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Abstract

In this paper, we propose an alternative approach for pricing and hedging American

barrier options. Speci�cally, we obtain an analytic representation for the value and hedge

parameters of barrier options, using the decomposition technique of separating the Euro-

pean option value from the early exercise premium. This allows us to identify some new

put-call \symmetry" relations and the homogeneity in price parameters of the optimal ex-

ercise boundary. These properties can be utilized to increase the computational e�ciency

of our method in pricing and hedging American options.

Our implementation of the obtained solution indicates that the proposed approach is

both e�cient and accurate in computing option values and option hedge parameters. Our

numerical results also demonstrate that the approach dominates the existing lattice methods

in both accuracy and e�ciency. In particular, the method is free of the di�culty that

existing numerical methods have in dealing with spot prices in the proximity of the barrier,

the case where the barrier options are most problematic.



1 Introduction

Non-standard or exotic options are widely used today by banks, corporations and insti-

tutional investors, in their management of risk. The main reason for their popularity is

that although standard put and call options are useful risk management tools, they may

not be suitable for hedging certain types of risks. For instance, a corporation may wish

to control its raw material costs by limiting the average price paid for a commodity over

time (Asian options), or obtaining protection, contingent upon the price breaching a barrier

(barrier options). In these and other situations, the use of standard options may involve

over-hedging (i.e. providing protection against risks that need not be hedged), and hence

higher costs. Consequently, the use of non-standard options may not only �t the risk to be

hedged better, but also lower the hedging cost, in such cases.

Although the payo� functions of non-standard options are often not more complex than

that of standard options, this is not true for the pricing and hedging of such options. In

most cases, such as Asian, barrier and look-back options, whose payo�s are path-dependent,

closed-form solutions are hard to come by. This is true even for European-style contracts,

except for the special case where the underlying asset price follows a geometric Brownian

motion. Therefore, numerical schemes have to be used to calculate the option prices and

hedge parameters for American-style options and even for some European-style options.

The focus of this paper is on the valuation of barrier options. Barrier options are options

that are either extinguished (\out") or established (\in"), when the price of the underlying

asset crosses a particular level (\barrier"). Common examples are \down-and-out," \down-

and-in," \up-and-out" and \up-and-in" options, both calls and puts. An additional feature

of some barrier options is that a rebate is paid when the option is extinguished or an

additional premium is due when the option is established. Barrier options are among the

most common exotic options that are used in the foreign exchange, interest rate and equity

options markets.1 They are used by hedgers to obtain insurance protection above or below

particular levels of the price of the underlying asset. They are also used by speculators,

who have a directional view, to obtain a somewhat less expensive directional play on an

underlying asset. In some instances, barrier options are American-style. Barrier options

also include \capped" options as special cases.

Common approaches to option valuation and hedging such as lattice and simulation

methods can be problematic when applied to barrier options. It is known that for such

options, the binomial method is subject to severe convergence problems, and consequently,

can lead to huge errors even with a large number of time-steps. The reason is that the

payo� of a barrier option is very sensitive to the position of the barrier in the lattice - a

\knockout" option behaves very much like a standard option when the underlying asset

1A recent estimate cited by Hsu (1997) computes the size of the barrier options market to be over 2

trillion dollars in 1996. The market has grown considerably since that time.
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price is far away from the barrier, but has a near-zero \expected" payo�, when it is close

to the barrier.

Boyle and Lau (1994) and Ritchken (1995) develop a restricted binomial/trinomial

method to overcome the problem. However, with these methods, it is still extremely di�-

cult to achieve convergence when the barrier is close to the current price of the underlying

asset (the \near-barrier" problem). Gao (1996) proposes an \adaptive mesh" method, which

overcomes some of the problems posed by the above models. Even with this modi�cation,

the computational time increases as the current underlying price gets closer to the barrier,

although at a much slower pace. Further, as shown by Gao, the computational intensity

of lattice methods is proportional to the maturity and the square of the volatility. Conse-

quently, the computational costs associated with pricing long maturity and high volatility

contracts can be prohibitively high. Cheuk and Vorst (1996) show that a trinomial lattice

with a 
exible drift can alleviate the \near-barrier" problem. However, the method permits

probabilities to become negative, and can produce fairly large pricing errors for long-term

contracts when volatility is high and the spot price is close to the barrier.2

In this paper, we propose a quasi-analytic approach to the valuation of American barrier

options. Speci�cally, we obtain an analytic representation for the value and hedge param-

eters of barrier options using the decomposition technique. Under this representation, the

price of an American-style barrier option can be split up into the price of a standard Eu-

ropean barrier option and an early exercise premium. Similar results can also be obtained

for hedge parameters. By using the put-call \symmetry" condition that we derive, and

the well-known relationship between \up-and-out" and \up-and-in" options, we can extend

our results to a whole series of barrier options. We also identify some characteristics of

the optimal exercise boundary: homogeneity in the strike and barrier prices, translational

invariance in time, and monotonicity in time, and monotonicity in the strike and barrier

prices. As mentioned later on, these properties are important in the practical implemen-

tation of the method we propose, since the boundary does not have to be recomputed

separately for each option.

Our method of implementing the analytic representation using the decomposition tech-

nique allows us to calculate both option prices and hedge parameters e�ciently and accu-

rately. For example, in the case of American \up-and-out" options, our numerical results

indicate that the approach outperforms both the Ritchken (1995) method and the Cheuk

and Vorst (1996) model. In particular, the method we propose is faster than the Ritchken

method by two orders of magnitude for equally accurate prices and hedge ratios, when the

underlying asset price is close to the barrier. Moreover, in contrast with the other methods,

the computational time required by the analytic approach hardly increases as the current

2In a recent paper, Rogers and Stapleton (1998) provide an alternative lattice based method for the

valuation of barrier options, in which the number of time steps taken is random. However, they implement

their method only for the case of European barrier options and standard American options.
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underlying asset price gets closer to the barrier. In fact, this \near-barrier" problem, which

is endemic in the lattice methods, is completely eliminated in our formulation. This is be-

cause the optimal exercise boundary, the su�cient input function of our valuation formula,

is independent of the current underlying price. The method proposed here also applies to

\capped" options and might be extended to other types of path-dependent options, such as

Asian options, whose payo� functions have a Markovian representation in the state space

of low dimensionality.3

The paper is organized as follows. In Section 2, an analytic representation is derived �rst

for the option price and hedge parameters under the assumption that the underlying asset

price process follows a geometric Brownian motion. Put-call \symmetry" conditions and

some properties of the optimal exercise boundary are then identi�ed that extend the analytic

results to a whole range of related barrier options. Section 3 discusses the implementation

of the quasi-analytic formulae and presents our numerical results. Section 4 concludes the

paper.

2 A Pricing Model

In this section, we �rst obtain an analytic representation for the price of American barrier

options using the decomposition technique. Based on this representation, we then derive

some properties of the optimal exercise boundary.

The basic idea of the decomposition technique, proposed by MacMillan (1986) and

Barone-Adesi and Whaley (1987), is to divide the price of an American option into that

of a similar European option and the early exercise premium. This approach was further

developed and speci�c results were obtained for the case of the log-normal underlying price

process by Kim (1990), Jacka (1991), Carr, Jarrow and Myneni (1992), and Ho, Stapleton

and Subrahmanyam (1997a). Speci�cally, an American option can be considered as a sum

of two sets of cash 
ows using the decomposition approach: the value of the terminal cash


ow at expiration and the value of the intermediate cash 
ows between the valuation date

and expiration date.4 The former represents the value of an otherwise identical European

option, and the latter, the value of the exercise privilege associated with an American

option. Under the risk-neutral pricing framework, the value of an American option is equal

to the sum of the expectation of these cash 
ows discounted by the risk-free rate.

Before proceeding with the analysis, we �rst de�ne our notation as follows:

3Hansen and Jorgensen (1997) apply the method to 
oating-strike Asian options.
4See also Geske and Johnson (1984), Selby and Hodges (1987), and Schroder (1989).
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c : the price of a standard European call option.

C : the price of a standard American call option.

cj : the price of a non-standard European call option of type j.

e.g., \j = uo" denotes an \up-and-out" barrier option.

Cj : the price of a non-standard American call option of type j.

p : the price of a standard European put option.

P : the price of a standard American put option.

pj : the price of a non-standard European put option of type j.

Pj : the price of a non-standard American put option of type j.

We also use a superscript \o" to denote standard options. For instance, Co and co represents

the price of a standard American option and a standard European call option respectively.

A superscript \p" denotes the American premium due to the early exercise feature. We

also make some assumptions that are common in the option pricing literature as follows:

Assumption 1 The capital market is complete and perfect. Trading takes place continu-

ously and without transaction costs.

Assumption 1 allows us to use the risk-neutral pricing framework proposed by Cox and

Ross (1976), and formalized and extended by Harrison and Kreps (1979), and Harrison and

Pliska (1981). In the analysis that follows, we work under the risk-neutral measure.

Assumption 2 There are two tradeable assets in the market, a risky asset and a riskless

asset. The continuously compounded interest rate r is constant.5 The risky asset pays

a constant dividend yield of � � 0, and its price process fSt; t � 0g follows a geometric

Brownian motion.6 Namely,

dSt = St(r � �) dt+ �St dWt (1)

where � and � are constants, and W is a one-dimensional standard Brownian motion.

As shown later on, one advantage of making this assumption is that we can obtain an

explicit expression for the early exercise premium, and as a result, a quasi-analytic solution

for the price of an American barrier option, for instance, an \up-and-out" put option.

5The analysis can be extended to the case of a time-varying (deterministic) interest rate and dividend

yield. In principle, the e�ect of stochastic interest rates can also be incorporated into the analysis along the

lines proposed by Ho, Stapleton, and Subrahmanyam (1997a), although the details of the implementation

are likely to be complex.
6The available empirical evidence suggests that that this assumption may not always be a good one.

Nonetheless, the log-normal case can serve as a benchmark, since the Black-Scholes (1973) model, which

is based on this assumption, is widely used and understood in practice. The analysis presented here can

be extended to the case of time-varying (deterministic) volatility. However, the case of stochastic volatility

would involve additional complexities, as in the case of standard options.
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Consequently, we can perform comparative statics analysis and examine analytically the

properties of the optimal exercise boundary. We can also derive a put-call \symmetry"

relation which allows us to extend the pricing models to a whole set of barrier options.

Without loss of generality, we consider an American-style \up-and-out" put option on

the risky asset with a strike price K, a barrier H, maturity T , and a payo� h(St) =

(K � St)
+. The non-standard feature here is that if the asset price \hits" a barrier, the

option becomes worthless. (Unless otherwise stated, a zero rebate is assumed throughout

the paper, for simplicity. It is relatively easy to relax this assumption.)

Two cases are worth analyzing here: a) H > K [out-of-the-money \up-and-out"]; b)

H � K [in-the-money (at-the-money) \up-and-out"]. Note that in the terminology of

barrier options \in-the-money" or \out-of-the-money" are not related to the usual de�nition

where S < K or S > K.

2.1 Out-of-the-Money \Up-and-Out" Puts

We consider out-of-the-money American \up-and-out" put options, case a) above, in this

subsection. Assume there exists an option pricing function s.t. G : R++ � [0; T ] ! R+.

De�ne the continuation region, C, in which early exercise is not optimal, and the stopping

region, S, in which it is, as follows:

C = f(St; t)jG(St; t) > h(St)g;
S = f(St; t)jG(St; t) � h(St)g

As demonstrated in McKean (1965) and van Moerbeke (1976), the American option

problem can be converted into a free-boundary problem. Under this formalization, G(St; t)

is the solution to the following problem [see Du�e (1992, p. 125) for details on the regularity

conditions on functions G and h]:

(Ds � r)G(St; t) = 0 8(S; t) 2 C (2)

G(ST ; T ) = hT (3)

G(St; t) > ht 8(S; t) 2 C (4)

G(St; t) = ht 8(S; t) 2 S (5)

@

@St
G(St; t) =

@

@St
ht 8(S; t) 2 @C (6)

where the operator Ds is de�ned as follows

Ds =
@

@t
+ (r � �)S

@

@S
+
�2S2

2

@2

@S2
(7)

Note that the option will be knocked out at t if M t
0
� H, where M t2

t1
� supt1���t2 S� .
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Theorem 1 Consider an American-style \up-and-out" put option with H > K, whose

payo� upon exercise is h(St) = (K �St)
+ 8 t 2 [0; T ]. The price of the option is given by

G(S0; 0) = E
h
e�rT (K � ST )

+IfMT
0
<Hg

i
+

Z T

0

e�rtE
h
(rK � �St)IfMt

0
<H;(St;t)2Sg

i
dt: (8)

Proof. See Appendix I. 2

Note that the last term on the right-hand side (RHS) of (8) indicates that the incre-

mental gain over the time interval [t; t+ dt] from exercising the option at t is (rK � �St)dt.

Similarly, the incremental gain from exercising a call option whose payo� is (St �K)+ is

(�St�rK)dt. Since this gain becomes negative when � = 0, an American barrier call option

should not be exercised before expiration unless there is some kind of compensation for the

absence of the dividend.7

Eq. (8) provides an analytical representation for the price of an American \up-and-out"

put option. However, in order to facilitate the implementation of the formula, it would be

desirable to have an explicit expression for the expectation E[�] in (8). This, in turn,

depends on the shape of the optimal exercise boundary @C. We assume that the boundary

can be represented by a continuous function Bp
uo

: [0; T ]!R++.
8

Corollary 1 Suppose the underlying asset pays no dividend.9 The price of an American

\up-and-out" put option with the barrier level H > K is given by

Puo(S0;K) = puo(S0;K) +

Z T

0

rK e�rt Pr(St � B
p
uo;t;M

t
0
< H)dt (9)

where Pr(�) is the risk-neutral probability, M t2
t1

is the running maximum as de�ned before,

and the argument (S0;K) is used to emphasize that the option is valued at time 0 with the

underlying asset price equal to S0 and a strike price K.

The optimal exercise boundary Bp
uo

= fBp
uo;t; t 2 [0; T ]g is determined by the following

condition

K �B
p
uo;t = lim

St#B
p
uo;t

Puo(St;K); M t
0
< H; 8t 2 [0; T ] (10)

Proof. We have that the exercise event f(St; t) 2 Stg = fSt � B
p
uo;tg and dividend � = 0.

Substituting these into (8) yields (9). 2

We now provide further analytical results for the case of out-of-the-money \up-and-out"

put options, on which the implementation (discussed later on in section 3) is based.

7Merton (1973) �rst pointed this out in the case of the American options, both standard and \down-

and-out."
8This amounts to assuming that the boundary consists only of a single piece. This is expected to hold

given that the underlying follows a geometric Brownian motion. Our numerical studies also support the

validity of the assumption (c.f. Tables 1 and 2 and Figure 1). However, a rigorous justi�cation of this

assumption remains to be provided.
9The case of a non-zero dividend yield is considered in the proof of the general formula in Appendix I.
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We de�ne the notation as follows:

� � r � �2=2

� � r + �2=2

�2

d2(x; y; t) � ln(x=y) + �t

�
p
t

d1(x; y; t) � d2(x; y; t) + �
p
t

where � denotes the volatility of the instantaneous return in the underlying asset.

2.1.1 Option Prices and Hedge Parameters

As discussed before, the price of an American \up-and-out" put option can be written as

follows:

Puo(S0;K) = puo(S0;K) + P p
uo
(S0;K) (11)

where puo and P p
uo

are the prices of the corresponding European option and the early

exercise premium respectively. Speci�cally, the price of the European \up-and-out" put

option can be written as [see Rubinstein and Reiner (1991)]:

puo(S0;K) = po(S0;K)� pui(S0;K)

= po(S0;K)� (H=S0)
2��2po(H2=S0;K) (12)

where po(x;K) denotes the Black-Scholes price of a standard European put option with

current underlying price x and strike price K, and pui(�) represents the price of a European
up-and-in put option. Following Black and Cox (1976) (Eq. [7]) (see also Cox and Miller

(1965, p.221, Eq. [71])], we have

Pr(St � B
p
uo;t;M

t
0
< H) = N(�d2(S0; B

p
uo;t; t))� (H=S0)

2��2N(�d2(H2=S0; B
p
uo;t; t))

where N(�) represents the cumulative standard normal function. Thus the American pre-

mium of an \up-and-out" put option is given by

P p
uo

=

Z T

0

e�rtrK
h
N(�d2(S0; B

p
uo;t; t))� (H=S0)

2��2N(�d2(H2=S0; B
p
uo;t; t))

i
dt (13)

Notice that the �rst term on the RHS of (13) is the exercise premium of a standard

American put option and, as expected, the second term on the RHS goes to zero as H " 1.

The hedge parameters can be calculated in a straightforward fashion from (11). For

instance, the delta is

�p
uo

=
@

@S0

(puo + P p
uo
) (14)
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where (for the European part)

@puo

@S0

= �N(�d1(S0;K; T )) � (H=S0)
2�
h
N(�d1(H2=S0;K; T ))

�(2�� 2)po(H2=S0;K)=(H2=S0)
i

(15)

and (for the American premium part)

@P p
uo

@S0

= �
Z T

0

e�rt
rK

S0�
p
t

n
n(d2(S0; B

p
uo;t; t)) + (H=S0)

2��2

h
n(d2(S0;H

2=B
p
uo;t; t))� (2�� 2)�

p
tN(�d2(H2=S0; B

p
uo;t; t))

io
dt (16)

In the above, n(�) is the standard normal density function. One can show that, similar

to the option price, the delta of an American \up-and-out" option also collapses to that

of a standard American option as the barrier goes to in�nity. Formulae for other hedge

parameters (e.g. gamma, vega, rho, etc.) can be obtained similarly by di�erentiating (11)

accordingly and are not presented here in the interest of brevity.

It has been generally recognized that the hedging of barrier options is more di�cult

than that of standard options.10 This is mainly due to the unstable properties of the hedge

parameters of barrier options, especially near the barrier. The formulae developed here

allow us to analytically examine these properties and provide an approach to computing

the hedge parameters that is free of the \near-barrier" problem.

2.1.2 The Optimal Exercise Boundary

We now examine the properties of the optimal exercise boundary. It follows from (10) that

the boundary fBp
uo;t; t 2 [0; T ]g is determined by the following condition

K �B
p
uo;t = Puo(B

p
uo;t;K); B

p
uo;t < H; 8t 2 [0; T ): (17)

Using (11) and (12) yields

K �B
p
uo;t = puo(B

p
uo;t;K) +

Z T

t

ds rK e�r(s�t)2
4N(�d2(Bp

uo;t; B
p
uo;s; s� t))�

 
H

B
p
uo;t

!
2��2

N(�d2(H2=B
p
uo;t; B

p
uo;s; s� t))

3
5 (18)

In the context of standard American options with a log-normal price process for the

underlying asset, van Moerbeke (1976) proves that the exercise boundary is continuously

di�erentiable, and Jacka (1991) and Kim (1990) discuss its monotonicity in time. We now

demonstrate that the exercise boundary (for both standard and non-standard options) has

10Derman, Ergener, and Kani (1995) and Carr, Ellis, and Gupta (1998) demonstrate that one can use

the property of put-call parity to construct a portfolio consisting of a put and a call to statically hedge

European barrier options.
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two additional properties. One is homogeneity of degree one in the strike price and the

barrier level and the other is translational invariance in time. As shown later, these two

properties, combined with the fact that the boundary is independent of the underlying asset

price, have important implications for the implementation of a pricing model for American

options.

Theorem 2 For American barrier options with a strike level K and a barrier H, the

optimal exercise boundary has the following properties:

(a) (Homogeneity of Degree One in Strike and Barrier Prices)

B
p

uo;t(�K; �H) = �B
p

uo;t(K;H) 8 � > 0; t 2 [0; T ] (19)

(b) (Translational Invariance)

B
p

uo;t�(T2�T1)
(K;H; T1) = B

p

uo;t(K;H; T2) 8t 2 [T2 � T1; T2] (20)

(c) (Monotonicity in Time)

@B
p

uo;t=@t > 0; t 2 [0; T ) (21)

(d) (Monotonicity in the Barrier Level)

@B
p

uo;t=@H < 0; t 2 [0; T ] (22)

Proof. See Appendix II. 2

From the proofs, one can see that the translational invariance in time should hold for any

American option with a stationary process for the underlying asset price. The monotonicity

is valid as long as the reward for stopping equals K � St. The homogeneity follows from

the homogeneity of the option pricing function and relies on the log-normality assumption

on the underlying process and the assumption that the payo� function h(�) is homogeneous
of degree one in (K;H).

For the sake of completeness, we state the following corollary without proof.

Corollary 2 For standard American (put) options with a strike level K, the optimal exer-

cise boundary has the following properties:

(a) (Homogeneity in Strike)

B
p

t (�K) = �B
p

t (K) 8 � > 0; t 2 [0; T ] (23)

(b) (Translational Invariance)

B
p

t�(T2�T1)
(K;T1) = B

p

t (K;T2) 8t 2 [T2 � T1; T2] (24)

(c) (Monotonicity in Time)

@B
p

t =@t > 0; t 2 [0; T ) (25)
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Theorem 2 and Corollary 2 show the su�ciency of the log-normality assumptions for the

homogeneity of the optimal exercise boundary (and the homogeneity of the option pricing

function). Whereas the su�ciency has been discussed in the literature (see below), to the

best of our knowledge, necessity has not been established. Indeed, the homogeneity of the

pricing function is sometimes assumed to hold in order to simplify the problem.11

2.1.3 Put-Call \Symmetry"

Chesney and Gibson (1995) and McDonald and Schroder (1998) show that a put-call \sym-

metry" condition holds for standard American options.12 Namely,

C(St;K; �; r) = P (K;St; r; �); (26)

Bc

t (K; r; �) =
K2

B
p

t (K; �; r)
; (27)

where Bc

t (�) and B
p

t (�) denote the optimal exercise boundary point at time t of a standard
American call and put option, respectively. Notice that, given K, �, r, � and t, both Bc

t (�)
and B

p

t (�) are independent of the spot price St. In other words, the exercise decision is

made independently of the current spot price. We now demonstrate that a similar relation

holds for American barrier options.

Theorem 3 Under Assumption 2, for barrier options there exists a put-call \symmetry"

between a \down-and-out" call option and an \up-and-out" put option, i.e., the following

relationships hold

Cdo(S0;K;H; r; �) = Puo(K;S0;KS0=H; �; r); (28)

Bc

do;t(K;H; r; �) =
K2

B
p

uo;t(K;K2=H; �; r)
(29)

where the superscripts c and p denote call and put, respectively.

Proof. See Appendix III. 2

The intuition behind this \symmetry" relation is as follows. We know that the put-call

\symmetry" holds for standard options. For \knock-out" options, the additional feature is

11To some extent, the implication of the homogeneity of the optimal exercise boundary on the underlying

price process can be studied by examining the possible restrictions on the underlying process imposed by the

homogeneity of the option pricing function. This is because the former homogeneity comes from the latter

homogeneity. Furthermore, to study the necessary conditions for homogeneity, it is enough to consider the

case of European options.

As shown in Merton (1973), for a standard European option, a return distribution that is independent of

the initial price level is, in general, su�cient for the option price to be homogeneous of degree one in (S;K).

[Merton (1990, p.306-307) provides a counter example for this su�ciency condition.] We conjecture that

this condition on the return distribution may also be necessary for the homogeneity of the option price in

a one-factor continuous-time setting.
12See also Schroder (1997).
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the \knock-out" provision. Hence, the di�erence between the value of a \knock-out" option

and the value of the corresponding standard option depends only on the likelihood of the

asset price breaching the barrier. The likelihood of breaching the barrier is determined by

the distance between the stock price and the barrier, and the drift of stock price. Under

the assumption that the stock price follows a log-normal di�usion, the asset price of the

\down-and-out" call drifts away from the barrier at the speed of r� �. For the put option,

the drift is � � r. Since the barrier is above the stock price in this case, the stock price

again drifts towards the barrier at the speed of � � r, in another words, away from the

barrier at the speed of r��, the same speed as in the call option case. Given that the drifts

in the two cases are the same, we also require that the distances between the logarithm

of the stock price and the logarithm of the barrier be the same. For the call option, the

distance is lnS � lnH, and for the put option, the distance is lnHp � lnK, where Hp is

the equivalent barrier for the put option. Equating the two yields Hp = SK=H: Similar

equivalent arguments also apply to the optimal exercise condition.

Note that, in principle, log-normality is a su�cient, but not a necessary condition for

put-call \symmetry" to hold. However, the \symmetry" requires that a strong restriction

be placed on the underlying distribution even in the zero-drift case. In fact, as shown in

Carr, Ellis and Gupta (1998), the di�usion term has to have a \symmetry" around the

current asset price for the argument to go through.

2.2 In-the-Money \Up-and-Out" Puts

In this subsection, we consider in-the-money (at-the-money) American \up-and-out" put

options. Consider �rst the case of zero dividend yield. Here, we have:

Theorem 4 If the dividend yield on the underlying asset is zero, that is � = 0, an in-the-

money (at-the-money) \up-and-out" American put option will always be exercised either

before it expires or at expiration.

Proof. See Appendix IV. 2

As in the case of any put option, early exercise allows the holder of the option to capture

the time value of money on the early receipt of the exercise price, by giving up the insurance

value of the option and the present value of the dividend stream on the underlying asset.

As long as there is no insurance value or stream of dividends, this type of put option should

be exercised if it is in the money. This is exactly what happens in this case.

It is worth mentioning that Theorem 4 does not carry over to the case of out-of-the-

money \knock-out" options. This is because when H > K, an exercised position may not

have enough cash to cover the short position in the stock when the barrier is breached.13

13See case (a) of Appendix IV.
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This observation also shows that the option will be exercised unconditionally, if the rebate

amount, R, is less than K �H, when K > H.

Now suppose � > 0. In this case, it may not be always optimal to exercise an in-

the-money \up-and-out" put since the incremental gain over some time-interval dt from

exercising the option may be negative. However, we expect Theorem 4 to also hold in the

case of \low" dividend yield because of continuity and, in particular, in the case of � � r.

2.3 Other Types of Barrier Options

So far, in this section, we have examined \up-and-out" put options and \down-and-out"

call options. We now brie
y analyze \up-and-out" call and \down-and-out" put options.

As shown below, these options include \capped" options as special cases.14

Consider the case of American \up-and-out" call options. At-the-money (H = K) and

out-of-the-money (H < K) calls are easy to analyze. One can see that the only possible

cash
ows from these options come from rebate at the barrier. As a result, the option value

is equal to the discounted rebate times the risk-neutral probability of the underlying price

hitting the barrier.

The analysis of in-the-money \up-and-out" calls (H > K) is more involved. Suppose

the dividend yield � is zero. Like a standard American call option, an American \up-and-

out" call on a non-dividend-paying stock should not be exercised early. This can also be

seen from the discussion of Theorem 1. As a result, one should exercise an American \up-

and-out" call option at time t only when St = H. Namely, the optimal exercise boundary

coincides with the barrier. Denote the optimal exercise boundary of American \up-and-

out" call options by Bc

uo
� (Bc

uo;t)t2[0;T ]. We have Bc

uo;t = H 8t 2 [0; T ]. The payo� at the

barrier equals H �K. This exercise strategy is optimal as long as the rebate R � H �K.

However, if R > H � K, then one should never exercise early. In either case, however,

the option value is equal to the value of a European barrier option with an e�ective rebate

R0 = max(R;H �K).

Now suppose � > 0. In this case, the option payo� upon exercise equals (min(S;H) �
K)+ = min[(S �K)+;H �K]. This payo� is the same as that of an American \capped"

call with a constant cap H. Let Bc � (Bc

t )t2[0;T ] be the exercise boundary of an otherwise

identical standard American call option. We have

Theorem 5 Consider an American \up-and-out" call option with H > K.15 If the rebate

at the barrier is no more than H �K, then such a call option is equivalent to an American

14See, for example, Boyle and Turnbull (1989) and Broadie and Detemple (1995) on \capped" call options.
15Technically, for the knock-out event and the exercise date to be well de�ned, the option contract is

de�ned in a way such that when the asset price �rst touches the barrier, the option holder has the option

to either exercise or let the option be knocked out.
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\capped" call option with a cap equal to H. Furthermore, the exercise boundary of the

\up-and-out" call option is

Bc

uo;t = min(H;Bc

t ) 8t 2 [0; T ] (30)

and the option value is given by

Cuo(t) = cuo(t) +Et

�Z �H

t

e�r(u�t)(�Su � rK)IfSu�Bc
uo;ug

du

�
; t 2 [0; �H ] (31)

where cuo(t) denotes the value of the corresponding European \up-and-out" call option with

rebate H �K, and the \hitting time" �H is de�ned as follows

�H = infft 2 [0; T ] j St � Hg

�H = T if the event does not occur by T .

Proof. Given that rebate R � H �K, it is always better to exercise an \up-and-out" call

than to wait for a knock-out. This strategy guarantees a payo� of H �K at H. It is then

obvious that \up-and-out" call and \capped" call options are equivalent. Eq. (30) follows

from Theorem 1 in Broadie and Detemple (1995). The representation in (31) can be ob-

tained via a reparametrization of the pricing formula (4.4) in Broadie and Detemple (1997)

for American \capped" exchange options with proportional cap.16 2

Notice that both (30) and (31) apply also to the case of zero dividend. The explicit

formula for the European price cuo(t) can be found in Rubinstein and Reiner (1991). Since

�H is, in general, random, the expectation in (31) might not be always carried out explicitly.

The intuition behind Theorem 5 can be conveyed by considering three cases for the

location of the barrier level H relative to the level of the boundary Bc.

� Case (a): H > Bc

t 8t 2 [0; T ]. First, note that when H " 1, an \up-and-out"

call option is equivalent to an otherwise identical standard American call option,

since the probability of being knocked-out goes to zero. As a result, the two options

have the same exercise boundary and hence the same value, i.e., limH"1 Bc

uo
= Bc

and limH"1 Cuo(S;K;H) = C(S;K), where Bc � (Bc

t )t2[0;T ] denotes the exercise

boundary of a standard American call option.

� Case (b): H 2 [Bc

T ; B
c

0
]. Note that Bc

t is a decreasing function of t, due to the

declining insurance value and time value of money of the exercise price, reaching a

minimum at the expiration date T , where Bc

T = max(rK=�;K):17 Assuming that the

boundary is continuous, it intersects the barrier level H at a unique time t� 2 [0; T ],

16We thank a referee for pointing this out.
17See Kim (1990) and Jacka (1991) for details.
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s.t. Bc

t� = H. It follows that an \up-and-out" call alive at time t 2 [t�; T ] is equivalent

to a standard American call option by the argument for Case (a) above. This implies

that Bc

uo;t = Bc

t 8t 2 [t�; T ]. In particular, Bc

uo;t� = H. Since Bc

uo;t is a decreasing

function of t, Bc

uo;t � H 8t 2 [0; t�]. However, unless exercised, an \up-and-out" call

will be knocked out at H. This indicates that Bc

uo;t = H 8t 2 [0; t�]. It follows that

Bc

uo;t = min[H;Bc

T ] 8t 2 [0; T ].

� Case (c): H < Bc

T . Recall that Bc

uo;T = min[H;max(rK=�;K)]. Since Bc

T =

max(rK=�;K), it follows that Bc

uo;T = H. Therefore, Bc lies above the barrier every-

where since Bc

t declines with t and reaches a minimum at T .

Since Bc

uo;t is a decreasing function of t, Bc

uo;t = H 8t 2 [0; T ]. In this case, an

American \up-and-out" call behaves like a European \up-and-out" call, but with a

rebate R = H �K. Thus, the case is similar to the case where � = 0.

American \down-and-out" put options can be analyzed in a similar fashion. Consider

�rst out-of-the-money (H > K) and at-the-money (H = K) put options. Like out-of-the-

money and at-the-money \up-and-out" calls, cash
ows from these options come only from

rebate at the barrier. The valuation problem, is therefore, straightforward. Next, consider

in-the-money (H < K) \down-and-out" put options. As expected, these options with a

rebate R � K � H are equivalent to American \capped" puts with a cap equal to H.

Let Bp � (Bp

t )t2[0;T ] and B
p

do
� (Bp

do;t
)t2[0;T ] denote respectively the exercise boundary of

standard American put and American \down-and-out" put options. We can now state and

prove:

Theorem 6 Consider an American \down-and-out" put option with strike K, expiration

date T , and barrier level H < K. If the rebate at H is no more than K � H, then

the option can be considered to be an American \capped" put option with a cap equal to

H. Furthermore, the optimal exercise boundary of the \down-and-out" put option can be

characterized as follows

B
p

do;t
= max(H;B

p

t ) 8t 2 [0; T ] (32)

Proof. This theorem follows from arguments similar to those in the above discussion of

Theorem 5.

When H < B
p

t forallt 2 [0; T ], the put will be exercised before the asset price touches

the barrier. Hence, Bp

do;t
= max(H;B

p

t ) = B
p

t .

When H > B
p

T = rK=�, where r < �, it is easy to see that Bp

do;T
= H. Since Bp

do;t
is

a non-decreasing function in t, Bp

do;t
= H 8t 2 [0; T ]. In this case, the option becomes a

European \down-and-out" put with rebate K �H.

When H 2 [Bp

T ; B
p

0
], the barrier intersects Bp. Recall that Bp

t increases in t. It follows

that there exists a unique t�
do

= ft 2 (0; T )jBp

t = Hg. One can see in the time interval
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[t�
do
; T ] a live American \down-and-out" put option is, in fact, equivalent to a standard

American put option. Since Bp

t�
do

= H and B
p

do;t
is monotonic in t, Bp

do;t
= H 8t 2 [0; t�

do
].

2

The valuation problem in this case can be handled similarly to the case of \up-and-out"

put options in section 2.1. More speci�cally, a formula similar to (31) can be obtained for

pricing American \down-and-out" put options. A symmetry relation between American

\up-and-out" call and \down-and-out" put options similar to (28) and (29) can be also

established. Detailed discussions, however, are omitted here for the sake of brevity.

3 Implementation and Numerical Results

In this section, we focus on American \up-and-out" put options written on non-dividend

paying assets and discuss the implementation of the pricing and hedging formulae (11) and

(14) given in section 2.1.1. We then report some numerical results to illustrate the e�ciency

and accuracy of our implementation scheme.

3.1 Implementation

The implementation involves two steps. The �rst is to compute the optimal exercise bound-

ary B. The second is to calculate the option prices or hedge ratios taking B as input.

Since B is implicitly de�ned by the integral equation (18), the boundary has to be

calculated numerically. Various numerical schemes have been proposed for this purpose in

the context of standard American options on non-dividend paying assets. One such scheme

is to compute the boundary recursively, an idea originally suggested by Kim (1990). Starting

with BT , BT�1 is calculated from (18). Next, BT�2 is calculated, also from (18), taking

BT and BT�1 as inputs. This procedure is repeated iteratively until the entire exercise

boundary (an approximated one, strictly speaking) is generated. Once the optimal exercise

boundary is obtained, the calculation of option prices and hedge ratios is straightforward,

involving only a univariate numerical integration. However, this recursive scheme, which

is somewhat computation-intensive, can be accelerated using analytical approximations of

the exercise boundary, at least for the purpose of pricing.

We focus on two approximation schemes developed in the context of standard Ameri-

can options and based on the integral representation of the early exercise premium. One

method is to approximate the exercise boundary by a step-function, i.e. to replace the

integral in (18) by a simple sum in our case. This is the approach taken in Huang, Sub-

rahmanyam, and Yu (1996). The other method is to approximate the exercise boundary

by an exponential function. This is based on the observation that the exercise boundary

of standard American put options has a shape similar to that of an exponential function.

Omberg (1987) and Ho, Stapleton, and Subrahmanyam (1994; 1997b) use a single-piece
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exponential function to approximate the exercise boundary. Ju (1998) uses a multi-piece

exponential (MPE) function approximation and also utilizes the integral representation of

the early exercise premium.18 Under both schemes, the approximated boundary can be

described by a few parameters. This allows us to directly compute only a few points on

the exercise boundary and, as a result, can increase considerably the computational e�-

ciency. The resulting option prices/hedge ratios can then be used to extrapolate the true

price/hedge ratios to improve the accuracy of the two schemes (c.f. Appendix V for more

details).

3.1.1 A \Tabulation" Approach to Pricing Options

The implementation procedure described previously also allows for a scheme to increase

computational e�ciency in the valuation of multiple contracts written on the same under-

lying asset.

On a given day, traders typically need to evaluate their options positions several times.

This involves computing positions of contracts written on the same underlying asset. These

contracts di�er only in their strike price, barrier level and time to expiration. A conven-

tional implementation scheme involves the calculation of the exercise boundary for each

contract, i.e., for each value of the parameter set (St;K; T � t; �; r;H). However, due to

its homogeneity and translational invariance properties, the exercise boundary needs to be

calculated for only a few values of the parameter set. This avoids some of the problems

of repetitive computation of option prices and hedge ratios. As a result, the computa-

tional time can be reduced signi�cantly when pricing a basket of options written on the

same underlying asset.19 The translational invariance property implies that, among all the

contracts considered [characterized by the parameter set (St;K; T � t; �; r;H)], only the

boundary for the longest T � t, ceteris paribus, needs to be calculated. The homogeneity

property suggests that among all the contracts considered, ceteris paribus, for standard

American options only the boundary for one value of K, needs to be calculated, and for

American barrier options among the contracts with the same proportional value of (K;H),

only the boundary for one set of (K;H) needs to be calculated.20

These observations suggest an approach to the valuation and hedging of American

options in which the optimal exercise boundary is tabulated for di�erent values of the pa-

18Other recent work on standard American options includes, but not limited to, Breen (1991), Broadie

and Detemple (1996), Bunch and Johnson (1992), Carr (1998), Carr and Faguet (1995).
19Similar ideas are independently developed in Joubert and Rogers (1997), whose work we were not aware

of until several early drafts of our paper were completed.
20Another advantage of computing the exercise boundary �rst is that, given a contract, one can easily

determine if it is optimal to exercise right away at the valuation time, say t0. Given the exercise boundary

point at t0, Bt0 , one would exercise the option if St0 � Bt0 . In contrast, the use of alternative methods

would require the computation of the option value at t0 to make the decision. See also Brealey, Hodges,

and Selby (1982) and Selby (1983) for a related discussion.
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rameter set (K;H; T � t; �; r). Computing the option prices and hedge ratios then amounts

to calling a tabulated \exercise boundary" function.

3.1.2 Optimal Exercise Boundary

As mentioned earlier, the implementation of the analytic method requires the optimal

exercise boundary as an input. In this section, as an illustration, we provide plots of the

optimal exercise boundary for American barrier put options. The boundary for American

barrier call options can be obtained using the put-call \symmetry" relationship derived

earlier. As shown below, useful information can be extracted from such a plot of the

optimal exercise boundary.

Figure 1 illustrates the plots of the optimal exercise boundary for American \up-and-

out" put options on non-dividend-paying stocks for di�erent levels of the barrier. Specif-

ically, we choose six levels of the barrier, namely, H = 45; 45:01; 45:10; 46; 50; 100. The

values of the other relevant parameters are K = 45, T � t = 1, � = 0:2, and r = 0:0488.

One can see that for a given H, the exercise boundary divides the domain into two regions.

The region above the boundary is called the continuation region, C, in which exercise is not

optimal, and the region below is the stopping region, S, where it pays to exercise early. The
boundary with H = 100 is essentially the same as the boundary of an otherwise identical

standard American put option (H =1). One can see from the �gure that as H decreases,

ceteris paribus, the optimal exercise boundary moves upward, or equivalently the size of

the stopping region increases. This indicates that the American feature of an \up-and-out"

put option becomes more valuable as H gets higher. One interesting result obtained from

plotting the optimal exercise boundary is that in the case where the dividend yield is zero, it

is always optimal to exercise early an American \up-and-out" put option, when the barrier

level is equal to the strike price. This is a direct result of Theorem 4. One can see from

Figure 1 that the optimal exercise boundary with H = 45 = K coincides with the line,

K = 45. This implies that the \up-and-out" option should always be exercised because the

setup dictates that the underlying asset price is below the strike price.

Figure 2 illustrates the price homogeneity of the optimal exercise boundary for American

out-of-the-money \up-and-out" put options on non-dividend-paying stocks. Figure 2(a)

shows plots of the boundary with (K = 45;H = 50), the solid curve, and the boundary with

(K = 90;H = 100), the dashed curve, to illustrate the homogeneity in (K;H). Figure 2(b)

shows plots of the boundary with (K = 45;H = 100), the solid curve, and the boundary

with (K = 90;H = 500), the dashed curve, to illustrate the homogeneity in K when

H � K. Note that when H � K, an \up-and-out" put option is essentially equivalent to

a standard American put option. So Figure 2(b) actually illustrates the homogeneity in K

of optimal exercise boundaries for standard American options. The values of other relevant

parameters are time to expiration, T � t = 1 (year), volatility, � = 0:2, and risk-free rate,

r = 0:0488. In both (a) and (b), the height of the dashed curve is twice the height of the
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solid curve, which veri�es the price homogeneity.

Figure 3 illustrates the translational invariance of the optimal exercise boundary of

American out-of-the-money \up-and-out" put options on non-dividend-paying stocks. Two

plots of the boundary are shown in the �gure and di�er only in time to expiration, the

dashed curve with T � t = 0:5 (year) and the solid curve with T � t = 1 (year). The values

of other relevant parameters are strike K = 45, barrier H = 50, volatility � = 0:2, and

risk-free rate r = 0:0488. When shifted to the left for T � t = 0:5, the solid curve will

coincide with the dashed curve, which veri�es the stationarity property.

We should emphasize that the method developed here has a de�nite advantage over the

lattice methods in computing the optimal exercise boundary. For instance, it would be very

di�cult to obtain a plot as smooth as those shown in Figure 1 using a lattice method, even

with a large number of time steps. In contrast, the plots shown in Figure 1, for instance,

were generated using the analytic formula with 200 points (time-steps) and the amount

of the computational time required is about 0:6 seconds (CPU time) on a Sun Ultra 1

workstation.

3.2 Numerical Results

It has been recognized that the simple binomial method is not appropriate for pricing barrier

options due to the fact that the price of such options is very sensitive to the location of

the barrier in the lattice. The reason for this sensitivity comes from the fact that the

option-value function is not smooth around the barrier. The existence of such \kinks" and

the discrete price-space in the binomial/trinomial models e�ectively causes a shift of the

barrier to a nearby layer of nodes, once the barrier falls in-between two layer of nodes.21

In this section, we illustrate the accuracy and e�ciency of the pricing formula (11)

in relation to some existing lattice methods which modify the standard binomial method.

The three such methods that we are aware of for pricing barrier options, are the restricted

binomial/trinomial methods of Boyle and Lau (1994), and Ritchken (1995), the trinomial

method of Cheuk and Vorst (1996), and the adaptive mesh method of Gao (1996). Boyle

and Lau, and Ritchken solve the problem of non-smoothness by forcing the barrier to

coincide with a layer of nodes. As discussed earlier, the problem with these approaches is

that as the asset price gets close to the barrier, the number of time steps needed to value

this option goes to in�nity. This feature renders these models di�cult to apply under these

circumstances.22

In Cheuk and Vorst, the drift of each trinomial step can vary. When the spot price is

close to the barrier, the drift can be adjusted to ensure a reasonably large step-size in the

21Gao (1996) discusses the pricing errors from the lattice model. He also shows that non-constant time

steps can alleviate the problem only partially.
22Extrapolation methods may be helpful in this case, provided the individual elements in the sequence

used for extrapolation (i.e. the option prices) can be computed with reasonable accuracy.
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price dimension, which is inversely related to the number of time periods required in the

lattice. As a result, the convergence can be improved compared to the Ritchken method.

However, for some range of parameter values with a �xed number of time steps, the Cheuk-

Vorst scheme can produce negative probabilities and signi�cant pricing errors, especially

for long-term contracts with high volatility.23 Also, it remains to be shown how to compute

hedge ratios using the method when the spot price is near the barrier, because step-sizes

in price around the spot price are non-uniform.

The adaptive-mesh method developed by Gao solves the \near-barrier" problem by using

a �ner mesh around the barrier while maintaining a coarse structure in other places. It still

su�ers from the problem that the number of time steps goes to in�nity as the asset price

and the barrier get close to each other, although this happens only near the boundary in

the time-price space, as opposed to everywhere in the restricted binomial/trinomial models.

In contrast, as shown below, this sensitivity problem can be completely eliminated by using

the analytic method developed here.

For a given method, the accuracy is measured by the deviation from a benchmark, more

speci�cally by the root of the mean squared error (RMSE) or the root of the mean squared

relative error (RMSRE). The benchmark is chosen to be the results from the Ritchken

method with at least ten thousand time steps.24 The e�ciency is measured by the CPU

time required to compute option prices or hedge ratios for a given set of contracts. We

choose two sets of contracts for comparison. Each set consists of forty-eight contracts

that have di�erent values of the underlying asset price St at valuation date t, the time-to-

expiration T � t, and the volatility parameter �. The barrier level H and the strike value

K are �xed at 50 and 45, respectively. The risk-free rate r is chosen to be 0:0488. In Set

I, we choose St = (40; 42:5; 45; 47:5), T � t = (0:25; 0:5; 0:75; 1:0), and � = (0:2; 0:3; 0:4).

As a result, the set of contracts include out-of-the-money, at-the-money, and in-the-money

options. Set II is similar to Set I, except that those contracts with St = 47:5 are replaced

by contracts with St = 49:5. The reason for this choice is to include contracts with St very

close to the barrier. This is the case where the existence of a barrier matters most.

Table 1 summarizes the statistics for option prices for the decomposition method and the

trinomial methods in relation to the benchmark (the Ritchken (1995) method with at least

ten thousand time-steps). Speci�cally, three schemes for implementing the decomposition

method are included (c.f. Appendix V for details): (a) using a step-function to approximate

23For instance, consider a contract with St = 49:9; H = 50; K = 45; T � t = 5 (yr), and � = 0:4, whose

true price is \very" close to 0:0634. Our implementation shows that the put value using the Cheuk-Vorst

scheme equals 0:09 with N = 100, 0:0640 with N = 1; 000, and 0:0634 with N = 10; 000 respectively.

Negative probabilities occur in all three cases.
24In the Ritchken method, the number of time steps cannot be chosen arbitrarily, due to the restriction

that the barrier has to coincide with a node [see Ritchken (1995) for details]. In our implementation, the

number of time steps used for contract Set I (to be speci�ed below) is between 10; 027 and 11; 677, and for

contract Set II (to be speci�ed below) is between 10; 027 and 21; 385.
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the exercise boundary combined with a 4-point Richardson extrapolation; (b) using a three-

piece exponential function to approximate the exercise boundary without extrapolation; and

(c) using a three-piece exponential function to approximate the exercise boundary combined

with a 3-point Richardson extrapolation. For the trinomial methods, the Ritchken (1995)

scheme (with a minimum 50 time steps in the trinomial tree)25 and the Cheuk-Vorst (1996)

method (with the number of time steps N = 100) are included for comparison. As can be

seen, \penny" accuracy can be achieved in almost all cases for the values of the option.

Table 2 reports the statistics for hedge ratios for the Ritchken method and the three

analytical approximations. Like the prices, the hedge ratios are within 0.01 of the bench-

mark in almost every case. The key issue, therefore is one of computational e�ciency, given

a level of accuracy.

Table 3 summarizes numerical results of the accuracy and speed of computation for

option prices and deltas of our formulae (11) and (14) using the Ritchken method, the

Cheuk-Vorst method, and the three approximation schemes mentioned above for the two

sets of contracts. Columns 2 and 3 list the results for the contracts in Set I and columns

4 and 5 for the contracts in Set II. The results for the RMSE and RMSRE for all �ve

methods are shown in the table, respectively. The CPU-times, the amount of time required

(on a Sun Ultra 1 workstation) to compute the option prices or the delta values for all the

forty-eight contracts in each set, are also presented in the table.

One can see from Table 3 that the errors from all the �ve methods are small under either

of the two measures - RMSE and RMSRE - for both sets of contracts. The 3-step MPE

with Richardson extrapolation clearly dominates the other methods in terms of accuracy.

Regarding speed, one can see from Table 3 that the step-function approximation is

the fastest among the �ve methods. Also, except for the Ritchken method, the CPU-

time required for Set II that includes the contracts with St = 49:5 very close to the barrier

(H = 50) is basically the same as that for set I. The Ritchken method is strongly dominated

by the analytical approximation methods. This indicates that the quasi-analytic method

can deal e�ciently with the case in which the underlying price is very close to the barrier.

As mentioned earlier, the reason is that the optimal exercise boundary, the su�cient input

function of the valuation formula, is independent of the current underlying price. As a

result, the problem of the underlying price being too close to the barrier is completely

avoided in our approach.

To see how sensitive the three analytical approximation methods are to the magnitude

of an option's American premium, we break up each set of contracts into two groups,

namely a low-premium group and a high-premium one, and look at the performance of

the three schemes within each group. Here, high-premium contracts within each set are

those whose premia (the di�erence between the benchmark American and European option

25In our implementation of the Ritchken model, the number of time steps used is between 53 and 183 for

Set I, and between 55 and 4; 753 for Set II.
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values) ranked in the top half of the group, whereas low-premium contracts within each

set are those whose premia ranked in the bottom half. Table 4 reports a summary of

the results from the analytic methods between low- and high-premium contracts. Panels

(a) and (b) summarize, respectively, the results for low- and high-premium options within

each set of contracts. Columns 2 and 3 show the numerical results of option prices and

delta values for contract set I. Columns 4 and 5 show the numerical results of option prices

and delta values for contract set II. One can see from the table that the step-function

scheme basically has lower RMSE but higher RMSRE in low-premium contracts than in

high-premium contracts. Roughly, the same pattern holds for the 3-step MPE without

extrapolation. The 3-step MPE extrapolation scheme has both lower RMSE and RMSRE

in low-premium contracts than in high-premium contracts. These results seem to indicate

that the 3-step MPE extrapolation scheme is the most sensitive to the premium among the

analytical approximation methods. However, the errors from all three methods are small

for both low- and high-premium contracts.

Overall, among the methods considered here, the 3-step MPE without Richardson ex-

trapolation seems to provide the best balance between accuracy and computational e�-

ciency. In summary, our numerical experiments show that the quasi-analytic pricing for-

mula (11) is both accurate and e�cient, and dominates the existing lattice methods. In

particular, its performance is robust in the sense that both the accuracy and the e�ciency

are not sensitive to either the American option premium, or to the the distance between

the underlying price and the barrier.

4 Conclusion

Non-standard or exotic options are in wide-spread use today in global �nancial markets.

Increasingly, over-the-counter options on many assets including equities, �xed income se-

curities, foreign exchange and commodities have non-standard characteristics, such as the

\knock-out"/\knock-in" feature, and the averaging of the price of the underlying asset,

among others. Often, due to the lack of liquid secondary markets for such products, in

view of their custom-designed nature, an optimal exercise or American-style feature is in-

corporated into the design of the contract. It is well-known that, even for standard options,

the American feature causes problems for valuation and hedging, since there is no closed-

form solution for the prices and hedge parameters, in general. Therefore, most models of

American option valuation and hedging are implemented using numerical procedures. This

problem is further compounded for non-standard American options.

It is understood that the use of numerical approaches for valuation and hedging of

derivatives does have limitations. One is that almost all the available methods are based

on a lattice or grid and the accuracy of the results obtained is limited by the �neness

of the grid. For exotic options such as barrier options, whose values are very sensitive to
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even minor perturbations in the parameters, the errors due to inappropriate lattices may be

substantially large, and the computational time necessary to reduce these errors by choosing

a �ner grid size may be very intensive. In fast-moving markets, it is obviously essential

to obtain reasonably accurate prices and hedge ratios fairly quickly. Another limitation is

that even if one can come up with numerical methods that are fairly e�cient and accurate,

it is di�cult to obtain an intuitive understanding of how the pricing and hedging works, in

the absence of analytical results.

These problems make it desirable, whenever possible, to derive quasi-analytical models

for non-standard American options. Our research shows that in many cases, such formulae

can be derived, at least for some cases of exotic options, extending the work of Kim (1990),

Jacka (1991) and Carr, Jarrow and Myneni (1992).

We are able to derive quasi-analytical formulae for the prices and hedge ratios in the case

of barrier options (and \capped" options). The formulae are implemented using analytic

approximations of the optimal exercise boundary and Richardson extrapolation. Our results

indicate that our method is both accurate and e�cient. In particular, the \near-boundary"

sensitivity problem associated with using lattice methods is completely eliminated by using

the technique developed here.

Our approach also indicates the advantage of studying the optimal exercise boundary

when dealing with American options. We identify and exploit two key properties of the

optimal exercise boundary - homogeneity in price parameters and translational invariance

- for American options. In addition, some new put-call \symmetry" relations are also

derived. These properties can be utilized to reduce repetitive computation of option prices

and hedge ratios, and hence increase the e�ciency of pricing and hedging American options.

We present the details of our approach for American-style barrier options. The approach,

based on the decomposition technique, can be applied to other non-standard American-style

options such as look-back options and Asian options.26

26Recently, Hansen and Jorgensen (1998), applied the decomposition technique to the case of 
oating-

strike Asian Options.
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Appendix I: Proof of Theorem 1

Under suitable regularity conditions, we have that the discounted accumulative trading

pro�ts from holding an American option from time 0 to time t,

�t = G(St; t)e
�rt �G(S0; 0)�

Z t

0

Ds[e�ruG(Su; u)]du (33)

is a martingale under the risk-neutral measure [see for example Karatzas and Shreve (1991,

p. 328)]. For instance, this holds if G(�) is the pricing function of standard American

options. In the case of barrier options, the option pricing function G(St; t) may not satisfy

the usually assumed regularity conditions near the barrier. However, similar to standard

European barrier-option pricing functions,G(St; t) should satisfy those regularity conditions

in the non-knock-out region where M t
0
< H and which is what we focus on. Based on this

argument, we claim that �t as de�ned above is a martingale when G(St; t) represents the

price of an \out-of-the-money" American \up-and-out" put option.

It follows that

G(S0; 0) = E0

h
G(ST ; T )e

�rT IfMT
0
<Hg

i
�
Z T

0

E0

h
Ds[e�ruG(Su; u)]IfMu

0
<Hg

i
du: (34)

Using (2) and (5), we have

Ds[e�ruG(Su; u)] = e�ru[(Ds � r)h(Su)]If(Su;u)2Sg = e�ru(�Su � rK)If(Su;u)2Sg: (35)

Substituting (35) into (34) yields (8) in Theorem 1. This completes the proof. 2
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Appendix II: Proof of Theorem 2

To simplify the notation, the subscript \uo" in Buo;t is dropped in this appendix and the

boundary point at t is simply denoted by Bt.

Homogeneity: We prove this by induction in a discrete-time setting. The assertion is true

for BT given the boundary condition

BT = min[min(rK=�;K);H]: (36)

Next consider BT�1. Neglecting the early exercise premium, we have from (18)

K �BT�1 = puo(BT�1;K;H);

where H has been explicitly speci�ed as an argument. One can easily see from this equation

that the assertion holds for BT�1. Now suppose that it holds for (Bu)u�t. Consider Bt�1.

To simplify notation, let � = (K;H). Again, we have from (18)

K �Bt�1(�) = puo(Bt�1(�); �) + f(Bt�1(�); fBu(�);u � tg; �);

where f(�) denotes the integral on the RHS of (18). Under the transformation

�! �� 8� 2 R++;

the equation for the transformed boundary point Bt�1(��) becomes

�K �Bt�1(��) = puo(Bt�1(��); ��) + f(Bt�1(��); fBu(��);u � tg; ��)
= � puo(Bt�1(��)=�; �) + f(Bt�1(��); f�Bu(�);u � tg; ��)
= � puo(Bt�1(��)=�; �) + �f(Bt�1(��)=�; fBu(�);u � tg; �); (37)

where the homogeneity of (Bu)u�t has been used in the second equality. Dividing (37) by

� on both sides, we have by de�nition27

Bt�1(��)=� = Bt�1(�);

which says that Bt�1(�) is homogeneous of degree one in �.

Translational Invariance in Time: Let fBt(K;H; T ); t 2 [0; T ]g be the optimal exercise
boundary of a contract with the expiration date T . It can be seen from (18) that

Bt(K;H; T ) = Bt�u(K;H; T � u) 80 � u � t � T

Given �xed T1 and T2 where T2 > T1, it follows that

Bt(K;H; T2) = Bt�(T2�T1)(K;H; T2 � (T2 � T1))

= Bt�(T2�T1)(K;H; T1) 8t 2 [T2 � T1; T2]

27The uniqueness of the boundary has been assumed implicitly.
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Monotonicity in Time: Di�erentiating (17) with respect to t on both sides and using

the fact that @Puo=@t < 0 yields @Bt=@t > 0.

Monotonicity in the Barrier Level: Given time t, it is obvious that an option price is

an increasing function of the barrier level, i.e.

@Puo(St;H;K)

@H
> 0:

Given that the optimal boundary condition satis�es

K �Bt(H;K) = lim
St#Bt

Puo(St;H;K)

one can take the partial derivative on the two sides, so that

@Bt(H;K)

@H
= � lim

St#Bt

@Puo(St;H;K)

@H
< 0:

2
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Appendix III: Proof of Theorem 3

We prove the \put-call symmetry" for the case of the out-of-the-money \knock-out" option

only. The case of the in-the-money \knock-out" can be analyzed in a similar fashion.

We de�ne the notation �rst.

d1(x; y; t; r; �) =
ln(x=y) + (r � � + �2=2)t

�
p
t

;

d2(x; y; t; r; �) =
ln(x=y) + (r � � � �2=2)t

�
p
t

;

�(r; �) =
r � �

�2
+
1

2
;

HP = KS0=H:

To simplify the notation, we shall omit the subscript \do" or \uo" and use Bc

t and B
p

t to

denote the optimal exercise boundary of a \down-and-out" call option and an \up-and-out"

put option, respectively. Recall also that the superscript \o" denotes standard options. For

instance, co represents the price of a standard European call option. We know that the

price of a \up-and-out" American put option (K < H) is given by

Puo(S0;K;H; r; �) = puo(S0;K;H; r; �) + P p
uo
(S0;K;H; r; �) (38)

where

puo(S0;K;H; r; �) = po(S0;K; r; �) � (H=S0)
2�(r;�)�2po(H2=S0;K; r; �) (39)

P p
uo
(S0;K;H; r; �) =Z T

0

e�rt
n
rK

h
N(�d2(S0; Bt; t; r; �)) � (H=S0)

2�(r;�)�2N(�d2(H2=S0; Bt; t; r; �))
i

��S0

h
N(�d1(S0; Bt; t; r; �)) � (H=S0)

2�(r;�)N(�d1(H2=S0; Bt; t; r; �))
io
dt (40)

Similarly, the price of an \down-and-out" American call option (K > H) is given by28

Cdo(S0;K;H; r; �) = cdo(S0;K;H; r; �) +C
p

do
(S0;K;H; r; �); (41)

where

cdo(S0;K;H; r; �) = co(S0;K; r; �) � (H=S0)
2�(r;�)�2co(H2=S0;K; r; �) (42)

C
p

do
(S0;K;H; r; �) =Z T

0

e�rt
n
�S0

h
N(d1(S0; Bt; t; r; �)) � (H=S0)

2�(r;�)N(d1(H
2=S0; Bt; t; r; �))

i
�rK

h
N(d2(S0; Bt; t; r; �)) � (H=S0)

2�(r;�)�2N(d2(H
2=S0; Bt; t; r; �))

io
dt: (43)

28See Rich (1994) for expressions for the option prices cdo and puo. The early exercise (American) premium

is derived by evaluating the expectation in equation (8), based on its equivalence to a long cash-or-nothing,

and a short asset-or-nothing, knock-out option with a strike price equal to the value at the optimal boundary

at time t. The option formula is readily available from those for a knock-out call and put. Detailed

derivations are available upon request.
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Under the transformation

S0 ! K; K ! S0; and H ! KS0=H; (44)

it is easy to show, by direct substitution, that

cdo(S0;K;H; r; �) = puo(K;S0;KS0=H; �; r):

This indicates that the put-call symmetry holds for the European part.

Next we will show that the premium part is also invariant under the transformation (44).

Notice that under this transformation, optimal exercise boundary Bp

t for the \up-and-out"

put option should be replaced by KS0=B
c

t . It is easy to show that the premium part is

indeed invariant with this substitution. As a result, to complete the proof, we only have

to show that KS0=B
c

t is the optimal exercise boundary for the \up-and-out" put with the

strike price S0 and barrierH
p = KS0=H. Namely, we need to prove the following condition:

B
p

t (S0;H
p; �; r)Bc

t (K;H; r; �) = KS0: (45)

We prove this by induction. Consider t = T �rst. SinceK > H impliesHp = KS0=H >

S0, we know the optimal boundary for the put and the call at maturity is

B
p

T = min(�S0=r; S0) and Bc

T = max(rK=�;K):

So the condition (45) is satis�ed at the maturity.

Suppose now that the condition (45) holds at time t + 1. Consider time t. Given

that Bc

t is the optimal boundary at t for the \down-and-out" call Cdo(S0;K;H; r; �), our

goal is to show that KS0=B
c

t is the optimal boundary at t for the \up-and-out" put

Puo(K;S0;KS0=H; �; r). For the call option, the optimal boundary satis�es

Bc

t �K = co
do
(Bc

t ;K;H; r; �) +

Z T

t

e�r(s�t) (46)n
�Bc

t

h
N(d1(B

c

t ; B
c

s; s� t; r; �)) � (H=Bc

t )
2�(r;�)N(d1(H

2=Bc

t ; B
c

s ; s� t; r; �))
i

�rK
h
N(d2(B

c

t ; B
c

s ; s� t; r; �)) � (H=Bc

t )
2�(r;�)�2N(d2(H

2=Bc

t ; B
c

s; s� t; r; �))
io
ds:

Applying the put-call symmetry condition to the European part of the above equation, we

know

co
do
(Bc

t ;K;H; r; �) = po
uo
(K;Bc

t ;KBc

t =H; �; r)

From the homogeneity condition we know further that

co
do
(Bc

t ;K;H; r; �) =
Bc

t

S0

po
uo
(KS0=B

c

t ; S0;KS0=H; �; r): (47)

27



De�ne B0
t � KS0=B

c

t . Our goal is to show that Bp

t = B0
t. Substituting (47) into (46) and

then multiplying both sides of (46) by S0=B
c

t , we have

S0 �B0
t = po

uo
(B0

t; S;KS0=H; �; r) +

Z T

t

e�r(s�t) (48)n
�S0

h
N(d1(B

c

t ; B
c

s; s� t; r; �)) � (H=Bc

t )
2�(r;�)N(d1(H

2=Bc

t ; B
c

s ; s� t; r; �))
i

�rB0
t

h
N(d2(B

c

t ; B
c

s ; s� t; r; �)) � (H=Bc

t )
2�(r;�)�2N(d2(H

2=Bc

t ; B
c

s; s� t; r; �))
io
ds:

From the assumption about induction, we know that Bc

s = KS0=B
p

s for s > t, then

ln
Bc

t

Bc
s

= ln
Bc

t

KS0=B
p

s

= � ln
KS0=B

c

t

B
p

s

;

and

ln
H2=Bc

t

Bc
s

= ln
H2=Bc

t

KS0=B
p

s

= � ln
(Hp)2=B0

t

B
p

s

:

Then

d1(B
c

t ; B
c

s ; s� t; r; �) = �d2(B0
t; B

p

s ; s� t; �; r);

d1(H
2=Bc

t ; B
c

s ; s� t; r; �) = �d2((Hp)2=B0
t; B

p

s ; s� t; �; r);

d2(B
c

t ; B
c

s ; s� t; r; �) = �d1(B0
t; B

p

s ; s� t; �; r);

d2(H
2=Bc

t ; B
c

s ; s� t; r; �) = �d1((Hp)2=B0
t; B

p

s ; s� t; �; r):

It follows that (48) becomes

S0 �B0
t = P o

uo
(B0

t; S;H
p; �; r) +

Z T

t

e�r(s�t)n
�S0

h
N(�d2(B0

t; B
p

s ; s� t; r; �)) � (Hp=B0
t)
2�(�;r)�2N(�d2((Hp)2=B0

t; B
p

s ; s� t; r; �))
i

�rB0
t

h
N(�d1(B0

t; B
p

s ; s� t; r; �)) � (Hp=B0
t)
2�(�;r)N(�d1((Hp)2=B0

t; B
p

s ; s� t; r; �))
io
ds:

This equation is identical to the optimal boundary equation for the \up-and-out" put option

Puo(K;S0;KS0=H; �; r) at time t and this proves (28). Hence,

B
p

t = B0
t = KS0=B

c

t

is the solution of the equation. As a result, it follows from (45) that

Bc

do;t(K;H; r; �) =
S0K

B
p

uo;t(S0; S0K=H; �; r)
=

K2

B
p

uo;t(K;K2=H; �; r)
; (49)

where the homogeneity of Bp

uo;t in prices has been used in the last equality. This completes

the proof. 2
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Appendix IV: Proof of Theorem 4

We prove Theorem 4 by contradiction. Suppose at a given time t 2 [0; T ] with price St,

it is optimal to continue, i.e., Puo(St;K) > K � St. Consider a portfolio consisting of an

American \up-and-out" put short, cash K in the money market, and one share of the risky

asset short. Constructing such a portfolio yields a net cash in
ow of Puo(S;K)�(K�S) > 0

at time t.

Case a): The path of St hits the barrier H at time �H , where t < �H � T , before touching

the exercise boundary. In this case, the option is knocked out. One can cover the short

asset at cost H, and at time �H realize a pro�t of Ker(�H�t) �H > 0 (since K > H by the

assumption that the up-and-out put option is in-the-money).

Case b): The path of St hits the exercise boundary at time �E, where t < �E < T , before

crossing the barrier. In this case, the option is exercised. One can pay out the strike price

K from the money market account and get the underlying asset which can then be used to

cover the short position. The net result at �E is a pro�t of Ker(�E�t) �K > 0.

Case c): The path of St hits neither the exercise boundary nor the barrier by T�. This

implies that ST� < H < K. By continuity, ST < H < K. As a result, the option will be

exercised at T . The net result at T is a pro�t of Ker(T�t) �K > 0.

Thus, in all three cases, the position results in risk-free cash in
ows at both time t and

later. Since this is against the no-arbitrage principle, the option must be exercised at some

time t0 2 [0; T ]. Therefore, it must be optimal to stop, i.e., to exercise the put option before

the expiration date. 2
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Appendix V: Approximations of the Optimal Exercise Bound-

ary

In this appendix, we discuss in detail how to implement the quasi-analytic formula (11).

We focus on the multi-piece exponential (MPE) approximation scheme. The step-function

approximation is a special case of the MPE approximation.

The MPE method is an extension of Ju's (1998) method for American options to Amer-

ican barrier options. Under this scheme, multiple exponential functions are used to ap-

proximate the optimal exercise boundary, each of which is de�ned by two variables which

are determined by the continuity and smooth-pasting conditions. The advantage of using

an exponential boundary is that the integrals representing the American premium can be

computed analytically.

To simplify notation, the exercise boundary point at time t is denoted by Bt rather

than Bp
uo;t in this appendix. Recall from (13) that the American option premium over some

interval [t1; t2] with 0 � t1 < t2 � T is given by

P p
uo
(St1 ; t1; t2) =

Z t2

t1

e�rtrK
h
N(�d2(St1 ; Bt; t))� (H=St1)

2��2N(�d2(H2=St1 ; Bt; t))
i
dt

Assume Bt = Bebt 8t 2 [t1; t2] where parameters B and b are to be determined later. Under

this approximation, the premium becomes

P p
uo
(St1 ;K;B; b; t1; t2) � K I(St1 ; B; b; t1; t2)�K(H=St1)

2��2I(H2=St1 ; B; b; t1; t2) (50)

where, integrating by parts,

I(S;B; b; t1; t2) �
Z t2

t1

r N(�d2(S;Bebt; t))e�rtdt

= e�rt1N(xt
1=2

1
+ yt

�1=2

1
)� e�rt2N(xt

1=2

2
+ yt

�1=2

2
)

+
1

2
(
x

z
+ 1)ey(z�x)

h
N(zt

1=2

2
+ yt

�1=2

2
)�N(zt

1=2

1
+ yt

�1=2

1
)
i

+
1

2
(
x

z
� 1)e�y(z+x)

h
N(zt

1=2

2
� yt

�1=2

2
)�N(zt

1=2

1
� yt

�1=2

1
)
i
(51)

with x = �(r � b � �2=2), y = � ln(S=B)=�, and z =
p
x2 + 2r. Eq.(50) provides an

analytical approximation of the American premium over [t1; t2]. An approximation of the

premium (and hence the option price) over [0; T ] can then be obtained by repeating the

above procedure for each element of a partition of the interval [0; T ].

Suppose the optimal exercise boundary is to be approximated by N pieces of exponential

functions. Let BN
i e

bN
i
t be the ith exponential function with B0 = BN

1
. The boundary

(and hence the option price and hedge ratios) is then speci�ed by the set of parameters

(BN
i ; b

N
i )1�i�N . Note that (BN

i ; b
N
i = 0)1�i�N de�nes the step-function approximation.
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Given the boundary, the option price can be determined as follows:

Puo(S0; 0; T ) �

8>><
>>:
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i ;

i�1

N
T; i
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T )) if S0 > BN

1

K � S0 if S0 � BN
1
:

The option delta can be obtained by di�erentiating the above price w.r.t. the spot price.

Namely,
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The remaining task is to determine 2N parameters, BN
i ; b

N
i ; i = 1; 2; � � � ; N . This can

be done by using the recursive scheme discussed earlier (c.f. Sec. 3.1). In the case of step-

functions, each of (BN
i )1�i�N can be obtained by solving numerically a nonlinear equation

(the continuity condition). In the case of exponential functions, each pair of (BN
i ; b

N
i )1�i�N

has to be determined by simultaneously solving two nonlinear equations (the continuity and

smooth-pasting equations). For instance, given (BN
j ; b

N
j )j>i at time t =

i�1

N
T the pair of

parameters (BN
i ; b

N
i ) can be obtained by solving the following two equations

K �BN
i e

bN
i

i�1

N
T = puo(B

N
i e

bN
i

i�1

N
T ;K;

N � i+ 1

N
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As mentioned earlier, estimates of Puo obtained using di�erent values of N can be used

to extrapolate the true option price. For instance, given the estimates P (i) corresponding

to N = i; i = 1; 2; 3, the following 3-point Richardson extrapolation can be used to compute

Puo:

Puo �
�
9P (3) � 8P (2) + P (1)

�
=2:
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Table 1: Prices of American \Up-and-Out" Put Options on Non-Dividend-Paying Stocks

(K = $45; H = $50; r = 4:88%)

(a) Option Prices for Contract Set I

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

European Bench- Ritchken Cheuk- Step-Func 3-Step 3-Step

St � T � t price mark Vorst w/ RE MPE MPE w/ RE

40.0 0.2 0.25 4.7690 5.0357 5.0348 5.0351 5.0395 5.0353 5.0360
40.0 0.2 0.50 4.7986 5.1881 5.1828 5.1874 5.1840 5.1869 5.1893

40.0 0.2 0.75 4.7996 5.3083 5.3034 5.3084 5.3000 5.3067 5.3095

40.0 0.2 1.00 4.7592 5.3861 5.3797 5.3870 5.3755 5.3843 5.3868
42.5 0.2 0.25 2.8782 2.9958 2.9962 2.9972 2.9952 2.9945 2.9963

42.5 0.2 0.50 3.1440 3.3476 3.3443 3.3490 3.3456 3.3456 3.3490

42.5 0.2 0.75 3.2508 3.5379 3.5361 3.5399 3.5328 3.5357 3.5391
42.5 0.2 1.00 3.2753 3.6446 3.6403 3.6466 3.6356 3.6423 3.6453

45.0 0.2 0.25 1.4980 1.5445 1.5390 1.5470 1.5479 1.5430 1.5448

45.0 0.2 0.50 1.8385 1.9375 1.9331 1.9391 1.9433 1.9357 1.9384
45.0 0.2 0.75 1.9686 2.1197 2.1149 2.1217 2.1259 2.1178 2.1204

45.0 0.2 1.00 2.0128 2.2151 2.2111 2.2180 2.2198 2.2132 2.2154

47.5 0.2 0.25 0.6007 0.6159 0.6151 0.6185 0.6167 0.6150 0.6161
47.5 0.2 0.50 0.8232 0.8625 0.8609 0.8636 0.8655 0.8614 0.8628

47.5 0.2 0.75 0.9049 0.9686 0.9676 0.9706 0.9738 0.9675 0.9688

47.5 0.2 1.00 0.9347 1.0223 1.0215 1.0252 1.0283 1.0213 1.0224

40.0 0.3 0.25 5.3187 5.4639 5.4631 5.4658 5.4621 5.4624 5.4645
40.0 0.3 0.50 5.6130 5.8526 5.8507 5.8541 5.8497 5.8502 5.8534

40.0 0.3 0.75 5.7112 6.0453 6.0394 6.0470 6.0389 6.0427 6.0463

40.0 0.3 1.00 5.7155 6.1455 6.1394 6.1471 6.1342 6.1431 6.1465
42.5 0.3 0.25 3.5987 3.6798 3.6788 3.6831 3.6840 3.6780 3.6801

42.5 0.3 0.50 3.9815 4.1314 4.1311 4.1341 4.1369 4.1290 4.1318

42.5 0.3 0.75 4.1075 4.3255 4.3199 4.3277 4.3297 4.3232 4.3262
42.5 0.3 1.00 4.1342 4.4213 4.4171 4.4244 4.4212 4.4191 4.4219

45.0 0.3 0.25 2.1830 2.2250 2.2179 2.2287 2.2282 2.2235 2.2254

45.0 0.3 0.50 2.5268 2.6135 2.6104 2.6151 2.6197 2.6117 2.6137
45.0 0.3 0.75 2.6361 2.7668 2.7625 2.7699 2.7743 2.7650 2.7671

45.0 0.3 1.00 2.6648 2.8399 2.8372 2.8417 2.8458 2.8383 2.8402

47.5 0.3 0.25 1.0150 1.0327 1.0315 1.0350 1.0338 1.0318 1.0329
47.5 0.3 0.50 1.2130 1.2524 1.2494 1.2533 1.2557 1.2514 1.2524

47.5 0.3 0.75 1.2745 1.3352 1.3334 1.3367 1.3401 1.3342 1.3352

47.5 0.3 1.00 1.2918 1.3739 1.3729 1.3760 1.3787 1.3731 1.3741

40.0 0.4 0.25 5.8723 5.9773 5.9781 5.9796 5.9809 5.9754 5.9778
40.0 0.4 0.50 6.2435 6.4285 6.4244 6.4310 6.4326 6.4260 6.4292

40.0 0.4 0.75 6.3496 6.6162 6.6147 6.6207 6.6173 6.6137 6.6171

40.0 0.4 1.00 6.3540 6.7054 6.7029 6.7077 6.7006 6.7032 6.7063
42.5 0.4 0.25 4.1768 4.2424 4.2438 4.2455 4.2470 4.2406 4.2427

42.5 0.4 0.50 4.5514 4.6759 4.6721 4.6782 4.6831 4.6737 4.6764

42.5 0.4 0.75 4.6580 4.8422 4.8396 4.8451 4.8489 4.8400 4.8427
42.5 0.4 1.00 4.6727 4.9188 4.9155 4.9218 4.9213 4.9169 4.9194

45.0 0.4 0.25 2.6628 2.7007 2.6971 2.7042 2.7036 2.6993 2.7010

45.0 0.4 0.50 2.9602 3.0368 3.0336 3.0383 3.0428 3.0352 3.0370
45.0 0.4 0.75 3.0436 3.1591 3.1572 3.1620 3.1663 3.1576 3.1594

45.0 0.4 1.00 3.0586 3.2145 3.2133 3.2179 3.2195 3.2131 3.2148

47.5 0.4 0.25 1.2875 1.3049 1.3043 1.3081 1.3060 1.3041 1.3050
47.5 0.4 0.50 1.4496 1.4859 1.4846 1.4875 1.4891 1.4851 1.4860

47.5 0.4 0.75 1.4946 1.5500 1.5493 1.5528 1.5543 1.5492 1.5501

47.5 0.4 1.00 1.5035 1.5787 1.5781 1.5822 1.5822 1.5780 1.5788
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(b) Option Prices for Contract Set II

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

European Bench- Ritchken Cheuk- Step-Func 3-Step 3-Step

St � T � t price mark Vorst w/ RE MPE MPE w/ RE

49.5 0.2 0.25 0.1077 0.1103 0.1103 0.1107 0.1104 0.1101 0.1103
49.5 0.2 0.50 0.1542 0.1613 0.1613 0.1619 0.1618 0.1611 0.1614

49.5 0.2 0.75 0.1711 0.1828 0.1828 0.1836 0.1839 0.1826 0.1828

49.5 0.2 1.00 0.1773 0.1936 0.1936 0.1945 0.1949 0.1934 0.1936

49.5 0.3 0.25 0.1957 0.1990 0.1990 0.1999 0.1992 0.1988 0.1990
49.5 0.3 0.50 0.2364 0.2439 0.2439 0.2449 0.2446 0.2437 0.2439

49.5 0.3 0.75 0.2489 0.2606 0.2606 0.2619 0.2617 0.2604 0.2606

49.5 0.3 1.00 0.2525 0.2684 0.2684 0.2700 0.2695 0.2682 0.2684

49.5 0.4 0.25 0.2529 0.2563 0.2563 0.2574 0.2565 0.2561 0.2563
49.5 0.4 0.50 0.2859 0.2930 0.2930 0.2944 0.2936 0.2928 0.2930

49.5 0.4 0.75 0.2950 0.3059 0.3059 0.3076 0.3068 0.3057 0.3059

49.5 0.4 1.00 0.2969 0.3117 0.3117 0.3137 0.3124 0.3115 0.3117

Table 1 reports the values of American \up-and-out" put options on non-dividend-paying stocks for two sets
of contracts computed using di�erent methods. Set I includes 48 contracts, each of which has a di�erent
value of the parameter set (St; T � t; �). The domain of this parameter set is St = (40; 42:5; 45; 47:5),
T � t = (0:25; 0:5; 0:75; 1:0), and � = (0:2; 0:3; 0:4). Set II is similar to set I, except that those contracts
with St = 47:5 are replaced by contracts with St = 49:5. Panels (a) and (b) show the numerical results
for contract set I and II, respectively. Columns 1 through 3 represent the values of the parameters, St (the
time-t stock price), � (volatility), and T � t (the time to expiration), respectively. Column 4 reports the
European option values obtained using the analytic formula in (12). Columns 5 through 7 show the numerical
results of option values from the Ritchken method with at least 10; 000 time steps (the benchmark), the
Ritchken method with at least 50 time steps, and the Cheuk-Vorst method with 100 time steps, respectively.
Columns 8 through 10 show the numerical results from three analytic approximation techniques: the step-
function scheme using a 4-point Richardson extrapolation, and the 3-step multi-piece exponential (MPE)
approximation with and without Richardson extrapolation.
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Table 2: Deltas of American \Up-and-Out" Put Options on Non-Dividend-Paying Stocks

(K = $45; H = $50; r = 4:88%)

(a) Option Deltas for Contract Set I

(1) (2) (3) (4) (5) (6) (7) (8) (9)

European Bench- Ritchken Step-Func 3-Step MPE 3-Step MPE

St � T � t delta mark w/ RE w/o RE w/ RE

40.0 0.2 0.25 -0.8433 -0.9253 -0.9240 -0.9337 -0.9259 -0.9251

40.0 0.2 0.50 -0.7326 -0.8299 -0.8283 -0.8379 -0.8304 -0.8295
40.0 0.2 0.75 -0.6764 -0.7890 -0.7896 -0.7952 -0.7894 -0.7887

40.0 0.2 1.00 -0.6415 -0.7696 -0.7704 -0.7752 -0.7700 -0.7695

42.5 0.2 0.25 -0.6589 -0.6999 -0.6975 -0.6953 -0.7001 -0.6999
42.5 0.2 0.50 -0.5902 -0.6453 -0.6445 -0.6390 -0.6455 -0.6455

42.5 0.2 0.75 -0.5638 -0.6323 -0.6328 -0.6239 -0.6324 -0.6325

42.5 0.2 1.00 -0.5472 -0.6290 -0.6285 -0.6187 -0.6290 -0.6291
45.0 0.2 0.25 -0.4472 -0.4657 -0.4660 -0.4664 -0.4656 -0.4657

45.0 0.2 0.50 -0.4584 -0.4893 -0.4897 -0.4874 -0.4891 -0.4895

45.0 0.2 0.75 -0.4653 -0.5080 -0.5086 -0.5022 -0.5077 -0.5082
45.0 0.2 1.00 -0.4654 -0.5197 -0.5198 -0.5094 -0.5194 -0.5198

47.5 0.2 0.25 -0.2840 -0.2921 -0.2933 -0.2919 -0.2918 -0.2922

47.5 0.2 0.50 -0.3607 -0.3792 -0.3801 -0.3769 -0.3788 -0.3794
47.5 0.2 0.75 -0.3897 -0.4186 -0.4191 -0.4130 -0.4182 -0.4187

47.5 0.2 1.00 -0.3999 -0.4390 -0.4393 -0.4293 -0.4386 -0.4391

40.0 0.3 0.25 -0.7503 -0.7828 -0.7809 -0.7794 -0.7830 -0.7828

40.0 0.3 0.50 -0.6915 -0.7346 -0.7337 -0.7291 -0.7347 -0.7347
40.0 0.3 0.75 -0.6707 -0.7247 -0.7242 -0.7172 -0.7247 -0.7248

40.0 0.3 1.00 -0.6570 -0.7223 -0.7221 -0.7130 -0.7223 -0.7224

42.5 0.3 0.25 -0.6253 -0.6451 -0.6447 -0.6440 -0.6451 -0.6451
42.5 0.3 0.50 -0.6152 -0.6449 -0.6451 -0.6411 -0.6448 -0.6451

42.5 0.3 0.75 -0.6136 -0.6534 -0.6533 -0.6459 -0.6532 -0.6535

42.5 0.3 1.00 -0.6091 -0.6592 -0.6593 -0.6478 -0.6590 -0.6593
45.0 0.3 0.25 -0.5113 -0.5233 -0.5239 -0.5234 -0.5231 -0.5233

45.0 0.3 0.50 -0.5510 -0.5725 -0.5728 -0.5699 -0.5723 -0.5726

45.0 0.3 0.75 -0.5651 -0.5959 -0.5961 -0.5893 -0.5956 -0.5960
45.0 0.3 1.00 -0.5674 -0.6078 -0.6080 -0.5967 -0.6075 -0.6079

47.5 0.3 0.25 -0.4297 -0.4377 -0.4387 -0.4364 -0.4374 -0.4377

47.5 0.3 0.50 -0.5027 -0.5196 -0.5206 -0.5155 -0.5192 -0.5196
47.5 0.3 0.75 -0.5258 -0.5515 -0.5518 -0.5437 -0.5511 -0.5515

47.5 0.3 1.00 -0.5320 -0.5666 -0.5668 -0.5545 -0.5662 -0.5666

40.0 0.4 0.25 -0.7184 -0.7372 -0.7363 -0.7353 -0.7373 -0.7373

40.0 0.4 0.50 -0.6996 -0.7270 -0.7270 -0.7226 -0.7270 -0.7271
40.0 0.4 0.75 -0.6937 -0.7303 -0.7307 -0.7227 -0.7302 -0.7304

40.0 0.4 1.00 -0.6871 -0.7331 -0.7332 -0.7224 -0.7330 -0.7332

42.5 0.4 0.25 -0.6396 -0.6526 -0.6530 -0.6523 -0.6525 -0.6527
42.5 0.4 0.50 -0.6553 -0.6766 -0.6769 -0.6734 -0.6765 -0.6767

42.5 0.4 0.75 -0.6604 -0.6902 -0.6907 -0.6832 -0.6900 -0.6903

42.5 0.4 1.00 -0.6585 -0.6972 -0.6976 -0.6860 -0.6970 -0.6973
45.0 0.4 0.25 -0.5746 -0.5839 -0.5843 -0.5833 -0.5837 -0.5840

45.0 0.4 0.50 -0.6190 -0.6364 -0.6367 -0.6330 -0.6361 -0.6364

45.0 0.4 0.75 -0.6319 -0.6574 -0.6576 -0.6502 -0.6571 -0.6574
45.0 0.4 1.00 -0.6333 -0.6672 -0.6673 -0.6556 -0.6669 -0.6673

47.5 0.4 0.25 -0.5291 -0.5365 -0.5370 -0.5347 -0.5362 -0.5365

47.5 0.4 0.50 -0.5908 -0.6059 -0.6064 -0.6012 -0.6056 -0.6059
47.5 0.4 0.75 -0.6080 -0.6309 -0.6312 -0.6226 -0.6306 -0.6310

47.5 0.4 1.00 -0.6113 -0.6422 -0.6423 -0.6295 -0.6419 -0.6423
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(b) Option Deltas for Contract Set II

(1) (2) (3) (4) (5) (6) (7) (8) (9)

European Bench- Ritchken Step-Func 3-Step MPE 3-Step MPE

St � T � t price mark w/ RE w/o RE w/ RE

49.5 0.2 0.25 -0.2192 -0.2244 -0.2251 -0.2225 -0.2240 -0.2245
49.5 0.2 0.50 -0.3126 -0.3270 -0.3273 -0.3218 -0.3266 -0.3271

49.5 0.2 0.75 -0.3465 -0.3703 -0.3704 -0.3616 -0.3699 -0.3704

49.5 0.2 1.00 -0.3590 -0.3920 -0.3921 -0.3796 -0.3916 -0.3920

49.5 0.3 0.25 -0.3940 -0.4006 -0.4009 -0.3979 -0.4003 -0.4007
49.5 0.3 0.50 -0.4755 -0.4907 -0.4908 -0.4845 -0.4903 -0.4907

49.5 0.3 0.75 -0.5006 -0.5242 -0.5242 -0.5143 -0.5238 -0.5242

49.5 0.3 1.00 -0.5078 -0.5398 -0.5398 -0.5258 -0.5395 -0.5399

49.5 0.4 0.25 -0.5076 -0.5144 -0.5145 -0.5114 -0.5140 -0.5144
49.5 0.4 0.50 -0.5737 -0.5879 -0.5879 -0.5817 -0.5876 -0.5879

49.5 0.4 0.75 -0.5919 -0.6137 -0.6137 -0.6038 -0.6134 -0.6138

49.5 0.4 1.00 -0.5956 -0.6253 -0.6253 -0.6111 -0.6250 -0.6253

Table 2 reports the delta values of American \up-and-out" put options on non-dividend-paying stocks for
two sets of contracts computed using di�erent methods. Set I includes 48 contracts, each of which has a
di�erent value of the parameter set (St; T�t; �). The domain of this parameter set is St = (40; 42:5; 45; 47:5),
T � t = (0:25; 0:5; 0:75; 1:0), and � = (0:2; 0:3; 0:4). Set II is similar to set I, except that those contracts
with St = 47:5 are replaced by contracts with St = 49:5. Panels (a) and (b) show the numerical results
for contract set I and II, respectively. Columns 1 through 3 represent the values of the parameters, St (the
time-t stock price), � (volatility), and T � t (the time to expiration), respectively. Column 4 reports the
European delta values obtained using the analytic formula in (15). Columns 5 and 6 show the numerical
results of delta values from the Ritchken method with at least 10; 000 time steps (the benchmark), and
the Ritchken method with at least 50 time steps, respectively. Columns 7 through 9 show the numerical
results from three analytic approximation techniques: the step-function scheme using a 4-point Richardson
extrapolation, and the 3-step multi-piece exponential (MPE) approximation with and without Richardson
extrapolation.
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Table 3: Summary of Results on Option Prices and Delta Values of American \Up-and-Out"

Put Options on Non-Dividend-Paying Stocks

(K = $45; H = $50; r = 4:88%)

(1) (2) (3) (4) (5)

Contract Set I Contract Set II

Price Delta Price Delta

Ritchken

RMSE 3.349e-03 7.190e-04 3.278e-03 6.600e-04

RMSRE 1.254e-03 1.233e-03 1.096e-03 1.022e-03

CPU Time (sec) 5.300e-01 5.300e-01 7.416e+01 7.416e+01

Cheuk-Vorst

RMSE 2.408e-03 NA 2.195e-03 NA

RMSRE 1.258e-03 NA 2.535e-03 NA

CPU Time (sec) 7.500e-01 NA 7.500e-01 NA

Step-Func w/RE

RMSE 5.178e-03 6.975e-03 4.836e-03 7.464e-03

RMSRE 2.132e-03 1.115e-02 2.231e-03 1.287e-02

CPU Time (sec) 1.600e-01 1.600e-01 1.600e-01 1.600e-01

3-Step MPE w/o RE

RMSE 1.733e-03 2.727e-04 1.673e-03 2.797e-04

RMSRE 6.518e-04 4.881e-04 7.014e-04 5.670e-04

CPU Time (sec) 3.000e-01 3.000e-01 3.000e-01 3.000e-01

3-Step MPE w/RE

RMSE 5.991e-04 1.261e-04 5.937e-04 1.242e-04

RMSRE 1.786e-04 2.047e-04 1.728e-04 2.011e-04

CPU Time (sec) 5.700e-01 5.700e-01 5.700e-01 5.700e-01

Table 3 reports a summary of the results from the Ritchken, the Cheuk-Vorst, and the three analytical
approximation methods for American \up-and-out" put options on non-dividend-paying stocks for two
sets of contracts. Set I includes 48 contracts, each of which has a di�erent value of the parameter set
(St; T � t; �). The domain of this parameter set is St = (40; 42:5; 45; 47:5), T � t = (0:25; 0:5; 0:75; 1:0),
and � = (0:2; 0:3; 0:4). Set II is similar to set I, except that those contracts with St = 47:5 are replaced by
contracts with St = 49:5. Columns 2 and 3 show the numerical results of option prices and delta values for
contract set I. Columns 4 and 5 show the numerical results of option prices and delta values for contract
set II. Beginning with row 3, deviation from the benchmark - the results from the Ritchken method with
at least 10; 000 time steps - is reported for each of the following �ve methods: the Ritchken method with
at least 50 time steps, the Cheuk and Vorst with 100 time steps, the step-function scheme using a 4-point
Richardson extrapolation, and the 3-step multi-piece exponential (MPE) approximation with and without
Richardson extrapolation.

The root of the mean squared error (rmse) and the root of the mean squared relative error (rmsre) are
used as two measures of deviation from the benchmark. The CPU time is the amount of the time required
for each method on a Sun Ultra 1 workstation to compute the option prices or delta values for all the 48
contracts in a given set of contracts.
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Table 4: Summary of Results on Option Prices and Delta Values of Low- and High-Premium

American \Up-and-Out" Put Options

(K = $45; H = $50; r = 4:88%)

(a) Low Premium Contracts

(1) (2) (3) (4) (5)

Contract Set I Contract Set II

Price Delta Price Delta

Step-Func w/RE

RMSE 4.409E-03 5.479E-03 3.548E-03 6.645E-03

RMSRE 2.617E-03 9.830E-03 2.776E-03 1.340E-02

3-Step MPE w/o RE

RMSE 1.371E-03 2.849E-04 1.213E-03 2.981E-04

RMSRE 7.704E-04 5.869E-04 8.531E-04 7.149E-04

3-Step MPE w/RE

RMSE 3.179E-04 8.693E-05 2.974E-04 8.034E-05

RMSRE 1.729E-04 1.831E-04 1.606E-04 1.750E-04

(b) High Premium Contracts

(1) (2) (3) (4) (5)

Contract Set I Contract Set II

Step-Func w/RE

RMSE 5.846E-03 8.202E-03 5.846E-03 8.202E-03

RMSRE 1.498E-03 1.233E-02 1.498E-03 1.233E-02

3-Step MPE w/o RE

RMSE 2.031E-03 2.599E-04 2.031E-03 2.599E-04

RMSRE 5.061E-04 3.633E-04 5.061E-04 3.633E-04

3-Step MPE w/RE

RMSE 7.852E-04 1.562E-04 7.852E-04 1.562E-04

RMSRE 1.842E-04 2.241E-04 1.842E-04 2.241E-04

Table 4 reports a summary of the results from the analytic methods for both low- and high-premium out-of-
the-money American \up-and-out" put options on non-dividend-paying stocks for two sets of contracts. Set
I includes 48 contracts, each of which has a di�erent value of the parameter set (St; T � t; �). The domain
of this parameter set is St = (40; 42:5; 45; 47:5), T � t = (0:25; 0:5; 0:75; 1:0), and � = (0:2; 0:3; 0:4). Set
II is similar to set I, except that those contracts with St = 47:5 are replaced by contracts with St = 49:5.
Panels (a) and (b) summarize, respectively, the results for low- and high-premium options within each set
of contracts. High-premium contracts within each set are those whose premium (the di�erence between
the benchmark American and European option values) are ranked in the top half of the group, whereas
low-premium contracts within each set are those whose premium ranked in the bottom half. Columns 2 and
3 show the numerical results of option prices and delta values for contract set I. Columns 4 and 5 show the
numerical results of option prices and delta values for contract set II. Within each panel, deviation from the
benchmark - the results from the Ritchken method with at least 10; 000 time steps - is reported for each of
the following three methods: the step-function scheme using a 4-point Richardson extrapolation, and the
3-step multi-piece exponential (mpe) approximation with and without Richardson extrapolation. The root
of the mean squared error (rmse) and the root of the mean squared relative error (rmsre) are used as two
measures of deviation from the benchmark.
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Figure 1: Optimal Exercise Boundaries of American Barrier Options with Di�erent Barrier
Levels

Figure 1 shows the plots of the optimal exercise boundary for American out-of-the-money \up-and-
out" put options on non-dividend-paying stocks for di�erent values of the barrier level H, namely
H = 45; 45:01; 45:10; 46; 50; 100. The values of other relevant parameters are: strike price K = 45, time to
expiration T � t = 1 (year), volatility � = 0:2, and risk-free rate r = 0:0488. The boundary with H = 45
coincides with the strike price. The boundary with H = 100 is essentially the same as the boundary of an
otherwise identical standard American option (H =1). Each boundary shown here is generated using 200
points (time-steps).
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Figure 2: Price Homogeneity of Optimal Exercise Boundaries of American \Up-and-Out"
Put Options

Figure 2 illustrates the price homogeneity of the optimal exercise boundary for American out-of-the-money
\up-and-out" put options on non-dividend-paying stocks. Figure 2(a) shows plots of the boundary with
(K = 45; H = 50) and (K = 90; H = 100) to illustrate the homogeneity in (K;H). Figure 2(b) shows plots
of the boundary with (K = 45; H = 100) and (K = 90; H = 500) to illustrate the homogeneity in K when
H � K or essentially when H =1. In both (a) and (b), the height of the dashed curve is twice the height
of the solid curve (homogeneity). The values of other relevant parameters are time to expiration T � t = 1
(year), volatility � = 0:2, and risk-free rate r = 0:0488. Each boundary shown here is generated using 200
points (time-steps).
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Figure 3: Stationarity of Optimal Exercise Boundaries of American \Up-and-Out" Put
Options

Figure 3 illustrates the stationarity of the optimal exercise boundary of American out-of-the-money \up-
and-out" put options on non-dividend-paying stocks. Two plots of the boundary are shown in the �gure
and di�er only in time to expiration, one with T � t = 0:5 (year) and the other with T � t = 1 (year). When
shifted to the right for T � t = 0:5, the dashed curve will coincide with the solid curve (stationarity). The
values of other relevant parameters are strike K = 45, barrier H = 50, volatility � = 0:2, and risk-free rate
r = 0:0488. Each boundary shown here is generated using 200 points (time-steps).
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