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Abstract

This paper develops analytical methods to forecast the distribution of
future returns for a new continuous-time process, the Poisson multi-
fractal. Our model captures the thick tails and volatility persistence
exhibited by many financial time series. We assume that the forecaster
knows the true generating process with certainty, but only observes
past returns. The challenge in this environment is long memory and
the corresponding infinite dimension of the state space. We show that
a discretized version of the model has a finite state space, which al-
lows an analytical solution to the conditioning problem. Further, the
discrete model converges to the continuous-time model as time scale
goes to zero, so that forecasts are consistent. The methodology is
implemented on simulated data calibrated to the Deutschemark / US
Dollar exchange rate. Applying these results to option pricing, we find
that the model captures both volatility smiles and long-memory in the
term structure of implied volatilities.

Keywords: Forecasting, Implied Volatility, Long Memory, Multifractal
Model of Asset Returns, Option Pricing, Poisson Multifractal, Trading
Time, Volatility Smile



1. Introduction

This paper develops analytical methods to forecast the distribution of future re-
turns in a new class of continuous-time processes, Poisson multifractals. Our
model parsimoneously captures the thick tails and volatility persistence exhib-
ited by many financial time series. It provides a fully-stationary version of the
multifractal model introduced in Mandelbrot, Fisher, and Calvet (1997), which
contains residual effects of a grid-based construction. We model volatility as the
multiplicative product of an infinite sequence of random functions. Each random
function has innovations with Poisson arrivals of a different frequency, where the
full set of time horizons progresses from a suitably long time scale to approach
zero by a power law in time. This ensures that volatility clustering will be present
at all time scales, and corresponds to the economic intuition that economic factors
such as technological shocks, business cycles, earnings cycles, and liquidity shocks
all have different time scales.

To provide parsimony, we assume that each volatility component has iden-
tically distributed innovations, so that they differ only by their respective time-
scales. We propose that such patterns may arise in fully rational equilibrium mod-
els, either because of exogenous shocks with scaling properties, or endogenously
due to market incompleteness or informational cascades. The multiplicative in-
teraction of the volatility components implies that the effect of an innovation is
proportional to volatility at other time scales, as could be the case in models where
trade depends on the availability of willing counterparties. Additionally, because
the interactions are non-linear, past data is informative regarding the decompo-
sition of volatility among its various components. Thus, with full knowledge of
the current volatility level, forecasts may differ considerably depending upon the
past history.

We first introduce the continuous-time version of the model, which has an
infinite state space. The model compounds a standard Brownian Motion with a
random time-deformation process that is obtained from the volatility model de-
scribed above. This construction implies semi-martingale prices and uncorrelated
returns, and thus precludes arbitrage in a standard two-asset economy. Squared
returns have long-memory, and the highest finite moment of returns is permit-
ted to have any value greater than two. Additionally, this flexible range of tail
behavior is fully provided by intermittent bursts of volatility modifying the stan-
dard Brownian Motion, with no need to incorporate jumps or otherwise separately
model the conditional distribution of returns. The unconditional distribution of



returns changes with the time scale, and sample histograms may appear more
thin-tailed at longer horizons. However, the distribution of returns does not gen-
erally converge to a Gaussian with increasing horizon, and never converges to a
Gaussian with decreasing horizon.

To facilitate forecasting, we then introduce a discretized version of the process
with finite state space and a simple Markovian structure. A recursive algorithm
allows us to calculate the current probabilities of the volatility state conditional
on past data and initial beliefs. A second recursive algorithm computes analytical
multi-step forecasts of the distribution of the process at future dates, conditional
on beliefs about the current state. We then show that refinements of the dis-
cretized process to progressively smaller time scales converge to the continuous
time process, so that forecasts from the discrete model are consistent as the time
scale goes to zero.

The forecasting methodology is numerically implemented for a multifractal
process calibrated to Deustchemark /US Dollar exchange rate returns. We obtain
a reduced form option pricing formula that is consistent with absence of arbitrage,
and use this formula to calculate implied volatilities for simulated data. The model
captures both volatility smile and long memory in the term structure of implied
volatilities.

Our methodology has several features that distinguish it from forecasting in
other long-memory models. For the FIGARCH process, the set of state variables
relevant to forecasting future return densities consists of all past price changes,
and all of these state variables are observed. The conditioning problem is thus
straightforward, and reduces to a choice of how much past data to use. Multi-step
density forecasts, however, are computationally problematic because of the large
state space, and are usually formed by intensive simulation. For standard Long
Memory Stochastic Volatility Models (LMSV), the problem is further complicated
since the relevant state variables are past volatility levels, which are unobserved,
i.e., latent. The forecaster thus must first solve a difficult conditioning problem,
and then ideally compute forecasts conditional upon each possible set of past
volatilities. The multifractal model simplifies forecasting because it greatly re-
duces the volatility state space. For FIGARCH and LMSV models, incorporating
frequencies of size as low as 1/n typically requires n state variables. In the multi-
fractal model, log, n state variables capture frequencies of the same range, where
b is a constant of the model.

Section 2 provides a brief review of the multifractal model. Section 3 intro-
duces a new, grid-free multifractal measure in continuous time. Section 4 defines



the new financial model and presents its economic intuition. Section 5 provides a
discretized version of the process, presents the forecasting algorithm, and demon-
strates the consistency of forecasts obtained from the discretized model. Section 6
discusses the numerical implementation of this method. Section 7 discusses option
pricing and the calculation of implied volatilities.

2. A Review of the Multifractal Model

This section presents a brief review the Multifractal Model of Asset Returns
(MMAR), which was introduced in Mandelbrot, Fisher, and Calvet (1997). The
MMAR is constructed by compounding a Brownian Motion B(t) with a stochastic
trading time 60(¢):

In P(t) — In P(0) = B[6(¢)],

where 6(t) is a random increasing function or, equivalently, the cumulative distri-
bution function (c.d.f.) of a random measure . The model captures the outliers
and volatility persistence of many financial time series by specifying the measure
1 to be multifractal, a concept which we now recall.

2.1. The Binomial Measure

Multifractal measures are built by iterating an elementary procedure, called a
multiplicative cascade. The simplest multifractal is the binomial measure on the
compact interval [0,1]. Consider the uniform probability measure p, on [0, 1],
and two positive numbers my and m; adding up to 1. In the first step of the
cascade, we define a new measure p; by uniformly spreading the mass mg on the
left subinterval [0,1/2], and the mass m; on the right subinterval [1/2,1]. The
density of u, is now a step function.

In the second stage of the cascade, we split the interval [0, 1/2] into two subin-
tervals of equal length, [0,1/4] and [1/4,1/2]. The left subinterval [0, 1/4] receives
a fraction mg of the mass p,[0,1/2], while the right subinterval receives a frac-
tion my. Applying this again to the interval [1/2, 1], we obtain a new measure .,
which satisfies

/'[’2[07 1/4] = Mmomy, /’1’2[1/47 1/2] = moemy,
M2[1/27 3/4] = mimy, M2[3/47 1] = mimy.

Iteration of this procedure generates an infinite sequence of measures (1), which
weakly converges to the binomial measure p. Like many multifractals, the binomial
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is a continuous but singular probability measure; it thus has no density and no
point mass. We also observe that since myg+m; = 1, each stage of the construction
preserves the mass of split dyadic intervals.

This construction can be extended in several ways. For instance at each stage
of the cascade, intervals can be split into b > 2 intervals of equal size. Subintervals,
indexed from left to right by 5 (0 < § < b— 1), receive fractions of the total mass
equal to my, .., mp_1, and we preserve mass by imposing that these fractions, also
called multipliers, add up to one: > mg = 1. This defines the class of multino-
mial measures. Another extension randomizes the allocation of mass between
subintervals at each step of the iteration. The multiplier of each subinterval is a
discrete random variable My that takes values mg, my, ..., mp—1 with probabilities
Dos --, Pb—1- The preservation of mass imposes the additivity constraint: » Mz = 1.

2.2. Multiplicative Measures

Another extension of the multinomial allows non-negative multipliers Mz (0 <
B < b— 1) with arbitrary probability distributions. For simplicity, we assume
identically distributed multipliers drawn from a random variable M. The limit
multiplicative measure is called conservative when mass is conserved at each stage
of the construction: ) Mg = 1, or canonical when it is only preserved “on aver-
age” E(Y Mg)=1or EM =1/b.

Consider the generating cascade of a conservative measure p. In the first stage,
we partition the unit interval [0, 1] into b-adic cells of length 1/b, and allocate
random masses My, .., M,_1 to each of these cells. By a repetition of this scheme,
the b-adic cell of length At = b *, starting at t = 0.9;...n;, = >_ n;b"*, has measure

p(AL) = M(n) M (n1,m2) - M (0155 M) (2.1)

Multipliers defined at different stages of the cascade are chosen to be statistically
independent, and relation (2.1) implies that E[u(At)7] = [E(M9)]*, or equiva-
lently

E [p(At)7] = (At)"@H, (2.2)

where 7(q) = —log, E(M?) — 1. The moment of an interval’s measure is thus
a power functions of the length At¢. This important scaling rule characterizes
multifractals.

Modifying the previous construction, we generate a canonical measure p by
imposing that the multipliers Mg be statistically independent within each stage



of the cascade. The mass of the unit interval is now a random variable Q,! and
the mass of a b-adic cell takes the form

p(AL) = Q015 e i) M (10) M (11,705 ) - M (115 -0 1)

We note that Q(n,,...,n,) has the same distribution as 2. The measure p thus
satisfies the scaling relationship

E[u(AD)T] = E(Q7) (At)T@+, (2:3)

which generalizes (2.2). We note that multiplicative measures constructed so far
are grid-bound, in the sense that the scaling rule (2.3) holds only when the length
At is of the form b~*. In Section 3, we will see how to construct grid-free measures,
for which relation (2.3) asymptotically holds for small values of At.

2.3. Multifractal Processes

We now recall the formal defintion of the MMAR. Consider the price of a financial
asset P(t) on a bounded interval [0, 7], and define the log-price process

X(t) = In P(t) — In P(0).

We model X (¢) by compounding a Brownian Motion with a multifractal trading
time:

Assumption 1. X(t) is a compound process

where B(t) is a Brownian Motion, and 6(t) is a stochastic trading time.

Assumption 2. Trading time 6(t) is the c.d.f. of a multifractal measure u de-
fined on [0,T].

Assumption 3. The processes {B(t)} and {6(t)} are independent.

!The random variable € has interesting distributional and tail properties that are discussed
in Mandelbrot (1989a).



Calvet, Fisher, and Mandelbrot (1999) show that the process X (¢) is martingale
with respect to its natural filtration. The price process P(t) is therefore a semi-
martingale, which allows use of stochastic integration to calculate gains from
trade. Moreover, there is no arbitrage in a two asset economy containing a riskless
asset with a fixed rate of return, and a risky asset with a multifractal price P(t).

The MMAR also has long memory in volatility. For any stochastic process Z
with stationary increments, the autocovariance in levels

0z(t,q) = Cov(|Z(a, At)[*, | Z(a + t, AL)|%),

quantifies the dependence in the size of the process’s increments. It is well-defined
when E|Z(a, At)|* is finite. For a fixed ¢, we say that the process has long
memory in the size of increments if the autocovariance in levels is hyperbolic in
t when t/At — oo. When the process Z is multifractal, this concept does not
depend on the particular choice of ¢.2 Under these definitions, both trading time
6(t) and the process X (¢) have long memory in the size of increments.

3. Poisson Multifractals

This section introduces a grid-free multifractal measure in continuous time. The
main ingredient of the construction consists of randomizing the times at which
the multipliers are changing. More specifically, we assume that the arrival times
of the multipliers are following Poisson processes.

3.1. Construction of a Poisson Multifractal Measure

We construct the Poisson multifractal measure on the interval [0, 7] as the limit
of a multiplicative cascade. In the first stage of the procedure, consider a se-
quence {7} ; of independent random variables with identical exponential den-
sity f(z;A) = Aexp(—Azx). We wish to randomize arrivals of the first stage mul-
tipliers, and use the sequence 7T; as the interval between arrivals. Denoting by
N =max{n:Y ;  T; < T} the number of arrivals on [0,77], we then define the
first stage random instants

0 if n=0
t, = Z?ZITZ- if 1<n<N .
T if n=N+1

2Provided that E|Z(a, At)|2q < 00, as is implicitly assumed in the rest of the paper.
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The choice of an exponential distribution guarantees that the probability of arrival
at any instant ¢ is independent of past history.

The intervals {I,, = [t,tps1] : 0 <n < N} form a random partition of [0, 7.
Consider the function £([t,t]) = t' — ¢, which provides the length of a given
interval. The measure p, is defined by drawing independent random multipliers
M,, and uniformly spreading within each interval the masses

/Ll(In) = M, X E(In)/Ta

In order to obtain a non-degenerate limit, we impose that mass be preserved on
average at each stage of the cascade: E u,[0,7] = 1. Since

Eu,[0,7] = E /T =EM,

> ML)

the preservation of mass is equivalent to EM = 1.

We now present the construction of the measure at stage k& > 2. Consider a
stage k — 1 interval

Ijl,--vjk—l = [tjl,--”jk—1; tjl,--”jk—1+1]a

with evenly spread mass p;,_;(Zj,,. j._,)- Let {TJ=11% e a sequence of in-
dependent random variables with identical exponential density f(z;2%)). The
sequence {Tgl’"’j’“‘l};":l is moreover assumed to be independent of all other ran-
dom variables defined up to stage k. We note that the frequency of arrival doubles
at each stage® and E (Tgl""jk’l) = (2¥))~!. Because we again want to ensure that

arrival times are contained in the interval I, it is convenient to define

’"’jk*l’
N’ = max {n : ZTZ] < E(Ij)}
i=1

where j = (j1,..,Jk—1). We then define the corresponding increasing set of arrival
times

tjlﬂ"ujk—l‘i'l if n = N] + ]_

3More specifically, the number 2\ represents the frequency of arrival within a stage k — 1
interval. An alternative specification, which we do not explore on this paper, assumes indepen-
dent arrival times at each stage of the construction. The forecasting results developed of Section
5 directly extend to this new construction.



On each subinterval I;, = [tjn;tjn+1], we randomly draw a multiplier M,, and
uniformly spread the mass

p, (Lin) = (Mjy . M, oy Mig) x £(1; )/ T. (3.1)

We note that E [p(Z;)] 1 (Z;)] = pe_1(Z;). By the martingale convergence
theorem, p,(I;) thus converges to a limit p(/;) when k& — oo. The limit measure
1 is therefore well defined, and called a Poisson multifractal measure. Its total
mass is random and satisfies E [0, 7] = 1.

3.2. Properties of the Measure

The random mass p[0, 7] defines a random variable (7, \) whose distribution
depends on T, A and M. We note that EQ(T,\) = 1, and observe

Proposition 1. The mass of a subinterval [0,t] satisfies
d T
0,t] = =Q(t, N).
0.2 L)
forallt <T.

The random mass (¢, A\) plays a crucial role for the scaling properties of the
measure.

Proposition 2. The random variable Q(T, \) satisfies the invariance relations

Q(T, \) £ Q(1, AT) (3.2)
and
Nt —t
QT, ) = ; i Mt — 45,22 (3.3)

for all T, X\ and M.

Proof. See Appendix |

Equation (3.2) shows that the distribution of the random mass Q(7’, \) depends on
a single parameter. It is thus convenient to define Q(\) = Q(1, \) and henceforth
use a single index to represent it. We also note that equation (3.3) generalizes the
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invariance relation = ) M3y satisfied by the random mass €2 of a grid-bound
measure. We observe

Proposition 3. If there exists A > 0 such that E[Q(X)!] < oo, then the g-th
moments E[Q(X)9] is finite for all X' € (0, 0).

Proof. See Appendix. |

The critical moment g ;;(A) = sup{q : E[Q2(A)?] < oo} is thus independent of A.

As seen in Section 2, grid-bound measures have very specific moment scaling
properties. In particular, the moment Eult, t + At]? of an interval’s mass varies as
a power function of the length At. We now show that this property is preserved
in the grid free case for small values of At. Proposition 1 suggests analysis of
the moments of 2(A) as A — 0. For this reason, it is convenient to introduce
the notation f(A) ~ g(\) to indicate that f(A)/g(A\) — 1 as A — 0. When the
parameter A is small, we expect that the multiplier associated with the frequency
A is constant over the interval [0, 7]. The random mass () is thus aproximately
equal to M Q(2)), and therefore that E[Q(\)?] ~ E(M?)E[Q(2))?]. This implies
that E[Q())?] behaves like a power function for small values of A.

Proposition 4. The ¢ moment of the random mass Q()\) satisfies
E[Q(A)] ~ A 0T g5 X = 0
where 7(q) = —logy(EM?) — q — 1 and ¢, is a positive constant.

Proof. See Appendix. |

As in the grid-bound case, the relation 7(q) = —log,(EM?) — g — 1 defines
the scaling function 7(g). The slight difference in the definition comes from a
different normalization of the multiplier. We observe that by Hoélder’s inequality,
the function 7(g) is concave.

This allows derivation of the scaling behavior of a random measure p associated
with a fized parameter \.

Corollary 1. For any q > 0, the ¢'* moment of the measure satisfies
E ([0,1]7) ~ cxgt™ @ as t — 0
where cy 4 15 a positive constant.

We can thus apply the quantitative techniques developed in earlier work to the
Poisson multifractal.
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4. The Financial Model

We now define our model of asset returns. As in the previous section, we consider
a random Poisson multifractal measure p, and define 0(t) = p[0,¢] as a trading
time. The Poisson multifractal process X (¢t) = In P(¢) — In P(0) is again defined
by compounding a Brownian Motion B(t) with a stochastic trading time 6(¢):

X(t) = In P(t) — In P(0) = B[#(t)].

This process has properties which makes it very similar to the MMAR. We see
immediately that the process X (¢) is a martingale, and the price process P(t) is
therefore a semi-martingale. By Corollary 1, its moments satisfy the asymptotic
scaling rule

E[|X ()] = E0@Y?E(B(1)|*) ~ Cot™ @+ as t — 0,

where 7(q) = 74(q/2).

The model is now grid-free, in the sense that it makes no assumption on
the time instants when the multipliers are changing. The process can also be
discretized easily, which facilitates forecasting. Another advantage lies in the
treatment of long memory. For a given forecasting problem over the time interval
[0,T], we can choose a parameter \ corresponding to the lowest frequency shock
we want to consider. In practice, this choice is very similar to the truncation

problem encountered when forecasting fractionally integrated processes such as
ARFIMA (Baillie, 1996).

4.1. Economic Intuition

Economically, the volatility state vector corresponds to a set of volatility com-
ponents, each with a different frequency for innovations. Thus, the highest fre-
quencies might correspond to short lived liquidity shocks, while other frequencies
could correspond to earnings cycles, business cycles, technological shocks, and
so on. This closely corresponds to the economic intuition that different types of
volatility shocks have different degrees of persistence. In contrast, most standard
models impose that all volatility innovations are statistically identical, and thus
use a single decay function to fit many different types of volatility shocks.
Enriching a volatility model with different types of volatility shocks would
quickly become unwieldy without additional structure. The multifractal approach
builds on the organizing principle that volatility shocks have no favored time
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scale. All shocks look important at their own natural time scale, appear like low-
frequency variation at smaller time scales, and appear like high frequency noise at
larger time scales. If we take the model literally, we might search for equilibrium
models that produce this type of scaling behavior in volatility. Alternatively, we
can view the scaling restrictions as a pragmatic approach to modelling hetero-
geneity in volatility shocks.

An added feature of the multifractal model that may be attractive from some
points of view is that the process is non-ergodic, so that a single observed price
path can be consistent with different beliefs about some parameters of the model
depending on one’s priors. In particular, note that taking the model to data
requires a renormalization to fit the average volatility level of the data at the
preferred modelling frequency. If we write

In P(t) — In P(0) = o B[0(t)],

this renormalization is captured by the new parameter o. A first approach might
be to estimate o with the average volatility over the history of the data on the
interval [0, T']. However, recalling that 8(7") ~ €2, we see that the average volatility
over this time period is distributed like ¢2'/2. This suggests that many prior
beliefs about ¢ can be supported by an observed time path. To understand this
intuitively, imagine that one knows that no stopping time has occured for the
lowest frequency volatility component M;, so that this component is constant
over the life of the data. An individual with a relatively high point mass prior on
o can support this belief by inferring that the realization of M; was low, while
an individual with a relatively low point mass prior on ¢ might infer that M;
was high. Neither belief would be ruled out be the data, but the first investor
would forecast volatility to increase over a very long run average, while the second
investor would forecast a volatility decrease.

This is a feature of the model that deserves further attention, particularly in
the context of equilibrium models that support the price process. It is compatible
with the view that investors learn from data, but can never learn perfectly all
parameters of the true model (Kurz, 1994; 1997). In the remainder of this paper,
we avoid this issue by assuming that all investors know the true process with
certainty. Future extensions should be able to incorporate parameter uncertainty
via standard methods.

In addition to assuming that the forecaster knows the true price process with
certainty, the remainder of the paper assumes that the forecaster uses only the
series of past prices to form conditional probabilities over the current volatility
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state. The intuition behind the conditioning formula is straightforward. When
the econometrician first observes a large positive spike to volatility, she weights
her beliefs towards states with large realized volatility components at higher fre-
quencies. If the volatility spike persists, however, it becomes more likely that the
shock originated in a single large innovation to a low frequency volatility com-
ponent, rather than a series of shocks to higher frequency components. There
are many interesting extensions to this framework. For example, one potential
source of value added in the financial services industry is explanation of volatility
shocks. Analyst research can potentially refine the conditional probabilites of the
volatility state beyond the information given by past prices. For example, ana-
lyst research might point towards a long-term macroeconomic explanation for a
relatively recent volatility shock, which might lead one to adjust the conditioning
formula we present. One obvious place to look for this additional information is in
derivative security prices. We discuss some of these extensions in the Conclusion.

5. Computing the Conditional Density

We now examine the forecasting problem in the Poisson multifractal model. Con-
sider a Poisson multifractal process

X(t) =In P(t) — In P(0) = B[#(t)]

defined on a time interval [0,7]. We observe the process X on a time interval
[0, ], and want to predict the conditional distribution of X (s) at any future instant
s > t. To solve this problem, we first assume that both X and 6 are observed on the
interval [0, ¢], and denote the corresponding information set by Z,. Let fx, (z|Z;)
and fp, (0|Z;) denote the conditional densities of X (s) and 8(s)—60(t) at date s > t.
By Bayes’ rule, the log-price process X (t) satisfies

fx. (@) = / nli; X (£), 01y, (6]T,)do, (5.1)

where n(z; i, 0%) is the density of a Gaussian random variable with mean u and
variance o2. This suggests that we calculate the conditional density fy, (0|Z;) of
trading time, and then derive from (5.1) the conditional density of the process.
The estimation of the conditional density fy,(0|Z;) is carried out as follows.
We first introduce a discretized version of the process, in which stopping times
take values on a finite grid and the construction of the measure stops after k + 1
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iterations. We then solve the conditioning problem of the discretized process,
and show that the renormalized solution f: (6|Z;) converges to the conditional

density fy,(0|Z;) of the continuous process as k — oo.

5.1. A Discretized Version of Trading Time

This section defines a continuous, piecewise linear trading time #* that permits
non-differentiability on a finite grid of regularly spaced instants. The grid corre-
sponds to the set of instants at which innovations to volatility may occur, and the
values of #* on the grid define a discretized trading-time. We view the trading
time € of Section 3.1 as the true process, and the discretized version as a filter
that facilitates forecasting.

We first define a random measure p* through a recursive construction with a
finite number k+1 of stages, where k> 1is an integer. The measure is defined

on an interval [0, b’_“} with the integer base b > 1, and the construction uses the

regular grid 0,1,...,7* = b*. The corresponding trading time 6" is then defined
on the time interval [0, T] by

0" (s) = p* [O,bES/T} 0<s<T.

The process 6" is thus the c.d.f of a homothetic transform of the measure p*. This
allows us to model trading time on an arbitrary time interval [0, T'], while the grid
points of p* take integer values.

The construction of u* begins at stage zero with a unit mass spread evenly on
the interval [0, 7*]. In the first stage, let {7;*}$2; be a sequence of iid random vari-
ables each having a geometric distribution with parameter v, = 1 —exp(—ATb~¥)
and mean 1/v,.* This sequence will provide the lengths between arrival times. To
keep the arrival times bounded below T™*, we denote by P the largest integer such
that > | T < T*. The random integers

0 n=20
th={ ST 1<n<P
T* n=P+1

define a random partition I, = [t,,t,+1] of [0,7*]. We define the first stage
measure by drawing independent random multipliers M,, and uniformly spreading
mass M, x £(1,)/T* on each interval I,.

4The distribution of T} satisfies P{T} = n} = v,(1 — ;)" ! for all n > 1.

15



We proceed similarly in stages k = 2, .., k of the cascade by considering inter-
vals I; and their corresponding geometric random variables {7}, "7*'}, 5,
(k+1-k)

1seJk—17
with parameter v, = 1—exp [—/\Tb_ } . The random variable P71-7k-1 gives
the number of arrival times that will fall strictly within the corresponding interval,
and is used to truncate the series of random arrival times {tjl,__,jk717n}OSnSle,..,jk_1+1 .
Details of stages k = 2, ..,k can be filled in by referring to the continuous time
construction.

Finally in stage k+1, we draw iid random variables €, for each interval [t—1,¢].
We assume that each €, is distributed like the limit mass Q (A\T) of the continuous
time multifractal measure, as defined in Section 3.2. This assumption ties the
high-frequency components of the discrete time and continuous time models. The

mass of a cell therefore satisfies

Pt = 1,8 = b F M, M, 9,

1..j];)

where [t — 1,t] C I} ;.. It convenient to denote by M, ..., My, the multipliers
M;,, ..., Mj, . j, so that M ; can be viewed as the value of the k-th multiplier at
date t.

The random measure p* has a finite state space, which greatly simplifies the
forecasting problem. We now show that the state space can be represented as
a Markov chain. For a given ¢, define the sigma-field F;_; generated by the set
{@1,ier Mir,ji) 31y, s, <t OF Past stopping times and multipliers. Denote by & the
lowest frequency change between ¢ —1 and ¢, or formally x; = k+1ift ¢ {t;, .}
and k; = inf{k : t = ¢;,_j,} otherwise. Since time increments are geometrically
distributed, x; is independent of past stopping times and satisfies

71 k=1 ~
P{re =k} =q %l =7)-(1=%a)  k=2,.k
1= Pk =k) k=k+1

The distribution of the future multipliers (M 1, ..., Mg ;,,) thus only depends
on the current multipliers (M, ..., My ,), and the vector

Xy = (Mg, .., Mg,)

is thus a Markov chain. This property will greatly facilitate our treatment of the
conditioning problem.

We assume in the rest of this section that a multiplier takes a finite number
b, of values. The vector X; can therefore take d = bF values z',.., 2% € R*.
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The dynamics of the Markov chain X; are characterized by the transition matrix
A = (aij)1<ij<a With components a;; = P(X;11 = 27| X; = z'). Moreover, we
know that
k+1
6 = Y Be= )P (X = [X= ', = )
k=1

k+1 k '
= ZP(/@: = l"y') 1{532'73]1.""5”%_1:3‘%_1} [H P (M = SE';)]
k=1 k=k

where 7% denotes the kth component of vector z°.

This suggests an alternative method to construct and simulate the measure
u*. Instead of going down frequency levels, we can iteratively build the mea-
sure through time. At date ¢t = 0, we draw random variables (M, ..., M ;,1),
and set p*[0,1] = b_le,l...M,;,lﬁl. Given X;, we generate the next increment
of trading time p*[t,t + 1] and the next state vector X;;; by drawing the in-
dex ryy1, new multipliers My, 411, ..., Mgy, and a high frequency component
;1. Multipliers corresponding to frequencies lower than x;,; remain unchanged:
(Mig1y oy Mgy —1,641) = (Mugy ooy Mg, —1,.)- The mass p*[t, ¢ + 1] is then equal
to the product b My 4 1. Mg 1 Q1.

Constructing the measure through time rather than through stages more closely
parallels our economic intuition of trading time. Each period, the economy can
receive innovations to each volatility component. The volatility components differ
only by the expected arrival frequency of their respective innovations. If no inno-
vation is received at a given frequency, the volatility component at that frequency
does not change from the previous period. If an innovation is received, the new
volatility component at that frequency is obtained by drawing a new multiplier
with distribution M. This draw is independent of all other random variables in
the model. The assumption that all draws have distribution M independent of
time and frequency gives the model its scaling properties.

One point to note is that the transition matrix defined above assumes a type
of cascade effect in volatility innovations. If a volatility innovation arrives at a
given frequency, all higher frequencies are assumed to also experience volatility
innovations. Economically, this corresponds to the idea that relatively low fre-
quency shocks to technology or demographics cause revisions in higher frequency
economic variates such as the earnings cycle or aggregate liquidity. It also im-
plies that lower frequency volatility shocks result in correspondingly larger average
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changes in volatility.®

Another interesting point is that we assume each volatility state variable is
constant over time, except when an innovation arrives, at which time the new
value is independent of the past value. We note that this implies an identical
stationary distribution for each component of the volatility state vector, and mean
reversion in each component at each instant. However, because the rule for total
volatility p*[t,¢ + 1] = b *Myq1... Mg ;1 Q4 is multiplicative, volatility itself
need not be mean reverting at each instant, although it will be over long time
periods. This phenomenon will be observed in our simulations.

5.2. Inferring Current Multipliers

We now turn to the inference problem of a market participant who observes the
trading time increments p, = p*[t —1,¢], but not the exact value of the multipliers
X; = (Mygy, .., Mg,). The investor has a conditional distribution over the multi-
pliers that can be calculated recursively since X; is a Markov chain. Throughout
the remainder of the paper, we assume the investor knows the true process with
certainty.

We previously imposed that €; be distributed like the limit mass €2 (A7) of the
continuous time measure. In the remainder of the paper, we choose a specification
of the multiplier M such that the random mass €, has a density fq (w) with respect
to Lebesgue measure. Given a = (ay,-.,a;) € RF, we find it convenient to denote
by g(a) the product a;..ax. Since p, = g (X;) Q;, we note that the conditional
density f,, (u|X; = z') satisfies

— ) = 1 A H
B e =) = o 6o >

Let 7, denote the set of past trading time increments (1;)1<;<¢. The investor
has conditional probabilities

I =P (X, =127 |T,)

over z',.., x4, which are concatenated in the row vector I, = (II},..,II¢) € R?.
We note that

H§+1 =P (Xt+1 =1’ |It: ,Utﬂ) '
= fut+1 (/J't+1‘Xt+1 = "EJ) P (Xt‘H =’ |It) /fﬂt+1 (/J’H-l |It) ’

5An alternative model that we do not explore in this paper assumes that the arrival of
volatility innovations is independent across frequencies.
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which, by (5.2), can be rewritten

(S ault) folp /9 (@9))/g (2?)
e fu (:th+1 ‘It)

T
Since the conditional probabilities Hg +1 add up to one, we conclude that

| (S 0uTt) falm/g (9)]/g (=)
I, = . (5.3)

St (S aTh) o [ /o ()] /9 (7))

Let ¢ = (1,.,1) € R%, and let

_ | fa(ga/g(@h)  fa s/ (2%))
“’(“t“)‘[ o) T gl ]

be a row vector of conditional densities. For any z,y € R?, denote the Hadamard
product = x y = (x1y1, .., T4yq)- We infer that

w(pep1) * 1A
[wWttesr) * ILA] Y
We can therefore recursively calculate II; given an initial prior II;. We select the

prior I, that assigns [T{ = P (X; = z¢), which is the unconditional (i.e., station-
ary) distribution of Xj.

1_It+1 =

5.3. Forecasting Future Volatility

We now consider the forecasting problem of an investor who observes at date ¢ the
set Z; of past trading time increments (f;)1<i<;. As in the previous section, the
agent assigns probabilities II; on the current vector X;. The conditional proba-
bilities of future multipliers I1;,, = P (X, |Z;) are then obtained by multiplication
of the transition matrix: R

I, = I,A"*

for all n € {t,..,T}.
In order to forecast prices, we also want to estimate the conditional density at
date ¢ of the trading time increment o2 = 6, — 6,. By Bayes’ rule, the conditional
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density f,2 (0%|Z;) satisfies

d
for (0\T) = fo, (0 + 0%| X, = 2", T) T, (5.4)

i=1

The conditional densities fy, (0| X,, = 2%, Z;) in the sum can be computed by a
recursive algorithm. We know that for n =¢ + 1,

60— 0,

f6t+1 (0| Xt—l—l = J?i,It) = fQ [W

| fata,
and observe that for all n >t + 1,
f9n+1 (9\ Xn1 = iEj,It) = /f9n+1 (9‘ 0, = elaXn-f—l = 33j) o, (9I| Xny1 = $j,It) do’

A Y (GG} PN
_/0 o) fon (0| Xny1 =27, T,) df'.

Since by Bayes’ rule

d
fon (9|Xn+1 = ﬂfj;It) = Zfen (H\Xnﬂ = -ij,Xn = xi,It) Q5
i=1
= Z f@n (9‘ Xn = .IZ,It) aijné,n/ng,n-f-l'
i=1

we can recursively calculate the conditional densities fy, (0| X, = 2%, Z;) in every
period. Applying (5.4), we then infer the forecast density f,> (¢°|Z;) of trading
time increments.

5.4. Consistency

Section 5.1 defined a piecewise linear trading time " using a construction with a
fixed number of stages k + 1. We now index the piecewise linear trading times #*
by the number of stages k + 1 in their construction, and provide conditions under
which sequences converge to the non-differentiable trading time # described in
Section 3.1. This has implications for the consistency of forecasts obtained from
the discretized process.
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Without loss of generality, we assume that 6 and 6%, k € N, are constructed
on the interval [0,1]. In order to extend the set of convergence conditions, we
introduce a generalized version of the discrete construction described in Section
5.1. In particular, we previously required the discrete construction to occur on a
grid of size At = b~*. We now allow the grid size to be provided by a different
constant ¢ > 1, so that At = c ¥, and the grid takes values t = 0,1/c", ..., 1.
The construction of #* is now identical to section 5.1, except that the distribution
of geometric random variables {77'’*} is now characterized by Yeg = 1 —
exp(—=ATH=1 /).

Let C denote the space of real-valued continuous functions defined on the
interval [0, 1]. Random functions  and #* can be viewed as probability measures
on C. We provide two alternative conditions under which the sequence of trading
times {0*}22, weakly converges to the process 0.6

Condition 1. b< ¢
Condition 2. E(M?)b < ¢?

The first condition requires that the discretization becomes fine more rapidly than
the growth rates of the volatility frequencies. The second condition allows that
the rate of discretization may be equal to or even slower than the rate of increase
of the highest frequency volatility component. In particular, for the leading case
b = ¢, we require that E(M?) = 1 + Var(M) < b. This condition holds for the
distribution of multipliers calculated to the DM /USD exchange rate. We can then
show

Theorem 1. Under Condition 1 or Condition 2, the sequence {6¥}32, of dis-
cretized trading times weakly converges to the continuous time process 6.

Proof. See Appendix B. [

This implies the consistency of the density forecasts presented in Section 5.3.

6. Implementation

We demonstrate implementation of this methodology for a base four (b = 4) tri-
nomial (b,, = 3) model calibrated to a daily series of DM / USD exchange rates.

6Billingsley (1999), Pollard (1984), and Davidson (1994) provide excellent presentations of
the weak convergence of stochatic measures and processes.
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All of the work that follows uses simulated data. We iterate to & = 5 stages
with frequencies of b1, ..., b~* in units of days. Thus, the lowest frequency multi-
plier has an expected time to arrival of approximately four years. The number of
volatility states is d = b¥, = 243. The random variable M is assumed to take the
values (my, my, m3) = (0.8,1.0,2.0) with probabilities (py, p2, p3) = (0.5,0.4,0.1).
The distribution of the high frequency component 2 is approximated by repeated
Monte Carlo sampling from a £ = 10 stage measure. Throughout this exercise,
we assume that the specification of the process and its parameters is known with
certainty. We also assume that volatility itself is observable. This can be justified
by assuming that we have access to a very high frequency data set that allows
calculation of realized volatilities as in Andersen, Bollerslev, Diebold, and Labys
(1999). Alternatively, we note that the extension to conditioning on returns rather
than volatility is straightforward, and given in equation (5.1).

Figure 1 shows the conditional probabilities of states across time for a sim-
ulated data set. Computing the forecast of future volatility is complicated by a
dimensionality problem. At the first iteration, calculating P(6;,1|X;,1) can be
accomplished by approximating the distribution of €2 with a discrete probabil-
ity over a fixed number of points n,,. At the next iteration, however, for each
value of X;,o, there would be d x n,, possible values of P(6;y1|X;;2) and then
d x nZ, possible values of P(0;,5|X;,2), with the problem growing like a power of
d X n,, at each iteration. To address this problem, we approximate both of these
conditional probabilities with an n,, point discretization at each iteration. Using
this methodology, we can quickly calculate analytical multistep ahead forecasts
for the conditional distribution total volatility. To demonstrate the forecasting
method, we choose a time period from the simulated data with a very high level
of recent volatility. This allows us to observe the memory of the model as the
future volatility forecasts slowly decay.

Figure 2 shows our forecast density of average volatility over multiple time
periods. Since the current level of volatility is relatively high, we expect our fore-
cast of average volatility to gradually decay with the forecast horizon. This is
evident over the long run, but note that initially both the conditional distribu-
tion and the point forecast shift upward before beginning to decline. This is a
consequence of the multiplicative interaction of the volatility components. If the
current state of the low frequency frequency components is relatively high, and the
high frequency components have low values, then one would forecast volatility to
initially rise before the low frequency components begin reverting to their mean.
The model can thus support an interesting variety of beliefs about the behavior
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of future volatility.

7. Application to Option Pricing

We now apply our conditioning methodology to option pricing with the goal of
comparing implied volatilities obtained from the multifractal model with stylized
facts observed in the empirical literature. In previous empirical work, we focus on
exchange rate returns because they are more likely to be conditionally symmetric
with respect to the level of volatility.” For the same reason, we now emphasize
stylized facts of currency option implied volatilities, for which conditional skew-
ness is not as large a concern as with equity options. We focus on implied volatility
smile, the term structure of the implied volatility smile, and, implicitly, the term
structure of at the money implied volatilities. In effect, we will be assessing styl-
ized facts on the entire implied volatility surface, across moneyness and maturity,
of currency options.

Since the Brownian Motion B and the trading time 6 are hit by indepen-
dent shocks, derivative assets are not dynamically redundant. Thus, in contrast
with the deterministic trading time 6(¢) = ot considered by Merton and Scholes
(1973), absence of arbitrage does not give a unique pricing rule. We instead choose
a pricing rule that is consistent with absence of arbitrage and has reasonable im-
plications for implied volatilities. The pricing rule has also been widely used in
the literature for general stochastic volatility models.

We first consider a real multifractal asset P whose dynamics are described by
the continuous time multifractal model, and seek to evaluate at date ¢ a European
derivative asset with contingent payoff @, = a[P(t+7)] at date t+7. Let 02 = 0(t+
7) — 6(t) denote the random total volatility over the period [¢,¢ 4+ 7]. Conditional
on o2, the log-price has a Gaussian distribution In Py, ~ N (In P;,0?), and the
forecasting method allows us to calculate the conditional density g, (¢2|Z;)over
volatility levels 2. We assume a constant riskless rate of return r. In the absence
of arbitrage, there exists an equivalent probability measure P* such that 7(a,) =
e~ ""E*(a,). We consider the pricing rule

wa) = [T [ P PP golmin, )

"Capturing leverage effects in the multifractal model would require removing the assumption
that B(t) is independent of #(t) to allow negative correlation between the two.
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where f}, (P) is the density of a random variable P}, with distribution
InP;, ~N(InP,+rr —0%/2,0°). (7.2)

Under this pricing rule, the price of a European call with strike K can be written
as a simple integral over Black-Scholes prices:

+oo
Cgs (P, K,7,T;) = Cps(P, K, 7,017 ?) g, (c|T;)do,
0
which is consistent with the observed prices of riskless bonds and the risky asset at
date t. We also note that this is the same pricing rule obtained by Hull and White
(1987) for stochastic volatility following a geometric Brownian Motion. Hull and
White show that this pricing rule is appropriate when volatility is uncorrelated
with aggregate consumption. While this assumption is questionable when P is an
equity price, it is more reasonable for pricing options on exchange rates, which we
now consider.
When P is an exchange rate, we maintain equation (7.1), but adjust the dis-
tribution of Py, to
In P}, ~N(InP, — 0%/2,0%). (7.3)

This modification is necessary since investors do not hold the foreign currency
itself but the foreign bond. We assume for simplicity that the foreign bond yields
the same rate of return r as the domestic bond.® Among many adjustments to
(7.2) that would prevent arbitrage when P is an exchange rate, we choose (7.3)
because both are based on the principle that 7, (P, |o,) is independent of o .
The price of a European call written on the exchange rate P, is now an integral
over Garman-Kohlhagen (1983) prices:’

+o0o
CGK (PtaKaTaIt) = / CGK(Pt’KaTJO)gt(U|It)dO7 (74)
0

where
CGK (Pt,K,’T, O') :e_” [P()(I)(dl) —X(I)(dg)], (75)

and d; and d, take the same values as in the Black-Scholes equation.

8Tt is straightforward to generalize to different constant riskless returns for foreign and do-
mestic bonds, but this generalization does not affect implied volatilities under our assumptions.

9The Garman-Kohlhagen formula with constant volatility is a simple adjustment to Black-
Scholes that is appropriate when the underlying asset is an exchange rate.
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To calculate an implied volatility we first obtain the call price (7.4) at a given
strike K and maturity 7 using the condtional density g, (0,|Z;). We then use the
basic Garman-Kohlhagen formula (7.5) to back out the single implied volatility
level that is consistent with this price, i.e., ogxrv = Cox (P K, 7, Cox (P, K, 7, T;)).

Figure 3 shows implied volatilities from simulated data for many strikes and
several maturities, conditioning on the set of past prices Z;. The implied volatili-
ties show the symmetric smile we might expect to find in currency option prices.
Long-memory is evident in the slow decay in the term structure of at the money
implied volatilities. Figure 4 shows implied volatilities for strikes that are rescaled
by the square root of maturity; i.e., In P, — In [K,77/2] is held constant. The
implied volatility smile decays slowly with maturity, indicating that the tails of
the conditional distribution gradually become thinner as the horizon increases.

8. Conclusion

This paper has developed analytical forecasting methods for a new class of sto-
chastic processes, the Poisson multifractals. We modify the multifractal model
developed by Mandelbrot, Fisher, and Calvet (1997) to provide a version that
is fully time stationary. The model captures the volatility persistence and thick
tails that characterize many financial time-series. We specify volatility to be the
multiplicative product of an infinite sequence of random functions, each having
innovations with Poisson arrivals of different frequencies. The model thus incor-
porates volatility clustering at all horizons, a feature we relate to economic factors
with different time scales such as technology shocks, business cycles, and liquidity
shocks.

The continuous time version of the model compounds a standard Brownian
Motion with a random time-deformation process that is obtained from the multi-
plicative construction of volatility. The model implies semi-martingale prices, and
thus precludes arbitrage in a standard two-asset setting. Squared returns have
long-memory, and the highest finite moment of returns may have any value greater
than two. This wide range of tail behaviors is fully provided by intermittent bursts
of volatility modifying a standard Brownian Motion.

Forecasting is facilitated by a discretized version of the process with a finite
state space and simple Markovian structure. We show that the discretized version
converges to the continuous process as the time scale goes to zero, and that fore-
casts from the discrete process are consistent. We apply the forecasting algorithm
to simulated data from a process calibrated to DM /USD exchange rates. The re-

25



sults demonstrate that current volatility is not a sufficient statistic for forecasting.
Past data permits conditioning over the full set of volatility state variables, each
of which has different persistence. While volatility is always mean reverting in
the long run, we show by example that short run forecasts can vary considerably.
If volatility is high primarily because of contributions from long run volatility
components, one may forecast volatility to increase at short horizons before mean
reverting over long horizons. The model thus provides a flexible non-linear struc-
ture, but is analytically quite tractable.

We also develop option pricing methods consistent with the absence of arbi-
trage, and show through simulation that the model captures implied volatility
smiles that slowly decay as the time horizon grows longer. Future empirical work
can apply these methods to a variety of problems. Because the model parsimo-
neously incorporates both thick tails and long-memory, it is appropriate to test
on options of any maturity or degree of moneyness.

For extensions to equity data, future work will need to consider the treatment
of expected returns. In particular, permitting negative autocorrelation between
the Brownian Motion and trading time provides one way of incorporating condi-
tional skewness. Another intriguing property is that the model supports differing
beliefs regarding the long-run behavior of volatility. In particular, average volatil-
ity over very long sample spans need not converge to its expected value. Thus
individuals with different priors on the unconditional mean volatility can support
these beliefs by inferring different values of long horizon volatility components.
The model thus offers challenges in both empirical work and financial theory.
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9. Appendix A

9.1. Proof of Proposition 2

We separately establish these two results.

A. We prove (3.2) by jointly contructing two measures p and ' defined on in-
tervals [0, 7] and [0, 1]. In the first stage of the cascade, we define y; by drawing
exponential variables T} with mean 1/, instants ¢, = Y . T}, and random mul-
tipliers M,,. We define p) by considering the instants ¢, = ¢,/T, and uniformly
spreading mass (1) = My(t;, ., —t;,) on each interval I, = [t],t;,,]. We note
that p! () = py(I,) and thus g} = py o ¢, where ¢ denotes the homothetic
transformation ¢(z) = z/T. Note that each instant ¢, =  (7;/T) is the sum
of random exponentials with mean 1/(AT"). The measure p} is therefore the first
stage in the construction of a multifractal measure on [0, 1] with parameters AT’
and M. This argument easily generalizes to pj = u, o ¢ at each stage of the

construction, implying #'[0, 1] = p[0,T] or Q(T, A, M) 4 Q(L, AT, M).
B. We now turn to the proof of (3.3). Recursive relation (3.1) implies

K (Ijl--:jk—l) = Mg (Ijl--,jk—1) Q['g([jl--zjk—l)7 219)\]

= Mjl"'Mjla--ajkfl Q[E(Ijl--,jkq)v 2k)‘] g(ljl--yjkfl)/T'
Moreover, since
Nilsoig—1
M (Ijl,--,jk—l) = Mjl"'Mjly--:jk—l Mjl;--ajk—l;n E(Ijl--;jk—hﬂ)/T
n=0

we infer that

N(Ijl,--ajkA) = Mjl"'Mjl,--ajkA

NIk —1
0. i i m
%Mjlvmjk—h” Q[E(Ijl--vjk—lvn)’ 2k+1A:|

n=0

Apply this equation when £ = 0.
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9.2. Proof of Proposition 3
We first show that
AR [Q(e))] < E [Q(N)1] < nm@O1=0F [Q()\/n)]] (9.1)

for every integer n > 1 and all real numbers A > 0, 0 < ¢ < 1, ¢ > 0. Let p

denote a measure defined on [0,1] such that [0, 1] L Q(A). By Proposition 1,
the random variable 1[0, ¢] is distributed like ¢2(cA) and satisfies [0, c] < u[0, 1],
which implies ¢’/E [Q(c)\)?] < E [Q(\)?]. Moreover since p[0,1] = u[0,1/n] + ... +
u[(n — 1)/n, 1], we infer that

([0,1])* < max(n” ', 1) (u[0,1/n]" + ... + p[(n — 1) /n, 1]%)

and therefore E [Q())9] < nm@1=OF [(Q(\/n)9]. We conclude that E [Q())?] <
oo for a given X implies that E [Q2(\)?] < oo for all X' € (0, 00).

9.3. Proof of Proposition 4
We divide the proof in three steps.

Step 1. We want to show that E[Q(A)?] /E[Q2(2)X)9] — E(MY) as A — 0. The
invariance property (3.3) implies

E[Q(\)] = X,P(N = 0) + X,P(N > 0),
where X; = E(M?)E[Q(2))?], and

{ZM tisr — 1) Qi[2A(t0 — )]}

Since P(N = 0) = exp(—\) — 1, the first component X;IP[N,(1) = 0] is equiva-
lent to E(M?) E[2(2))4] as A — 0. Second, recall that

for any n > 1, (z1,..,2,) € R}, ¢ > 0. Relation (9.1) then implies

N>0]

Xo < K (A) E(M?) E[Q(2)1)7]
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where K,(\) = E[N™(@D|N > 0]. When A — 0, the coefficient K,(\)P(t; <
1) = E [Nmax(@D] s locally equivalent to A, 1 and the ratio XoP(¢; < 1)/E[Q(2))1]
converges to 0.

Step 2. The function g(A\) = E[Q2())?] is continuous and satisfies g(A)/g(2\) —
E(M?) as A — 0. When ¢ # 1, Jensen’s inequality implies E(M?) # 1, and there-
fore there exists a slowly varying function c,()A) such that g(\) ~ ¢ (A\)A~"82 M),

Finally, we note that this relation also holds when ¢ = 1.

Step 3. Since E[Q())] > E(M?) E[Q(2))7] exp(—\), the function 1)()) = e~*g(\) Al°s2 HM?)
is decreasing, and thus converges to a (possibly infinite) limit as A — 0. We note
moreover that

g(N) < E(MI)E[Q2N)T] [e7 + K(MP(t <1)]
implying that
e g(AN) A8 M) < 02X g(2))(2X) 082 BMD [o=22 L | (N)P(t; < 1)e™?).

Since e 2 + K, (A)P(t; < 1) =1—X+o0(\) < 1 for small values of ), the function
e*g( NN EMY) ig increasing and locally bounded. We conclude that () is
locally bounded and thus converges to a limit ¢, when A — 0. |

10. Appendix B

Consider a continuous Poisson multifractal #, and the corresponding sequence
{6*} of piecewise linear trading times constructed in Section 5.1. We prove in
this Appendix that the sequence {#*} converges to # in the weak topology of C.
For any continuous function =z € C, it is convenient to consider the modulus of
continuity
w(z,d) = sup |z(t) — z(s)|.
[t—s|<d

Our proof is based on the following

10This stems form the fact that

+oo n +oo n
JE(N‘I):EjeAA 1=2) eu( F1)T A
n! " n! "
n=0 n=0
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Theorem. If

[0 (t1), -, 0 (£)] 5 [0(t1), -, O(2)] (10.1)
holds for all t1,..,%ty, and if f
lim lim sup P{w(#*,8) > ¢} =0 (10.2)
=0 koo

or each positive €, then 6 weakly converges to 6.

We refer the reader to Billingsley (1999) and Davidson (1994) for a proof of this
theorem. We succesively prove the convergence of the marginals (10.1) and the
tightness condition (10.2).

10.1. Convergence of the Marginals
10.1.1. Discretization of Arrival Times

First, consider a sequence {7;}:°, of iid random variables with exponential density
f(x;A) = Aexp(—Az), and arrival times ¢, = Y, T;, which can take any value
on the line [0, 00). Given an integer ¢ > 1, we discretize {¢,} on the uniform grid
0, 1/c*, 2/c*, .. ,00. For all z € R, denote by [z] the unique integer such that
[z] < z < [z] + 1. We may discretize the sequence {t,} on the grid by letting
s(()k) =0, and

k(t, — tn_ 1
sty — g®) [c*( )]+

for all n > 1. Note that

and thus ¢, < s%k) < t, +n/c*. Observe that s%k) — t,, almost surely as k — oo,

i.e. as the grid becomes infinitely fine.

Additionally, the arrival time sgk) has a geometric distribution defined on the

grid. More specifically for all n > 0 and 7 > 1,
1 .
P {sffjl _ e = i/ck} - p {’ = Stua—ta < cik}

- [1 _ exp(—cik)} exp [_ (i = 1)A}

%
c
= (1- ’Y1,k)i_1’Y1,k

30



where 7, , = 1 — exp(—\/c*). The random variable c* (sfﬂl — s%’”) has thus

geometric distribution with parameter -y, ;.

10.1.2. Construction of Coupled Trading Times

Consider the sequence {p;}52; used in the construction of the continuous time
measure define on [0,1]. This construction relies on the exponential variables
{T7+-7}, the stochastic arrival times t;, ; and the multipliers M;, ;.. We note
that

N N1 NI1sdk—1
:ulc[oa 1] = E :Mjl E : Mjl,jz"' Mjl--jkAtjl--jk
j1=0 j2=0 Je=0

where Aty o = (tjer1 — Lirji)-

We can also construct a measure based on discretized arrival times. For a given
number ¢ > 1, consider the grid 0, 1/c*,..,1. In the first stage of the cascade,
we consider the arrival times s(()k) =0, 55’“), ..,sgf), s&f}rl = 1. We proceed as in
Section 5.1, and thus define the numbers P7*>-/k and the measure p}*. Consistent

with previous notation,
:U‘Z* [ic_ka (Z + 1)C_k] = b_ijl"'Mjl--jk

where [ic ¥, (i + 1)c ¥] C I, ;.. We infer that

1--Jk
P Pi1 Pilrdk—1
My, [0,1] = E M;, E M;, j,-.. E M;, i ASj s
j1=0 j2=0 Jk=0

where As;, i, = i1 = Siiji-

One of the characteristics of this method is that the number of arrivals at each
stage may differ in the continuous and discretized measures. It is notationally
convenient to extend the definition of At ; and N7t7 by letting At;, ;, = 0,
N71-I» = () when these numbers are not already defined. We can similarly extend
the definitions of As;, ;, and Pii-J» Tt is then convenient to introduce

Aji gy = A8 g — Aty
which quantifies the difference in length of corresponding intervals. We can also

define the integers L'+ = min(P7»Je NJt-J2) and HIV I = max(P7--v NIt-ir),
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With this notation, the masses of the two measures differ by

Hi1 HI1ik—1
MZ*[O 1 Mk[o 1 ZMh ZM]th Z 31 Jk ]1 Jk* (10'3)
71=0 J2=0 Jx=0

In the rest of the proof, we show that the first or second moment of |x;*[0, 1] — 1[0, 1]|
converges to zero as k — oco. This implies that p;*[0, 1] = 1,[0, 1]4+0,(1) A 1[0, 1].

10.1.3. Convergence under Condition 1

Relation (10.3) implies

H Hi1 Hildk—1
E |:u [0 1] :U'k[on 1]| < E Z Z Ji.g2 Z J1--Jk |A11 ]k|
Jj1=0 Jj2=0 Jxr=0

H Hi1 HI1>-5dk—1
Jj1=0j2=0 Jk=0

= E(Ax) +E(Bg1) +.. + E(Bry)

where

L Li1 LI1dk—1
Ak = E E E |A.71.7k|’ and
J1=0 j2=0 Jk=0
LJI Jp 2 H’Jl!")]p 1

By, = Z Z Z ‘Ajl..jp|: 1<p<k.

41=0 Jp—1=0 o —[J1rip-141

The sum Ay quantifies the difference in length between intervals that are used in
the kth stage of the construction of both measures. In constrast, By, corresponds
to the length of intervals that are only used in one construction.

Given j = (j1,..,Jp), consider the intervals (j,n) in the continuous and dis-
cretized constructions. We know that when n < L/, we have s;,11 — §;
(1 + [c*(tjns1 — tjn)])/ck and therefore

M
For n > L7, we can show
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Lemma 1. The inequalities

1+ L7

80| <181+ — (10.5)
and L
1+
|Aj,Lj+1| + + ‘A],H7| S ‘AJ| + Ck (106)
hold for all p > 0, j = (j1, --, Jp)-
Proof. To simplify notation, let j +1 = (j1, .., Jp—1, jp + 1). We note that
Aj,LJ’ = (Sj,LJ'+1 - Sj,LJ') - (tj,LJ'Jrl - tj,Lj)
= AL+t —t) — (sj — 85),
where AQ‘LJ = (Sj,Li+1 — 5j) — (tjLiy1 — tj). Since (t; i —t;) — (800 — s5) €
[—c™*L7,0], we infer _
A= <A <A (10.7a)

We now distinguish three cases depending on the values of the endpoints.

1. If N7 = P9 = L/, we know that s; i1 = Sj41, tjis1 = tj41, and therefore

A’ ;= Aj. Relation (10.7a) then implies (10.5).

2. If N7 > P/ = J, we know that s ri+1 = Sj+1 and therefore
Al = (si01 = 85) — (tjLiy — 1) > Ay
We also know that

[*(tjriv1 —tiri)]+1
e

1
Sj+1 < 84,19 + < S4,Li + (tj,LJ'—l—l — tj’Lj) + c—k, (108)
which implies A 7; < ¢ . We now infer from (10.7a) that Aj— kI < AL
¢™*, and conclude that (10.5) holds. Moreover, inequality (10.8) implies —¢; 14
—tjLi + 1/(31c - (5j+1 - Sj,Lj), and therefore

<
<

tin =t <t — i+ 1/¢ = (500 = 5500)
= [(tjs1 =) = (5541 — 5)] + 1/ + [(s50 — 55) — (t0 — 1)]
< A+ (4L
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which implies (10.6).

3. If PP > N/ = I/, we know that tjri+1 = tj+1, and therefore
Al = (801 = 55) — (L — ) <A

We also know that

[ckng] +1

i
tiwr =t ST <5

= 8,Li41 = 8L (10.9)

and therefore A; ;; > 0. Relation (10.7a) implies |Aj’L,-‘ = A < A;.’Lj < Ay,

and inequality (10.5) holds. Moreover, we infer from (10.9) that
Sjt1 = Sjriv1 < Sj41— Sipi — (tj1 — tjns)
= (sj+1 = 85) = (tjr — ) + s — ) — (85,09 — 55)
< A
which implies (10.6). [

YR

For every p € {1,..,k}, let u, = E <Zﬁ:0 Z;.\::l(’)”]p_l 1) denote the average

number of subintervals in the pth stage of the construction. Simple conditioning
implies
N le,--,jp—2
up = > Y NP, | = A
j1=0 Jp—1=0

It is then useful to introduce a;, = E (Z]ﬁ:o Zg;o Zf::(']"]p_l |Aj1_,jp

), p=>1
This implies
N les"7jp—2

E Y 0 ) Nuehe| =\ (10.10)

71=0 jp—lZO

We can show
Lemma 2. The inequality o, < A(1+ 2b)bP /¥ holds for all p > 1.

Proof. For any (ji, .., jp), inequality (10.4) and Lemma 1 imply

lea--,jp

Z |Aj1--jp+1| < ‘Ajl--jp| +

Jp+1=0

1+ 2Liveiv
ck
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and thus a,41 < ap + ¢ *E [Z;:o Zg;o Z]L::’(;Jp_l (1+ 2Lj1,..,jp)]. We infer

Up + 2Upt1

bP
api1 < ap+ = =a,+ A1+ 2b)c—k, (10.11)

and therefore o, < A(1 + 2b) (3205 b7) /c* < A(1 + 2b)b7 /. [ ]
The lemma directly implies that
E A < A(1+2b)(b/c)*

as k = 0o0. We also infer from Lemma 1 and Lemma 2 that

[ e 1+ Lit-dp—1
EB, < [Z 3 <|A]1 i +T)

Jj1=0 Jp—1=0

< opo1+ (Up—1 + up)/c’c

and therefore

AL+20)p" A1+ D) bt

E By, < =A3b+2)——

ck ck ck

Hence

k b\ *

> EBy, < A(3b+2) (—) -0

p=1 ¢

as k — oo. This establishes that E |u;*[0, 1] — 14[0, 1]| converges to zero as k —

00, and therefore 1;*[0, 1] = 11, [0, 1] + 0,(1) A u[0,1]. A straightforward adapta-
tion of this proof implies that E |u;*[0, t] — 11,,[0,¢]| — 0 for all ¢, and therefore

[ek(tl)’ ek(tQ)a o ek(tp)] = (:uk[o’ tl]a s :ulc[o’ tp]) + 0;0(1)
% [0(t2), 8(t2), -, 0(t,)]

for all t1, 1y, ..., 1, € [0, 1]. The convergence condition (10.1) is therefore satisfied.
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10.1.4. Convergence under Condition 2
By (10.3), the difference Xy = u;*[0, 1] — p[0, 1] satisfies

HJ1 HJl,--Jk 1

DI

Jj1=032=0 J&k=0
" o Hroik—1
E : E : 11,82 J1 2 E , M’Ll ZkMJI JkAZI ZkAjl--jk
11=0 12=0 i =0

Counting how many multipliers the intervals (i1, .., i) and (ji, .., jx) have in com-
mon, we can write the second moment of X, as

H Hi1 HI1>Ik—1 k
]E(X,?) [ Z Z Z le--yjkflajk)2 +Z [E(MZ)]pil E(Cp)
J1=0j2=0 Jk=0 p=1

where

H Hi1 HilIk—1 Hil-dp—1 gilr-dp—1:ip HI1-dp—1sips--ig_1

=Y. Y [ ¥ ¥ Y Aafa

41=0 j2=0 Jx=0 tpFJp tp+1=0 1,=0

We know that for all p > 0,

HIi1s-p
§ : Ajl--jp’jp-‘rl = Ajl--jp'
Jp+1=0
This implies
HI1,2 gieoig-1 HILI2  gileotk—1
§ : E : § : Ajl,iz--ik = Ajl - E : E : Ajl,jz,i:a,--,ik
ia#ja i3=0 ix=0 i3=0 ix=0
= AJI Ajlﬂz
and therefore
H Hi1 HI1dk—1
( E :E : E : - Jl:j2)Aj1:j2--jk
J1=0 j2=0 Jrk=0
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[ w mi
= E Z Z(Ajl - Ajl,jz)Ajlyj‘l
| 71=0j2=0
- [ H Hi1 -|
= [E Z(Aj1)2 —E ZZ(Ajl’j2)2 ’
[ j1=0 |j1=0j2=0 J

Let

H Hjl Hjl,--:jp—l

Dp = Z Z Z (Ajl,..,jp)Qa 1 S P S k.

Jj1=0 j2=0 Jp=0

With this notation, we can rewrite E(Cy) = E(D;) — E(Ds). More generally, it is
easy to show that E(C;) = —E(D;) and E(C,) = E(D,_1) — E(D,) for all p > 2.
This implies
EQR) N~ gy
= E(M E(D
o) 1 = 2 B E(D,),
p=1

which allows us to bound the second moment.

We heuristically expect that [E(M?2)]"E(D,) ~ [E(M?)]”b?(c™*)?, and there-
fore that the second moment

p
E(XZ) ~ Y [B(M?)]7 0P ()2 ~ [E(M?)]" br ().
k=1
converges to zero if E(M?)bc™2 < 1. In order to rigorously prove this, it is useful
to consider the decomposition

D, =F,+Gi+ ...+ Gy,

where

L Li1 LI1>dp—1

Fp = ZZ Z (Ajl__jp)z, and

Jj1=072=0 Jp=0

L lea--ajq—2 Hjla--:jq—l

Gq = Z Z Z (Ajl__jq)Q, 1 S q S k.

71=0 Jq—1=0 jq:le""jqfl-f—l
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Given j = (j1, .., jp—1), Lemma 1 implies

i Li-1

D (857 = ) (A + (An)

Jp=0 Jp=0

VAN
&~
<
N
?r-| =
N——
N
b —_—
[>
—_
_|_
&~
S,
\/

IA
‘h
4
DO
b
—
+
S

We infer that

L le LJl;--st 2

le,.., 1 le,..,jp,1 2
I I M e )

Jj1=0j2=0 Jp—1=0

and thus
E(F,) < 2E(F,_1) + ¢ %), (10.12)

where ’Y;) _ E{Z;\I]ZO Z;\;]:lo Z;\:_ll:;gp—2 [le,..,jp—l + 2(1 + le,..;jp—l)Q]} . Rela-
tion (10.10) implies

N N1 NiLs-dp—2

’Y;, = 5APP 420! + 2K ZZ Z (NF1ip-1)

Jj1=0 j2=0 Jp—1=0

N Ni1 NI1>-dp—2

< 2B IS ST R, )+ N U0

J1=0352=0 Jp—1=0

N le lea"ajp 2

= P+ 2MPES Y N N 1,,0)])

71=052=0 Jp—1=0

We must now use

Lemma 3. Consider a Poisson process with frequency X\, which partitions the
interval [0,t] into N + 1 intervals: Iy = [0,t1], I = [t1, 2], ..., Iy = [tn,t]. Then

B[S U(0)?] <2t/

Proof. See Section 10.1.5. [ |
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The Lemma implies that

N N1 NJI"'sjp 3

<o e 303 Y ol b ygypn

J1=0 j2=0 Jp—2=0
We then infer from (10.12) that
13Xb

2k
C
=1

E(F,) < ¢ 2 (7, + 27,y + ... + 27 191) < 2P~ ip

or equivalently

130627 .
5(5,) < S 0y
=1
Thus E(F},) < 13\p2P*!/c?* when b = 2, and E(F},) < 13\0P2/c?* when b > 2. In
both cases, the inequality E(F,) < 13Apb?*?/c?* thus holds. Similarly, we observe

that

) . 2
L]l,--,]q 2 HI1:Jg—1

Z > Yo [l

Jj1=0 Jq—1=0 jo= Litrdg—141

Gy

IN

le""]q 2

52 Z (IA\ 1+L>

71=0 Jq—1=0

and therefore E(G,) < 13\gb?™2/c* for all ¢ > 1.
We now infer that

p D
E(D,) < 13\c™% (pb”+2 + Z qbq+2) = 26\b%c % Z qb?

g=1 g=1

and therefore'! E(D,) < 26Ab?c%(p + 1)bP*2. This implies

it < 2SR s yp [Er))

p=1

11We recall that

S gt = P =0 D
(z-1)?

which can be obtained by taking the derivative of f(z) = >.7_; 27 = (2**' — 2)/(2 — 1). This
implies Y 7_; q29 < (p+1)2P+? for any 2z > 2.
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26Ab? £12
2k p [bE(MZ)]p

p=1

Since Y512 p [BE(M?)P ~ (k + 2)[DE(M?)]F+*/[BE(M?) — 1]?, we infer that

e - B [

and E(X?) converge to zero whenever bE(M?)/c* < 1. As in Section 10.1.3, we
then conclude that condition (10.1) therefore holds.

10.1.5. Proof of Lemma 3
A heuristic argument is that E [Zfzv:o l(In)ﬂ ~ (Xt)3z = %. More concretely, we
can write [(I,)? = T21fneny + (t — Sor; T3)? 1n=ny}, and therefore

N +o00 +0o0 n 2
E|> UL =E|> TAueny| +E Z(t—ZT) Lineny)
n=0 n=0 n=0 i=1

We separately analyze these two series.
We first note that

E(T*1eny) = E (Tg YT < t) P(N, > n)
=1

and thus E [Y7 1214, 3] < E(T2) Y525 P(N, > n) = E(T2)E(N,), implying

E

R 1 t
nz_:ole{MNt}] < P(/\t) = -

Second, we define U,, = > | T; and consider

Too n 2 +o00
n=0 i=1 n=0
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The random variables 7}, 1 and U,are independent and have respective densities
f(u) = Nexp(—Au) and f,(u) = Aexp(—=Au)(Au)""!/(n — 1)!. When N; = n, the
vector (U, T,,+1) has conditional density

fn(u)f(v)1{0§u<t;u+t>v}/]P(Nt =n).

The marginal density of U, is therefore

o (u) oo _ dexp(=Au) (M) exp[—A(t — u)]
BV, =m) ), TP = (n— 1), = n) Lu<ty
A" exp(—At)u™!

1 .
(n—1)P(N, = n) <8

We thus infer that

A" exp(—)\t) t Y o
(n — 1)IP(Ny = n) /0 (t —u)u" du

E[(t—U,)? N=n] =

or equivalently

A" exp(—At) 2t 12

P(N, = m)E[(t—Uy)? N, =n] = =1 nn+Dn+2)

2exp(—At) (At)"+2

2’ (n+2)1
Therefore
+oo n 2 +0o0o
2 exp(—At) () t2
E t— T; Lin=n, =
> (58 o ¥ e
2exp(—At
- —J%—lkaﬂ—l—M]
At t
< — = —.
D SR

We thus conclude that E [EN l(In)ﬂ < 2t/

n=0
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10.2. Tightness

Since the function limsup P{w(#*,§) > €} is increasing in §, we can restrict our
k—o0
attention to step sizes of the form § = ¢, 1 = 1,2, ..,00. For a given § = ¢!, we

consider the regularly spaced grid to =0<t, =6 < ... <t, =1, where n = 1/4.
For any k > 1, we know'? that

P{w(#* 5) > 6}=]P’{ sup ‘Gk 0'“(8)‘25}

[t—s|<d

IA
wlm

ZP{ sup [0 () — 0%(t)] >

ti<s<tiy1
= ;P{Hk (ti+1) - ek(tz) Z %} ’

since the process 6 is increasing. For every k£ > [, the trading time increment
0% (t;11) — 6% (t;) is distributed like 6* (6) , and therefore

|

P{w(6",5) > ¢} < 6~ 11?{0’9(5) %}

The convergence of the marginals implies that 6% () 4 0(5) and therefore P {6* (6) > ¢/3} —
P{6(6) > ¢/3}. We now infer that

limsup P{w(#*,8) > e} < 5_11["{0 (0) > %} .

k—+o00
Given a number ¢ > 0 satisfying 7(¢) > 0, Chebyshev’s inequality implies

limsup P{w(#*,6) > ¢} < (g)q §'E[6(6)Y.

k—+00

Letting § — 0, we know that 6 "E[# (6)7] ~ c140"? — 0 and conclude that
condition (10.2) is satisfied.

12Gee Theorem 7.4 in Billingsley (1999).
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Fig 1. Conditional Probabilities of States over Time
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Fig 2. Smoothed Forecasts of Average Trading Time
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Fig 3. Implied Volatilities from Garman—-Kohlhagen Currency Option Pricing Formula
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Fig 4. Implied Vols from G-K Currency Option Pricing Formula, Rescaled Strikes

0.8

0.2 ! ! ! ! ! | ! |
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

In P/ K *(2401) 2




