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Stochastic Skew in Currency Options

ABSTRACT

We document the behavior of over-the-counter currency option prices across moneyness, maturity,

and calendar time on two of the most actively traded currencypairs over the past eight years. We

find that the risk-neutral distribution of currency returnsis relatively symmetric on average. How-

ever, on any given date, the conditional currency return distribution can show strong asymmetry.

This asymmetry varies greatly over time and often switch directions. We design and estimate a

class of models that capture these unique features of the currency options prices and perform much

better than traditional jump-diffusion stochastic volatility models.



Stochastic Skew in Currency Options

Options markets have enjoyed tremendous growth during the past decade.In conjunction with this

growth, researchers have developed numerous new option pricing models to account for the various

pricing biases in the classic Black and Scholes (1973) model. Most recently, a series of papers syn-

thesize and test the performance of a number of different models for pricing equity index options,

e.g., Bakshi, Cao, and Chen (1997, 2000a,b), Bates (2000), Andersen, Benzoni, and Lund (2002), Pan

(2002), Eraker (2003), and Huang and Wu (2004). However, studies on currency option pricing have

been relatively sparse.

At first glance, this relative paucity of study is surprising since foreign exchange is the largest of

the global financial markets. Currently, daily trading volume in the currencymarkets stands at over

1.5 trillion U.S. dollars. It is widely appreciated that the dynamic behavior of foreign exchange rates

has important economic repercussions. It is also widely appreciated that currency option prices reveal

important information about the conditional risk-neutral distribution of the underlying currency returns

over different horizons.

The most likely reason for the relative scarcity of research on currency options is the absence of

a publicly available database for currency option prices. Currency options trade on the Philadelphia

Options Exchange (PHLX), but volume in this market has thinned during the past five years as trading

activity has shifted to the over-the-counter (OTC) market. The OTC currency options market is very

liquid and deep. The bid-ask spreads for major currency options are narrower than those on equity

index options, and trading volume is measured in trillions of U.S. dollars per year. Hence, the over-the-

counter currency options market constitutes an economically important market for academic research.

We obtain a data set of OTC option quotes on two of the most actively traded currency pairs during

the past eight-year span from January 1996 to January 2004. The twocurrency pairs are the U.S. dollar

price of Japanese yen (JPYUSD) and the U.S. dollar price of the British pound (GBPUSD). For each

option at each date, we have a cross-section of 40 option quotes from a matrix of five strikes and eight

maturities.
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Using this data set, we analyze the behavior of option implied volatility along the dimensions

of moneyness, maturity, and calendar time. As an industry standard, the foreign exchange market

measures the moneyness of an option in terms of the option’s delta according tothe Black-Scholes

formula. Moving across moneyness at a fixed maturity, we find that the time series average of the

implied volatility is fairly symmetric about at the money, with the average out-of-the-money implied

volatility higher than the average at-the-money implied volatility. This well-known smilepattern for the

implied volatility across moneyness suggests that the risk-neutral conditionaldistribution of currency

returns is fat-tailed, but on average symmetric. For each currency pair,the average implied volatility

smile persists as the option maturity increases from one week to one and half years. The persistence

of the smile over long maturities indicates that the average conditional currency return distribution

remains highly fat-tailed even at long conditioning horizons.

When we investigate the dynamic behavior of the implied volatility surface over calendar time, we

find that the relative curvature of the implied volatility smile is stable over both calendar time and the

two currency pairs. In contrast, theslopeof the implied volatility in moneyness varies greatly over

calendar time and across the two currency pairs. Although implied volatility smiles are symmetric on

average, they can be highly asymmetric on any given date. As a result, the risk-neutral skewness of the

return distribution can be quite large in absolute terms on any given date.

Existing currency option pricing models, such as the jump-diffusion stochastic volatility model of

Bates (1996b), readily accommodate the average shape of the implied volatility surface. In the Bates

model, the Merton (1976) jump component captures the short-term curvature of the implied volatility

smile, whereas the Heston (1993) stochastic volatility component generates smiles at longer maturities.

It is a tribute to the ingenuity of the option pricing modelers that they can capturethe average shape of

the implied volatility surface while operating under the constraints of no arbitrage.

Although these models do represent an impressive application of option pricing technology, they

cannot generate the strong time-variation in the risk-neutral skewness ofthe currency return distribu-

tion. The purpose of this paper is to design and test a new class of models that can capture this unique

feature of the OTC currency options market.
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If we start from the jump-diffusion stochastic volatility model of Bates (1996b), it would be tempt-

ing to attempt to capture stochastic skewness by randomizing the mean jump size parameter and/or the

correlation parameter between the currency return and the stochastic volatility process. In the Bates

model, these two parameters govern the risk-neutral skewness at shortand long maturities, respectively.

However, randomizing either parameter is not amenable to analytic solution techniques that greatly aid

econometric estimation. In this paper, we attack the problem from a differentperspective. We apply

the very general framework of time-changed Lévy processes developed in Carr and Wu (2004). How-

ever, the subclass of models that we extract from this framework to price currency options are far from

standard in the option pricing literature.

In our models, innovations in currency returns are driven by two Lévy processes. The two inde-

pendent Ĺevy processes generate positive and negative jumps, respectively. We further apply separate

random time changes to these two Lévy components. As a result, the total volatility and the relative

contributions from positive and negative jumps can both vary stochasticallyover time. These ran-

dom variations are controlled by two activity rate processes, which are specified in terms of traditional

stochastic volatility processes. The variation in the relative proportion of positive and negative jumps

generates variation in the risk-neutral skewness of the currency return distribution. Within this class of

models, we propose various jump specifications that exhibit finite and infinite activities, respectively.

To econometrically estimate the models using our OTC currency options data, wecast the esti-

mation problem into a state-space form. We define the state propagation equations based on the two

activity rate processes that control the positive and negative jump Lévy components. We build the

measurement equations based on the option prices at different levels of moneyness and maturity. We

first extract the unobservable activity rate state variables using a relatively new filtering technique, the

unscented Kalman Filter. We then estimate the model parameters using the quasi maximum likelihood

method. The methodology estimates the activity rate dynamics under both the risk-neutral measure and

the objective measure.

Our new models have about the same number of free parameters as the jump-diffusion stochastic

volatility model pioneered by Bates (1996b). However, our models generate much better performance
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in terms of both root mean squared pricing errors and log likelihood values,both in sample and out

of sample. The stochastic volatility component in the Bates model can capture thetime variation in

overall volatility, but it cannot capture the variation in the relative proportion of positive and negative

jumps. As a result, the Bates model, or any other existing one-factor stochastic volatility model, fails

to capture a large proportion of the variation in the currency options data. In contrast, the two activity

rates in our new models generate not only stochastic volatility, but also the stochastic skew that we have

observed in the currency options.

In other related works, Bates (1996a) investigates the distributional properties of the currency re-

turns implied from currency futures options. Campa and Chang (1995, 1998) and Campa, Chang, and

Reider (1998) study the empirical properties of the OTC currency options. Bollen (1998) and Bollen,

Gray, and Whaley (2000) propose regime-switching models for currency option pricing. Neverthe-

less, Bollen and Raisel (2003) find that the jump-diffusion stochastic volatilitymodel of Bates (1996b)

outperforms regime-switching and GARCH-type models in matching the observed behaviors of OTC

currency options. Therefore, we regard the Bates model as the state ofthe art for currency option

pricing and as our benchmark for model comparison.

The paper is organized as follows. Section I systematically documents the empirical properties of

OTC currency options. Section II designs a class of models that capture the unique properties of the

currency options. Section III proposes an estimation strategy that estimatesboth the risk-neutral and

time-series dynamics of the activity rates simultaneously. Section IV reports theestimation results of

the new models and compares their performance to the Bates (1996b) model. Section V concludes.

I. The Over-the-Counter Currency Options Data

Trades and quotes in OTC currency options differ from those on exchange-listed options in several

important aspects. First, the OTC quotes are not directly on option prices, but rather on the Black-

Scholes implied volatility. Given the quote on the implied volatility, the invoice price is computed

based on the Black-Scholes model, with mutually agreed-upon inputs on the underlying spot currency

price and interest rates. Second, when a transaction takes place, it involves not only the exchange of the
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option position, but also the corresponding delta hedge in the underlying currency. Third, the implied

volatilities are not quoted on a fixed strike price, but rather on a fixed Black-Scholes delta. This delta

quote directly determines the amount of the underlying currency that change hands in the transaction.

Given the delta, the strike price of the option is computed using the Black-Scholes formula and the

implied volatility quote.

This unique market design greatly facilitates the liquidity and depth of the OTC currency options

market. In an exchange-listed options market, only options are involved in each transaction and the

market makers provide direct quotes on the option prices. This practice places severe burdens on market

makers due to the derivative nature of the options market. Whenever the underlying currency moves,

the options market maker needs to adjust the quotes on hundreds of optionswritten on this currency.

If the market-making technology does not allow the option quotes to be updatedin a timely fashion,

the market maker will have to protect him- or herself by posting wider bid-askspreads. Furthermore,

when a customer acts on private information regarding the directional move of the underlying currency,

the correlated nature of all of the options on the same currency can forcethe market maker into large

exposures. For example, if a customer believes that the British pound will strengthen against the dollar,

the customer can in principle buy all the calls and sell all the puts on the pound against the dollar.

Therefore, the market maker’s risk exposure is greatly aggravated due to the highly correlated nature

of all the options on the same asset. To protect him- or herself, the market maker has to further reduce

quote sizes. These concerns have dried up liquidity in the exchange-traded currency options market.

The unique design of the OTC currency option market addresses these concerns and improves

the liquidity and depth of the market. The exchange of the covered position, rather than a naked

option position, significantly reduces the broker dealer’s exposure to directional bets on the underlying

currency. The quotation on the implied volatility rather than the option price itself further reduces

the broker dealer’s burden in constantly updating the option prices on every move in the underlying

currency price. Although the covered position can still have a small dependence on the exchange

rate, updates of the implied volatility are only necessary in practice when the broker dealer thinks

that the second and higher central moments of the return distribution have changed. The quotation on
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delta instead of on fixed strike prices further simplifies the transaction because the fixed delta directly

determines the amount of the underlying currency that is involved in the optiontransaction. Finally, for

large transactions, the over-the-counter market also has a mechanism that is similar to the “upstairs”

market, where the broker dealer directly searches and matches buyers and sellers and hence secludes

him- or herself from exposure to large inventory positions. As a result, theover-the-counter market can

handle very large trades with small bid-ask spreads and little market impact, making it an ideal venue

for institutional players to engage in large volumes of option trading.

A. The Black-Scholes Model and Notation

Since the market quotes for option value and moneyness are both defined interms of the Black-

Scholes formula, we first review the Black-Scholes model and fix the notation.

We useSt to denote the time-t price of a foreign currency. A consequence of the Black-Scholes

model is that under the risk-neutral measureQ, the dynamics ofSt are governed by the following

stochastic differential equation:

dSt/St = (rd − r f )dt+σdWt , (1)

whererd andr f denote the assumed constant instantaneous riskfree rate in the domestic andforeign

currency, respectively. The termWt is a standard Brownian motion, andσ is a constant denoting the

instantaneous volatility of the currency return. Under this model, the risk-neutral distribution of the

currency return ln(St/S0) is normally distributed. Originally, Black and Scholes proposed this model

for pricing stock options and corporate liabilities. Garman and Kohlhagen (1983) first applied this

model to currency option pricing.

We usect(K,τ) and pt(K,τ) to denote the time-t value of a European call option and a European

put option, respectively. The arguments of the functions indicate that the currency options have a strike
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price K and time to maturityτ = T − t. We useFt = Ste(rd−r f )τ to denote the forward price of the

currency at the corresponding maturity. The Black-Scholes formulas for the option values are

ct(K,τ) = e−r f τStN(d+)−e−rdτKN(d−), (2)

pt(K,τ) = −e−r f τStN(−d+)+e−rdτKN(−d−), (3)

with

d± =
ln(Ft/K)

σ
√

τ
± 1

2
σ
√

τ. (4)

Delta is defined as the partial derivative of the option value with respect to the underlying spot price.

Under the Black-Scholes model, the delta of the call and put options are given by

δ(c) = e−r f τN(d+), δ(p) = e−r f τN(−d+). (5)

The delta for a put option is negative, but the convention is to quote the absolute magnitude and indicate

that it is on a put or a call option. In the OTC currency options market, moneyness is conventionally

quoted in terms of this Black-Scholes delta rather than the strike price. The Black-Scholes implied

volatility refers to the parameterσ that a broker dealer must input into the Black-Scholes formulae in

equations (2) and (3) so that option values match the market prices.

If the central conclusion of the Black-Scholes model in equation (1) werecorrect, we would only

need oneσ input for all the options on each currency. In practice, however, the market is well aware of

the deficiencies of the Black-Scholes model. To compensate for these deficiencies, the market uses a

different volatility input at each moneyness, maturity, and calendar time. We denote the Black-Scholes

implied volatility at a certain delta (δ), time-to-maturity (τ), and calendar time (t) as IVt(δ,τ). We

useIV instead of the parameterσ to notationally distinguish between the market quote and the model

assumption. The fact that the market uses the Black-Scholes model to present option quotations does

not mean that the market agrees with the assumptions or conclusions of the Black-Scholes model.

Instead, the market is merely using the model as a monotonically linear transformation tool to convert
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option prices into a more stable measure. Furthermore, the market also uses the Black-Scholes model

to achieve approximately delta-neutral transactions.

Given the implied volatility quoteIVt(δ,τ) at a certain delta and maturity, we can infer the strike

price of the option contract,

K = Ft exp

[
∓IVt(δ,τ)

√
τN−1(±er f τδ)+

1
2

IVt(δ,τ)2τ
]

(6)

Each delta corresponds to two strike prices, one for the call option contract and the other for the put

option contract.

B. Data Description

We have obtained OTC currency options quotes from several broker dealers and data vendors.

These data sets cover different sample periods, sampling frequency, and currency pairs. We use the

common samples of these different data sets to cross-validate the quality of thedata. In this paper, we

present the stylized evidence and estimate our models using two currency pairs from one data source

because the samples on these two currency pairs span the longest time period from January 24, 1996

to January 28, 2004. The data are available in daily frequency, but to avoid weekday effects in model

estimation, we sample the data weekly, on every Wednesday of each week. When market closes on

a Wednesday, we use the quotes from the previous market open date. For each series, we have 419

weekly observations.

The two currency pairs are the U.S. dollar of Japanese yen (JPYUSD) and the U.S. dollar of British

pound (GBPUSD). Options on each pair have eight maturities: one week, one month, two months,

three months, six months, nine months, 12 months, and 18 months. Quotes on longer maturities from

two to five years are also available, but careful inspection shows that these long-maturity quotes are

merely extrapolations of the shorter-maturity quotes and do not contain much extra information.
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At each maturity, the quotes are available at five strikes in the form of (1) delta-neutral straddle

implied volatility (ATMV), (2) ten-delta risk reversal (RR10), (3) ten-delta strangle margin (SM10),

(4) 25-delta risk reversal (RR25), and (5) 25-delta strangle margin (SM25).

A straddle combines a call option with a put option at the same strike. For the straddle to be

delta-neutral, we need

δ(c)+δ(p) = 0. (7)

From the definitions of deltas in equation (5), we have

N(d+)−N(−d+) = 0, (8)

or N(d+) = 0.5 and henced+ = 0. The strike price is very close to the spot or forward price of the

currency for the delta-neutral straddle. Hence, we refer to this quote as the at-the-money implied

volatility (ATMV) quote.

The ten-delta risk reversal (RR10) quote measures the difference in impliedvolatility between a

ten-delta call option and a ten-delta put option,

RR10= IV (10c)− IV (10p), (9)

where we use 10p and 10c to denote a ten-delta put and call, respectively. Hence, the risk reversal is a

measure of asymmetry, or slope, of the implied volatility smile across moneyness.

The ten-delta strangle margin (SM10) measures the difference between theaverage implied volatil-

ity of the two ten-delta options and the delta-neutral straddle implied volatility,

SM10= (IV (10c)+ IV (10p))/2−ATMV. (10)

Hence, a strangle margin measures the average curvature of the implied volatility smile. The market

also refers to a strangle margin as a butterfly spread. The 25-delta risk-reversal and strangle margins

are analogously defined.
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From the five quotes, we obtain the implied volatilities at the five deltas as

IV (0s) = ATMV;

IV (25c) = SM25+ATMV+RR25/2;

IV (25p) = SM25+ATMV−RR25/2;

IV (10c) = SM10+ATMV+RR10/2;

IV (10p) = SM10+ATMV−RR10/2,

(11)

where we use(0s) to denote the delta of the straddle atd+ = 0.

Altogether, we have 16,760 implied volatility quotes for each of the two currency pairs, spanning

419 weeks with a cross-section of 40 option quotes per date (five strikes multiplied by eight maturities).

Figure 1 plots the time series of the 40 implied volatility series for each currency pair. Historically,

implied volatilities on JPYUSD have varied in a wide range from 5.89 percent to 45.34 percent. The

large spike in late 1998 corresponds to the hedge fund crisis, when most hedge funds had gone short

on Yen before the crisis and were then forced to use options to cover theirpositions during the crisis.

Implied volatilities on GBPUSD vary in a much narrower range between 3.5 percent and 15.95 percent.

The data set also contains the underlying spot currency price. To convert the implied volatility

quotes into option prices, we also need information on domestic and foreign interest rates. We construct

our interest rate series using LIBOR and swap rates from the three countries. We download the LIBOR

an swap rates data from Bloomberg. The LIBOR rates are simply compounded, with maturities from

one week to 12 months. We directly convert them into continuously compoundedinterest rates. For

the interest rates at 18 months, we bootstrap them from the LIBOR and swaprates.

C. Stylized Features of Currency Option Implied Volatilities

Using the currency option implied volatility quotes, we document a series of important features of

the data that a reasonable currency option pricing model should accommodate.
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C.1. Relatively Symmetric Mean Implied Volatility Smile

When we plot the time series average of the implied volatility against the delta at each maturity,

we observe a relatively symmetric average implied volatility smile across all maturitiesand the two

currency pairs. Figure 2 plots the average implied volatility smile across moneyness at selected ma-

turities for the two currency pairs: one month (solid lines), three months (dashed lines) and one year

(dash-dotted lines). In the graphs, we denote thex-axis in terms of approximate put option delta. In

particular, we approximately denote the ten-delta call as a 90-delta put in the graph, and denote the

delta-neutral straddle at 50 delta.

The constant return volatility assumption of the Black-Scholes model implies a normal risk-neutral

distribution for currency returns. The smile shape of the implied volatility across moneyness has long

been regarded as evidence for return non-normality under the risk-neutral measure. The curvature of

the smile reflects fat-tails or positive excess kurtosis in the risk-neutral return distribution. The asym-

metry of the smile reflects asymmetry or skewness in the currency return distribution. The relatively

symmetric mean implied volatility smiles show that on average, the risk-neutral distribution of the

currency return is fat-tailed, but not highly asymmetric.

C.2. The Mean Implied Volatility Smile Persists with Increasing Maturity

Suppose that we model currency returns as being generated by a discrete time process with inde-

pendent and identically distributed (iid) non-gaussian increments with finite return variance. By design,

the short-term return distribution is non-normal and could potentially be consistent with the short-term

implied volatility smiles. However, this non-normality disappears rapidly as we consider a longer time

horizon for the return. By virtue of the classic central limit theorem, the return skewness declines

like the reciprocal of the square root of the time horizon, and the kurtosis declines like the reciprocal

of the time horizon. Mapping this declining non-normality to the implied volatility smile at different

maturities, we would expect the smile to flatten out rapidly at longer option maturities.
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The maturity pattern of the mean implied volatility smiles in Figure 2 indicates otherwise for cur-

rency options. The smiles remain highly curved as the option maturity increasesfrom one week to one

year. This maturity pattern indicates that the conditional risk-neutral distribution for the currency re-

turn remains highly non-normal as the conditioning horizon increases. Thus, an iid return distribution

with finite return variance cannot generate this maturity pattern of the implied volatility smile. The

continuous-time equivalent of the iid return distribution is to model the currency return as following a

Lévy process. To slow down the convergence of return distribution to normality with increasing ma-

turity, researchers, e.g., Bates (1996b), have proposed incorporating a persistent stochastic volatility

process.

C.3. Strangle Margin is Stable, But Risk Reversal Varies Greatly Over Time

The market quotes on risk reversals and strangle margins provide directand intuitive measures of

the asymmetry and curvature of the implied volatility smile, respectively. In Figure3, we plot the time

series of the ten-delta risk reversal (solid lines) and strangle margin (dashed lines), both normalized

as percentages of the corresponding at-the-money implied volatility level. Themultiple lines for both

the risk reversals and the strangle margins represent the different option maturities, which we do not

distinguish in the plot. To reduce clustering, we only plot three maturities (one,three, and 12 months).

We observe that the ten-delta strangle margins (dashed lines) are consistently at about ten percent

of the at-the-money implied volatility level during the eight-year span at all threeoption maturities and

for both currency pairs. Therefore, the curvature of the smile is relatively stable over option maturity,

calendar time, and for different currency pairs. This feature of the data shows that excess kurtosis in

the currency return distribution is a robust and persistent feature of theOTC currency options market.

In stark contrast to the stability of the strangle margins, the risk reversals (solid lines) vary greatly

over calendar time. The dispersion of the risk reversals across different option maturities is also larger.

For JYPUSD, the ten-delta risk reversals have moved from−30 percent to 60 percent of the at-the-

money implied volatility level. In contrast, the ten-delta strangle margins have only moved within a

20 percentage range. For GBPUSD, the swing of the ten-delta risk reversal is smaller from between
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−20 percent to 20 percent, but the movement of the ten-delta strangle margin iseven smaller within a

narrow band of 10 percent, except at the very early years.

Table I reports the mean, standard deviation, and the weekly autocorrelation of risk reversals, stran-

gle margins, and at-the-money straddle implied volatilities. We again normalize the risk reversals and

strangle margins as percentages of the at-the-money implied volatility.

For JPYUSD, the sample averages of the risk-reversals are positive, implying that the out-of-money

call options are more expensive than the corresponding out-of-money put options during the sample pe-

riod. The average strangle margins are around 12 percent at ten delta and three to four percent at 25

delta. For GBPUSD, the average implied volatility smile is much more symmetric as the average

risk-reversals are close to zero. The average strangle margins are only slightly smaller than the corre-

sponding averages for JPYUSD. The average strangle margins for GBPUSD are around nine percent at

ten delta and less than three percent at 25 delta.

For both currencies, the standard deviations of the risk reversals are much larger than the standard

deviations of the same-delta strangle margins. For JPYUSD, the standard deviations are around 15

percent for ten-delta risk reversals and are just about three to four percent for ten-delta strangle margins.

The standard deviations of 25-delta risk reversals are about eight percent, but that for the 25-delta

strangle margins are about one percent or less. The same pattern holds for GBPUSD. The standard

deviations for the risk reversals are about three times larger than that forthe corresponding strangle

margins. The at-the-money implied volatilities have standard deviations around three for JPYUSD and

less than two for GBPUSD.

These numbers are consistent with our observations from Figure 3. Themajor variation in the

currency option implied volatilities comes from the risk reversal, that is, the difference in volatility

between calls and puts of the same delta. The variations in the curvature of thevolatility smile are

much smaller.
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Mapping the implied volatility pattern to the risk-neutral distribution of the currency return, we

conclude that the skewness of the risk-neutral currency return distribution varies greatly over time. The

kurtosis of the return distribution varies much less.

All implied volatility series exhibit strong serial correlation. The weekly autocorrelation ranges

from 0.69 to 0.98. Furthermore, we do not observe a significant difference in autocorrelation between

the volatility portfolios (risk reversals and strangles) and the single volatility series (ATMV), especially

at long maturities. These serial dependence reflects the time-series dynamics of the return volatility.

C.4. Changes in Risk Reversals are Positively Correlated with Currency Returns

Table II reports the cross-correlation between currency returns andthe weekly changes in risk re-

versals, strangle margins, and at-the-money implied volatilities. Again, risk reversals and strangles are

measured in percentages of the at-the-money implied volatility. We find that risk reversals exhibit very

strong positive correlations with currency returns. This strong correlation is present at all maturities

and for both currency pairs, at both ten and 25 deltas. This positive correlation implies that whenever a

foreign currency appreciates and hence generates a positive return, the risk reversal also increases and

hence the risk-neutral return distribution is more likely to be positively skewed.

We also measure the cross-correlations at different leads and lags. Figure 4 plots the sample es-

timates of the cross-correlations between the currency return and changes in the one-month ten-delta

risk reversals at different leads and lags. For both currencies, the cross-correlation between return and

the risk reversal is mainly contemporaneous. We do not identify any significant cross-correlations with

leads and lags. This pattern also holds for other maturities.

In contrast to the strong and positive correlation with the risk reversals, the currency return has

very little correlation with the changes in strangle margins. Furthermore, we obtain positive correlation

estimates between the currency return and changes in the at-the-money impliedvolatility for JPYUSD,

but the estimates for GBPUSD are essentially zero. Hence, the only persistent and universal correlation

pattern is between the currency returns and the risk reversals.
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Using different currency pairs, sample periods, and different data sources, we have cross-validated

the above-documented evidence on currency options. The above findings are all robust to sample

variations and data sources. The most striking, and the most talked-aboutfeature among currency

options traders, is the strong time variation of the risk reversals, and the lackof models that can capture

this feature.

II. Modeling Currency Returns For Option Pricing

In this section, we propose a class of models that can capture not only the average behavior of

currency option implied volatilities across moneyness and maturity, but also the dynamic properties of

at-the-money implied volatilities and risk reversals.

We use(Ω,F ,(F t)t≥0,Q) to denote a complete stochastic basis defined on a risk-neutral probability

measureQ. We assume constant interest rates mainly for notational clarity. We letrd andr f denote the

continuously-compounded domestic and foreign riskfree rates, respectively.

For option pricing, we first specify the currency return processst = ln(St/S0) under the risk-neutral

measureQ. The historical or traditional approach to option pricing has been to derive unique risk-

neutral dynamics as a consequence of no arbitrage, continuous tradingopportunities, and a specification

of the statistical process that leads to market completeness. It is increasingly being recognized that

realistic statistical processes and trading opportunities render markets incomplete. As a result, there are

multiple risk-neutral processes, consistent with a given realistic statistical process for the underlying

asset price and market setting. Since different risk-neutral processes lead to different option prices, a

more pragmatic approach for obtaining unique option prices begins by specifying a parametric family

of risk-neutral processes for the underlying currency. Then, the option pries are used to identify the

parameters and thereby select a unique risk-neutral process.

After specifying the family of risk-neutral processes governing currency returnsst = ln(St/S0), we

derive the generalized Fourier transform of the currency return. Weuse this transform to price options

based on the fast Fourier inversion method of Carr and Madan (1999).When we perform dynamic
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estimation, we also specify the dynamics under the physical measureP, which we assume is absolutely

continuous with respect toQ.

We derive option pricing models by specifying asset returns as following time-changed Ĺevy pro-

cesses. Carr and Wu (2004) show that most stochastic processes used in traditional option pricing

models can be cast as special cases of time-changed Lévy processes. Huang and Wu (2004) apply this

framework successfully to pricing equity index options.

We assume that the log currency return obeys the following time-changed Lévy process under the

risk-neutral measureQ,

st ≡ lnSt/S0 = (rd − r f )t +
(

LR
TR

t
−ξRTR

t

)
+

(
LL

TL
t
−ξLTL

t

)
, (12)

whereLR andLL denote two Ĺevy processes that exhibit right (positive) and left (negative) skewness,

respectively. The termsξR andξL denote concavity adjustments of the two Lévy processes, needed

so that the exponential of each process is a martingale. Each Lévy process can have a continuous

martingale component, and both must have a jump component to generate the required skewness. We

further apply separate stochastic time changesTR
t and TL

t to the two Ĺevy components so that the

relative proportion of the two components can vary over time.

In principle, the generic specification in equation (12) can capture all the salient features of currency

options. First, by setting the unconditional weights of the two Lévy components equal to each other,

we can obtain a relatively symmetric unconditional distribution with fat tails for thecurrency return

under the risk-neutral measure. This unconditional property capturesthe relatively symmetric feature

of the sample averages of the implied volatility smile.

Second, by applying separate time changes to the two components, aggregate return volatility can

vary over time so that the model can generate stochastic volatility.

Third, the relative weight of the two Ĺevy components can also vary over time due to the separate

time changes. When the weight of the right-skewed Lévy componentLR is higher than the weight of

the left-skewed Ĺevy componentLL, the model generates a right-skewed conditional return distribution
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and hence positive risk reversals. When the opposite is the case, the modelgenerates left-skewed

conditional return distributions and negative risk reversals. Thus, we can generate variations and even

sign changes on the risk reversals via the separate time changes.

Finally, the model captures the instantaneous correlation between the returnand the risk reversal

through the correlations between the Lévy components and the time change. To stress the ability of

our family of models described by equation (12) in capturing stochastic skews of the currency return

distribution, we christen this family asstochastic skew models(SSM).

For each model considered in this paper, we first derive its generalizedFourier transform and then

price European options using a fast Fourier transform method. The generalized Fourier transform of

the currency return is defined as

φs(u) ≡ E
[
eiust

]
, u∈ D ⊂ C, (13)

whereD is a subset of the complex domainC on which the expectation in equation (13) is finite.

Whenu takes only real values,φs(u) denotes the characteristic function of the currency return. See

Titchmarsh (1986) for details on the extension ofu to the complex plane.

In what follows, we propose parsimonious specifications for the two Lévy components and the

stochastic time change.

A. The Ĺevy Components

We consider a one-dimensional Lévy processXt that is adapted toF t . The sample paths ofX are

right-continuous with left limits, andXu−Xt is independent ofF t and distributed asXu−t for 0≤ t < u.

By the Lévy-Khintchine Theorem, the characteristic function ofXt has the form,

φx(u) ≡ E
[
eiuXt

]
= e−tψx(u), t ≥ 0, (14)
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where the characteristic exponentψx(u),u∈ R, is given by (Bertoin (1996)),

ψx(u) = −iuµ+
1
2

u2σ2 +
∫

R0

(
1−eiux + iux1|x|<1

)
ν(x)dx. (15)

The triplet
(
µ,σ2,ν

)
defines the Ĺevy processX and is referred to as theLévy characteristics. The first

member of the triplet,µ, describes the constant drift of the process. The second memberσ2 describes

the constant variance rate of the diffusion component of the Lévy process. The third memberν(x)

describes the jump structure and determines the arrival rate of jumps of sizex. The termν(x)dx is

referred to as the Ĺevy measure, withν(x) being the Ĺevy density. To value options, we extend the

characteristic function parameteru to the complex plane,u∈ D ⊆ C.

In equation (15), 1|x|<1 is an indicator function that equals one when|x| < 1 and zero otherwise.

This truncation is meant to guarantee that the integral is well defined aroundthe singular point of

zero (Bertoin (1996)). There are other commonly used truncation functions for the same purpose. In

principle, we can use any truncation functions,h : R → R, which are bounded, with compact support,

and satisfyh(x) = x in a neighborhood of zero (Jacod and Shiryaev (1987)).

For our model design, we make the following generic decomposition on the two Lévy components

in equation (12),

LR
t = JR

t +σWR
t , LL

t = JL
t +σWL

t ,

where(WR
t ,WL

t ) denote two independent, standard Brownian motions and(JR
t ,JL

t ) denote two pure

jump Lévy components with positive and negative skewness in distribution, respectively.

To maintain parsimony, we assume relative symmetry for the unconditional return distribution. We

set the instantaneous volatility (σ) of the two diffusion components to be the same. We also set the two

pure jump Ĺevy componentsJR
t andJL

t to be mirror images of each other. From equation (15), we have

the characteristic exponent of the two diffusion components as

ψR(u) = ψL(u) =
1
2

u2σ2. (16)
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The concavity adjustment for the diffusion component is

ξR = ξL = −ψ(−i) =
1
2

σ2.

For the pure jump components, we propose a simple yet flexible Lévy density,

νR(x) =





λe

− |x|
vj |x|−α−1, x > 0,

0, x < 0.
, νL(x) =





0, x > 0,

λe
− |x|

vj |x|−α−1, x < 0.
(17)

so that the right-skewed jump component only allows positive jumps and the left-skewed jump compo-

nent only allows negative jumps. For both jumps, we use the same parameters(λ,v j) ∈ R+ andα ≤ 2

for parsimony. This specification has its origin in the CGMY model of Carr, Geman, Madan, and Yor

(2002). We label it as CG jump. The Lévy density of the CG specification follows an exponentially

dampened power law. Depending on the magnitude of the power coefficientα, the sample paths of

jump process can exhibit finite activity (α < 0), infinite activity with finite variation (0≤ α < 1), or

infinite variation (1≤ α ≤ 2). We needα ≤ 2 to maintain finite quadratic variation. Therefore, this par-

simonious specification can capture a wide range of jump behaviors. We canthus let the data determine

the exact jump behavior for currency prices.

Given the Ĺevy density specifications in equation (17), we can derive the characteristic exponents

for the two jump components by applying the integral in equation (15). Whenα 6= 0 andα 6= 1, we

have (Wu (2004)),

ψR(u) = λΓ(−α)

[(
1
v j

)α
−

(
1
v j

+ iu

)α]
+ iuC+, (18)

ψL (u) = λΓ(−α)

[(
1
v j

)α
−

(
1
v j

+ iu

)α]
+ iuC−, (19)

whereC+ andC− are immaterial drift terms due to the truncation that will eventually be cancelled out

with the corresponding terms in the concavity adjustments. The concavity adjustment terms are

ξR = −λΓ(−α)

[(
1
v j

)α
−

(
1
v j

−1

)α]
−C+, ξL = −λΓ(−α)

[(
1
v j

)α
−

(
1
v j

+1

)α]
−C−.
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Within this general jump specification, we consider three special cases, each one representing a

different jump type.

A.1. KJ: Finite Activity Jumps

For a finite-activity jump process, the number of jumps within any finite time intervalis finite. The

CG specification generates finite-activity jumps whenα < 0. Here, we consider the special example of

α = −1. The Ĺevy density becomes,

νR(x) =





λe

− |x|
vj , x > 0,

0, x < 0.
, νL(x) =





0, x > 0,

λe
− |x|

vj , x < 0.
(20)

This jump specification exhibits finite activity because the integral of the Lévy density is finite,

∫ ∞

0
λe

− x
vj dx= λv j . (21)

The quantity(λv j) is often referred to as the jump intensity or mean arrival rate. Conditional onone

jump occurring, the jump size for each component has a one-sided exponential distribution.

The characteristic exponents of the two jump components follow equations (18) and (19) with

α = −1. We can also rewrite them as

ψR(u) = λ
∫ ∞

0

(
1−eiux)e

− x
vj dx= −λv j

iuv j

1− iuv j
, (22)

ψL(u) = λ
∫ 0

−∞

(
1−eiux)e

x
vj dx= λv j

iuv j

1+ iuv j
. (23)

For finite-activity jumps, the integrals are well-behaved around zero. Hence, we do not need the trun-

cation term (iux1|x|<1) in (15).
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Combining the positive and negative jumps, we obtain the characteristic exponent of a symmetric

compound Poisson double-exponential model of Kou (2002),

ψR(u)+ψL(u) = λv j
2u2v2

j

1+u2v2
j

.

We label this finite-activity jump specification as KJ. The concavity adjustment terms are,

ξR =
λv2

j

1−v j
, ξL = −

λv2
j

1+v j
.

In the estimation, we reparameterizeλ = λv2
j for numerical stability.

A.2. VG: Infinite Activity with Finite Variation Jumps

An infinite-activity jump process generates an infinite number of jumps within anyfinite interval.

The CG specification generates infinite activity jumps whenα ≥ 0. Here, we consider the special case

of α = 0. The Ĺevy density becomes,

νR(x) =





λe

− |x|
vj |x|−1, x > 0,

0, x < 0.
, νL(x) =





0, x > 0,

λe
− |x|

vj |x|−1, x < 0.
(24)

By having the power term|x|−1, the arrival rate of small jumps increases dramatically so that as|x| →

0, the Ĺevy density approaches infinity. Under this specification, the integral of the Lévy density

in equation (21) is no longer finite. Thus, the sample paths of the process exhibit infinite activity.

Nevertheless, the following integral remains finite

∫

R0
x1|x|<1ν(dx) < ∞. (25)

Hence, the specification has finite variation.
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With α = 0, the characteristic exponents take different forms from equations (18) and (19). They

are

ψR(u) = λ ln(1− iuv j) , ψL(u) = λ ln(1+ iuv j) . (26)

Combining the two components, we obtain the characteristic exponent of a symmetric variance-

gamma model (Madan, Carr, and Chang (1998) and Madan and Seneta (1990)),

ψR(u)+ψL(u) = λ ln
(
1+u2v2

j

)
.

We label this jump specification as VG. The concavity adjustment terms are

ξR = −λ ln(1−v j) , ξL = −λ ln(1+v j) .

Recently, Madan and Daal (2004) empirically show that the VG model performs better than the Merton

(1976) jump-diffusion model in capturing both the time series dynamics of currency returns and the

behavior of currency options.

A.3. CJ: Infinite Variation Jumps

The sample paths of the VG jumps exhibit infinite activity, but nevertheless finitevariation. When

α ≥ 1, the integral in equation (25) also becomes infinite and the sample paths of thejumps will exhibit

infinite variation. We consider the special case ofα = 1. The Ĺevy densities are,

νR(x) =





λe

− |x|
vj |x|−2, x > 0,

0, x < 0.
, νL(x) =





0, x > 0,

λe
− |x|

vj |x|−2, x < 0.
(27)
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The characteristic exponents of this jump specification also take unique forms. For the right-skewed

jump component, we have

ψR(u) = λ
∫ ∞

0

(
1−eiux + iux1|x|<1

)
e
− |x|

vj |x|−2dx

= −λ(1/v j − iu) ln(1− iuv j)− iuλ(1+E1(β)) . (28)

We need to incorporate a truncation term (iux1|x|<1) into the integral to maintain finiteness for the

infinite-variation jump specification. The termE1(β) denotes the standard exponential integral func-

tion,

E1(β) =
∫ ∞

β
e−xx−1dx. (29)

The characteristic exponent of the left-skewed jump component can be similarly derived as,

ψL(u) = λ
∫ 0

−∞

(
1−eiux + iux1|x|<1

)
e
− |x|

vj |x|−2dx

= −λ(1/v j + iu) ln(1+ iuv j)+ iuλ(1+E1(β)) . (30)

Combining the two components, we obtain the characteristic exponent of a symmetric infinite-

variation model,

ψR(u)+ψL(u) = −λ(1/v j + iu) ln(1+ iuv j)−λ(1/v j − iu) ln(1− iuv j) .

If we drop the exponential term in the Lévy density, we obtain the Lévy density for a Cauchy process.

Thus, we label this jump specification as CJ. The concavity adjustment terms are

ξR = λ(1/v j −1) ln(1−v j)+λ(1+E1(β)) , ξL = λ(1/v j +1) ln(1+v j)−λ(1+E1(β)) .
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The characteristic exponents for the concavity-adjusted Lévy components simplify to,

ψR(u) = −λ(1/v j − iu) ln(1− iuv j)+ iuλ(1/v j −1) ln(1−v j) , (31)

ψL(u) = −λ(1/v j + iu) ln(1+ iuv j)+ iuλ(1/v j +1) ln(1+v j) . (32)

Here, we observe that the drift termiuλ(1+E1(β)) drop out of the characteristic exponents for the

concavity-adjusted Ĺevy components. Hence, they are immaterial for our estimation.

All together, we consider four jump specifications: CG, KJ, VG, and CJ, with the last three as

special cases of the encompassing CG specification. By comparing their relative performance in pricing

currency options, we can infer the jump behavior of currency prices.

B. Activity Rates

We assume a differentiable and therefore continuous time change and let

vR
t ≡ ∂TR

t

∂t
, vL

t ≡ ∂TR
t

∂t
,

denote the instantaneous activity rates of the two Lévy components. We model the two activity rates as

following the square-root process of Heston (1993),

dvR
t = κ

(
1−vR

t

)
dt+σv

√
vR

t dZR
t ,

dvL
t = κ

(
1−vL

t

)
dt+σv

√
vL

t dZL
t .

(33)

For identification reasons, we normalize the long-run mean of both processes to one. For parsimony

and symmetry, we set the mean-reversion parameterκ and volatility of volatility parameterσv to be the

same for both activity rate processes.
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We allow the two Brownian motions(WR
t ,WL

t ) in the return process and the two Brownian motions

(ZR
t ,ZL

t ) in the activity rates to be correlated as follows,

ρRdt = EQ
[
dWR

t dZR
t

]
, ρLdt = EQ

[
dWL

t dZL
t

]
.

The four Brownian motions are assumed to be independent otherwise.

The activity rate specification is the same as in Bates (1996b) except that wehave two activity rates

that govern two Ĺevy components of different skewness whereas Bates uses one stochastic variance

rate process to govern the overall volatility level. Eraker, Johannes, and Polson (2003) propose to

incorporate a jump component in the variance rate dynamics when modeling the time-series dynamics

of index returns, but both Eraker (2003) and Broadie, Chernov, and Johannes (2004) show that the

option-pricing impacts of jumps in the activity rate processes are minimal, even if they are present in

the time series dyanmics. Hence, we choose the more parsimonious but equallyeffective pure-diffusion

specification in (33).

C. The Generalized Fourier Transform of the Currency Return

For time-changed Ĺevy processes, Carr and Wu (2004) show that the problem of deriving the

generalized Fourier transform can be converted into an equivalent problem of deriving the Laplace

transform of the time change under a new, complex-valued measure:

φs(u) = eiu(rd−r f )tEQ

[
e

iu

(
LR

TR
t
−ξRTR

t

)
+iu

(
LL

TL
t
−ξLTL

t

)]

= eiu(rd−r f )tEM
[
e−ψ⊤Tt

]
≡ eiu(rd−r f )tLM

T (ψ) , (34)

whereψ≡
[
ψR,ψL

]⊤
denotes the vector of the characteristic exponents of the concavity-adjusted right-

and left-skewed Ĺevy components, respectively, andLM
T (ψ) represents the Laplace transform of the
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stochastic timeTt under a new measureM. The measureM is absolutely continuous with respect to the

risk-neutral measureQ and is defined by a complex-valued exponential martingale,

dM

dQ t
≡ exp

[
iu

(
LR

TR
t
−ξRTR

t

)
+ iu

(
LL

TL
t
−ξLTL

t

)
+ψRTR

t +ψLTL
t

]
. (35)

Equation (34) reduces the problem of obtaining a generalized Fourier transform of a time-changed

Lévy process into a simpler problem of deriving the Laplace transform of the stochastic clock. The

solution to this Laplace transform depends on the specification of the instantaneous activity ratev(t)

and the characteristic exponents.

Since the Laplace transform of the time change in equation (34) is defined under the complex

measureM, we need to obtain the activity rate process underM. By Girsanov’s Theorem, under

measureM, the diffusion coefficient ofv(t) remains the same asσv

√
v j

t , j = R,L. The drift terms

adjust as follows:

drift(v j
t )

M = κ(1−v j
t )+ iuσσvρ j v j

t , j = R,L. (36)

The instantaneous drift and variance of the two activity rate processes are affine under both the

probability measureQ and the new complex valued measureM. Under affine activity rates, the Laplace

transform ofTt is exponential-affine in the current level of the activity rates,[vR
0 ,vL

0]:

LM
T (ψ) = exp

(
−bR(t)vR

0 −cR(t)−bL(t)vL
0 −cL(t)

)
, (37)

where

b j(t) =
2ψ j

(
1−e−η j t

)

2η j−(η j−κ j )
(

1−e−η j t
) ,

c j(t) = κ
σ2

v

[
2ln

(
1− η j−κ j

2η j

(
1−e−η j t

))
+(η j −κ j)t

]
,

(38)

and

η j =

√
(κ j)2 +2σ2

vψ j , κ j = κ− iuρ jσσv, j = R,L.

The characteristic exponents,ψ j , j = R,L, depend on the specification of the Lévy components. We

summarize them in Table III.
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D. Traditional Jump-Diffusion Stochastic Volatility Models

The jump-diffusion stochastic volatility model of Bates (1996b) represents the state of the art in

the currency option pricing literature. This model combines the jump-diffusionspecification of Merton

(1976) with the stochastic volatility specification of Heston (1993). We label this model as MJDSV,

where MJD denotes the Merton jump-diffusion specification and SV denotesits stochastic volatility

feature.

To compare the MJDSV model to our SSM specification, we cast the MJDSV model into the time-

changed Ĺevy process framework and write the log return process under measureQ as

st = (rd − r f )t +(Jt(λ)−ξt)+

(
σWTt −

1
2

σ2Tt

)
, (39)

whereJt(λ) denotes a compound Poisson pure jump process with a Poisson arrival rate λ. Conditional

on one jump occurring, the jump size in log returns is normally distributed with meanµj and variance

v j . The termWt denotes a standard Brownian motion, andTt denotes the stochastic clock with activity

rate given byvt = ∂Tt/∂t. The activity rate follows a square-root process:

dvt = κ(1−vt)dt+σv
√

vtdZt ,

with ρdt = EQ [dWtdZt ]. Equation (39) makes it obvious that the MJDSV model generates stochastic

volatility purely from the diffusion component while keeping the jump arrival rate constant over time.

Furthermore, if we setλ = 0 and delete the jump component, the Bates (1996b) model degenerates into

the pure-diffusion stochastic volatility model of Heston (1993). We also estimate this restricted version

and denote it as HSTSV.

Equation (39) also makes it obvious that both HSTSV and MJDSV can generate stochastic volatil-

ity via the stochastic time change of the diffusion component, but neither can generate stochastic skew.

Under HSTSV, the average skew is determined by the correlation parameterρ between the diffusion in

the currency return and the diffusion in the activity rate. With a fixed correlation parameter, the model
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cannot generate dramatically varying skews. Under MJDSV, the mean jump size µj also helps in gen-

erating an average skew shape. However, since it is also a fixed parameter, the MJDSV model cannot

generate large variations in the conditional skew, either. Besides, the fact that the sample averages of

the implied volatility smiles are relatively symmetric dictates that to capture the averagesmile shape,

both parameters should be set around zero.

Under the MJDSV model, the generalized Fourier transform of the currency return is given by

φs(u) = eiu(rd−r f )t−tψJ−b(t)v0−c(t), (40)

where the characteristic exponent of the concavity-adjusted jump component is

ψJ = λ
[
iu

(
eµj+

1
2σ2

j −1
)
−

(
eiuµj− 1

2u2σ2
j −1

)]
, (41)

and the coefficientsb(t) andc(t) for the diffusion component are the same as in (38) withψ j = ψD =

1
2σ2(iu+u2). Equation (40) also applies to the HSTSV model withψJ = 0 as the Heston (1993) model

does not have a jump component.

We estimate the MJDSV model and its restricted version HSTSV. We compare theirperformance

with our stochastic skew models. The number of free parameters for the MJDSV model is about the

same as the number of free parameters in our SSM specifications with KJ, VG,and CJ jump structures.

III. Quasi-Maximum Likelihood With Unscented Kalman Filter

To estimate the dynamic models to the time series data of implied volatilities, we cast the models

into a state-space form and estimate the models using the quasi-maximum likelihood method.

To capture the time-series dynamics, we need to specify the currency return and activity rate dy-

namics under the objective measureP. Since the return process under measureP has limited relevance

for option pricing, we focus on the activity rate processes and leave the market price of return risk
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unspecified. We assume that the market price of risk on the activity rates (volatility) is proportional to

the square root of the activity rates:

γ(v j
t ) = γ

√
v j

t , j = L,R. (42)

For symmetry, we use the same parameterγ for both activity rates. Then, theP-processes governing

the activity rates become

dvR
t = κP(θP−vR

t )dt+σv

√
vR

t dZR
t ,

dvL
t = κP(θP−vL

t )dt+σv

√
vL

t dZL
t ,

(43)

with

κP = κ−σvγ, θP =
κ

κ−σvγ
. (44)

Thus, the activity rates also follow square root processes under the objective measureP. We make

analogous assumptions on the volatility risk premium on the Heston (1993) modeland Bates (1996b)

model.

In the state-space form, we regard the two activity rates as the unobservable states and specify the

state propagation equation using an Euler approximation of equation (43):

vt = (1−ϕ)θP +ϕvt−1 +σv

√
vt−1∆tεt , (45)

whereϕ = exp(−κP∆t) denotes the autocorrelation coefficient with∆t being the length of the discrete

time interval, andε denotes iid bivariate standard normal innovation. With weekly sampling frequency,

we set∆t = 7/365. The termvt =
[
vR

t ,vL
t

]
denotes the bivariate vector of activity rates for our SSM

models and a scalar for the Heston (1993) model and the Bates (1996b) model. For notational clarity,

we normalize the discrete time interval to one.

Under this specification, the conditional covariance matrix of the state vectoris a diagonal matrix

with state-dependent diagonal elements:

Q t = diag〈σ2
vvt−1∆t〉,
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wherediag〈·〉 denotes a diagonal matrix with the diagonal elements given by the vectors inside the

bracket.

We construct the measurement equations based on the observed out-of-money option prices, as-

suming additive, normally-distributed measurement errors:

yt = O(vt ;Θ)+et , cov(et) = R , (46)

whereyt denotes the observed option prices at timet andO(vt ;Θ) denotes the model-implied value as

a function of the parameter setΘ and the state vectorvt . The termet denotes the pricing errors, with

covariance matrixR . We convert the implied volatility quotes into out-of-money option prices and

scale all option prices by their Black-Scholes vega. With this scaling, we assume that the pricing errors

are iid normal with zero mean and variance matrix,R = σr I , with σr being a scalar andI being an

identity matrix of the relevant dimension. The dimension of the measurement equation is 40, capturing

the 40 options quotes on each date.

How to define the pricing error and how to weigh the pricing error are important yet delicate issues.

Since the risk-neutral distributional properties of the currency return show up most vividly on the

implied volatility surface across moneyness and maturity, it would be ideal to define the pricing error

as the difference between the Black-Scholes implied volatility quote and its model-implied fair value.

Nevertheless, our algorithm generates option prices from the return characteristic function. Converting

the option prices into Black-Scholes implied volatility involves an additional minimizationroutine that

can be time-consuming when embedded in the global optimization procedure. Bydividing the out-

of-the-money option prices by its vega, we are essentially converting the option price into the implied

volatility space via linear approximation. Under the Black-Scholes model, the vega is given by

∂C
∂IV

= Se−r f τ√τN′(d+). (47)

The scaling of
√

τ makes the option prices relatively on the same level across maturities. The scaling by

the normal probability density adjusts for the fact that out-of-money optionsare less expensive than at-
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the-money options. For the estimation, we first convert the implied volatility quotesinto out-of-money

option prices in percentages of the underlying spot. Then, we ignore the interest rate effect and apply

time-homogeneous weighting on options prices at fixed delta (δ) and time-to-maturity (τ),

w(δ,τ) =
1

100
√

τN′(N−1(δ))
. (48)

We usevt ,Pt ,yt ,At to denote the time-(t −1) ex ante forecasts of time-t values of the state vector,

the covariance of the state vector, the measurement series, and the covariance of the measurement

series, respectively. We usêvt andP̂t to denote the ex post update, or filtering, on the state vector and

its covariance at the timet based on observations (yt) at time t. In the case of linear measurement

equations,

yt = Hvt +et , (49)

the Kalman (1960) filter provides the most efficient updates. The ex ante predictions are,

vt = (1−ϕ)θP +ϕv̂t−1;

Pt = ϕP̂t−1ϕ⊤ +Q t−1; (50)

yt = Hvt ;

At = HPtH
⊤ +R ,

and the ex post filtering updates are,

v̂t+1 = vt+1 +Kt+1(yt+1−yt+1) ,

P̂t+1 = Pt+1−Kt+1At+1K⊤
t+1, (51)

whereKt+1 is the Kalman gain, given by,

Kt+1 = St+1
(
At+1

)−1
, St+1 = Pt+1H.
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Thus, we can obtain a time series of the ex ante forecasts and ex post updates on both the mean and

covariance of the state vectors and the observed series, via the iterativeprocedure defined by (50) and

(51).

In our application, the measurement equation in (46) is nonlinear. Traditionally, nonlinearity is

often handled by the Extended Kalman Filter (EKF), which approximates the nonlinear measurement

equation with a linear expansion, evaluated at the predicted states,

yt ≈ H (vt ;Θ)vt +et ,

where

H (vt ;Θ) =
∂O(vt ;Θ)

∂vt

∣∣∣∣
vt=vt

. (52)

The prediction and the updates follow equations (50) and (51). The extended Kalman filter uses only

one point (the conditional mean) from the prior filtering density for the prediction and filtering updates.

In this paper, we use a relatively new filtering technique called the unscented Kalman filter (UKF).

The UKF uses a set of (sigma) points to match not only the mean and variance,but also the higher

moments of the state distribution. If we letk denote the number of states (one in the Bates/Heston

model and two in our SSM models) and letζ > 0 denote a control parameter, we generate a set of

2k+1 sigma vectorsχi according to the following equations,

χt,0 = v̂t ,

χt,i = v̂t ±
√

(k+ζ)(P̂t +Q t) j , j = 1, · · · ,k; i = 1, · · · ,2k,

with the corresponding weightswi given by,

w0 = δ/(k+ζ), wi = 1/[2(k+ζ)], j = 1, · · · ,2k.

We can regard these sigma vectors as forming a discrete distribution withwi being the corresponding

probabilities. Then, we can verify that the mean, covariance, skewness, and kurtosis of this distribution
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are v̂t , P̂t +Q t , 0, andk+ ζ respectively. Thus, we can use the control parameterζ to accommodate

conditional non-normalities in the state propagation equation.

Given the sigma points, the prediction steps are given by:

χt,i = (1−ϕ)θP +ϕχt,i ;

vt+1 =
2k

∑
i=0

wi(χt,i);

Pt+1 =
2k

∑
i=0

wi(χt,i −vt+1)(χt,i −vt+1)
⊤; (53)

yt+1 =
2k

∑
i=0

wiO
(
χt,i ;Θ

)
;

At+1 =
2k

∑
i=0

wi
[
O

(
χt,i ;Θ

)
−yt+1

][
O

(
χt,i ;Θ

)
−yt+1

]⊤
+R ,

and the filtering updates are given by

v̂t+1 = vt+1 +Kt+1(yt+1−yt+1) ;

P̂t+1 = Pt+1−Kt+1At+1K⊤
t+1, (54)

with

Kt+1 = St+1
(
At+1

)−1
; St+1 =

2k

∑
i=0

wi
[
χt,i −vt+1

][
O

(
χt,i ;Θ

)
−yt+1

]⊤
.

We refer to Julier and Uhlmann (1997) for general treatments of the UKF.

To estimate the model parameters, we define the log-likelihood for each day’sobservation assuming

that the forecasting errors are normally distributed:

lt+1(Θ) = −1
2

log
∣∣At

∣∣− 1
2

(
(yt+1−yt+1)

⊤ (
At+1

)−1
(yt+1−yt+1)

)
. (55)
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We choose model parameters to maximize the log likelihood of the data series, which is a summation

of the daily log likelihood values,

Θ ≡ argmax
Θ
L (Θ,{yt}N

t=1), with L (Θ,{yt}N
t=1) =

N−1

∑
t=0

lt+1(Θ), (56)

whereN = 419 denotes the number of weeks in our sample.

For each currency, we estimate six models, which include the Heston (1993)model (HSTSV), the

Bates (1996b) model (MJDSV), and four SSM models. The four SSM models differ in their respective

jump specifications. We label them as KJSSM, VGSSM, CJSSM, and CGSSM,with KJ, VG, CJ, and

CG denoting the four different jump structures.

The Bates (1996b) model has nine free parametersΘB =
[
σr ,σ2,λ,µj ,v j ,κ,σv,ρ,κP

]
. The Heston

(1993) constitutes a restricted version withλ = v j = µj = 0. Our SSM models with KJ, VG, or CJ

jumps also have nine parameters,ΘS =
[
σr ,σ2,λ,v j ,κ,σv,ρR,ρL,κP

]
. The SSM model with CG jump

specification (CGSSM) has one extra free parameterα that controls the type of the jump process. This

extra parameterα is fixed at−1, 0, and 1 for KJ, VG, and CJ, respectively. Furthermore, the four SSM

models have two state variables(vR
t ,vL

t ) that generate both stochastic volatility and stochastic skew in

the currency return distribution. The Bates model and the Heston model have only one state variablevt

that controls the instantaneous variance of the diffusion component.

IV. Results and Discussion

In this section, we discuss the estimation results and address the following questions: Which model

best captures the time series and cross-sectional behaviors of currency option implied volatilities? How

the estimated activity rate dynamics relate to the observed time variation in implied volatilities and risk

reversals?
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A. In-Sample Model Performance Comparison

We compare the in-sample model performance along two dimensions. First, we investigate how our

new SSM models perform against traditional jump-diffusion stochastic volatilitymodels, e.g., Bates

(1996b) (MJDSV). Second, within our new SSM model framework, we investigate which jump struc-

ture delivers the best performance in capturing the currency option price behavior.

Table IV reports the parameter estimates and standard errors (in parentheses) for the six models on

the two currency pairs. In the last two rows of the table, we also report theroot mean squared pricing

error and the maximized log likelihood value for each model and each currency. The results in Table IV

are obtained based on the whole sample of eight years of data. Hence, performance comparisons are in

sample.

When we compare the performance of our SSM models to the traditional jump-diffusion stochastic

volatility model of Bates (1996b) (MJDSV), we find that our SSM models markedly outperform the

MJDSV model in terms of both the in-sample log likelihood values and the root meansquared pricing

errors. For the currency pair JPYUSD, the log likelihood value for MJDSV is lower than values for

the four SSM models by 2,605, 2,619, 2,637, and 2,685, respectively. The root mean squared error is

0.984 for MJDSV and is 0.822 or lower for the four SSM models.

For the currency pair GBPUSD, the log likelihood values for the four SSM models are also higher

than the value for the MJDSV model, with the difference ranging from 1,537 to1,561. The root mean

squared pricing error is 0.421 for MJDSV and is 0.378 or lower for the four SSM models.

From MJDSV to its restricted version HSTSV, we observe a further reduction in likelihood val-

ues and an further increase in root mean squared pricing errors. Thelikelihood difference is 409 for

JPYUSD and 604 for GBPUSD. The root mean squared error difference is 0.03 for JPYUSD and 0.011

for GBPUSD. These differences show that the jump component in MJDSV does improve the model

performance over the pure-diffusion stochastic volatility model of Heston (1993) (HSTSV).

Within our SSM framework, we estimate four models with different jump specifications. In con-

trast to the large difference in log likelihood values between the SSM models and the MJDSV model,
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the likelihood value differences among the four SSM models are much smaller. For JPYUSD, we de-

tect a marginal increase in the likelihood value as we move from the KJ jump structure to VG and then

to CJ. These three jump specifications differ by a power term in the Lévy density. The performance

ranking corresponds to an increase in the power coefficientα and an increase in jump frequency. When

we estimate the CGSSM model whereα is a free parameter, the estimate forα is 1.556, higher than all

the three restricted versions. This encompassing model also generates a higher likelihood value, po-

tentially indicating that a high-frequency jump specification is favored for modeling currency options.

Nevertheless, when we compare the root mean squared pricing errors for the four SSM models, we can

hardly distinguish the differences among the four jump types.

For GBPUSD, the estimate ofα under the CGSSM model is 1.180, smaller than the estimate for

JPYUSD but still higher than all three restricted versions. Nevertheless,for this currency pair, the

performance differences of the four SSM models are negligible in terms of both the log likelihood

values and the room mean squared pricing errors. Therefore, we conclude that our currency options

data cannot effectively distinguish between different jump types. Thereis only weak evidence that

favors a high-frequency jump specification with infinite variation for the JPYUSD currency pair.

Our results on the nature of the jump specification for currency options arenot as strong as those in

Carr and Wu (2003) and Huang and Wu (2004) for equity index options.Both studies find that infinite-

activity jump specifications significantly outperform finite-activity jump specifications for pricing S&P

500 index options. Madan and Daal (2004) also find evidence that the infinite-activity VG model

performs better than the finite-activity Merton (1976) jump in pricing currency options. Those studies

use exchange-traded options that include very deep out-of-the-moneycontracts. The over-the-counter

currency options data that we use in this paper have only five strikes for each maturity, all located within

approximately the tenth and 90th percentile of the return distribution. Hence, the currency options data

that we use do not provide much information on the tail (beyond the tenth percentile) of the currency

return distribution. However, it is exactly in the tails of the currency return distribution where the

alternative jump specifications display their differences.
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To test the statistical significance of the performance difference betweendifferent models, we adopt

the likelihood ratio statistic constructed by Vuong (1989) for non-nested models. Formally, we let

LR(Θi ,Θ j) denote the log likelihood ratio between modelsi and j,

LR(Θi ,Θ j) ≡ L i(Θi)−L j(Θ j). (57)

Vuong constructs a test statistic based on this log likelihood ratio,

M =
√

N LR(Θi ,Θ j)/ŝ, (58)

whereN denotes the number of days in the time series andŝ2 denotes the variance estimate of the daily

log likelihood ratio(l i − l j). Vuong proves thatM is asymptotically normally distributedN(0,1) under

the null hypothesis that the two models are equivalent in terms of likelihood:

H0 : E [l i − l j ] = 0. (59)

Based on the daily log likelihood estimates, we compute the sample mean and standard deviation of

the likelihood ratio between each pair of models and then construct the test statistic in equation (58).

In estimatinĝs, we adjust serial dependence in the daily log likelihood ratios according to Newey and

West (1987) with the lags optimally chosen following Andrews (1991) underan AR(1) specification.

Table V reports the pairwise log likelihood ratio test statistics. For each currency pair, we report

the statistics in a(6×6) matrix, with the(i, j)th element being the statistic on(l i − l j). The diagonal

terms are zero by definition. For both currency pairs, all the off-diagonal elements in the first column

are positive and strongly significant, indicating that HSTSV is the worst performing of all six esti-

mated models. The last four elements in the second column are also strongly positive and significant,

indicating that the performance of MJDSV is significantly worse than the fourSSM models.

However, as we move to the(4× 4) block in the right bottom corner, none of the elements are

significant for either currency pair. This block compares the performance among the four SSM models.

Therefore, we conclude that within the SSM modeling framework, our currency options data cannot
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effectively distinguish the different jump specifications. Nevertheless, our SSM models significantly

outperform the MJDSV model and the HSTSV model.

B. Out-of-Sample Performance Comparison

To study the out-of-sample performance, we re-estimate the six models using the first six years of

data from January 24, 1996 to December 26, 2001, 310 weekly observations for each series. Then, we

use these estimated model parameters to compare the model performance both insample during the

first six years and out of sample during the last two years from January2, 2002 to January 28, 2004

(109 weekly observations for each series). If our estimation generatesstable model parameters and

the currency option price behaviors have not dramatically changed during the last two years, we would

expect that the out-of-sample performance for each model is similar to its in-sample performance. We

also investigate whether the superior performance of our SSM models overthe traditional specifications

such as HSTSV and MJDSV extends to out-of-sample comparison .

Table VI reports the model parameter estimates and standard errors using the subsample of six

years of data. Both the estimates and standard errors are close to what wehave obtained from the full

sample in Table IV, indicating that the currency option price behaviors havenot experienced dramatic

changes over the past two years. The one exception is the estimates on the CGSSM model on the

currency GBPUSD. Theα estimate has changed from 1.180 in the full sample estimation to -1.162

in the subsample estimation. But the new estimate shows has a very large standard error, indicating

potential identification problems for this encompassing specification.

Table VII compares the in-sample and out-of-sample performance of the sixmodels based on the

subsample estimation. We report the root mean squared pricing error (rmse), the mean daily log likeli-

hood value (L /N), and the pairwise likelihood ratio test statistics defined in equation (58). To facilitate

comparison between in- and out-of-sample performance, we normalize the likelihood value (L ) by the

number of weeks (N) for each sample period and report the mean daily log likelihood estimate (L /N).

The in-sample comparison is based on the first 310 weeks of data. The out-of-sample comparison is

based on the last 109 weeks of data.
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For each currency pair and each model, we first compare the in-sample and out-of-sample perfor-

mance in terms of the root mean squared pricing error and the mean daily log likelihood value. We

find that the in-sample and out-of-sample estimates are very close to one another. For JPYUSD, most

models generate slightly larger out-of-sample pricing errors and smaller out-of-sample likelihood val-

ues than their in-sample counterpart. The one exception is the MJDSV model, which actually generates

smaller out-of-sample error and larger out-of-sample likelihood value. Forthe currency pair GBPUSD,

all models actually generate smaller out-of-sample pricing errors and largerout-of-sample likelihood

values. Therefore, we do not observe much obvious degeneration orvariation in out-of-sample per-

formance. These results confirm our inference from the parameter estimates that the currency options

behaviors during the past two years are not dramatically different fromtheir earlier behaviors. The

model parameter estimates from the first six years of data can be readily applied to the recent two years

of data with no obvious degeneration in performance.

We now compare the performance of different models both in sample and outof sample. The root

mean square and the log likelihood values show that the four SSM models perform much better than

the MJDSV and HSTSV models, both in sample and out of sample. The likelihood ratio test statistics

M tell the same story. For both in-sample and out-of-sample tests, the off-diagonal terms in the first

column of theM matrix are all strongly positive for both currencies, indicating that all othermodels

significantly outperform the Heston (1993) model. The last four elements ofthe second column are

also strongly positive, indicating that our four SSM models all significantly outperform the MJDSV

model of Bates (1996b).

Among the four SSM models, the in-sampleM statistics show that the four models are not statis-

tically different from one another for both currencies. When we look atthe out-of-sample statistics for

JPYUSD, we find that the CG jump structure significantly outperforms all threerestricted jump specifi-

cations (KJ, VG, and CJ). Among the three restricted jump specifications, CJsignificantly outperforms

KJ and VG; VG significantly outperforms KJ, thus generating the following statistically significant

performance ranking in descending order: CG, CJ, VG, and KJ. The qualitative conclusion is the same
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as from the in-sample comparison, but statistically stronger: High frequency jumps perform better in

capturing the option price behavior on JPYUSD.

For GBPUSD, the out-of-sample performance ranking among the four jump specifications under

SSM goes the opposite direction, albeit with less statistically significance. In particular, although

the encompassing CG jump specification generates slightly better in-sample performance, its out-of-

sample performance is significantly worse than KJ and VG. Thus, options onGBPUSD seem to ask for

a more parsimonious and less frequent jump specification.

Reviewing the options behavior on JPYUSD and GBPUSD, we find that historically, JPYUSD

options have generated much larger skews (risk reversals) than optionson GBPUSD. Thus, we con-

clude that high-frequency jump specification is needed for capturing large non-normalities, but a finite-

activity jump specification suffices for capturing moderate non-normalities in the return distribution.

C. Pricing Biases

Another way to investigate the robustness and performance of differentmodels is to check for

remaining structures in the pricing errors of these models. Since we have documented the evidence

mainly in the implied volatility space, here we convert the model-implied option prices into Black-

Scholes implied volatilities. We define the pricing error in the volatility space as the difference between

the observed implied volatility quote and the corresponding values computed from the model.

The meaning pricing error of a good model should be close to zero and show no obvious structures

along both the moneyness and the maturity dimensions. Figure 5 plots the mean pricing error in volatil-

ity percentage points along the moneyness dimension at selected maturities of one month (solid lines),

three months (dashed lines), and 12 months (dash-dotted lines). Since the in-sample and out-of-sample

performances are similar for all models, from now on we only report results based on the full-sample

model estimation. To further reduce graphics clustering, we henceforth focus on two models, one from

our four SSM specifications and one from the two traditional specifications. The four SSM models

generate similar performance, we choose KJSSM as the representative.Of the two traditional models,
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the Bates model (MJDSV) performs better than the pure-diffusion Heston model (HSTSV). We choose

the better performing MJDSV and compare its behaviors to KJSSM.

Under the MJDSV model, the mean pricing errors show obvious remaining structures for JPYUSD

along both the moneyness and maturity dimensions. At short maturities, the mean pricing errors exhibit

a smile shape along the moneyness dimension, implying that the MJDSV model cannot fully account

for the implied volatility smile at short maturities. At longer maturities, the mean pricing errors show

an inverse smile shape along the moneyness dimension, implying that the MJDSV model generates an

overly curved implied volatility smile at these maturities.

In contrast, under our SSM model, the mean pricing errors are very closeto zero and do not show

any obvious remaining structures. For both currencies, the mean pricing errors under the SSM model

are all well within half a percentage point, the average bid-ask spread for the implied volatility quotes.

While the mean pricing error plots can reveal the remaining structures and deficiencies of a model,

a plot of the mean absolute pricing errors illustrates the average performance of the model in fitting the

observed implied volatility quotes. Figure 6 plots the mean absolute pricing errorin implied volatility

under both MJDSV and KJSSM. Under both models, the mean absolute pricingerrors are smaller for

GBPUSD than for JPYUSD.

Under the MJDSV model, the mean absolute pricing errors are larger on out-of-money options than

on at-the-money options, indicating that the MJDSV model cannot fully account for the observed im-

plied volatility smile. The mean absolute pricing errors are also larger at very short and long maturities

than at moderate maturities, indicating that the model cannot fully account forthe term structure of the

implied volatilities.

The mean absolute pricing errors under the SSM model are smaller than thoseunder the MJDSV

model across all moneyness, maturities, and the two currency pairs, showing the universal better per-

formance of the SSM model over the MJDSV model. Furthermore, under the SSM model, the mean

absolute pricing error are flat across moneyness under all maturities, indicating that the model can cap-

ture the volatility smile very well. Along the maturity dimension, the mean absolute pricingerrors are
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smaller at moderate maturities than at very short and very long maturities, indicating that the model has

some remaining tensions along the term structure dimension.

D. The Activity Rate Dynamics

Under the SSM models, the risk-neutral dynamics of the two activity rates aremainly controlled

by two parameters:κ andσv. The parameterκ controls the speed of mean-reversion for the activity

rate processes. The parameterσv controls the instantaneous volatility of the process. Furthermore, the

activity rate processes interact with the currency return innovation through the instantaneous correlation

parametersρR andρL. Under the physical measure, the time-series dynamics of the activity rates differ

from the risk-neutral dynamics in terms of the mean-reverting speedsκP and the long-run meanθP.

The difference betweenκ andκP captures the market price of volatility risk. When the market price of

risk coefficientγ is positive, the time-series dynamics of the activity rates are more persistent and also

have a larger long-run mean than the risk-neutral dynamics. The oppositeis true when the coefficient

is negative.

Table IV reports the full-sample parameter estimates. For JPYUSD, the estimate for the risk-neutral

mean-reversion speedκ varies from 0.387 to 0.465 as we change the jump specification. The mean-

reversion speeds under the time-series measureκP are larger and range from 0.502 to 0.586. The

difference between the two sets of parameters imply that the market price of activity rate is negative.

For GBPUSD, theκ estimates for the SSM models are larger and between 1.18 and 1.211. The

corresponding time-series estimates are between 1.158 and 3.296, implying negative market price of

risk except under CJSSM. Nevertheless, we caution the interpretation ofthe market price of risk as

we observe that the standard errors for the time-series estimatesκP are much larger than that for the

risk-neutral counterpartsκ. The observation holds for both currencies.

The estimates for the instantaneous volatility coefficient of the activity ratesσv are also quite stable

across different jump specifications under the SSM framework. The estimates are between 1.566 and

1.675 for JPYUSD and between 1.429 and 1.505 for GBPUSD.
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The estimates for the instantaneous correlation are significantly positive between the positively

skewed Ĺevy component and its activity rate, and are strongly negative between thenegatively-skewed

Lévy component and its activity rate. As a result, the model-implied innovation in therisk reversal is

positively correlated with the currency return, consistent with the observations from the data (Table II).

Under the HSTSV and MJDSV models, a scalar activity rate process controls the overall stochastic

volatility. The estimates for the persistence parametersκ andκP and for the instantaneous volatility pa-

rameterσv are similar to those obtained under the SSM models. However, the instantaneous correlation

ρ estimates are close to zero under both currencies, consistent with our observation that the currency

returns and changes in volatilities do not have strong cross-correlations.

The unscented Kalman Filter provides a fast way to update the activity rates toachieve an approxi-

mate fit to the implied volatility surface. The top two panels in Figure 7 plot the filteredactivity rates for

the MJDSV model. In the bottom two panels, we plot the filtered activity rates of both the right-skewed

(solid lines) and left-skewed (dashed lines) return components under theKJSSM model.

Under both models, the overall time variation of the activity rates match the ups and downs in

the time series of the implied volatilities in Figure 1. Hence, both models can capture the stochastic

volatility feature of the currency options. For example, the implied volatilities on JPYUSD show a

large spike between 1998 and 1999, reflecting the market stress during the Russian bond crisis and the

ensuing hedge fund crisis. The single activity rate process under MJDSV shows a similar spike, and

the two activity rates under the SSM model are both high during this period.

Furthermore, under the SSM model, the relative variation of the two activity also matches the time

variation in the risk reversals plotted in Figure 3. When the risk reversal is positive, the activity rate for

the right-skewed return component (vR
t , solid lines) is higher than the activity rate for the left-skewed

component (vL
t , dashed lines), and vice versa. To see this feature more clearly, we plotin Figure 8 the

percentage differences between the two activity rates, defined as 100× (vR
t − vL

t )/(vR
t + vL

t ). We also

re-plot the ten-delta risk reversal quotes for comparison. We see that the movement of the percentage

differences in the activity rates matches the movements of the risk reversals very well.
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E. Theory and Evidence on the Stochastic Skew

The key feature that we have observed from the OTC currency optionsmarket is the strong time

variation in the risk reversal, and hence the stochastic skew. Using the filtered time series on the activity

rates, we compute the model-implied option prices and Black-Scholes implied volatilities. From the

implied volatilities, we re-construct the model-implied risk reversals and comparethem with the market

observations.

Figure 9 compares the time series of the observed risk reversals to the model-implied values. For

clarity, we only plot one time series for each currency pair: the ten-delta risk reversal at three-month

maturity in percentages of the at-the-money implied volatility of the same maturity. The dash-dotted

lines denote data quotes, the solid lines are the values computed from the estimated models.

The MJDSV model can generate the overall stochastic volatilities observed inthe data, but the top

two panels in Figure 9 show that this model fails miserably in capturing the observed strong variation

in risk reversals. Compared to the strong variations in the data (dashed lines), the model-implied values

vary very little.

In contrast, the bottom two panels in Figure 9 show that our SSM models can generate risk re-

versals that match the data very closely. The matches are close to perfection except under extreme

realizations. Therefore, our SSM modeling framework contributes to the literature by capturing the

strong and unique feature of the OTC currency options market.

V. Conclusion

In this paper, we document the statistical properties of currency option implied volatilities across

the dimensions of moneyness, maturity, and calendar time. We find that the market prices of OTC

currency options exhibit several unique behaviors that challenge standard models in the option pricing

literature. Chief among the challenging behaviors is the observation that although the average implied
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volatility smile is relatively symmetric, the risk reversals can take large values on any given date and

that these values vary greatly over time, so much so that the sign of the risk reversal can also change.

Using the time-changed Lévy process framework, we design and estimate a subclass of models that

capture this unique stochastic skew behavior of currency option prices.Our estimation results show

that our SSM models strongly outperform traditional jump-diffusion stochastic volatility models, both

in sample and out of sample.
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Figure 1. The time series of OTC currency option implied volatilities. Lines plot the time-series
of 40 implied volatility quotes on the dollar price of yen (JPYUSD, left panel) and pound (GBPUSD,
right panel). The 40 series are from eight maturities and five strike levels at each maturity. Data are
weekly from January 24, 1996 to January 28, 2004, 419 observations for each series.
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Figure 2. Mean implied volatility smiles on currency options. Lines plot the time-series average
of the implied volatility against the delta of the currency options at three option maturities: one month
(solid lines), three months (dashed lines), and one year (dash-dotted lines). The averages are on weekly
data from January 24, 1996 to January 28, 2004, 419 observations for each series.
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Figure 3. Risk reversals and strangle margins over calendar time.Solid lines are ten-delta risk re-
versals and dashed lines are ten-delta strangle margins, both in percentages of the at-the-money implied
volatility. To reduce clustering, we plot the lines at three maturities (one, three, and 12 months).
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Figure 4. Cross-Correlogram between currency returns and changes in one-month ten-delta risk
reversals.The stem bars represent the cross-correlation estimates between the currency returns and the
weekly changes in one-month ten-delta risk reversals at different lags and leads. The two dashed lines
in each panel denote the 95 confidence bands.
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Figure 5. Mean pricing bias in implied volatility. We define the pricing error as the difference
between the observed implied volatility quote and the corresponding value impliedby the estimated
models, both in percentages. We then compute the mean pricing error at eachmoneyness and maturity.
The three lines represent three chosen maturities at one month (solid lines),three months (dashed lines),
and 12 months (dash-dotted lines).
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Figure 6. Mean absolute pricing error in implied volatility. We define the pricing error as the
difference between the observed implied volatility quote and the corresponding value implied by the
estimated models, both in volatility percentages. We compute the mean absolute valueof the pricing
errors at each moneyness and maturity. The three lines represent threechosen maturities at one month
(solid lines), three months (dashed lines), and 12 months (dash-dotted lines).
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Figure 7. Filtered activity rates. The top two panels plot the single series of the activity rates from the
MJDSV model. The bottom two panels plot the two activity rate series from the KJSSM model. The
solid lines denote the activity rate for the right-skewed Lévy component and the dashed lines denote the
activity rate for the left-skewed Ĺevy component under the SSM model. We extract the activity rates
from the options data using unscented Kalman filter, based on the relevant estimated models using the
whole sample of data.
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Figure 8. Activity rates differences and risk reversals. The top two panels plot the percentage
difference in the two activity rates from the KJSSM model, defined as single series of the activity rates
from the 100× (vR

t − vL
t )/(vR

t + vL
t ). The bottom two panels plot the market quotes for ten-delta risk

reversals for comparison. The three lines represent the three selectedmaturities at one, three, and 12
months.
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Figure 9. Theory and evidence on the stochastic skew.Dashed lines are the market quotes on
three-month ten-delta risk reversals, in percentages of the at-the-money implied volatility of the same
maturity. Solid lines are the values computed from the estimated models using the whole sample of
data.

55



Table I
Summary Statistics of Currency Option Implied Volatilities

The three columns under each contract report the mean, standard deviation, and weekly autocorrelation of the contract on risk reversal (RR),
strangle margin (SM), and at-the-money implied volatilities (ATMV). Risk reversals and strangles are in percentages of the at-the-money
implied volatility. The numbers following RR and SM denote the delta of the contract.Data are weekly from January 24, 1996 to January 28,
2004, 419 observations for each series. The first column denotes the option maturities, with ‘w’ denoting weeks and ‘m’ denoting months.

Mat RR10 SM10 RR25 SM25 ATMV

JPYUSD
1w 15.18 16.96 0.69 14.34 4.26 0.77 7.40 8.10 0.70 4.32 1.47 0.85 11.70 3.80 0.83
1m 13.32 15.21 0.85 12.15 3.40 0.89 6.90 8.04 0.87 3.60 0.88 0.87 11.45 3.10 0.92
2m 11.53 14.27 0.89 12.08 3.21 0.92 6.02 7.63 0.91 3.51 0.67 0.87 11.47 2.84 0.94
3m 10.16 14.14 0.92 12.20 3.29 0.94 5.34 7.60 0.93 3.47 0.64 0.89 11.57 2.70 0.96
6m 8.25 14.32 0.96 12.30 3.67 0.96 4.30 7.63 0.96 3.41 0.72 0.94 11.78 2.58 0.97
9m 7.77 14.66 0.97 12.42 4.11 0.98 4.01 7.74 0.97 3.39 0.82 0.96 11.87 2.55 0.98

12m 7.45 14.99 0.97 12.39 4.48 0.98 3.81 7.91 0.97 3.34 0.90 0.97 11.95 2.53 0.98
18m 7.95 14.42 0.97 12.03 4.95 0.98 4.00 7.61 0.97 3.17 1.00 0.97 12.00 2.49 0.98

GBPUSD
1w -0.14 11.76 0.73 10.30 4.60 0.86 0.13 5.72 0.76 2.95 1.50 0.89 8.20 1.79 0.81
1m -0.52 9.35 0.84 9.74 3.04 0.91 -0.11 4.68 0.84 2.95 0.86 0.88 8.20 1.47 0.90
2m -0.33 7.48 0.88 9.22 1.83 0.87 -0.05 3.95 0.89 2.77 0.57 0.87 8.33 1.31 0.92
3m -0.37 6.74 0.90 9.11 1.56 0.86 -0.10 3.55 0.91 2.72 0.47 0.84 8.43 1.20 0.93
6m -0.44 5.92 0.94 8.80 1.72 0.92 -0.15 3.13 0.95 2.59 0.52 0.89 8.61 1.02 0.95
9m -0.38 5.60 0.96 8.63 1.95 0.95 -0.14 2.98 0.96 2.55 0.56 0.92 8.69 0.95 0.95

12m -0.36 5.45 0.96 8.46 2.11 0.96 -0.14 2.91 0.97 2.49 0.55 0.92 8.77 0.90 0.95
18m -0.53 4.93 0.97 7.99 2.38 0.97 -0.24 2.63 0.97 2.26 0.61 0.94 8.88 0.89 0.95

56



Table II
Cross-correlation Between Currency Returns and Changes in Implied Volatilities

Entries report the contemporaneous correlation between log currency returns and changes in risk rever-
sals (RR), strangle margins (SM), and at-the-money implied volatilities (ATMV).Risk reversals and
strangles are in percentages of the at-the-money implied volatility level. The numbers following RR
and SM denote the delta of the contract. The first column denotes the option maturities, with ‘w’ de-
noting weeks and ‘m’ denoting months. Data are weekly from January 24, 1996 to January 28, 2004,
419 observations for each series.

JPYUSD GBPUSD

Mat RR10 SM10 RR25 SM25 ATMV RR10 SM10 RR25 SM25 ATMV

1w 0.46 -0.06 0.48 -0.14 0.41 0.38 -0.01 0.40 -0.02 -0.02
1m 0.57 -0.06 0.58 -0.14 0.44 0.44 0.01 0.45 0.01 -0.00
2m 0.58 -0.05 0.59 -0.10 0.40 0.46 -0.01 0.46 0.02 0.02
3m 0.59 -0.06 0.59 -0.08 0.35 0.47 0.03 0.47 0.03 0.00
6m 0.59 -0.04 0.59 -0.04 0.25 0.44 0.04 0.45 0.04 0.02
9m 0.56 -0.04 0.57 -0.02 0.21 0.42 0.03 0.43 0.03 0.04

12m 0.57 -0.03 0.58 0.00 0.18 0.39 0.05 0.40 0.05 0.04
18m 0.53 -0.05 0.55 -0.01 0.18 0.37 0.06 0.37 0.07 0.02
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Table III
Characteristic Exponents of Different Lévy Components

All L évy specifications have a diffusion component. The characteristic exponent for the diffusion
component isψD = 1

2σ2
(
iu+u2

)
.

Model Right-Skewed Component Left-Skewed Component

KJ −iuλ
[

1
1−iuv j

− 1
1−v j

]
+ψD iuλ

[
1

1+iuv j
− 1

1+v j

]
+ψD

VG λ ln(1− iuv j)− iuλ ln(1−v j)+ψD λ ln(1+ iuv j)− iuλ ln(1+v j)+ψD

CJ −λ(1/v j − iu) ln(1− iuv j) −λ(1/v j + iu) ln(1+ iuv j)
+iuλ(1/v j −1) ln(1−v j)+ψD +iuλ(1/v j +1) ln(1+v j)+ψD

CG λΓ(−α)
[(

1
v j

)α
−

(
1
v j
− iu

)α]
λΓ(−α)

[(
1
v j

)α
−

(
1
v j

+ iu
)α]

−iuλΓ(−α)
[(

1
v j

)α
−

(
1
v j
−1

)α]
+ψD −iuλΓ(−α)

[(
1
v j

)α
−

(
1
v j

+1
)α]

+ψD
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Table IV
Likelihood Estimates of Model Parameters

Entries report the quasi-maximum likelihood estimates of the model parameters, standard errors (in parentheses), root mean squared pricing
errors (rmse), and log likelihood values (L ). For each currency pair, we estimate six models: the Heston (1993) model(HSTSV), the Bates
(1996b) model (MJDSV), and our stochastic skew models (SSM) with fourdifferent jump specifications: KJ, VG, CJ, and CG. The estimation
uses eight years of weekly option data from January 24, 1996 to January 28, 2004 (419 weekly observations for each series). The column
under “ΘB” denotes the parameter names for the Heston model and the Bates model. The column under “ΘS” denotes the parameter names
for our SSM models.

Currency JPYUSD GBPUSD

ΘB ΘS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

σ2 σ2 0.020 0.006 0.006 0.005 0.004 0.003 0.010 0.008 0.003 0.003 0.002 0.002
( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

λ λ — 0.016 0.059 1.708 0.035 0.004 — 0.422 0.079 6.869 0.080 0.032
( — ) ( 0.001 ) ( 0.003 ) ( 0.151 ) ( 0.002 ) ( 0.001 ) ( — ) ( 0.044 ) ( 0.005 ) ( 0.700 ) ( 0.005 ) ( 0.015 )

v j v j — 0.497 0.029 0.045 0.104 0.270 — 0.003 0.012 0.017 0.031 0.039
( — ) ( 0.013 ) ( 0.001 ) ( 0.001 ) ( 0.004 ) ( 0.056 ) ( — ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.001 ) ( 0.004 )

κ κ 0.559 0.569 0.387 0.394 0.421 0.465 1.532 1.044 1.205 1.206 1.211 1.180
( 0.006 ) ( 0.011 ) ( 0.005 ) ( 0.006 ) ( 0.007 ) ( 0.010 ) ( 0.007 ) ( 0.007 ) ( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.008 )

σv σv 1.837 1.210 1.675 1.657 1.582 1.566 2.198 1.737 1.429 1.447 1.505 1.492
( 0.023 ) ( 0.022 ) ( 0.027 ) ( 0.028 ) ( 0.027 ) ( 0.031 ) ( 0.026 ) ( 0.023 ) ( 0.039 ) ( 0.040 ) ( 0.017 ) ( 0.018 )

ρ ρR 0.076 0.123 0.395 0.393 0.400 0.424 -0.023 -0.061 0.848 0.848 0.849 0.836
( 0.005 ) ( 0.065 ) ( 0.017 ) ( 0.018 ) ( 0.022 ) ( 0.056 ) ( 0.003 ) ( 0.017 ) ( 0.040 ) ( 0.043 ) ( 0.017 ) ( 0.016 )

µj ρL — -0.210 -0.739 -0.758 -0.851 -1.000 — 0.002 -1.000 -0.999 -1.000 -1.000
( — ) ( 0.024 ) ( 0.034 ) ( 0.036 ) ( 0.040 ) ( 0.144 ) ( — ) ( 0.001 ) ( 0.047 ) ( 0.050 ) ( 0.000 ) ( 0.004 )

κP κP 0.745 0.258 0.522 0.502 0.544 0.586 1.276 0.800 2.062 2.092 1.158 3.296
( 0.396 ) ( 0.114 ) ( 0.289 ) ( 0.288 ) ( 0.251 ) ( 0.261 ) ( 0.345 ) ( 0.236 ) ( 0.213 ) ( 0.213 ) ( 0.006 ) ( 0.223 )

σr σr 1.045 1.002 0.704 0.703 0.703 0.700 0.198 0.184 0.148 0.148 0.148 0.148
( 0.003 ) ( 0.003 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

— α — — — — — 1.602 — — — — — 1.180
— — — — — ( 0.126 ) — — — — — ( 0.155 )

rmse 1.014 0.984 0.822 0.822 0.822 0.820 0.445 0.424 0.376 0.376 0.376 0.378
L ,×103 -9.430 -9.021 -6.416 -6.402 -6.384 -6.336 4.356 4.960 6.5016.502 6.497 6.521
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Table V
In-Sample Likelihood Ratio Tests of Model Performance Differences

Entries report the pairwise likelihood ratio test statisticsM constructed by Vuong (1989) on non-nested
models. The statistic has an asymptotic standard normal distribution. We reportthe pairwise statistics
in a (6×6) matrix, with the(i, j)th element denoting the statistic on modeli versus modelj such that
a strongly positive estimate for this element indicates that modeli significantly outperforms modelj.
The tests are in sample, based on the model estimations using the full sample of eight years of data for
each currency.

M HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

JPYUSD
HSTSV 0.00 -2.55 -4.92 -4.88 -4.75 -4.67
MJDSV 2.55 0.00 -5.39 -5.33 -5.22 -5.07
KJSSM 4.92 5.39 0.00 -1.11 -0.86 -1.20
VGSSM 4.88 5.33 1.11 0.00 -0.72 -1.21
CJSSM 4.75 5.22 0.86 0.72 0.00 -1.59
CGSSM 4.67 5.07 1.20 1.21 1.59 0.00

GBPUSD
HSTSV 0.00 -2.64 -4.70 -4.68 -4.63 -4.71
MJDSV 2.64 0.00 -3.85 -3.86 -3.89 -4.19
KJSSM 4.70 3.85 0.00 -0.04 0.34 -0.37
VGSSM 4.68 3.86 0.04 0.00 0.56 -0.39
CJSSM 4.63 3.89 -0.34 -0.56 0.00 -0.51
CGSSM 4.71 4.19 0.37 0.39 0.51 0.00
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Table VI
Subsample Likelihood Estimates of Model Parameters

Entries report the quasi-maximum likelihood estimates of the model parameters and their standard errors (in parentheses). For each currency
pair, we estimate six models: the Heston (1993) model (HSTSV), the Bates (1996b) model (MJDSV), and our stochastic skew models (SSM)
with four different jump specifications: KJ, VG, CJ, and CG. The estimation uses the first six years of weekly option data from January 24,
1996 to December 26, 2001 (310 weekly observations for each series). The column under “ΘB” denotes the parameter names for the Heston
model and the Bates model. The column under “ΘS” denotes the parameter names for our SSM models.

Currency JPYUSD GBPUSD

ΘB ΘS HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

σ2 σ2 0.022 0.011 0.006 0.006 0.005 0.002 0.010 0.009 0.003 0.003 0.002 0.003
( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.002 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 ) ( 0.000 )

λ λ — 0.016 0.074 2.486 0.053 0.004 — 2.027 0.087 7.829 0.091 1210
( — ) ( 0.001 ) ( 0.004 ) ( 0.234 ) ( 0.004 ) ( 0.002 ) ( — ) ( 0.153 ) ( 0.006 ) ( 0.922 ) ( 0.007 ) ( 9439 )

v j v j — 0.491 0.027 0.041 0.087 0.273 — 0.001 0.012 0.017 0.030 0.011
( — ) ( 0.018 ) ( 0.001 ) ( 0.001 ) ( 0.004 ) ( 0.089 ) ( — ) ( 0.000 ) ( 0.000 ) ( 0.001 ) ( 0.001 ) ( 0.006 )

κ κ 0.810 0.846 0.660 0.665 0.686 0.739 1.449 1.015 1.177 1.178 1.183 1.173
( 0.006 ) ( 0.013 ) ( 0.006 ) ( 0.007 ) ( 0.008 ) ( 0.012 ) ( 0.008 ) ( 0.008 ) ( 0.007 ) ( 0.008 ) ( 0.008 ) ( 0.012 )

σv σv 1.943 1.171 1.945 1.922 1.881 1.777 2.091 2.041 1.428 1.452 1.523 1.518
( 0.025 ) ( 0.024 ) ( 0.031 ) ( 0.031 ) ( 0.032 ) ( 0.037 ) ( 0.030 ) ( 0.028 ) ( 0.047 ) ( 0.048 ) ( 0.023 ) ( 0.053 )

ρ ρR 0.050 0.062 0.270 0.267 0.252 0.299 -0.056 -0.065 0.796 0.794 0.789 0.720
( 0.005 ) ( 0.078 ) ( 0.015 ) ( 0.016 ) ( 0.018 ) ( 0.092 ) ( 0.005 ) ( 0.013 ) ( 0.047 ) ( 0.050 ) ( 0.022 ) ( 0.053 )

µj ρL — -0.212 -0.629 -0.642 -0.672 -1.000 — -0.001 -1.000 -0.999 -1.000 -0.905
( — ) ( 0.033 ) ( 0.035 ) ( 0.037 ) ( 0.041 ) ( 0.396 ) ( — ) ( 0.000 ) ( 0.059 ) ( 0.062 ) ( 0.000 ) ( 0.069 )

κP κP 1.090 0.636 0.924 0.879 0.822 0.813 1.308 2.529 2.022 2.060 1.166 2.192
( 0.390 ) ( 0.155 ) ( 0.392 ) ( 0.385 ) ( 0.364 ) ( 0.331 ) ( 0.451 ) ( 0.238 ) ( 0.263 ) ( 0.260 ) ( 0.270 ) ( 0.263 )

σr σr 1.095 1.072 0.746 0.747 0.746 0.744 0.217 0.200 0.175 0.175 0.175 0.174
( 0.003 ) ( 0.004 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.002 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.001 )

— α — — — — — 1.691 — — — — — -1.162
— — — — — ( 0.175 ) — — — — — ( 15.37 )
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Table VII
In-Sample and Out-of-Sample Model Performance Comparison

Entries report the root mean squared pricing error (rmse), mean daily loglikelihood value (L /N), and
the pairwise likelihood ratio test statisticsM constructed by Vuong (1989) on non-nested models. The
models are estimated using data from January 24, 1996 to December 26, 2001 (310 weekly observations
for each series). The in-sample statistics are from the same period. The out-of-sample statistics are
computed from the remaining two years of data from January 2, 2002 to January 28, 2004 (109 weekly
observations for each series) based on model parameter estimates from the first subsample.

HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSM CJSSM CGSSM

JPYUSD GBPUSD

In-Sample Performance

rmse 1.04 1.02 0.85 0.85 0.85 0.85 0.47 0.44 0.41 0.41 0.41 0.41
L /N -23.69 -23.03 -16.61 -16.60 -16.57 -16.47 8.36 10.06 12.27 12.27 12.26 12.28
M
HSTSV 0.00 -2.14 -4.44 -4.41 -4.33 -4.17 0.00 -3.34 -4.42 -4.39 -4.24 -4.33
MJDSV 2.14 0.00 -4.74 -4.70 -4.61 -4.42 3.34 0.00 -3.40 -3.39-3.33 -3.33
KJSSM 4.44 4.74 0.00 -0.49 -0.51 -0.84 4.42 3.40 0.00 0.08 0.36 -0.42
VGSSM 4.41 4.70 0.49 0.00 -0.51 -0.89 4.39 3.39 -0.08 0.00 0.51 -0.42
CJSSM 4.33 4.61 0.51 0.51 0.00 -1.14 4.24 3.33 -0.36 -0.51 0.00 -0.55
CGSSM 4.17 4.42 0.84 0.89 1.14 0.00 4.33 3.33 0.42 0.42 0.55 0.00

Out-of-Sample Performance

rmse 1.06 1.00 0.90 0.90 0.89 0.89 0.39 0.37 0.27 0.27 0.27 0.27
L /N -24.01 -21.75 -18.47 -18.35 -18.23 -18.11 14.36 15.85 23.3023.29 23.26 23.25
M
HSTSV 0.00 -6.01 -5.90 -6.01 -6.08 -6.12 0.00 -4.88 -7.06 -7.06 -7.05 -7.05
MJDSV 6.01 0.00 -3.11 -3.23 -3.32 -3.48 4.88 0.00 -5.98 -5.99-5.99 -5.97
KJSSM 5.90 3.11 0.00 -7.76 -6.81 -5.27 7.06 5.98 0.00 0.64 1.47 4.51
VGSSM 6.01 3.23 7.76 0.00 -4.39 -3.67 7.06 5.99 -0.64 0.00 1.63 4.19
CJSSM 6.08 3.32 6.81 4.39 0.00 -3.11 7.05 5.99 -1.47 -1.63 0.00 0.23
CGSSM 6.12 3.48 5.27 3.67 3.11 0.00 7.05 5.97 -4.51 -4.19 -0.23 0.00
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