)

which follows from equation (42) of Appendix B. The first-order and envelope conditions
are

0 = J(a)1−ρ
[
(1 − β)cρ−1 − βµρ−1Br

]

J1(a) = B = J(a)1−ρβµρ−1Br,

which imply

µ = (βr)1/(1−ρ)J(a) = (βr)1/(1−ρ)(A + Ba)

c = [(1 − β)/B]1/(1−ρ)J(a) = [(1 − β)/B]1/(1−ρ)(A + Ba).

The latter tells us that the decision rule is linear, too. If we substitute both equations into
(11), we find that the parameters of the value function must be

A = (r − 1)−1(κ1 − Bακ2/2)B, B =

[
(1 − β)1/(1−ρ)

1 − β1/(1−ρ)rρ/(1−ρ)

](1−ρ)/ρ

.

They imply the decision rule

c =
(
1 − β1/(1−ρ)rρ/(1−ρ)

) (
a + (r − 1)−1[κ1 − Bακ2/2]

)
.

The last term is the impact of risk. Apparently a necessary condition for precautionary
saving is α > 0, so the parameter controlling precautionary saving is risk aversion. [Adapted
from Weil (1993).]
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Example 10 (Merton-Samuelson portfolio model). Our next example illustrates the relation
between consumption and portfolio decisions in iid environments. The model is similar to
the previous example, and we use it to address a similar issue: the impact of asset return
risk on consumption. At each date t a theoretical agent faces the budget constraint

at+1 = (at − ct)
∑

i

witrit+1,

where wit is the share of post-consumption wealth invested in asset i and rit+1 is its return.
Returns {rit+1} are iid over time. Preferences are characterized by the constant elasticity
time aggregator (9) and an arbitrary linearly homogeneous certainty equivalent function.
The Bellman equation is

J(a) = max
c,w

{(1 − β)cρ + βµ[J(a′)]ρ}1/ρ,

subject to
a′ = (a − c)

∑

i

wir
′
i = (a − c)r′p

and
∑

i wi = 1, where rp is the portfolio return. Since the time and risk aggregators are
linear homogeneous, so is the value function, and the problem decomposes into separate
portfolio and consumption problems. The portfolio problem is:

max
w

µ[J(a′)] = (a − c) max
w

µ[J(r′p)].

Since returns are iid, the portfolio problem is the same at all dates and can be solved using
methods outlined in the previous section. Given a solution µ∗ to the portfolio problem, the
consumption problem is:

J(a) = max
c

{(1 − β)cρ + β[(a − c)µ∗)]ρ}1/ρ.

The first-order condition implies the decision rule c = [A/(1 + A)]a, where

A = [(1 − β)/β]1/(1−ρ)(µ∗)−ρ/(1−ρ).

The impact of risk is mediated by µ∗ and involves the familiar balance of income and
substitution effects. If ρ < 0, the intertemporal elasticity of substitution is less than one
and smaller µ∗ (larger risk premium) is associated with lower consumption (the income
effect). If ρ > 0, the opposite happens. In contrast to the previous example, the governing
parameter is ρ; the impact of risk parameters is imbedded in µ∗. Note, too, that the impact
on consumption of a change in µ∗ can generally be offset by a change in β that leaves A
unchanged. This leads to an identification issue that we discuss at greater length in the next
example. Farmer and Gertler use a similar result to motivate setting α = 1 (risk neutrality)
in the Kreps-Porteus preference models, which leads to linear decision rules even with risk
to income, asset returns, and length of life. [Adapted from Epstein and Zin (1989), Farmer
(1990), Gertler (1999), and Weil (1990).]

Example 11 (asset pricing). The central example of this section is an exploration of time
and risk preference in the traditional exchange economy of asset pricing. Preferences are
governed by the constant elasticity time aggregator (9) and the Chew-Dekel risk aggregator
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(4). We characterize asset returns for general recursive preferences and discuss the iden-
tification of time and risk preference parameters. We break the argument into a series of
steps.

Step (i) (consumption and portfolio choice). Consider a stationary Markov environ-
ment with states z and conditional probabilities p(z′|z). A dynamic consumption/portfolio
problem for this environment is characterized by the Bellman equation

J(a, z) = max
c,w

{(1 − β)cρ + βµ[J(a′, z′)]ρ}1/ρ,

subject to the budget constraint a′ = (a − c)
∑

i wiri(z, z′) = (a − c)
∑

i wir
′
i = (a − c)r′p,

where rp is the portfolio return. The budget constraint and linear homogeneity of the time
and risk aggregators imply linear homogeneity of the value function: J(a, z) = aL(z) for
some scaled value function L. The scaled Bellman equation is

L(z) = max
b,w

{(1 − β)bρ + β(1 − b)ρµ[L(z′)rp(z, z′)]ρ}1/ρ,

where b ≡ c/a. Note that L(z) is the marginal utility of wealth in state z.

As in the previous example, the problem divides into separate portfolio and consumption
decisions. The portfolio decision solves: choose {wi} to maximize µ[L(z′)rp(z, z′)]. The
mechanics are similar to Example 6. The portfolio first-order conditions are

∑

z′

p(z′|z)M1[L(z′)rp(z, z′), µ]L(z′)[ri(z, z′) − rj(z, z′)] = 0 (12)

for any two assets i and j. Given a maximized µ, the consumption decision solves: choose
b to maximize L. The intertemporal first-order condition is

(1 − β)bρ−1 = β(1 − b)ρ−1µρ. (13)

If we solve for µ and substitute into the (scaled) Bellman equation, we find

µ = [(1 − β)/β]1/ρ[b/(1 − b)](ρ−1)/ρ

L = (1 − β)1/ρb(ρ−1)/ρ. (14)

The first-order condition (13) and value function (14) allow us to express the relation be-
tween consumption and returns in almost familiar form. Since µ is linear homogeneous, the
first-order condition implies µ(x′r′p) = 1 for

x′ = L′/µ =
[
β(c′/c)ρ−1(r′p)

1−ρ
]1/ρ

.

The last equality follows from (c′/c) = (b′/b)(1−b)r′p, a consequence of the budget constraint
and the definition of b. The intertemporal first-order condition can therefore be expressed

µ(x′r′p) = µ

([
β(c′/c)ρ−1r′p

]1/ρ
)

= 1, (15)

a generalization of the tangency condition for an optimum (set the marginal rate of sub-
stitution equal to the price ratio). Similar logic leads us to express the portfolio first-order
conditions (12) as

E
[
M1(x

′r′p, 1)x′(r′i − r′j)
]

= 0.
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If we multiply by the portfolio weight wj and sum over j we find

E
[
M1(x

′r′p, 1)x′r′i

]
= E

[
M1(x

′r′p, 1)x′r′p

]
. (16)

Euler’s theorem for homogeneous functions allows us to express the right side as

E
[
M1(x

′r′p, 1)x′r′p

]
= 1 − EM2(x

′r′p, 1).

Whether this is helpful depends on M . [Adapted from Epstein and Zin (1989).]

Step (ii) (equilibrium). Now shift focus to an exchange economy in which output growth
follows a stationary Markov process: g′ = y′/y = g(z′). In equilibrium, consumption equals
output and the optimal portfolio is a claim to the stream of future output. We denote the
price of this claim by q and the price-output ratio by Q = q/y. Its return is therefore

r′p = (q′ + y′)/q = (Q′y′ + y′)/(Qy) = g′(Q′ + 1)/Q. (17)

With linear homogeneous preferences, the equilibrium price-output ratio is a stationary
function of the current state, Q(z). Asset pricing then consists of these steps: (a) Substitute
(17) into (15) and solve for Q:

µ
([

β(g′)ρ(Q′ + 1)
]1/ρ

)
= Q1/ρ.

(b) Compute the portfolio return rp from (17). (c) Use (16) to derive returns on other
assets.

Step (iii) (the iid case). If the economy is iid, we cannot generally identify separate time
and risk parameters. Time and risk parameters are intertwined in (16), but suppose we were
somehow able to estimate the risk parameters. How might we estimate the time preference
parameters β and ρ from observations of rp (returns) and b (the consumption-wealth ratio)?
Formally, equations (13) and (14) imply the intertemporal optimality condition

(1 − b)1−ρ = βµ(r′p)
ρ.

If rp is iid, µ and b are constant. With no variation in µ or b, the optimality condition
cannot tell us both ρ and β: for any value of ρ, we can satisfy the condition by adjusting
the discount factor β. The only limit to this is the restriction β < 1. Evidently a necessary
condition for identifying separate time and risk parameters is that risk varies over time. The
issue doesn’t arise with additive preferences, which tie time preference to risk preference.
[Adapted from Kocherlakota (1990) and Wang (1993).]

Step (iv) (extensions). With Kreps-Porteus preferences and non-iid returns, the model
does somewhat better in accounting for asset returns. It nevertheless fails to provide an
entirely persuasive account of observed relations between asset returns and aggregate con-
sumption. Roughly speaking, the same holds for more general risk preference specifications,
although the combination of exotic preferences and time-varying risk shows promise. [See
Bansal and Yaron (2003), Epstein and Zin (1991), Lettau, Ludvigson, and Wachter (2003),
Routledge and Zin (2003), Tallarini (2000), and Weil (1989).]

Example 12 (risk sharing). With additive preferences and equal discount factors, Pareto
problems generate constant weights on agents’ utilities over time and across states of nature,
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even if period/state utility functions differ. With Kreps-Porteus preferences, differences in
risk aversion lead to systematic drift in the weights. To be concrete, suppose states z follow a
Markov chain with conditional probabilities p(z′|z). Aggregate output is y(z). Agents have
the same aggregator, V (c, µ) = (cρ + βµρ)/ρ, but different certainty equivalent functions,

µi[x(z′)] =

(
∑

z′

p(z′|z)x(z′)αi

)1/αi

for state-dependent “utility” x. The Bellman equation for the Pareto problem is

J(w, z) = max
c,{w

z′}

(
(y(z) − c)ρ + βµ1[J(wz′ , z

′)]ρ
)

/ρ

subject to (
cρ + βµ2[wz′ ]

ρ
)

/ρ ≥ w.

Here c and wz′ refer to consumption and promised future utility of the second agent. The
first-order and envelope conditions imply

(y(z) − c)ρ−1 = λcρ−1

(µ1)ρ−α1J(wz′ , z
′)α1−1J1(wz′ , z

′) = J1(w, z)(µ2
z′)

ρ−α2wα2−1
z′

J1(w, z) = −λ.

The first equation leads to the familiar allocation rule c = [1 + λ1/(ρ−1)]−1y(z). If α1 6= α2,
the weight λ will generally vary over time. [Adapted from Anderson (2004) and Kan (1995).]

Example 13 (habits, disappointment aversion, and conditional independence). Habits and
disappointment aversion both assess utility by comparing consumption to a benchmark.
With disappointment aversion, the benchmark is the certainty equivalent. With habits,
the benchmark is a function of past consumption. Despite this apparent similarity, there
are a number of differences between them. One is timing: the habit is known and fixed
when current decisions are made, while the certainty equivalent generally depends on those
decisions. Another is that disappointment aversion places restrictions on the benchmark
that have no obvious analog in the habit model. A third is that habits take us outside the
narrowly-defined class of recursive preferences summarized by equation (8): they violate
the assumption of conditional independence. Why? Because preferences at any node in the
event tree depend on past consumption through the habit, which in turn depends on nodes
that can no longer be reached. In Figure 1, for example, decisions at node (A) depend on
the habit, which was chosen at (say) the initial node z0 and therefore depends on anything
that could have happened from there on, including (B) and its successors. The solution,
of course, is to define preferences conditional on a habit state variable and proceed in the
natural way.

Discussion: distinguishing time and risk preference

The defining feature of this class of preferences is the separation of time preference (sum-
marized by the aggregator V ) and risk preference (summarized by the certainty equivalent
function µ). In the functional forms used in this section, time preference is characterized
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by a discount factor and an intertemporal substitution parameter. Risk preference is char-
acterized by risk aversion and possibly other parameters indicated by the Chew-Dekel risk
aggregator. We have therefore added one or more parameters to the conventional additive
utility function (1). Examples suggest that the additional parameters may be helpful in
explaining precautionary saving, asset returns, and the intertemporal allocation of risk.

A critical question in applications is whether these additional parameters can be iden-
tified and estimated from a single time series realization of all the relevant variables. If
so, we can use the methods outlined in the previous section: apply a method of moments
estimator to the first-order conditions of the problem of interest. Identification hinges on
the nature of risk. If risk is iid, we cannot identify separate time and risk parameters. This
is clear in examples, but the logic is both straightforward and general: we need variation
over time to identify time preference. A more formal statement is given by Wang (1993).

5 Risk-sensitive and robust control

Risk-sensitive and robust control emerged in the engineering literature in the 1970s and were
brought to economics and developed further by Hansen and Sargent, their many coauthors,
and a few other brave souls. The most popular version of risk-sensitive control is based
on Kreps-Porteus preferences with an exponential certainty equivalent function. Robust
control considers a new issue: decision making when the agent does not know the probability
model generating the data. The agent considers instead a range of models, and makes
decisions that maximize utility given the worst possible model. The same issue is addressed
from a different perspective in the next section. Much of this work deals with linear-
quadratic-guassian (LQG) problems, but the ideas are applicable more generally. We start
by describing risk-sensitive and robust control in a static scalar LQG setting, where the
insights are less cluttered by algebra. We go on to consider dynamic LQG problems, robust
control problems outside the LQG universe, and challenges of estimating, and distinguishing
between, models based on risk-sensitive and robust control.

Static control

Many of the ideas behind risk-sensitive and robust control can be illustrated with a static,
scalar example. We consider traditional optimal control, risk-sensitive control, and robust
control as variants of the same underlying problem. The striking result is the equivalence
of optimal decisions made under risk-sensitive and robust control.

In our example, an agent maximizes some variant of a quadratic “return” function,

u(v, x) = −[Qv2 + Rx2],

subject to the linear constraint,

x = Ax0 + Bv + C(w + ε), (18)

where v is a control variable chosen by the agent, x is a state variable that is controlled
indirectly through v, x0 is a fixed “initial” value, (Q, R) > 0 are preference parameters,
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(A, B, C) are nonzero parameters describing the determination of x, ε ∼ N(0, 1) is noise,
and w is a distortion of the model that we’ll describe in greater detail when we get to robust
control. The problem sets up a tradeoff between the cost (Qv2) and potential benefit (Rx2)
of nonzero values of v. If you’ve seen LQG control problems before, most of this should
look familiar.

Optimal control. In this problem and the next one we set w = 0, thereby ruling out
distortions. The control problem is: choose v to maximize Eu given the constraint (18).
Since

Eu = −[Qv2 + R(Ax0 + Bv)2] − RC2, (19)

the objective functions with and without noise differ only by a constant. Noise therefore
has no impact on the optimal choice of v. For both problems, the optimal v is

v = −(Q + B2R)−1(ABR)x0.

This solution serves as a basis of comparison for the next two.

Risk-sensitive control. Continuing with w = 0, we consider an alternative approach that
brings risk into the problem in a meaningful way: we maximize an exponential certainty
equivalent of u:

µ(u) = −α−1 log E exp(−αu),

where α ≥ 0 is a risk aversion parameter. (This is more natural in a dynamic setting, where
we would compute the certainty equivalent of future utility à la Kreps and Porteus.) We
find µ(u) by applying formula (43) of Appendix B:

µ(u) = −(1/2) log(1 − 2αRC2) − [Qv2 + [R/(1 − 2αRC2)](Ax0 + Bv)2] (20)

as long as 1 − 2αRC2 > 0. This condition places an upper bound on the risk aversion
parameter α. Without it, the agent can be so sensitive to risk that her objective function is
negative infinity regardless of the control. The first term on the right side of (20) does not
depend on v or x, so it has no effect on the choice of v. The important difference from (19)
is the last term: the coefficient of (Ax0 + Bv)2 is larger than R, making the agent more
willing to tolerate nonzero values of v to bring x close to zero. The optimal v is

v = −(Q + B2R − αQRC2)−1(ABR)x0.

If α = 0 (risk neutrality) or C = 0 (no noise), this is the same as the optimal control
solution. If α > 0 and C 6= 0, the optimal choice of v is larger in absolute value because
risk aversion increases the benefit of driving x to zero.

Robust control. Our third approach is conceptually different. We bring back the distor-
tion w and tell the following story: We are playing a game against a malevolent nature, who
chooses w to minimize our objective function. If our objective were to maximize Eu, then
w would be infinite and our objective function would be minus infinity regardless of what
we do. Let us therefore add a penalty (to nature) of θw2, making our objective function

min
w

Eu + θw2.
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The parameter θ > 0 has the effect of limiting how much nature distorts the model, with
small values of θ implying weaker limits on nature. The minimization implies

w = (θ − RC2)−1R(Ax0 + Bv),

making the robust control objective function

min
w

Eu + θw2 = −[Qv2 + [R/(1 − θ−1RC2)](Ax0 + Bv)2] − RC2. (21)

The remarkable result: if we set θ−1 = 2α, the robust control objective differs from the
risk-sensitive control objective (20) only by a constant, so it leads to the same choice of v.
As in risk-sensitive control, the choice of v is larger in absolute value, in this case to offset
the impact of w. There is, once again, a limit on the parameter: where α was bounded
above, θ is bounded below. An infinite value of θ reproduces the optimal control objective
function and solution.

A further result applies to the example: risk-sensitive and robust control are observa-
tionally equivalent to the traditional control problem with suitably adjusted R. That is, if
we replace R in equation (19) with

R̂ = R/(1 − 2αRC2) = R + 2αR2C2/(1 − 2αRC2) > R, (22)

then the optimal control problem is equivalent to risk-sensitive control, which we’ve seen is
equivalent to robust control. If Q and R are functions of more basic parameters it may not
be possible to adjust R in this way, but the exercise points to the qualitative impact on the
control: be more aggressive. This result need not survive beyond the scalar case, but it’s
suggestive.

Although risk-sensitive and robust control lead to the same decision, they are based
on different preferences and give the decision different interpretations. With risk-sensitive
control, we are concerned with risk for traditional reasons and the parameter α measures
risk aversion. With robust control, we are concerned with model uncertainty (possible
nonzero values of w). To deal with it, we make decisions that maximize given the worst
possible specification error. The parameter θ controls how bad the error can be.

Entropy constraints. One of the most interesting developments in robust control is a
procedure for setting θ: namely, choose θ to limit the magnitude of model specification
error, with specification error measured by entropy . We define the entropy of transformed
probabilities p̂ relative to reference probabilities p by

I(p̂; p) ≡
∑

z

p̂(z) log[p̂(z)/p(z)] = Ê log(p̂/p), (23)

where the expectation is understood to be based on p̂. Note that I(p̂; p) is non-negative and
equals zero when p̂ = p. Since the likelihood is the probability density function expressed as
a function of parameters, entropy can be viewed as the expected difference in log-likelihoods
between the reference and transformed models, with the expectation based on the latter.

In a robust control problem, we can limit the amount of specification error faced by
an agent by imposing an upper bound on I: consider (say) only transformations p̂ such
that I(p̂; p) ≤ I0 for some positive number I0. This entropy constraint takes a particularly
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convenient form in the normal case. Let p̂ be the density of x implied by equation (18) and
p the density with w = 0:

p̂(x) = (2πC2)−1/2 exp[−(x − Ax0 − Bv − Cw)2/2C2] = (2πC2)−1/2 exp[−ε2/2]

p(x) = (2πC2)−1/2 exp[−(x − Ax0 − Bv)2/2C2] = (2πC2)−1/2 exp[−(w + ε)2/2].

Relative entropy is
I(p̂; p) = Ê(w2/2 + wε) = w2/2.

If we add the constraint w2/2 ≤ I0 to the optimal control objective (19), the new objective
is

min
w

−[Qv2 + R(Ax0 + Bv + Cw)2] − RC2 + θ(w2 − 2I0),

where θ is the Lagrange multiplier on the constraint. The only difference from the robust
control problem we discussed earlier is that θ is determined by I0. Low values of I0 (tighter
constraints) are associated with high values of θ, so the lower bound on θ is associated with
an upper bound on I0.

Example 14 (Kydland and Prescott’s inflation game). A popular macroeconomic policy
game goes like this: the government chooses inflation q to maximize the quadratic return
function,

u(q, y) = −[q2 + Ry2],

subject to the Phillips curve,

y = y0 + B(q − qe) + C(w + ε),

where y is the deviation of output from its social optimum, qe is expected inflation, (R, B, C)
are positive parameters, y0 is the noninflationary level of output, and ε ∼ N(0, 1). We
assume y0 < 0, which imparts an inflationary bias to the economy.

This problem is similar to our example, with one twist: We assume qe is chosen by private
agents to equal the value of q they expect the government to choose (another definition of
rational expectations), but taken as given by the government (and nature). Agents know
the model, so they end up setting qe = q. A robust control version of this problem leads to
the optimization:

max
q

min
w

−E
(
q2 + R[y0 + B(p − pe) + C(w + ε)]2

)
+ θw2.

Note that we can do the min and max in any order (the min-max theorem). We do both
at the same time, which generates the first-order conditions

q + RB[y0 + B(q − qe) + Cw] = 0

−θw + RC[y0 + B(q − qe) + Cw] = 0.

Applying the rational expectations condition qe = q leads to

q = −

(
RB

1 − θ−1RC2

)
y0, w =

(
θ−1RC

1 − θ−1RC2

)

y0.
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Take θ−1 = 0 as the benchmark. Then q = −RBy0 > 0 (the inflationary bias we mentioned
earlier) and w = 0 (no distortions). For smaller values of θ > RC2, inflation is higher.
Why? Because negative values of w effectively lower the noninflationary level of output (it
becomes y0 + Cw), leading the government to tolerate more inflation. As θ approaches its
lower bound of RC2, inflation approaches infinity. If we treat this as a “constraint problem”
with entropy bound w2/2 ≤ I0, then w = −(2I0)

1/2 (recall that w < 0) and the Lagrange
multiplier θ is related to I0 by

θ = RC2 − RCy0/(2I0)
1/2.

The lower bound on θ corresponds to an upper bound on I0. All of this is predicated on
private agents understanding the government’s decision problem, including the value of θ.
[Adapted from Hansen and Sargent (2004, ch 5) and Kydland and Prescott (1977).]

Example 15 (entropy with three states). With three states, the constraint I(p̂; p) ≤ I0 is two-
dimensional, since the probability of the third state can be computed from the other two.
Figure 4 illustrates the constraint for the reference probabilities p(1) = p(2) = p(3) = 1/3
(the point marked “+”) and I0 = 0.1. The boundary of the constraint set is the “egg.” By
varying I0 we vary the size of the constraint set. Chew-Dekel preferences can be viewed
from the same perspective. Disappointment aversion, for example, is a one-dimensional
class of “distortions.” If the first state is the only one worse than the certainty equivalent,
the transformed probabilities are p̂(1) = (1+δ)p(1)/[1+δp(1)], p̂(2) = p(2)/[1+δp(1)], and
p̂(3) = p(3)/[1 + δp(1)]. Their entropy is

I(δ) = log[1 + δp(1)] − p(1) log(1 + δ),

a positive increasing function of δ ≥ 0. By varying δ subject to the constraint I(δ) ≤ I0, we
produce the line shown in the figure. (It hits the boundary at δ = 1.5.) The interpretation of
disappointment aversion, however, is different: in the theory of Section 3, the line represents
different preferences, not model uncertainty.

Dynamic control

Similar issues and equations arise in dynamic settings. The traditional linear-quadratic
control problem starts with the quadratic return function,

u(vt, xt) = −
(
v>t Qvt + x>

t Rxt + 2x>
t Svt

)
,

where v is the control and x is the state. Both are vectors, and (Q, R, S) are matrices of
suitable dimension. The state evolves according to the law of motion

xt+1 = Axt + Bvt + C(wt + εt+1), (24)

where w is a distortion (zero in some applications) and {εt} ∼ NID(0, I) is random noise. We
use these inputs to describe optimal, risk-sensitive, and robust control problems. As in the
static example, the central result is the equivalence of decisions made under risk-sensitive
and robust control. We skip quickly over the more torturous algebraic steps, which are
available in the sources listed in Appendix A.
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Optimal control. We maximize the objective function,

E0

∞∑

t=0

βtu(vt, xt),

subject to (24) and wt = 0. From long experience, we know that the value function takes
the form

J(x) = −x>Px − q (25)

for a positive semi-definite symmetric matrix P and a scalar q. The Bellman equation is

−x>Px − q = max
v

{
−
(
v>Qv + x>Rx + 2x>Sv

)

−βE
[
(Ax + Bv + Cε′)>P (Ax + Bv + Cε′) + p

]}
. (26)

Solving the maximization in (26) leads to the Riccati equation

P = R + βA>PA − (βA>PB + S)(Q + βB>PB)−1(βB>PA + S>). (27)

Given a solution for P , the optimal control is v = −Fx, where

F = (Q + βB>PB)−1(βB>PA + S>). (28)

As in the static scalar case, risk is irrelevant: the control (28) does not depend on C. You
can solve such problems numerically by iterating on the Riccati equation: make an initial
guess of P (we use I), plug it into the right side of (27) to generate the next estimate of
P , and repeat until successive values are sufficiently close together. See Anderson, Hansen,
McGrattan, and Sargent (1996) for algebraic details, conditions guaranteeing convergence,
and superior computational methods (the doubling algorithm, for example).

Risk-sensitive control. Risk-sensitive control arose independently, but can be regarded
as an application of Kreps-Porteus preferences using an exponential certainty equivalent.
The exponential certainty equivalent introduces risk into the decisions without destroying
the quadratic structure of the value function. The Bellman equation is

J(x) = max
v

{
u(v, x) + βµ[J(x′)]

}
,

where the maximization is subject to x′ = Ax+Bv+Cε′ and µ(J) = −α−1 log E exp(−αJ).
If the value function has the quadratic form (25), the multivariate analog to (43) gives us:

µ[J(Ax + Bv + Cε′)] = −(1/2) log |I − 2αC>PC| + (Ax + Bv)>P̂ (Ax + Bv),

where
P̂ = P + 2αPC(I − 2αC>PC)−1C>P (29)

as long as |I − 2αC>PC| > 0. Each of these pieces has a counterpart in the static case.
The inequality again places an upper bound on the risk aversion parameter α; for larger
values, the integral implied by the expectation diverges. Equation (29) corresponds to (22);
in both equations, risk sensitivity increases the agent’s aversion to non-zero values of the
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state variable. Substituting P̂ into the Bellman equation and maximizing leads to a variant
of the Riccati equation,

P = R + βA>P̂A − (βA>P̂B + S)(Q + βB>P̂B)−1(βB>P̂A + S>), (30)

and associated control matrix,

F = (Q + βB>P̂B)−1(βB>P̂A + S>).

A direct (if inefficient) solution technique is to iterate on (29,30) simultaneously. We describe
another method shortly.

Robust control. As in our static example, the idea behind robust control is that a
malevolent nature chooses distortions w that reduce our utility. A recursive version has the
Bellman equation:

J(x) = max
v

min
w

{
u(v, x) + β

(
θw>w + EJ(x′)

)}

subject to the law of motion x′ = Ax + Bv + C(w + ε′). The value function again takes the
form (25), so the Bellman equation can be expressed

−x>Px − q = max
v

min
w

{
−
(
v>Qv + x>Rx + 2v>Sx

)
+ βθw>w

−βE
(
[Ax + Bv + C(w + ε′)]>P (Ax + Bv + Cε′) + p

)}
. (31)

The minimization leads to

w = (θI − C>PC)−1C>P (Ax + Bv)

and

θw>w − (Ax + Bv + Cw)>P (Ax + Bv + Cw) = (Ax + Bv)>P̂ (Ax + Bv),

where
P̂ = P + θ−1PC(I − θ−1C>PC)−1C>P. (32)

Comparing (32) with (29), we see that risk-sensitive and robust control lead to similar
objective functions and produce identical decision rules if θ−1 = 2α.

A different representation of the problem leads to a solution that fits exactly into the
traditional optimal control framework and is therefore amenable to traditional computa-
tional methods. The min-max theorem suggests that we can compute the solutions for v
and w simultaneously. With this in mind, define

v̂ =

[
vt

wt

]

, Q̂ =

[
Q 0
0 −βθI

]

, Ŝ =
[

S 0
]
, B̂ =

[
B C

]
.

Then the problem is one of optimal control, and can be solved using the Riccati equation
(27) applied to (Q̂, R, Ŝ, A, B̂). The optimal controls are v = −F1x and w = −F2x, where
the Fi come from partitioning F . A doubling algorithm applied to this problem provides
an efficient computational technique for robust and risk-sensitive control problems.
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Entropy constraints. As in the static case, dynamic robust control problems can be
derived using an entropy constraint. Hansen and Sargent (2004, ch 6) suggest

∞∑

t=0

βtw>
t wt/2 ≤ I0.

Discounting is convenient here, but is not a direct outcome of a multiperiod entropy cal-
culation. They argue that discounting allows distortions to continue to play a role in the
solution; without it, the problem tends to drive It and wt to zero with time. A recursive
version of the constraint is

It+1 = β−1(w>
t wt − It).

A recursive robust constraint problem is based on an expanded state vector, (x, I), and the
law of motion for I above. As in the static case, the result is a theory of the Lagrange
multiplier θ. Conversely, the solution to a traditional robust control problem with given
θ can be used to compute the implied value of I0. The recursive version highlights an
interesting feature of this problem: nature not only minimizes at a point in time, but
allocates entropy over time in the way that has the greatest adverse impact on the agent.

Example 16 (robust precautionary saving). Consider a linear-quadratic version of the pre-
cautionary saving problem. A theoretical agent has quadratic utility, u(ct) = (ct − γ)2, and
maximizes the expected discounted sum of utility subject to a budget constraint and an
autoregressive income processs:

at+1 = r(at − ct) + yt+1

yt+1 = (1 − ϕ)ȳ + ϕyt + σεt+1,

where {εt} ∼ NID(0, 1). We express this as a linear-quadratic control problem using ct as
the control and (1, at, yt) as the state. The relevant matrices are

[
Q S>

S R

]

=





1 −γ 0 0
−γ γ2 0 0
0 0 0 0
0 0 0 0



 ,

A =




1 0 0

(1 − ϕ)ȳ r ϕ
(1 − ϕ)ȳ 0 ϕ



 , B =




0
−r
0



 , C =




0
σ
σ



 .

We set β = 0.95, r = 1/β, γ = 2, ȳ = 1, ϕ = 0.8, and σ = 0.25. For the optimal control
problem, the decision rule is

ct = 0.7917 + 0.0500at + 0.1583yt.

For the robust control problem with θ = 2 (or the risk-sensitive control problem with
α = 1/2θ = 0.25), the decision rule is

ct = 0.7547 + 0.0515at + 0.1632yt.
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The impact of robustness is to reduce the intercept (precautionary saving) and increase the
responsiveness to a and y. Why? The anticipated distortion is

wt = −0.1557 + 0.0064at + 0.0204yt,

making the actual and distorted dynamics

A =




1 0 0

0.2 1.0526 0.8
0.2 0 0.8



 , A − CF2 =




1 0 0

−0.1247 1.0661 0.8425
−0.1247 0.0134 0.8425



 .

The distorted dynamics are pessimistic (the income intercept changes from 0.2 to −0.1247)
and more persistent (the maximal eigenvalue increases from 1.0526 to 1.1086). The latter
calls for more aggressive responses to movements in a and y. [Adapted from Hansen,
Sargent, and Tallarini (1999) and Hansen, Sargent, and Wang (2002).]

Beyond LQG

You might conjecture (as we did) that the equivalence of risk-sensitive and robust control
hinges critically on the linear-quadratic-gaussian structure. It doesn’t. The critical func-
tional forms are the exponential certainty equivalent and the entropy constraint. With these
two ingredients, the objective functions of risk-sensitive and robust control are the same.

We demonstrate the equivalence of risk-sensitive and robust control objective functions
in a finite-state setting where the math is relatively simple. Consider an environment with
conditional probabilities p(z′|z). Since z is immaterial in what follows, we ignore it from here
on. In a typical dynamic programming problem, the Bellman equation includes the term
EJ =

∑
z′ p(z′)J(z′). A robust control problem has a similar term based on transformed

probabilities p̂(z′) whose values are limited by an entropy penalty:

Ĵ = min
{p̂(z′)}

∑

z′

p̂(z′)J(z′) + θ

{
∑

z′

p̂(z′) log[p̂(z′)/p(z′)]

}

+ λ

(
∑

z′

p̂(z′) − 1

)

.

If p̂(z′) = p(z′), this is simply EJ . The new elements are the minimization with respect
to p̂ (the defining feature of robust control), the entropy penalty on the choice of p̂ (the
standard functional form), and the constraint that the transformed probabilities sum to
one. For each p̂(z′), the first-order condition for the minimization is

J(z′) + θ
{
log[p̂(z′)/p(z′)] + 1

}
+ λ = 0. (33)

If we multiply by p̂(z′) and sum over z′, we get Ĵ + θ + λ = 0, which we use to eliminate λ
below. Each first-order condition implies

p̂(z′) = p(z′)e−[J(z′)+θ+λ]/θ = p(z′)e−J(z′)/θ+Ĵ/θ.

If we sum over z′ and take logs, we get

Ĵ = −θ log

(
∑

z′

p(z′) exp[−J(z′)/θ]

)

,
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our old friend the exponential certainty equivalent with risk aversion parameter α = θ−1. If
we place Ĵ in its Bellman equation context, we’ve shown that robust control is equivalent
(even outside the LQG class) to maximizing Kreps-Porteus utility with an exponential
certainty equivalent. The log in the entropy constraint of robust control reappears in the
exponential certainty equivalent. An open question is whether there’s a similar relationship
between Kreps-Porteus preferences with (say) a power certainty equivalent and a power-like
alternative to the entropy constraint.

Discussion: interpreting parameters

Risk-sensitive and robust control raise a number of estimation issues, some we’ve seen,
and some we haven’t. Risk-sensitive control is based on a special case of Kreps-Porteus
preferences and therefore leads to the same identification issues we faced in the previous
section: we need variation over time in the conditional distribution of next period’s state
to distinguish time and risk parameters.

Robust control raises new issues. Risk-sensitive and robust control lead to the same
decision rules, so we might regard them as equivalent. But they’re based on different
preferences and therefore lead to different interpretations of parameters. While risk-sensitive
control suggests a risk averse agent, robust control suggests an agent who is uncertain about
the model that generated the data. In practice, the two can be quite different. One difference
is plausibility: We may find an agent with substantial model uncertainty (small θ) more
plausible than one with enormous risk aversion (large α). Similarly, if we find that a model
estimated for Argentina suggests greater risk aversion than one estimated for the US, we
might prefer to attribute the difference to model uncertainty. Hansen and Sargent (2004,
ch 8) have developed a methodology for calibrating model uncertainty (“error detection
probabilities”) that gives the robust-control interpretation some depth. Another difference
crops up in comparisons across policy regimes: the two models can differ substantially if we
consider policy experiments that change the amount of model uncertainty.

6 Ambiguity

In Sections 3 and 4, agents know the probabilities they face, and with enough regularity
and repetition an econometrician can estimate them. Here we consider preferences when
the consequences of our choices are uncertain or ambiguous. It’s not difficult to think of
such situations: what are the odds that China revalues this year by more than 10%, that
the equity premium is less than 3%, or that productivity shocks account for more than half
of the variance of US output growth? We might infer probabilities from history or market
prices, but it’s a stretch to say that we know (or can find out) these probabilities, even
though they may affect some of our decisions. One line of attack on this issue was suggested
by Savage (1954): that people maximize expected utility using “personal” or “subjective”
probabilities. In this case, we retain the analytical tractability of expected utility but
lose the empirical convenience of preferences based on the same probabilities that generate
outcomes (rational expectations). Another line of attack generalizes Savage: preferences are
characterized by multiple probability distributions or “priors.” We refer to such preferences
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as capturing ambiguity and ambiguity aversion, and explore two examples: Gilboa and
Schmeidler’s (1989) “max-min” expected utility for static environments and Epstein and
Schneider’s (2003) “recursive multiple priors” extension to dynamic environments. The
central issues are dynamic consistency (something we need to address in dynamic settings)
and identification (how do we distinguish agents with ambiguous preferences from those
with expected utility?).

Static ambiguity

Ambiguity has a long history and an equally long list of terminology. Different varieties
have been referred to as Knightian uncertainty, Choquet expected utility, and expected
utility with non-additive (subjective) probabilities. Each of these terms refers to essentially
the same preferences. Gilboa and Schmeidler (1989) provide a simple representation and
an axiomatic basis for a preference model in which an agent entertains multiple probability
models or priors. If the set of priors is Π, preferences are represented by the utility function

U({c(z)}) = min
π∈Π

∑

z

π(z)u[c(z)] = min
π∈Π

Eπu(c). (34)

Gilboa and Schmeidler refer to such preferences as “max-min” because agents maximize a
utility function that has been minimized with respect to the probabilities π. We denote
probabilities by π, rather than p, as a reminder that they are preference parameters. The
defining feature is the set Π, which characterizes both ambiguity and ambiguity aversion.
If Π has a single element, (34) reduces to Savage’s subjective expected utility.

Gilboa and Schmeidler’s max-min preferences incorporate aversion to ambiguity: agents
dislike consequences with unknown odds. Consider an agent choosing among mutually
exclusive assets in a three-state world. State 1 is pure risk: it occurs with probability 1/3.
State 2 is ambiguous: it occurs with probability 1/3 − γ, with −1/6 ≤ γ ≤ 1/6. State 3 is
also ambiguous and occurs with probability 1/3 + γ. The agent’s probability distributions
over γ define the set Π. We use the distributions πγ(γ = g) = 1 for −1/6 ≤ g ≤ 1/6, which
imply (1/3, 1/3 − g, 1/3 + g) as elements of Π. These distributions over γ are dogmatic in
the sense that each places probability one on a particular value. The approach also allows
non-dogmatic priors, such as πγ(γ = −1/6) = πγ(γ = 1/6) = 1/2. In this setting, consider
the agent’s valuation of three assets: A pays one in state 1, nothing otherwise; B pays
one in state 2; and C pays one in state 3. How much is each asset worth on its own to
a max-min agent? To emphasize the difference between risk and ambiguity, let u(c) = c.
Using (34), we find that asset A is worth 1/3 and assets B and C are each worth 1/6. The
agent is apparently averse to ambiguity in the sense that the ambiguous assets, B and C,
are worth less than the unambiguous asset, A. In contrast, an expected utility agent would
never value both B and C less than A.

Example 17 (portfolio choice and non-participation). We illustrate the impact of ambiguity
on behavior with an ambiguous version of Example 6. An agent has max-min preferences
with u(c) = cα/α and α = 0.5. She invests fraction w of initial wealth a0 in a risky asset
with returns (r(1) = κ1 − σ, r(2) = κ1 + σ, with σ = 0.17) and fraction 1−w in a risk-free
asset with return r0 = 1.01 in both states. Previously we assumed the states were equally
likely: π(1) = π(2) = 1/2. Here we let π(1) take on any value in the interval [0.4, 0.6] and
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set π(2) = 1 − π(1). Two versions of this example illustrate different features of max-min
preferences.

• Version 1: First-order risk aversion generates a non-participation result. With ex-
pected utility, agents are approximately neutral to fair bets. In a portfolio context,
this means they’ll buy a positive amount of an asset whose expected return is higher
than the risk-free rate, and sell it short if the expected return is lower. They choose
w = 0 only if the expected return is the same. With multiple priors, the agent chooses
w = 0 for a range of values of κ1 around the risk-free rate (the non-participation re-
sult). If we buy, state 1 is the worst state and the min sets π(1) = 0.6. To buy
a positive amount of the risky asset, the first-order condition must be increasing at
w = 0:

0.6(r0)
α−1(κ1 − σ − r0) + 0.4(r0)

α−1(κ1 + σ − r0) ≥ 0,

which implies κ1 − r0 ≥ 0.2σ or κ1 ≥ 1.01 + 0.2(0.17) = 1.044. If we sell, state 2
is worst and the min sets π(2) = 0.6. The analogous first-order condition must be
decreasing:

0.4(r0)
α−1(κ1 − σ − r0) + 0.6(r0)

α−1(κ1 + σ − r0) ≤ 0,

which implies κ1 ≤ r0 − 0.2σ = 0.976. For 0.976 ≤ κ1 ≤ 1.044 the agent neither buys
nor sells.

• Version 2: Let κ1 = 1.07. Then the mean return is high enough to induce the agent to
buy the risky asset and state 1 is worst. The optimal portfolio is w = 2.147. In this
two-state example, the result is identical to disappointment aversion with δ = 0.5.
With more states, this need not be the case.

[Adapted from Dow and Werlang (1993) and Routledge and Zin (2001).]

Dynamic ambiguity

Epstein and Schneider (2003) extend max-min preferences to dynamic settings, providing
an axiomatic basis for

Ut = ut + β min
π∈Πt

EπUt+1, (35)

where Ut is short-hand for utility starting at some date-t history zt, ut is utility at zt,
Ut+1 refers to utilities starting with histories zt+1 = (zt, zt+1) stemming from zt, Πt is
a set of one-period conditional probabilities π(zt+1|z

t), and Eπ denotes the expectation
computed from the prior π. Hayashi (2003) generalizes (35) to non-linear time aggregators:
Ut = V (ut, minπ∈Πt

EπUt+1).

As in Section 4, the combination of time and risk raises a question of dynamic con-
sistency: Can (35) be reconciled with some reasonable specification of date-zero max-
min preferences? The answer is yes, but the argument is subtle. Consider the “di-
lation” example suggested by Seidenfeld and Wasserman (1993). The starting point is
the event tree in Figure 1, to which we add ambiguous probabilities. (We suggest you
write them on the tree.) Date-one probabilities are π(z1 = 1) = π(z1 = 2) = 1/2;
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they are not ambiguous. Date-two (conditional) probabilities depend on z1 and an au-
tocorrelation parameter ρ, for which the agent has dogmatic priors on the values +1
and −1. Listed from top to bottom in the figure, the conditional probabilities of the
four date-two branches are π(z2 = 1|z1 = 1) = π(z2 = 2|z1 = 2) = (1 + ρ)/2 and
π(z2 = 2|z1 = 1) = π(z2 = 1|z1 = 2) = (1 − ρ)/2. In words: the probabilities depend
on whether z1 and z2 are the same or different and whether ρ is +1 or −1.

With these probabilities, consider the value of an asset that pays one if z2 = 1, zero
otherwise. For convenience, let u(c) = c and set β = 1. If the recursive and date-zero
valuations of the asset differ, preferences are dynamically inconsistent. Consider recursive
valuation. At node (A) in Figure 1, the value is (1 + ρ)/2. Minimizing with respect to ρ
as suggested by (35) implies ρ = −1 and a value of zero. Similarly, the value at node (B)
is also zero, this time based on ρ = 1. The value at date zero is therefore zero as well;
there is no ambiguity, so the value is (1/2)(0) + (1/2)(0) = 0. Now consider a (naive) date-
zero problem based on the two-period probabilities of the four possible two-period paths:
(1 + ρ)/4, (1 − ρ)/4, (1 − ρ)/4, and (1 + ρ)/4. Ambiguity in these probabilities is again
represented by ρ. Since the asset pays one if the first or third path occurs, its date-zero
value is (1 + ρ)/4 + (1 − ρ)/4 = 1/2, which is not ambiguous. The date-zero value (1/2)
is clearly greater than the recursive value (0), so preferences are dynamically inconsistent.
The computational point: our recursive valuation allows ρ to differ across date-one nodes,
while our date-zero valuation does not. The conceptual point: giving the agent access to
date-one information increases the amount of information but also increases the amount of
ambiguity, which reduces the value of the asset.

Any resolution of this dynamic inconsistency problem must modify either recursive or
date-zero preferences. Epstein and Schneider propose the latter. They show that if we
expand the set of date-zero probabilities in the right way, they lead to the same preferences
as (35). In general, preferences depend on probabilities over complete paths, which in
our example you might associate with the four terminal nodes in Figure 1. Epstein and
Schneider’s “rectangularity condition” tells us to compute the set of probabilities recursively,
one period at a time, starting at the end. At each step, we compute a set of probabilities
for paths given our current history. In our example, the main effect of this approach is to
eliminate any connection between the values of ρ at the two date-one nodes. The resulting
date-zero probabilities take the form (1+ ρ1)/4, (1− ρ1)/4, (1− ρ2)/4, and (1+ ρ2)/4. The
value of the asset is therefore (1 + ρ1)/4 + (1 − ρ2)/4 = 1/2 + (ρ1 − ρ2)/4. If we minimize
with respect to both ρ1 and ρ2, we set ρ1 = −1 and ρ2 = +1 and the value is zero, the same
value we computed recursively. In short, expanding the date-zero set of probabilities in this
way reconciles date-zero and recursive valuations and resolves the dynamic inconsistency
problem.

A related example illustrates the Epstein-Schneider approach in a somewhat more
complex environment that allows comparison to an alternative based on entropy con-
straints. The setting remains the event tree in Figure 1. Date-one probabilities are
π(z1 = 1) = (1 + δ)/2 and π(z1 = 2) = (1 − δ)/2, with a dogmatic prior for any δ in
the interval [−δ̄, δ̄] and 0 ≤ δ̄ < 1. Date-two probabilities remain (1 + ρ)/2, (1 − ρ)/2,
(1−ρ)/2, and (1+ρ)/2, but we restrict ρ to the interval [−ρ̄, ρ̄] for 0 ≤ ρ̄ ≤ 1. An asset has
date-two payoffs of (from top to bottom in the tree) 1 + ε, ε, 1, and 0, where ε ≥ 0. The
Seidenfeld-Wasserman example is a special case with δ̄ = ε = 0 and ρ̄ = 1. The addition of
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ε to the payoffs introduces a concern for first-period ambiguity. Consider four approaches
to the problem of valuing the asset:

• Naive date-zero approach. The four branches have date-zero probabilities of [(1 +
δ)(1 + ρ)/4, (1 + δ)(1− ρ)/4, (1− δ)(1− ρ)/4, (1− δ)(1 + ρ)/4]. Conditional on δ and
ρ, the asset is worth (1 + ε + δ + δρ)/2. If we minimize with respect to both δ and ρ,
the value is (1 + ε + δ̄ε − δ̄ρ̄)/2. If δ̄ = ρ̄ = 1/2 and ε = 1, the value is 9/8.

• Recursive approach. We work our way through the tree, starting at the end, applying
(35) as we go. At node (A), the value of the asset is (1 − ρ)/2. If we minimize with
respect to ρ, the value is minρ (1 + ρ)/2 + ε = (1 − ρ̄)/2 + ε (set ρ = −ρ̄). At (B),
the value is minρ (1 − ρ)/2 = (1 − ρ̄)/2 (set ρ = ρ̄). At the initial node, the value is
(1− ρ̄)/2 + (1 + δ)ε/2. Minimizing with respect to δ gives us (1− ρ̄)/2 + (1− δ̄)ε/2 =
[1 − ρ̄ + (1 − δ̄)ε]/2 (set δ = −δ̄). This is smaller than the date-zero valuation, which
implicitly forced us to choose the same value of ρ at (A) and (B). If δ̄ = ρ̄ = 1/2 and
ε = 1, the value is 1/2.

• Rectangular approach (“sophisticated date-zero”). As in the dilation example, we
allow ρ to differ between the two date-one nodes, giving us two-period probabilities of
[(1+δ)(1+ρ1)/4, (1+δ)(1−ρ1)/4, (1−δ)(1−ρ2)/4, (1−δ)(1+ρ2)/4]. Conditional on δ,
ρ1, and ρ2, the asset is worth (1+δ)(1+ρ1)(1+ε)/4+(1+δ)(1−ρ1)ε/4+(1−δ)(1−ρ2)/4.
Minimizing with respect to the parameters gives us the same value as the recursive
approach.

• Entropy approach. In this context, entropy is simply a way of describing the set
Π: an entropy constraint places limits on (δ, ρ1, ρ2) that correspond to limits on
the conditional probabilities at each node. We compute entropy at each node from
equation (23) using (1/2, 1/2) as the reference probabilities. The date-one entropy of
probabilities following the initial node is

I1(δ) = (1/2)[(1 + δ) log(1 + δ) + (1 − δ) log(1 − δ)].

Note that I1(0) = 0, I1(δ) = I1(−δ) ≥ 0, and dI1/dδ = (1/2) log[(1 + δ)/(1 − δ)].
Similarly, the date-two entropy for the node following z1 = i is

I2i(ρi) = (1/2)[(1 + ρi) log(1 + ρi) + (1 − ρi) log(1 − ρi)],

which has the same functional form as I1. The overall two-period entropy constraint
is

I1(δ) + [(1 + δ)/2]I21(ρ1) + [(1 − δ)/2]I22(ρ2) ≤ Ī (36)

for some number Ī > 0 (a preference parameter). Our problem is to chose (δ, ρ1, ρ2)
to minimize the value of the asset subject to the entropy constraint. What’s new is
the ability to shift ambiguity across periods implicit in the tradeoff between first- and
second-period entropy.

We solve this problem recursively. To do this, it’s helpful to break the constraint
into pieces: I1(δ) ≤ Ī1 and, for each i, I2i(ρi) ≤ Ī2 ≡ Ī − Ī1. they are equivalent to
the single entropy constraint (36) if the multipliers on the individual constraints are
equal. In the first period, we choose not only the value of δ that satisfies the date-one
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entropy constraint but how much entropy to use now (Ī1) and how much to save for
the second period (Ī2 = Ī − Ī1). The solution is the allocation of entropy that equates
the multipliers. Given a choice Ī1, we solve the date-two problems. At node A, the
entropy-constrained valuation problem is to choose ρ1 to minimize ε + (1 + ρ1)/2
subject to the entropy constraint I21(ρ1) ≤ Ī2. If θ is the multiplier on the constraint,
the first-order condition is

1/2 + (θ/2) log[(1 + ρ1)/(1 − ρ1)] = 0.

As with rectangularity, we set ρ1 < 0 to reduce the probability of the good state
(z2 = 1). We’re going to reverse engineer this and determine the constraint associated
with setting ρ1 = −1/2, the number we used earlier. With this value, entropy is
Ī2 = 0.1308 and the first-order condition implies θ = 0.9102. The value of the asset at
this node is therefore ε + 1/4. At node B, if Ī2 = 0.1308 a similar calculation implies
ρ2 = 1/2, θ = 0.9102, and an asset value of 1/4. Note, in particular, that ρ is set
differently at the two nodes, just as it is under rectangularity. At the initial node, we
now have the problem of choosing δ to minimize [(1+δ)/2](ε+1/4)+[(1−δ)/2](1/4) =
1/4+[(1+δ)/2]ε subject to the entropy constraint I1(δ) ≤ Ī1. The first-order condition
is

ε/2 + (θ/2) log[(1 + δ)/(1 − δ)] = 0.

If ε = 1 and Ī = 0.2616, the solution includes δ = 1/2, Ī1 = 0.1308, and θ = 0.9102.
As with rectangularity, the value is 1/2. However, for other values of ε entropy will
be reallocated between the two periods in the way that has the largest adverse impact
on utility. If 0 ≤ ε < 1, the risk between nodes (A) and (B) is relatively small and
entropy will be shifted from period one to period two, increasing |ρi| and decreasing
|δ|. If ε > 1, first-period risk is more important and entropy will be shifted from
period two to period one, with the opposite effect. This reallocation of ambiguity has
no counterpart with rectangularity, where the range of probabilities (and associated
parameters) is unrelated to other aspects of the problem (the payoffs, for example,
represented here by ε).

We have, then, four approaches to the same problem, each of which has arguments in
its favor. The naive date-zero approach, which is in the spirit of Chamberlain’s (2000)
econometric application, allows less impact of ambiguity than the other approaches, but
does so in a way that remains consistent with a version of date-zero max-min preferences.
It does, however, place some importance on the choice of date zero: if we reoptimize in the
future, we would typically compute different decisions. The recursive approach, without
rectangularity, might be justified as a game among agents at different dates. The same idea
has been widely used in other contexts (the next section, for example). The rectangular
approach is a clever way to reconcile date-zero and recursive approaches and leads to a
natural recursive extension of Gilboa-Schmeidler. One puzzling consequence is that it can
induce ambiguity in events that have none to begin with. (Recall the joint probability of the
first and third paths in the dilation example, which is 1/2 regardless of ρ.) The apparent
puzzle is resolved if we realize that the date-zero rectangular set does not represent date-
zero ambiguity, it represents the date-zero probabilities needed to anticipate preferences over
future ambiguity. Epstein and Schneider (2003, p 16) put it this way: “there is an important
conceptual distinction between the set of probability laws that the decision maker views as
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possible ... and the set of priors that is part of the representation of preference.” Finally, the
entropy approach allows the “min” to operate not only within a period but across periods,
as entropy and ambiguity are allocated over time to have the greatest impact. This violates
conditional independence for reasons similar to habits (Example 13), but seems consistent
with the spirit of pessimism captured by the “min” in (34).

Example 18 (precautionary saving). Ambiguity generates precautionary saving through
pessimism: pessimistic forecasts of future income reduce current consumption and raise
current saving. The magnitude depends on the degree of ambiguity. We illustrate the result
with a two-period example that shares several features with its robust control counterpart
(Example 16). The endowment is y0 at date zero and y1 ∼ N(κ1 + γ, κ2) at date one. The
parameter γ governs ambiguity: γ2 ≤ g2 for some positive number g. An agent has utility
function

U = u(c0) + β min
γ

Eu(c1)

with u(c) = − exp(−αc). The budget constraint is c1 = y1 + r(y0 − c0). If we substitute
this into the objective function and compute the expectation, we find

U = − exp(−αc0) − β min
γ

exp[−αr(y0 − c0) − α(κ1 + γ) + α2κ2/2].

The minimization implies γ = −g (pessimism). The first-order condition for c0 then implies

c0 = log(βr)/[α(r − 1)] + (ry0 + κ1)/(1 + r) − ακ2/[2(1 + r)] − g/(1 + r).

Here the second term is permanent income, the third is risk and risk aversion, and the
fourth the impact of ambiguity. [Adapted from Miao (2003).]

Example 19 (sharing ambiguity). If agents have identical homothetic preferences, optimal
allocations are proportional: the ratio of date-state consumption by one agent is propor-
tional to that of every other agent. In stationary settings, we often say (with some abuse of
the language) that consumptions are perfectly correlated. Observations of individuals and
countries, however, exhibit lower correlations, suggesting a risk-sharing puzzle. One line
attack on this puzzle is to let agents have different preferences. In international economics,
for example, we might let the two countries consume different goods. A variation on this
theme is to let preferences differ in their degree of ambiguity. In particular, suppose agents
have less ambiguity over their own endowment than over other agents’ endowments. A
symmetric two-period, two-agent example shows how this might work. Agent i has utility
function

U i = log ci
0 + β min

πi∈Πi

∑

z

πi(z) log ci
1(z),

for i = 1, 2. In period zero, each is endowed with one unit of the common good. In period
one, there are four states (z) with the following endowments (yi) and probabilities (πi):

z y1 y2 π1 π2 c1 c2

1 2 2 1/4 − γ1 1/4 − γ2 2 2
2 2 1 1/4 + γ1 1/4 − γ2 9/4 3/4
3 1 2 1/4 − γ1 1/4 + γ2 3/4 9/4
4 1 1 1/4 + γ1 1/4 + γ2 1 1
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Each set Πi is constructed from dogmatic priors over values for γi between −1/8 and 1/8.
Note that each agent is ambiguous about the other agent’s endowment, but not her own.
Without ambiguity (γi = 0), the symmetric optimal allocation consists of one-half the
aggregate endowment in all states: perfect correlation across the date-one states. With
ambiguity, agent i chooses the value of γi that minimizes her utility, γi = 1/8. Since agent
1 applies a lower probability (1/8) to state 3 than agent 2 (3/8), she gets a proportionally
smaller share of the aggregate endowment in that state. The resulting allocations are listed
in the table and show imperfect correlation across agents. The amount of ambiguity in
this case is so large that in states 2 and 3 the agent with the larger endowment consumes
even more than her endowment. A simple decentralization makes the same point. Suppose
agents at date zero trade claims to the endowments of the two countries. How much would
each invest in her own endowment, and how much in the other agent’s endowment? If w is
agent 1’s investment in her own endowment, it satisfies

wy1(z) + (1 − w)y2(z) = c1(z)

for all states z. The solution in this case is w = 5/4: agent 1 exhibits extreme home bias in
her portfolio. [Adapted from Alonso (2004) and Epstein (2001).]

Discussion: detecting ambiguity

Preferences based on subjective probabilities capture interesting features of behavior that
other preferences cannot, but they raise challenging issues for quantitative applications.
Consider subjective expected utility. If we allow the probabilities that enter preferences
(π) to differ from those that generate the data (p), we can “explain” many things that
are otherwise puzzling. The equity premium, for example, could result from agents placing
lower probability on high-return states than the data generating process. It is precisely the
lack of predictive content in such explanations that led us to rational expectations (π = p)
in Sections 3 and 4.

Ambiguity provides a justification for systematically pessimistic probabilities — they’re
the minimizing choice from a larger set — but raises two new issues. One is how to specify
the larger set of probabilities or models. Hansen and Sargent (2004) propose choosing mod-
els that have have similar log-likelihood functions, much as we do in hypothesis tests. Dif-
ferences between such models are presumably difficult to detect in finite data sets. Epstein
and Schneider (2004) suggest nonstationary ambiguous models that are indistinguishable
from a reference model, even in infinite samples. The other issue is observational equiva-
lence: robust control and recursive multiple priors generate behavior that could have been
generated by an expected utility agent, and possibly by a Kreps-Porteus agent as well. In
some cases, the agent seems implausible, but in others not. Distinguishing between am-
biguous and expected utility agents remains an active area of current research. The most
ambitious example to date is Epstein and Schneider (2004), who note that ambiguous news
has an unusual asymmetric affect on asset prices, since bad news affects the minimizing
probability distribution but good news does not.
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7 Inconsistency and temptation

Economists often tell stories about the hazards of temptation and the benefits of reduc-
ing our choice sets to avoid it. We eat too much junk food, we over-consume addictive
substances, and we save too little. To counter these tendencies, we may put ourselves in
situations where the range of choices limits our ability to make bad decisions. We go to
restaurants that serve only healthy food, support laws that discourage or prohibit addictive
substances, and sequester our wealth in housing and 401(k) accounts that are less easily
used to finance current consumption. The outstanding questions are why we make such
choices, what the relevant welfare criterion should be, and how we might detect the impact
of temptation on observed decisions.

Inconsistent preferences

The traditional approach was outlined in Example 4: dynamically inconsistent preferences.
This line of research is motivated by experimental studies, which suggest that subjects
discount the immediate future more rapidly than the distant future. Common practice is to
approximate this pattern of discounting with the “quasi-geometric” or “quasi-hyperbolic”
scheme: 1, δβ, δβ2, δβ3, and so on, with 0 < β < 1 and 0 < δ ≤ 1. The critical parameter
is δ: if δ < 1, the discount factor between dates t = 0 and t = 1 (namely, δβ) is less than
the discount factor between dates t = 1 and t = 2 (β).

Let us say, then, that an agent’s utility from date t on is

Ut = Et

[
u(ct) + δβu(ct+1) + δβ2u(ct+2) + δβ3u(ct+3) + · · ·

]

= u(ct) + δβEt

∞∑

j=0

βju(ct+j+1).

The only difference from Example 4 is the introduction of uncertainty implicit in the con-
ditional expectation Et. The dynamic inconsistency of these preferences suggests two ques-
tions: With competing preferences across dates, what does such an agent do? And what
preferences should we use for welfare analysis? We need an answer to the first question to
derive the behavioral implications of inconsistent preferences, and an answer to the second
to evaluate the benefits of policies that limit choice.

The consensus answer to the first question has become: treat the problem as a game
with the agent at each date acting as a separate player. Each such player makes choices
that maximize her utility, given the actions of other players (herself at other dates). There
are many games like this, corresponding to different strategy spaces. We look at stationary
Markov perfect equilibria, in which agents’ decisions are stationary functions of the current
state for some natural definition of the state. Consider the classical consumption problem
with budget constraint at+1 = rt+1(at − ct) + yt+1, where y and r are iid positive random
variables, and a borrowing constraint a ≥ a that we will ignore. Our objective is a stationary
decision rule ct = h(at) that solves the game. With constant discounting (δ = 1), the
problem is the solution to the dynamic programming problem summarized by the Bellman
equation,

J(a) = max
c

u(c) + βEJ [r′(a − c) + y′].
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Under standard conditions, J exists, and is unique, continuous, concave, and differentiable.
Given such a J , the maximization leads to a continuous stationary decision rule c = h(a).

The equilibrium of a game can be qualitatively different. A stationary decision rule can
be derived with a “future value function,”

J(a) = u(c∗) + βEJ [r′(a − c∗) + y′], (37)

where
c∗ = arg max

c
u(c) + δβEJ [r′(a − c) + y′]. (38)

Note the difference: when δ < 1, the relation that generates J is different from that gener-
ating the choice of c. As a result, the decision rule need not be unique or continuous; see
Harris and Laibson (2001), Krusell and Smith (2004), and Morris and Postlewaite (1997).
For all of these reasons, there can be no general observational equivalence result between
constant and quasi-geometric discounting. Nevertheless, the solutions are similar in some
common examples.

Example 20 (consumption and saving). Consider the classical saving problem with log
utility (u(c) = log c), budget constraint at+1 = rt+1(at − ct) (no labor income), and log-
normal return ({log rt} ∼ NID(µ, σ2)). With quasi-geometric discounting, we compute the
stationary decision rule from

J(a) = log c∗ + βEJ [r′(a − c∗)]

c∗ = arg max
c

log c + δβEJ [r′(a − c)].

We find the solution by guessing that the value function has the form J(a) = A + B log a.
The first-order condition from the maximization implies c = (1 + δβB)−1a. Substituting
into the recursion for J , we find B = (1 − β)−1 and

c =

(
1 − β

1 − β + δβ

)
a = h(a).

Compare this decision rule with two others:

• Constant discounting. The decision rule with constant discounting is c = (1 − β)a
(set δ = 1). Note that with quasi-geometric discounting the agent consumes more,
but not as much more as an agent with constant discount factor βδ. The latter is the
result of strategic interactions between agents. The data-t agent would like to save a
fraction δβ of her assets at date t, and a larger fraction β at future dates t + n > t.
She knows, however, that future agents will make the same calculation and choose
saving rates less than β. To induce future agents to consume more (absolutely, not as
a fraction of wealth), she saves more than δβ today. Note, too, that her consumption
behavior is observationally equivalent to an agent with constant discount factor

β̂ =
δβ

1 − β + δβ
< β.

A similar result holds for power utility, and suggests that despite the difficulties noted
earlier, constant and quasi-geometric discounting may be difficult to distinguish in
practice.

39



• Commitment. Suppose the date-t agent can choose decision rules for future agents.
Since the agent’s discount factor between any future dates t + n > t and t + n + 1 is
β, she chooses the decision rules ct = (1− δβ)at for date t and ct+n = (1− β)at+n for
all future dates t + n > t. This allocation maximizes the utility of the date-t agent,
so in that sense “commitment” (limiting our future choice sets) is good. But it’s not
clear that date-t preferences are the appropriate welfare criterion.

[Adapted from Barro (1999), İmrohoğlu, İmrohoğlu, and Joines (2003), and Phelps and
Pollack (1968).]

Example 21 (asset pricing). A similar example can be used to illustrate the role of quasi-
geometric discounting on asset prices. The first step is to derive the appropriate Euler
equation for (37,38). Define the “current value function” by

L(a) = max
c

u(c) + δβEJ [r′(a − c) + y′]. (39)

The first-order and envelope conditions are

u1(c) = δβE[J1(a
′)r′]

L1(a) = δβE[J1(a
′)r′],

implying the familiar L1(a) = u1(c). In the constant discounting case, J(a) = L(a) and
we’re almost done. With quasi-geometric discounting, we need another method to express
J1 in terms of u1. Note that we if we multiply (37) by δ and subtract from (39) we can
relate J to L and u: δJ(a) = L(a) − (1 − δ)u(c). Differentiating yields

δJ1(a) = L1(a) − (1 − δ)u1(c)h1(a).

If we multiply by β and substitute into the first-order condition, we get the Euler equation,

u(ct) = Et {β[1 − (1 − δ)h1(at+1)]u1(ct+1)rt+1} .

This relation is a curious object: it depends not only on the current agent’s decision problem,
but (through h) on the strategic interactions among agents. The primary result is to
decrease the effective discount factor, and raise mean asset returns, relative to the standard
model. [Adapted from Harris and Laibson (2003), Krusell, Kuruşçu, and Smith (2002), and
Luttmer and Mariotti (2003).]

Temptation

Many of us have been in situations in which we felt we had “too many choices.” (Zabar’s
Delicatessen and Beer World have that effect on us.) In traditional decision theory this
statement is nonsense: extra choices are at best neutral, because you can always decide not
to use them. Gul and Pesendorfer (2001) give the phrase meaning: they develop preferences
in which adding inferior choices (“temptations”) can leave you worse off. Among its features:
utility can depend on the set of choices, as well as the action taken; temptation (in the sense
of inferior choices) can reduce utility; and commitment (in the sense of restricting the choice
set) can increase utility. We describe their theory in a static setting, then go on to explore
dynamic extensions, including some that resemble quasi-geometric discounting.
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Let us compare two sets of choices, A and B. In traditional decision theory, the utility
of a set of possible choices is the utility of its best element. If the best element of A is
at least as good as the best element of B, then we would say A is weakly preferred to B:
A � B in standard notation. Suppose we allow choice over the potentially larger set A∪B.
The traditional approach would tell us that this cannot have an impact on our decision or
utility: if A � B, then we are indifferent between A and A∪B. Gul and Pesendorfer suggest
a set betweenness condition that allows inferior choices to affect our preference ordering:

A � B implies A � A ∪ B � B.

The traditional answer is one extreme (namely, A ∼ A∪B), but set betweenness also allows
inferior choices B to reduce our utility (A � A ∪ B). We say in such cases that B is a
temptation.

Adding set betweenness to an otherwise traditional theory, Gul and Pesendorfer show
that preferences can be represented by a utility function of the form:

u(A) = max
c∈A

[v(c) + w(c)] − max
c∈A

w(c). (40)

Note that preferences are defined for the choice set A; we have abandoned the traditional
separation between preferences and opportunities. To see how this works, compare the
choices c∗ = arg maxc∈A [v(c) + w(c)] and c∗∗ = arg maxc∈A w(c) for some choice set A.
If c∗ = c∗∗, then v and w agree on A and preferences are effectively governed by v (the w
terms cancel). If not, then w acts as a temptation function.

Example 22 (consumption and saving). A clever use of temptations reproduces quasi-
geometric discounting. Let

v(c1, c2) = u(c1) + βu(c2)

w(c1, c2) = γ [u(c1) + δβu(c2)] ,

with 0 < δ < 1 and γ ≥ 0 (intensity of temptation). The budget constraint has two parts:
c1 + k2 = rk1 and c2 = rk2, with k1 given, which defines A. The agent solves

max
c1,c2∈A

[(1 + γ)u(c1) + (1 + γδ)βu(c2)] − max
c1,c2∈A

γ [u(c1) + δβu(c2)] .

The first max delivers the first-order condition

1 =

(
1 + γδ

1 + γ

)
β

u1(c2)

u1(c1)
r.

The difference from the standard model lies in the first term. The two extremes are γ = 0
(which gives us the standard no-temptation model) and γ = ∞ (which gives us an irresistible
temptation and the quasi-geometric discount factor δβ). Since the term is decreasing in γ,
greater temptation raises first-period consumption. [Adapted from Krusell, Kuruşçu, and
Smith (2003).]

Gul and Pesendorfer (2002, 2004) and Krusell, Kuruşçu, and Smith (2003) have extended
the temptation approach to quasi-geometric discounting to infinite-horizon settings. We
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illustrate the idea with a non-stochastic version of the consumption problem. Krusell,
Kuruşçu, and Smith suggest an approach summarized by the “Bellman equation”

J(a) = max
c

{u(c) + βJ [r(a − c)] + L[r(a − c)]} − max
c

L[r(a − c)],

where
L(a) = γ {u(c∗) + δβL[r(a − c∗)]}

serves as a temptation function and c∗ = arg maxc u(c)+βJ [r(a− c)]+L[r(a− c)]. Gul and
Pesendorfer suggest the special case δ = 0. The Krusell-Kuruşçu-Smith version reproduces
the first-order conditions and decision rules generated by the Markov perfect equilibrium for
quasi-geometic discounting. The Gul-Pesendorfer version avoids some of the mathematical
oddities associated with the former. Each suggests an answer to the welfare question.

Discussion: detecting inconsistency and temptation

The difficulty of estimating the parameters of models based on quasi-geometric discount-
ing is that the decision rules often look like those from traditional models with constant
discounting. In some cases, they’re identical. One way to distinguish between them is to
look for evidence of commitment. Agents with inconsistent preferences or temptations will
typically be willing to pay something to restrict their future choice sets. In models with con-
stant discounting there is no such incentive, so commitment devices provide a natural way
to tell the two approaches apart. Laibson, Repetto, and Tobacman (1998, 2004) apply this
logic and find that the combination of illiquid asset positions (pensions, 401(k) accounts)
and high-interest liabilities (credit card debt) generates sharp differences between the two
models and precise estimates of the discount parameters (δ = 0.70, β = 0.96, annual). With
constant discounting, borrowing at high rates and investing at (on average) lower rates are
incompatible.

The focus on commitment devices seems right to us, both for quasi-geometric discounting
and for temptations more generally. There are, however, some outstanding questions, most
of them noted by Kocherlakota (2001). One is whether tax-sheltered savings have other
explanations (lower taxes, for example). If 401(k)’s were a pure commitment device, we
might expect people to pay more for them and receive less, but this doesn’t seem to be
the case: sheltered and unsheltered investment vehicles have pretty much the same returns.
Similarly, if commitment is valuable, why would an agent hold both liquid (uncommitted)
and illiquid (committed) assets? The former would seem to undercut the bite of the latter.
Finally, what is the likely market response to the conflicting demands of commitment and
temptation? Will the market supply commitment devices or ways to avoid them? Is credit
card debt designed to satisfy agents’ desire to undo past commitments? Does it lower
welfare? Perhaps future work will resolve these questions.

8 Questions, answers, and final thoughts

We have described a wide range of exotic preferences and applied them to a number of
classic macroeconomic problems. Are there any general lessons we might draw from this
effort? We organize a discussion around specific questions.
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Why model preferences rather than behavior?

Preferences play two critical roles in economic models. The first is that they provide, in
principle, an unchanging feature of a model in which agents can be confronted with a wide
range of different environments, institutions, or policies. For each environment, we derive
behavior (decision rules) from the same preferences. If we modelled behavior directly, we
would also have to model how it adjusted to changing circumstances. The second role of
preferences is to evaluate the welfare effects of changing policies or circumstances. Without
preferences, it’s not clear how we how we should distinguish good policies from bad. In our
view, this is a major accomplishment of the “temptation” interpretation of quasi-geometric
discounting: it suggests a clear welfare criterion.

Are exotic preferences simply an excuse for free parameters?

Theoretical economists think nothing of modifying the environments faced by their agents.
Aggregate and individual risk, length of life, information structures, enforcement technolo-
gies, and productivity shocks are all fair game. However, many economists seem to believe
that modifying preferences is cheating — that we will be able to explain anything (and
hence nothing) if we allow ourselves enough freedom over preferences. We would argue
instead that we have restricted ourselves to an extremely limited model of preferences for
no better reasons than habit and convenience. Many of the weaknesses of expected utility,
for example, have been obvious since the 1950s. We now have the tools to move beyond
additive preferences in several directions, why not use them?

Equally important, the axiomatic foundations that underlie the preferences described
above impose a great deal of discipline on their structure. We have let these foundations
go largely without mention, but they nevertheless restrict the kinds of flexibility we’ve
considered. Chew-Dekel risk preferences, for example, are more flexible than expected
utility, but far less flexible than general preferences over state-contingent claims. One
consequence: exotic preferences have led to some progress on the many empirical puzzles
that plague macroeconomics and finance, but they have yet to resolve them.

Some exotic preferences make greater — or at least novel — demands on the data than
we are used to. Kreps-Porteus and Epstein-Zin preferences, for example, require time-
dependence of risk to identify separate time and risk preference parameters. Robust control
comes with an entropy toolkit for setting plausible values of the robustness parameter, but
comparisons across environments may be needed to distinguish robust from risk-sensitive
control. Applications of temptation preferences to problems with quasi-geometric discount-
ing rely heavily (entirely?) on observed implications of commitment devices, about which
there is some difference of opinion. In short, exotic preferences raise new empirical issues
that deserve open and honest debate. We see no reason, however, to rule out departures
from additive utility before we start.
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Are exotic preferences “behavioral”?

Many of the preferences we’ve described were motivated by discrepancies between observed
behavior and the predictions of the additive preference model. In that sense, they have a
“behaviorial” basis. They are also well-defined neoclassical preference orderings. For that
reason, we think our approach falls more naturally into neoclassical economics than into
the behavioral sciences.

We regard this as both a strength and a weakness. On the one hand, the strong theoret-
ical foundations for exotic preferences allow us to use all the tools of neoclassical economics,
particularly optimization and welfare analysis. On the other hand, these tools ignore as-
pects of human behavior stressed in other social sciences, particularly sociology and social
psychology. Kreps (2000) and (especially) Simon (1959) are among the many economists
who have argued that something of this sort is needed to account for some aspects of be-
havior. We have some sympathy for this argument, but it’s not what we’ve done in this
paper.

Are there interesting preferences we’ve missed?

If you’ve gotten this far, you may feel that we can’t possibly have left anything out. But
it’s not true. We barely scratched the surface of robust control, ambiguity, hyperbolic
discounting, and temptation. If you’d like to know more, you might start with the papers
listed in Appendix A. We also ignored some lines of work altogether. Among them are:

• Incomplete preferences. Some of the leading decision theorists suggest that the most
troubling axiom underlying expected utility is not the infamous “independence ax-
iom” but the more common assumption of completeness: that all possible choices
can be compared. Schmeidler (1989), for example, argues that the critical role of the
independence axiom is to extend preferences from choices that seem obvious to those
that do not — that it delivers completeness. For this and other reasons, there is a long
history of work on incomplete preferences. Notable applications in macroeconomics
and finance include Bewley (1986) and Kraus and Sagi (2002, 2004).

• Flexibility, commitment, and self-control. Kreps (1979) describes environments in
which agents prefer to maintain flexibility over future choices, just as agents with
temptations prefer commitment. Amador, Werning, and Angeletos (2003) character-
ize optimal allocation rules when you put the two together. Ameriks, Caplin, Leahy,
and Tyler (2004) quantify self-control with survey evidence and relate it to individual
financial decisions. Benhabib and Bisin (2004) take a cognitive approach to a similar
problem in which agents choose between automatic processes, which are subject to
temptations, and control processes, which are not.

• Social utility. Experimental research suggests that preferences often depend on com-
parisons with others; see, for example, Blount (1995) and Rabin (1998). Abel (1990)
and Gaĺı (1994) are well-known applications to asset pricing.

• Other psychological approaches. Bénabou and Tirole (2002) model self-confidence.
Bernheim and Rangel (2002) build a cognitive model and apply it to addiction. Brun-
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nermeier and Parker (2003) propose a model of subjective beliefs in which agents bal-
ance the utility benefits of optimism and the utility cost of inferior decisions. Caplin
and Leahy (2002) introduce anxiety into an otherwise standard dynamic choice frame-
work and explore its implications for portfolio choice and the equity premium.

We find all of this work interesting, but leave a serious assessment of it to others.

Have we wasted your time (and ours)?

It’s too late, of course, but you might ask yourself whether this has been worth the effort.
To paraphrase Monty Python, “Have we deliberately wasted your time?” We hope not.
We would guess that additive preferences will continue to be the industry standard in
macroeconomics, finance, and other fields. Their tight structure leads to strong and clear
predictions, which is generally a virtue. But we would also guess that exotic preferences
will become more common, particularly in quantitative work. Who knows, they may even
lose their claim to being “exotic.”

We think several varieties of exotic preferences have already proved themselves. Appli-
cations of Kreps-Porteus and Epstein-Zin preferences to asset pricing, precautionary saving,
and risk-sharing are good examples. While these preferences have not solved all of our prob-
lems, they have become a frequent source of insight. Their ease of use in econometric work
is another mark in their favor.

The preferences described in the last three sections are closer to the current frontiers
of research, but we are optimistic that they, too, will lead to deeper understanding of
economic behavior. Certainly robust control, recursive multiple priors, and temptation are
significant additions to our repertoire. They also raise new questions about identification
and estimation. Multiple priors is a good example. When the probabilities affecting an
agent’s preferences are not characterized simply by the probabilities generating the data,
we need to parameterize the agent’s uncertainty and describe how it evolves through time.
We also need to explore ways to distinguish such agents from those with expected utility or
Kreps-Porteus preferences. Temptation is another. As a profession, we need to clarify the
features of data that identify the parameters of temptation functions, as well as the kinds
of temptations that are most useful in applied work. None of these tasks are simple, but
we think the progress of the last decade gives us reason to hope for more.

Let’s get to work!
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A Reader’s guide

We have intentionally favored application over theory, but if you’d like to know more about
the theoretical underpinnings of exotic preferences, we recommend the following:

Section 2. Koopmans (1960) is the classic reference. Koopmans (1986) lays out the
relevant theory of independent preferences. Lucas and Stokey (1984) approach the problem
from what now seems like a more natural direction: they start with an aggregator function,
while Koopmans derives one. Epstein and Hynes (1983) propose a convenient functional
form and work through an extensive set of examples.

Section 3. Kreps (1988) is far and away the best reference we’ve seen for the theory
underlying the various approaches to expected utility. Starmer (2000) gives a less technical
overview of the theory and discusses both empirical anomalies and modifications of the
theory designed to deal with them. Brandenburger (2002) describes some quite different
approaches to probability assessments that have been used in game theory.

Section 4. Our two favorite theory references on dynamic choice in risky environments
are Kreps and Porteus (1978) and Johnsen and Donaldson (1985). Epstein and Zin (1989)
describe the technical issues involved in specifying stationary recursive preferences and
explain the roles of the parameters of the constant elasticity version.

Section 5. Our primary reference is Hansen and Sargent’s (2004) monograph on robust
control; we recommend chapters 2 (overview), 5 (static robust control), 6 (dynamic robust
control), and 9 and 17 (entropy constraints). Whittle (1990) is an introduction to linear-
quadratic robust control for engineers. Hansen and Sargent (1997) introduce risk-sensitive
control in chapters 9 and 15. Gianonni (2002), Maenhout (2004), Onatski and Williams
(2003), and Van Nieuwerburgh (2001) are interesting applications.

Section 6. The essential references are Gilboa and Schmeidler (1989) and Epstein and
Schneider (2003). Among the other papers we have found useful are Ahn (2003), Casadesus-
Masanell, Klibanoff, and Ozdenoren (2000), Chamberlain (2000), Epstein and Schneider
(2002, 2004), Gilboa and Schmeidler (1993), Hayashi (2003), Klibanoff, Marinacci, and
Mukerji (2003), Sagi (2003), Schmeidler (1989), and Wang (2003).

Section 7. The relevant theory is summarized in Gul and Pesendorfer (2004), Harris and
Laibson (2003), and Krusell, Kuruşçu, and Smith (2004). DeJong and Ripoll (2003), Este-
ban, Miyagawa, and Shum (2004), and Krusell, Kuruşçu, and Smith (2002) are interesting
applications.

B Integral formulas

A number of our examples lead to normal-exponential integrals, most commonly as expecta-
tions of log-normal random variables or exponential certainty equivalents of normal random
variables. The following definitions and formulas are used in the paper.

Standard normal density and distribution functions. If x ∼ N(0, 1), its density is f(x) =
(2π)−1/2e−x2/2. Note that f is symmetric: f(x) = f(−x). The distribution function is
Φ(x) ≡

∫ x
−∞ f(u)du. By symmetry,

∫∞
x f(u)du = 1 − Φ(x) = Φ(−x).
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Integrals of “ea+bxf(x).” We come across integrals of this form in Section 3, when we
compute certainty equivalents for log-normal risks, and Section 4, when we consider the
exponential certainty equivalent of a linear value function (Weil’s model of precautionary
saving). Their evaluation follows from a change of variables. Consider the integral

∫ x∗

−∞
ea+bxf(x)dx = (2π)−1/2

∫ x∗

−∞
ea+bx−x2/2dx.

We solve this by completing the square: expressing the exponent as a+bx−x2/2 = d−y2/2,
where d is a scalar and y = fx−g is a linear transformation of x. We find y = x− b (f = 1,
g = b) and d = a + b2/2, so the integral is

(2π)−1/2
∫ x∗

−∞
ea+bx−x2/2dx = ea+b2/2

∫ x∗−b

−∞
f(y)dy = ea+b2/2 Φ(x∗ − b). (41)

A common special case has an infinite upper limit of integration:

E(ea+bx) = (2π)−1/2
∫ ∞

−∞
ea+bx−x2/2dx = ea+b2/2. (42)

Example: Let log y = µ + σx; then Ey = E(elog y) = E(eµ+σx) = eµ+σ2/2.

Integrals of “ea+bx+cx2

f(x).” Integrals like this arise in Section 5 in risk-sensitive control
with a quadratic objective. Consider

∫ ∞

−∞
ea+bx+cx2

f(x)dx = (2π)−1/2
∫ ∞

−∞
ea+bx−(1−2c)x2/2dx.

We assume 1−2c > 0; otherwise the integral diverges. We solve by the same method: express
the exponent as a+bx−(1−2c)x2/2 = d−y2/2 for some y = fx−g. We find f = (1−2c)1/2,
g = b/(1 − 2c)1/2, and d = a + b2/(1 − 2c), so that y = (1 − 2c)1/2x − b/(1 − 2c)1/2. The
integral becomes

∫ ∞

−∞
ea+bx+cx2

f(x)dx = (1 − 2c)−1/2ea+b2/[2(1−2c)]
∫ ∞

−∞
f(y)dy

= (1 − 2c)−1/2ea+b2/[2(1−2c)]. (43)
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Figure 1
A representative event tree
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This event tree illustrates how uncertainty might evolve through time. Time moves from
left to right, starting at date t = 0. At each date t, an event zt occurs. In this example, zt

is drawn from the two-element set Z = {1, 2}. Each node is marked by a box and can be
identified from the path of events that leads to it, which we refer to as a history and denote
by zt ≡ (z0, ..., zt), starting with an arbitrary initial node z0. Thus the upper right node
follows two up branches, z1 = 1 and z2 = 1, and is denoted z2 = (z0, 1, 1). The set Z2 of
all possible 2-period histories is therefore {(z0, 1, 1), (z0, 1, 2), (z0, 2, 1), (z0, 2, 2)}, illustrated
by the far right “column” of nodes.
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Figure 2
State-space indifference curves with Chew-Dekel preferences
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All Together

The figure contains indifference curves for three members of the Chew-Dekel class of risk
preferences. In each case, the axes are consumption in state 1 and state 2 and states are
equally likely. The risk preferences are expected utility (upper left, α = 0.5), weighted
utility (upper right, bold line, γ = −0.25), and disappointment aversion (lower left, bold
line, δ = 0.5). For weighted utility and disappointment aversion, expected utility is pictured
with a lighter line for comparison. For disappointment aversion, the indifference curve is
the upper envelope of two indifference curves, each based on a different set of transformed
probabilities. The extensions of these two curves are shown as dashed lines. The lower
right figure has all three together: expected utility (dashed line), weighted utility (solid
line), and disappointment aversion (dash-dotted line). Note that disappointment aversion
is more sharply convex than weighted utility near the 45-degree line (the effect of first-order
risk aversion), but less convex far away from it.
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Figure 3
Risk and risk premiums with Chew-Dekel preferences
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The figure illustrates the relation between risk and risk premiums discussed in Example
5 for three members of the Chew-Dekel class of risk preferences. The preferences are:
expected utility (dashed line), weighted utility (solid line), and disappointment aversion
(dash-dotted line). The point is the nonlinearity of disappointment aversion: the ratio of
the risk premium to risk is greater for small risks than large ones. Parameter values are the
same as Figure 2.
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Figure 4
Transformed probabilities: Entropy and disappointment aversion
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The figure illustrates two sets of transformed probabilities described in Example 15: one
set generated by an entropy constraint and the other by disappointment aversion. The
bold triangle is the three-state probability simplex. The “+” in the middle represents the
reference probabilities: p(1) = p(2) = p(3) = 1/3. The area inside the egg-shaped contour
represents transformed probabilities with entropy less than 0.1. The dashed line represents
probabilities implied by disappointment aversion with δ between 0 to 1.5.
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