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Stochastic Skew in Currency Options

ABSTRACT

We document the behavior of over-the-counter currencyaggrices across moneyness, maturity,
and calendar time on two of the most actively traded currgraiss over the past eight years. We
find that the risk-neutral distribution of currency returaselatively symmetric on average. How-
ever, on any given date, the conditional currency returtriigion can show strong asymmetry.
This asymmetry varies greatly over time and often switcleations. We design and estimate a
class of models that capture these unique features of thermmyroptions prices and perform much

better than traditional jump-diffusion stochastic vdigtimodels.



Stochastic Skew in Currency Options

Options markets have enjoyed tremendous growth during the past delcadenjunction with this
growth, researchers have developed numerous new option pricingsmodeccount for the various
pricing biases in the classic Black and Scholes (1973) model. Most recarggries of papers syn-
thesize and test the performance of a number of different models fangrémuity index options,
e.g., Bakshi, Cao, and Chen (1997, 2000a,b), Bates (2000), Aamjé3enzoni, and Lund (2002), Pan
(2002), Eraker (2003), and Huang and Wu (2004). Howeverjesuzh currency option pricing have

been relatively sparse.

At first glance, this relative paucity of study is surprising since forexghange is the largest of
the global financial markets. Currently, daily trading volume in the currenagkets stands at over
1.5 trillion U.S. dollars. It is widely appreciated that the dynamic behavior &im exchange rates
has important economic repercussions. It is also widely appreciatedutinahcy option prices reveal
important information about the conditional risk-neutral distribution of thaemlying currency returns

over different horizons.

The most likely reason for the relative scarcity of research on cwreptions is the absence of
a publicly available database for currency option prices. Currencyrgptiade on the Philadelphia
Options Exchange (PHLX), but volume in this market has thinned duringabefpe years as trading
activity has shifted to the over-the-counter (OTC) market. The OTC wayreptions market is very
liquid and deep. The bid-ask spreads for major currency options arewe than those on equity
index options, and trading volume is measured in trillions of U.S. dollars per Meace, the over-the-

counter currency options market constitutes an economically important iarleeademic research.

We obtain a data set of OTC option quotes on two of the most actively tradeshcy pairs during
the past eight-year span from January 1996 to January 2004. Tloaitvemcy pairs are the U.S. dollar
price of Japanese yen (JPYUSD) and the U.S. dollar price of the BritishdoGBPUSD). For each
option at each date, we have a cross-section of 40 option quotes froinia ofidfive strikes and eight

maturities.



Using this data set, we analyze the behavior of option implied volatility along the dioren
of moneyness, maturity, and calendar time. As an industry standard, #igrfaxchange market
measures the moneyness of an option in terms of the option’s delta accordimg Béack-Scholes
formula. Moving across moneyness at a fixed maturity, we find that the tiness®rerage of the
implied volatility is fairly symmetric about at the money, with the average out-ofatbeey implied
volatility higher than the average at-the-money implied volatility. This well-known spaiteern for the
implied volatility across moneyness suggests that the risk-neutral conditmalbution of currency
returns is fat-tailed, but on average symmetric. For each currencytipaiaverage implied volatility
smile persists as the option maturity increases from one week to one and dalf e persistence
of the smile over long maturities indicates that the average conditional cyrretan distribution

remains highly fat-tailed even at long conditioning horizons.

When we investigate the dynamic behavior of the implied volatility surface ovendar time, we
find that the relative curvature of the implied volatility smile is stable over both daletime and the
two currency pairs. In contrast, ttsbopeof the implied volatility in moneyness varies greatly over
calendar time and across the two currency pairs. Although implied volatility srmdesyanmetric on
average, they can be highly asymmetric on any given date. As a resulskheeutral skewness of the

return distribution can be quite large in absolute terms on any given date.

Existing currency option pricing models, such as the jump-diffusion sttichadatility model of
Bates (1996b), readily accommodate the average shape of the implied volatifédges In the Bates
model, the Merton (1976) jump component captures the short-term curwattime implied volatility
smile, whereas the Heston (1993) stochastic volatility component generates at longer maturities.
It is a tribute to the ingenuity of the option pricing modelers that they can cafitaraverage shape of

the implied volatility surface while operating under the constraints of no arleitrag

Although these models do represent an impressive application of optidngotézhnology, they
cannot generate the strong time-variation in the risk-neutral skewnelss otirrency return distribu-
tion. The purpose of this paper is to design and test a new class of modeatarhzapture this unique

feature of the OTC currency options market.



If we start from the jump-diffusion stochastic volatility model of Bates (199&hbvould be tempt-
ing to attempt to capture stochastic skewness by randomizing the mean jumprainetes and/or the
correlation parameter between the currency return and the stochastiitygleocess. In the Bates
model, these two parameters govern the risk-neutral skewness aastitong maturities, respectively.
However, randomizing either parameter is not amenable to analytic solutionigaek that greatly aid
econometric estimation. In this paper, we attack the problem from a diffpegapective. We apply
the very general framework of time-changegeMy processes developed in Carr and Wu (2004). How-
ever, the subclass of models that we extract from this framework to prrcency options are far from

standard in the option pricing literature.

In our models, innovations in currency returns are driven by t@eylprocesses. The two inde-
pendent levy processes generate positive and negative jumps, respectivelarther apply separate
random time changes to these twéMy components. As a result, the total volatility and the relative
contributions from positive and negative jumps can both vary stochastioadly time. These ran-
dom variations are controlled by two activity rate processes, which afigal in terms of traditional
stochastic volatility processes. The variation in the relative proportion sifip® and negative jumps
generates variation in the risk-neutral skewness of the currencymisiribution. Within this class of

models, we propose various jump specifications that exhibit finite and infictitétis, respectively.

To econometrically estimate the models using our OTC currency options dategsw¢he esti-
mation problem into a state-space form. We define the state propagation agusged on the two
activity rate processes that control the positive and negative juewy components. We build the
measurement equations based on the option prices at different levelsieynass and maturity. We
first extract the unobservable activity rate state variables using a ejatigw filtering technique, the
unscented Kalman Filter. We then estimate the model parameters using the gciasimdikelihood
method. The methodology estimates the activity rate dynamics under both tmeuskl measure and

the objective measure.

Our new models have about the same number of free parameters as theffusiprdstochastic

volatility model pioneered by Bates (1996b). However, our models gensrach better performance



in terms of both root mean squared pricing errors and log likelihood vahath,in sample and out
of sample. The stochastic volatility component in the Bates model can captutienthgariation in
overall volatility, but it cannot capture the variation in the relative propargbpositive and negative
jumps. As a result, the Bates model, or any other existing one-factor stimchalatility model, fails
to capture a large proportion of the variation in the currency options daontrast, the two activity
rates in our new models generate not only stochastic volatility, but also tHeastarskew that we have

observed in the currency options.

In other related works, Bates (1996a) investigates the distributionaépiep of the currency re-
turns implied from currency futures options. Campa and Chang (1998) Bhd Campa, Chang, and
Reider (1998) study the empirical properties of the OTC currency optidolien (1998) and Bollen,
Gray, and Whaley (2000) propose regime-switching models for cuyrreption pricing. Neverthe-
less, Bollen and Raisel (2003) find that the jump-diffusion stochastic volatilitse| of Bates (1996b)
outperforms regime-switching and GARCH-type models in matching the olzsbaleaviors of OTC
currency options. Therefore, we regard the Bates model as the stdie aft for currency option

pricing and as our benchmark for model comparison.

The paper is organized as follows. Section | systematically documents thdahpioperties of
OTC currency options. Section Il designs a class of models that captureittue properties of the
currency options. Section Ill proposes an estimation strategy that estibwtethe risk-neutral and
time-series dynamics of the activity rates simultaneously. Section IV reporestimeation results of

the new models and compares their performance to the Bates (1996b) mect@nS/ concludes.

I. The Over-the-Counter Currency Options Data

Trades and quotes in OTC currency options differ from those on egghlisted options in several
important aspects. First, the OTC quotes are not directly on option prigesather on the Black-
Scholes implied volatility. Given the quote on the implied volatility, the invoice price mpmded
based on the Black-Scholes model, with mutually agreed-upon inputs ondkeying spot currency

price and interest rates. Second, when a transaction takes placelviéswot only the exchange of the
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option position, but also the corresponding delta hedge in the underlyingney. Third, the implied
volatilities are not quoted on a fixed strike price, but rather on a fixed Beatioles delta. This delta
quote directly determines the amount of the underlying currency that elaangls in the transaction.
Given the delta, the strike price of the option is computed using the Blackecfmmula and the

implied volatility quote.

This unique market design greatly facilitates the liquidity and depth of the OTi€rzy options
market. In an exchange-listed options market, only options are involveccnteensaction and the
market makers provide direct quotes on the option prices. This practoesgavere burdens on market
makers due to the derivative nature of the options market. Whenever deelying currency moves,
the options market maker needs to adjust the quotes on hundreds of aptities on this currency.
If the market-making technology does not allow the option quotes to be upitatetimely fashion,
the market maker will have to protect him- or herself by posting wider bidsasads. Furthermore,
when a customer acts on private information regarding the directional nfitive onderlying currency,
the correlated nature of all of the options on the same currency cantfererarket maker into large
exposures. For example, if a customer believes that the British pound eilbgtren against the dollar,
the customer can in principle buy all the calls and sell all the puts on the paaidsathe dollar.
Therefore, the market maker’s risk exposure is greatly aggravatetbdie highly correlated nature
of all the options on the same asset. To protect him- or herself, the market trekto further reduce

guote sizes. These concerns have dried up liquidity in the exchangatttadency options market.

The unigue design of the OTC currency option market addresses thaserns and improves
the liquidity and depth of the market. The exchange of the covered posittimerrthan a naked
option position, significantly reduces the broker dealer’s exposuredotitinal bets on the underlying
currency. The quotation on the implied volatility rather than the option price iteelfiér reduces
the broker dealer’'s burden in constantly updating the option prices ag swave in the underlying
currency price. Although the covered position can still have a small digmee on the exchange
rate, updates of the implied volatility are only necessary in practice when tkerbdealer thinks

that the second and higher central moments of the return distribution hamgexh The quotation on



delta instead of on fixed strike prices further simplifies the transaction bectha fixed delta directly
determines the amount of the underlying currency that is involved in the dpéinsaction. Finally, for
large transactions, the over-the-counter market also has a mechanigmdimailar to the “upstairs”
market, where the broker dealer directly searches and matches buageselers and hence secludes
him- or herself from exposure to large inventory positions. As a resulbwbethe-counter market can
handle very large trades with small bid-ask spreads and little market impadhgrie&n ideal venue

for institutional players to engage in large volumes of option trading.

A. The Black-Scholes Model and Notation

Since the market quotes for option value and moneyness are both defitmthgof the Black-

Scholes formula, we first review the Black-Scholes model and fix the notatio

We useS§ to denote the timeé-price of a foreign currency. A consequence of the Black-Scholes
model is that under the risk-neutral meas@ethe dynamics of§ are governed by the following

stochastic differential equation:

dS/S = (rq —r¢)dt+odW, (1)

whererg andr¢ denote the assumed constant instantaneous riskfree rate in the domedtceagmd
currency, respectively. The terfif is a standard Brownian motion, aadis a constant denoting the
instantaneous volatility of the currency return. Under this model, the rigkraledistribution of the
currency return I(S/Sy) is normally distributed. Originally, Black and Scholes proposed this model
for pricing stock options and corporate liabilities. Garman and Kohlhage@3{1first applied this

model to currency option pricing.

We usec; (K, 1) andp; (K, 1) to denote the timé-value of a European call option and a European

put option, respectively. The arguments of the functions indicate thatithency options have a strike



price K and time to maturityt = T —t. We useR = Sele")T to denote the forward price of the

currency at the corresponding maturity. The Black-Scholes formutdkdaption values are

a(K,1) = e "'SN(d;)—e "'KN(d.), 2)
p(K, 1) = —e"SN(—d,)+e "KN(—d_), (3)
with
In(R/K)
de = =5 iz oVT. (4)

Delta is defined as the partial derivative of the option value with respecetariierlying spot price.

Under the Black-Scholes model, the delta of the call and put options ae b

5(c) = e "™N(d,), 3(p) = e ™N(~d.). (5)

The delta for a put option is negative, but the convention is to quote théudédstagnitude and indicate
that it is on a put or a call option. In the OTC currency options market, massyis conventionally
qguoted in terms of this Black-Scholes delta rather than the strike price. Tlok-Blzholes implied
volatility refers to the parameter that a broker dealer must input into the Black-Scholes formulae in

equations (2) and (3) so that option values match the market prices.

If the central conclusion of the Black-Scholes model in equation (1) wenect, we would only
need oney input for all the options on each currency. In practice, however, th&ehes well aware of
the deficiencies of the Black-Scholes model. To compensate for thesedefs, the market uses a
different volatility input at each moneyness, maturity, and calendar time.anetd the Black-Scholes
implied volatility at a certain deltadj, time-to-maturity t), and calendar timet) asIV;(d,1). We
uselV instead of the parameterto notationally distinguish between the market quote and the model
assumption. The fact that the market uses the Black-Scholes model émpoggion quotations does
not mean that the market agrees with the assumptions or conclusions of tte3laoles model.

Instead, the market is merely using the model as a monotonically linear tnaradfon tool to convert



option prices into a more stable measure. Furthermore, the market also ei&tadk-Scholes model

to achieve approximately delta-neutral transactions.

Given the implied volatility quotéV;(,T) at a certain delta and maturity, we can infer the strike

price of the option contract,

K = Rexp|TIV{(3,T)vIN 1 (+€175) + %Ivt(é,r)zr (6)

Each delta corresponds to two strike prices, one for the call option cortna the other for the put

option contract.

B. Data Description

We have obtained OTC currency options quotes from several braaerd and data vendors.
These data sets cover different sample periods, sampling frequertguarency pairs. We use the
common samples of these different data sets to cross-validate the qualitydaftéhdn this paper, we
present the stylized evidence and estimate our models using two currérgjrgian one data source
because the samples on these two currency pairs span the longest tindefpanidanuary 24, 1996
to January 28, 2004. The data are available in daily frequency, bubtd exeekday effects in model
estimation, we sample the data weekly, on every Wednesday of each wdekn Market closes on
a Wednesday, we use the quotes from the previous market open dateadfoseries, we have 419

weekly observations.

The two currency pairs are the U.S. dollar of Japanese yen (JPYUsDha U.S. dollar of British
pound (GBPUSD). Options on each pair have eight maturities: one weekmonth, two months,
three months, six months, nine months, 12 months, and 18 months. Quotes enrtatgrities from
two to five years are also available, but careful inspection shows theg thag-maturity quotes are

merely extrapolations of the shorter-maturity quotes and do not contain mtrahirdormation.



At each maturity, the quotes are available at five strikes in the form of (i3-deutral straddle
implied volatility (ATMV), (2) ten-delta risk reversal (RR10), (3) ten-delteasgle margin (SM10),
(4) 25-delta risk reversal (RR25), and (5) 25-delta strangle mardit2&3.

A straddle combines a call option with a put option at the same strike. For thidlstrio be
delta-neutral, we need

d(c)+6(p) =0. (7)

From the definitions of deltas in equation (5), we have

N(d;)—N(—d;) =0, 8

or N(d;) = 0.5 and hencal,. = 0. The strike price is very close to the spot or forward price of the
currency for the delta-neutral straddle. Hence, we refer to this quotbeaat-the-money implied

volatility (ATMV) quote.
The ten-delta risk reversal (RR10) quote measures the difference in involigtlity between a
ten-delta call option and a ten-delta put option,

RRLO= 1V (10c) — IV (10p), 9
where we use 1and 1@ to denote a ten-delta put and call, respectively. Hence, the risk réiseesa
measure of asymmetry, or slope, of the implied volatility smile across moneyness.

The ten-delta strangle margin (SM10) measures the difference betwesretiage implied volatil-
ity of the two ten-delta options and the delta-neutral straddle implied volatility,

SM10= (IV (10c) + IV (10p)) /2 — AT MV. (10)

Hence, a strangle margin measures the average curvature of the impliglitwslaile. The market
also refers to a strangle margin as a butterfly spread. The 25-deltavisisal and strangle margins

are analogously defined.



From the five quotes, we obtain the implied volatilities at the five deltas as

IV(0s) = ATMV;

IV(25c) = SM25+ATMV+RR25/2;

IV(25p) = SM25+ATMV—RR25/2; (11)
IV(10c) = SMIL0+ATMV+RRLO/2;

IV(10p) = SMIL0+ATMV —RRIL0/2,

where we us€0s) to denote the delta of the straddledat= 0.

Altogether, we have 16,760 implied volatility quotes for each of the two cuyrpags, spanning
419 weeks with a cross-section of 40 option quotes per date (five striképliad by eight maturities).
Figure 1 plots the time series of the 40 implied volatility series for each curreaicy idistorically,
implied volatilities on JPYUSD have varied in a wide range from 5.89 percerb.®44percent. The
large spike in late 1998 corresponds to the hedge fund crisis, when exge flunds had gone short
on Yen before the crisis and were then forced to use options to coveptsiions during the crisis.

Implied volatilities on GBPUSD vary in a much narrower range between 3.2peand 15.95 percent.

The data set also contains the underlying spot currency price. Taextdhe implied volatility
guotes into option prices, we also need information on domestic and foreigesttates. We construct
our interest rate series using LIBOR and swap rates from the thre¢riesuWe download the LIBOR
an swap rates data from Bloomberg. The LIBOR rates are simply compouwith maturities from
one week to 12 months. We directly convert them into continuously compoluntirdst rates. For

the interest rates at 18 months, we bootstrap them from the LIBOR andrateap

C. Stylized Features of Currency Option Implied Volatilities

Using the currency option implied volatility quotes, we document a series of tamtdeatures of

the data that a reasonable currency option pricing model should accortenoda
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C.1. Relatively Symmetric Mean Implied Volatility Smile

When we plot the time series average of the implied volatility against the deltalaheatarity,
we observe a relatively symmetric average implied volatility smile across all matuaiigshe two
currency pairs. Figure 2 plots the average implied volatility smile across mosewatieelected ma-
turities for the two currency pairs: one month (solid lines), three month$i¢didines) and one year
(dash-dotted lines). In the graphs, we denotextagis in terms of approximate put option delta. In
particular, we approximately denote the ten-delta call as a 90-delta put indpbh,gand denote the

delta-neutral straddle at 50 delta.

The constant return volatility assumption of the Black-Scholes model implieswaahask-neutral
distribution for currency returns. The smile shape of the implied volatility acnogneyness has long
been regarded as evidence for return non-normality under the rigkaheneasure. The curvature of
the smile reflects fat-tails or positive excess kurtosis in the risk-neutrahrdistribution. The asym-
metry of the smile reflects asymmetry or skewness in the currency return ulistnib The relatively
symmetric mean implied volatility smiles show that on average, the risk-neutral diginbof the

currency return is fat-tailed, but not highly asymmetric.

C.2. The Mean Implied Volatility Smile Persists with Increasing Maturity

Suppose that we model currency returns as being generated by et@ligcre process with inde-
pendent and identically distributed (iid) non-gaussian increments with fititenreariance. By design,
the short-term return distribution is non-normal and could potentially beistens with the short-term
implied volatility smiles. However, this non-normality disappears rapidly as weidena longer time
horizon for the return. By virtue of the classic central limit theorem, the meslkewness declines
like the reciprocal of the square root of the time horizon, and the kurtesitneés like the reciprocal
of the time horizon. Mapping this declining non-normality to the implied volatility smile dedint

maturities, we would expect the smile to flatten out rapidly at longer option maturities

11



The maturity pattern of the mean implied volatility smiles in Figure 2 indicates otherwiseifo
rency options. The smiles remain highly curved as the option maturity incrsasesne week to one
year. This maturity pattern indicates that the conditional risk-neutral disisibéor the currency re-
turn remains highly non-normal as the conditioning horizon increasess, Blnuid return distribution
with finite return variance cannot generate this maturity pattern of the impliedlitglamile. The
continuous-time equivalent of the iid return distribution is to model the cuyregtarn as following a
Lévy process. To slow down the convergence of return distribution tmaldy with increasing ma-
turity, researchers, e.g., Bates (1996b), have proposed inctimgpeapersistent stochastic volatility

process.

C.3. Strangle Margin is Stable, But Risk Reversal Varies Greatly Over Time

The market quotes on risk reversals and strangle margins provide airédntuitive measures of
the asymmetry and curvature of the implied volatility smile, respectively. In Figunee plot the time
series of the ten-delta risk reversal (solid lines) and strangle margingddmes), both normalized
as percentages of the corresponding at-the-money implied volatility levelmutile lines for both
the risk reversals and the strangle margins represent the different opéiturities, which we do not

distinguish in the plot. To reduce clustering, we only plot three maturities {brex, and 12 months).

We observe that the ten-delta strangle margins (dashed lines) are auths&t@bout ten percent
of the at-the-money implied volatility level during the eight-year span at all thptien maturities and
for both currency pairs. Therefore, the curvature of the smile is relgtstable over option maturity,
calendar time, and for different currency pairs. This feature of the slaows that excess kurtosis in

the currency return distribution is a robust and persistent feature @Tiecurrency options market.

In stark contrast to the stability of the strangle margins, the risk reversdig liges) vary greatly
over calendar time. The dispersion of the risk reversals across diff@ption maturities is also larger.
For JYPUSD, the ten-delta risk reversals have moved freB0 percent to 60 percent of the at-the-
money implied volatility level. In contrast, the ten-delta strangle margins have onhganeithin a

20 percentage range. For GBPUSD, the swing of the ten-delta risksedvsrsmaller from between

12



—20 percent to 20 percent, but the movement of the ten-delta strangle maegemismaller within a

narrow band of 10 percent, except at the very early years.

Table | reports the mean, standard deviation, and the weekly autocomedatiek reversals, stran-
gle margins, and at-the-money straddle implied volatilities. We again normalize khevirsals and

strangle margins as percentages of the at-the-money implied volatility.

For JPYUSD, the sample averages of the risk-reversals are positivginmthat the out-of-money
call options are more expensive than the corresponding out-of-matepfions during the sample pe-
riod. The average strangle margins are around 12 percent at ten wiglthrae to four percent at 25
delta. For GBPUSD, the average implied volatility smile is much more symmetric as thegave
risk-reversals are close to zero. The average strangle marginshargightly smaller than the corre-
sponding averages for JPYUSD. The average strangle margins UGB are around nine percent at

ten delta and less than three percent at 25 delta.

For both currencies, the standard deviations of the risk reversals a@telarger than the standard
deviations of the same-delta strangle margins. For JPYUSD, the standéatiades are around 15
percent for ten-delta risk reversals and are just about three todocemt for ten-delta strangle margins.
The standard deviations of 25-delta risk reversals are about eigténiebut that for the 25-delta
strangle margins are about one percent or less. The same patterndro@BRUSD. The standard
deviations for the risk reversals are about three times larger than thétef@orresponding strangle
margins. The at-the-money implied volatilities have standard deviations arowedfthh JPYUSD and

less than two for GBPUSD.

These numbers are consistent with our observations from Figure 3.majw variation in the
currency option implied volatilities comes from the risk reversal, that is, therdifice in volatility
between calls and puts of the same delta. The variations in the curvature \afl&tiéity smile are

much smaller.
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Mapping the implied volatility pattern to the risk-neutral distribution of the curyemturn, we
conclude that the skewness of the risk-neutral currency return distribvaries greatly over time. The

kurtosis of the return distribution varies much less.

All implied volatility series exhibit strong serial correlation. The weekly autoglation ranges
from 0.69 to 0.98. Furthermore, we do not observe a significant diféerén autocorrelation between
the volatility portfolios (risk reversals and strangles) and the single volatilitgséATMV), especially

at long maturities. These serial dependence reflects the time-series dywéihie return volatility.

C.4. Changes in Risk Reversals are Positively Correlated with Currentcyrize

Table Il reports the cross-correlation between currency returnshenageekly changes in risk re-
versals, strangle margins, and at-the-money implied volatilities. Again, rigkgal and strangles are
measured in percentages of the at-the-money implied volatility. We find thaesisksials exhibit very
strong positive correlations with currency returns. This strong cdiveldés present at all maturities
and for both currency pairs, at both ten and 25 deltas. This positivelaton implies that whenever a
foreign currency appreciates and hence generates a positive, téeirisk reversal also increases and

hence the risk-neutral return distribution is more likely to be positively slewe

We also measure the cross-correlations at different leads and lagse Biglots the sample es-
timates of the cross-correlations between the currency return andeshamthe one-month ten-delta
risk reversals at different leads and lags. For both currenciesrals-correlation between return and
the risk reversal is mainly contemporaneous. We do not identify any signifacoss-correlations with

leads and lags. This pattern also holds for other maturities.

In contrast to the strong and positive correlation with the risk reversadsgutrency return has
very little correlation with the changes in strangle margins. Furthermore, taggiositive correlation
estimates between the currency return and changes in the at-the-money wofaiddy for JPYUSD,
but the estimates for GBPUSD are essentially zero. Hence, the only petraisteuniversal correlation

pattern is between the currency returns and the risk reversals.
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Using different currency pairs, sample periods, and different dateces, we have cross-validated
the above-documented evidence on currency options. The abovegBndia all robust to sample
variations and data sources. The most striking, and the most talked-{aladute among currency
options traders, is the strong time variation of the risk reversals, and theflawbdels that can capture

this feature.

II. Modeling Currency Returns For Option Pricing

In this section, we propose a class of models that can capture not onlydtega behavior of
currency option implied volatilities across moneyness and maturity, but alsytiaenc properties of

at-the-money implied volatilities and risk reversals.

We useg(Q, 7 , (#t)i>0, Q) to denote a complete stochastic basis defined on a risk-neutral probability
measurd). We assume constant interest rates mainly for notational clarity. W éetdr 1 denote the

continuously-compounded domestic and foreign riskfree rates, rtisgdgc

For option pricing, we first specify the currency return processin(S /S) under the risk-neutral
measureQ. The historical or traditional approach to option pricing has been to elemique risk-
neutral dynamics as a consequence of no arbitrage, continuous toggiogunities, and a specification
of the statistical process that leads to market completeness. It is inclgdséngg recognized that
realistic statistical processes and trading opportunities render marketgilete. As a result, there are
multiple risk-neutral processes, consistent with a given realistic statisticeégs for the underlying
asset price and market setting. Since different risk-neutral presésad to different option prices, a
more pragmatic approach for obtaining unique option prices begins bify\spga parametric family
of risk-neutral processes for the underlying currency. Then, thiem pries are used to identify the

parameters and thereby select a unique risk-neutral process.

After specifying the family of risk-neutral processes governing cwyeeturnss = In(S/S), we
derive the generalized Fourier transform of the currency returnusehis transform to price options

based on the fast Fourier inversion method of Carr and Madan (1998gn we perform dynamic
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estimation, we also specify the dynamics under the physical meBswgich we assume is absolutely

continuous with respect tQ.

We derive option pricing models by specifying asset returns as followingctimaaged Evy pro-
cesses. Carr and Wu (2004) show that most stochastic processem usaditional option pricing
models can be cast as special cases of time-changedprocesses. Huang and Wu (2004) apply this

framework successfully to pricing equity index options.

We assume that the log currency return obeys the following time-changeddrocess under the

risk-neutral measur®,
S =INS/S = (ra—rot+ (L& — &%) + (L —&-T), (12)

whereLR andL! denote two [evy processes that exhibit right (positive) and left (negative) skss,
respectively. The term&R and&- denote concavity adjustments of the twéwy processes, needed
so that the exponential of each process is a martingale. E@eh jrocess can have a continuous
martingale component, and both must have a jump component to generateuined sgewness. We
further apply separate stochastic time chanfBsand T, to the two Leévy components so that the

relative proportion of the two components can vary over time.

In principle, the generic specification in equation (12) can capture alblfensfeatures of currency
options. First, by setting the unconditional weights of the tvdy.components equal to each other,
we can obtain a relatively symmetric unconditional distribution with fat tails forctmeency return
under the risk-neutral measure. This unconditional property capttuee®latively symmetric feature

of the sample averages of the implied volatility smile.

Second, by applying separate time changes to the two components, aggetga volatility can

vary over time so that the model can generate stochastic volatility.

Third, the relative weight of the twoévy components can also vary over time due to the separate
time changes. When the weight of the right-skewéay componentR is higher than the weight of

the left-skewed Evy component!, the model generates a right-skewed conditional return distribution
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and hence positive risk reversals. When the opposite is the case, the geodehtes left-skewed
conditional return distributions and negative risk reversals. Thusaneenerate variations and even

sign changes on the risk reversals via the separate time changes.

Finally, the model captures the instantaneous correlation between the aatlithe risk reversal
through the correlations between theMy components and the time change. To stress the ability of
our family of models described by equation (12) in capturing stochasticss&éthe currency return

distribution, we christen this family agochastic skew model$§SSM).

For each model considered in this paper, we first derive its generdarier transform and then
price European options using a fast Fourier transform method. Therajered Fourier transform of

the currency return is defined as
@s(u)=E[€"%], ueoncC, (13)

where D is a subset of the complex domathon which the expectation in equation (13) is finite.
Whenu takes only real valuesps(u) denotes the characteristic function of the currency return. See

Titchmarsh (1986) for details on the extensioruab the complex plane.

In what follows, we propose parsimonious specifications for the t@&eyLcomponents and the

stochastic time change.

A. The levy Components

We consider a one-dimensionag\y process that is adapted tg;. The sample paths of are
right-continuous with left limits, and, — X; is independent of; and distributed aX,, ; for0 <t < u.

By the Levy-Khintchine Theorem, the characteristic functiorKphas the form,

@(u) =E[@X] =™ >0, (14)
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where the characteristic exponat(u),u € R, is given by (Bertoin (1996)),
Wn(U) = —iup+ %uzo2 + / (- & +iuxly 1) v(x)dx (15)
R

The triplet (|, 02,\)) defines the Bvy procesX and is referred to as tHeévy characteristicsThe first
member of the triplety, describes the constant drift of the process. The second merhloiescribes
the constant variance rate of the diffusion component of theylprocess. The third membe(x)
describes the jump structure and determines the arrival rate of jumps of. silee termv(x)dx is
referred to as the &vy measure, witlv(x) being the [eévy density. To value options, we extend the

characteristic function parameteto the complex planay € » C C.

In equation (15), &1 is an indicator function that equals one wheh< 1 and zero otherwise.
This truncation is meant to guarantee that the integral is well defined atbensingular point of
zero (Bertoin (1996)). There are other commonly used truncation furscfar the same purpose. In
principle, we can use any truncation functiohs R — R, which are bounded, with compact support,

and satisfyh(x) = x in a neighborhood of zero (Jacod and Shiryaev (1987)).

For our model design, we make the following generic decompaosition on theéwyptomponents
in equation (12),
L= X+oWs, L =3 +ow,
where (WR, W) denote two independent, standard Brownian motions(dRd)-) denote two pure

jump Lévy components with positive and negative skewness in distribution,atasgig.

To maintain parsimony, we assume relative symmetry for the unconditionah gigiribution. We
set the instantaneous volatilitg) of the two diffusion components to be the same. We also set the two
pure jump Levy componentdR andJ! to be mirror images of each other. From equation (15), we have

the characteristic exponent of the two diffusion components as

V() = (W) = 10 (16)
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The concavity adjustment for the diffusion component is

ER=tb = —y(-i) = :—ZLGZ.

For the pure jump components, we propose a simple yet flexéoly Hensity,

_

R Ae Yilx7%1 x>0, . 0, x>0,

\4 (X) = , V (X) = _Ix (17)
0, x < 0. Ae Vi|x~%l x<o.

so that the right-skewed jump component only allows positive jumps and theklafted jump compo-
nent only allows negative jumps. For both jumps, we use the same paraifdetgjss Rt anda < 2

for parsimony. This specification has its origin in the CGMY model of Carm&e Madan, and Yor
(2002). We label it as CG jump. Theeky density of the CG specification follows an exponentially
dampened power law. Depending on the magnitude of the power coefficigheé sample paths of
jump process can exhibit finite activitg (< 0), infinite activity with finite variation (< o < 1), or
infinite variation (1< a < 2). We needx < 2 to maintain finite quadratic variation. Therefore, this par-
simonious specification can capture a wide range of jump behaviors. Wkuslet the data determine

the exact jump behavior for currency prices.

Given the levy density specifications in equation (17), we can derive the chasiittexponents
for the two jump components by applying the integral in equation (15). Whgr0 anda # 1, we
have (Wu (2004)),

WR(u) = )\F(—q)[<V—1]>d—<v—lj+iu)a]+iuc+, (18)
phu) = )\F(—q)[<v—1]>d—<v—lj+iu)a]+iuc, (19)

whereC, andC_ are immaterial drift terms due to the truncation that will eventually be cancelled ou

with the corresponding terms in the concavity adjustments. The concavitytradpisterms are

o[- e e-onealQ)-(God]e
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Within this general jump specification, we consider three special cases,oe@ representing a

different jump type.

A.1l. KJ: Finite Activity Jumps

For a finite-activity jump process, the number of jumps within any finite time intés\falite. The
CG specification generates finite-activity jumps wioeqt 0. Here, we consider the special example of

o = —1. The Levy density becomes,

_K
0, x>0,

R Ae Vi, x>0,
v (X) = Y (X) = _IX (20)

0, x< 0. Ae Vi, x<O0.

This jump specification exhibits finite activity because the integral of #ing/ldensity is finite,
/ Ae % dx=Av;. 21)
0

The quantity(Av;) is often referred to as the jump intensity or mean arrival rate. Conditionahen

jump occurring, the jump size for each component has a one-sided exjadmigstribution.

The characteristic exponents of the two jump components follow equatiopsabiB(19) with

a = —1. We can also rewrite them as

iuv;

R _ ° _ Aux —5 v

WRu) — )\/0 (1-€é¥)e "dx= NI 22)
0 i X iUV

L _ _ AUXY AV _ . J

W) — )\/_w(l ¢ )eldx_)\vjl+iuvj. 23)

For finite-activity jumps, the integrals are well-behaved around zerocéjeme do not need the trun-

cation term iux1yy 1) in (15).
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Combining the positive and negative jumps, we obtain the characteristic exipoha symmetric
compound Poisson double-exponential model of Kou (2002),

2u2vj2

Vj——s.
"1+ uav?

YR(u) + 't (u) = A

We label this finite-activity jump specification as KJ. The concavity adjustmemstare,

A2 AV2

R_ M L__ MY
e B

In the estimation, we reparameterixe- )\vj2 for numerical stability.

A.2. VG: Infinite Activity with Finite Variation Jumps

An infinite-activity jump process generates an infinite number of jumps withirfiaitg interval.
The CG specification generates infinite activity jumps wbien 0. Here, we consider the special case
of a = 0. The Lévy density becomes,

_
R Ae Vilx|7l, x>0, L 0, x>0,
Vi(x) = , V()= K (24)
0, x < 0. Ae Vix|71, x<o.
By having the power terrfx| 1, the arrival rate of small jumps increases dramatically so thad as
0, the Levy density approaches infinity. Under this specification, the integralelLévy density
in equation (21) is no longer finite. Thus, the sample paths of the procesgsitarfinite activity.

Nevertheless, the following integral remains finite

/ROX]-\X\<1V(dX) < 0o, (25)

Hence, the specification has finite variation.
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With a = 0, the characteristic exponents take different forms from equationsa(iB(19). They
are

WR(U) = AIn(1—iuvj), W-(u) =AIn(1+iuv)). (26)

Combining the two components, we obtain the characteristic exponent of a sgowagiance-

gamma model (Madan, Carr, and Chang (1998) and Madan and Se@@fd)(1
WRU) + Pt (u) =AIn (14 UAv3) .
We label this jump specification as VG. The concavity adjustment terms are
ER= - An(1-vj), & =-AIn(l+v)).

Recently, Madan and Daal (2004) empirically show that the VG model gasfbetter than the Merton
(1976) jump-diffusion model in capturing both the time series dynamics oécayrreturns and the

behavior of currency options.

A.3. CJ: Infinite Variation Jumps

The sample paths of the VG jumps exhibit infinite activity, but nevertheless fiartation. When
a > 1, the integral in equation (25) also becomes infinite and the sample pathguirewill exhibit

infinite variation. We consider the special caseef 1. The Levy densities are,

o

R Ae Vi|x|72, x>0, L 0, x>0,

vi(x) = , V(X = N 27)
0, x < 0. Ae ix|72, x<O.
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The characteristic exponents of this jump specification also take unique. fBanthe right-skewed

jump component, we have

(<] i X
WRu) = )\/0 (1—€™+iuxly.q)e “ |x|~2dx

= —A(1/vj—iu)In(1—iuvj) —iuA (1+£1(B)). (28)

We need to incorporate a truncation termx{,y 1) into the integral to maintain finiteness for the
infinite-variation jump specification. The termy () denotes the standard exponential integral func-

tion,

£1(B) = / e Xx ldx (29)
B
The characteristic exponent of the left-skewed jump component can berbirdigaived as,

0 . _I
Pt(u) = )\/_ (1—€™+iuxly-q)e ¥ |x|~2dx

= —A(1/vj+iu)In(1+iuvj)+iud (1+£1(B)). (30)

Combining the two components, we obtain the characteristic exponent of a $yaiménite-

variation model,
WR(U) + W (u) = —A (1/vj +iu) In(L+iuv)) — A (1/vj —iu)In (1 —iuvj).

If we drop the exponential term in theelzy density, we obtain theévy density for a Cauchy process.

Thus, we label this jump specification as CJ. The concavity adjustment teems ar

ER=AL/vi—DIn(L—v)) +A 2+ Z1(B)), & =A(L/vj+D)In(1+V))—A(1+E1(B)).
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The characteristic exponents for the concavity-adjust&d/lcomponents simplify to,

YRu) = —A(L)vj—iu)In(1—iuvj)+iuA(1/v; —1)In(1-v;), (31)

<
—
—~
[
SN—
I

—A(1/vj+iu)In(1+iuvj) +iuA (1/vj+21)In(1+v;). (32)

Here, we observe that the drift terio\ (14 £1(B)) drop out of the characteristic exponents for the

concavity-adjusted &vy components. Hence, they are immaterial for our estimation.

All together, we consider four jump specifications: CG, KJ, VG, and Gth the last three as
special cases of the encompassing CG specification. By comparing thgiereerformance in pricing

currency options, we can infer the jump behavior of currency prices.

B. Activity Rates

We assume a differentiable and therefore continuous time change and let

tToat T YT ot

denote the instantaneous activity rates of the t@eyL.components. We model the two activity rates as

following the square-root process of Heston (1993),

df = K(1-W)dt+ o WRAZR,

(33)
d = k(1-w)dt+o,/dZ-

For identification reasons, we normalize the long-run mean of both pexés®ne. For parsimony
and symmetry, we set the mean-reversion parankeaed volatility of volatility parameteo, to be the

same for both activity rate processes.
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We allow the two Brownian motion&\R W") in the return process and the two Brownian motions

(ZR,ZF) in the activity rates to be correlated as follows,
pRdt = E9 [dWRdZR], p-dt=E?[dW-dZ].

The four Brownian motions are assumed to be independent otherwise.

The activity rate specification is the same as in Bates (1996b) except tiavedwo activity rates
that govern two Evy components of different skewness whereas Bates uses onastioctariance
rate process to govern the overall volatility level. Eraker, JohannekPatson (2003) propose to
incorporate a jump component in the variance rate dynamics when modeling thediree dynamics
of index returns, but both Eraker (2003) and Broadie, Cherna¥,Jamannes (2004) show that the
option-pricing impacts of jumps in the activity rate processes are minimal, eveeyifafe present in
the time series dyanmics. Hence, we choose the more parsimonious but effeatiye pure-diffusion

specification in (33).

C. The Generalized Fourier Transform of the Currency Return

For time-changed &vy processes, Carr and Wu (2004) show that the problem of dgritie
generalized Fourier transform can be converted into an equivalebtepn of deriving the Laplace

transform of the time change under a new, complex-valued measure:

Qs(u) = gu(ra—rtEQ [eiU<L$tRERT[R>+iu<|_%LELTIL>]

du(ra—rtEM [e’”’TTt} = gt L () (34)

wherep = [YR, gt] " denotes the vector of the characteristic exponents of the concavityetijight-

and left-skewed Evy components, respectively, and' () represents the Laplace transform of the
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stochastic timd; under a new measubd. The measur®/ is absolutely continuous with respect to the

risk-neutral measur® and is defined by a complex-valued exponential martingale,

% =exp [0 (L5~ TF) iu (L —8TY) + ORTR ] (35)

Equation (34) reduces the problem of obtaining a generalized Founesfaran of a time-changed
Lévy process into a simpler problem of deriving the Laplace transformeo$tibchastic clock. The
solution to this Laplace transform depends on the specification of the inst@uis activity rate(t)

and the characteristic exponents.

Since the Laplace transform of the time change in equation (34) is defirskt time complex
measureVl, we need to obtain the activity rate process urider By Girsanov’'s Theorem, under
measuréVl, the diffusion coefficient of/(t) remains the same as, vtj,j = R L. The drift terms
adjust as follows:

drift (V)M =k(1—v)+iuooypivl, j=RL. (36)

The instantaneous drift and variance of the two activity rate proceseesfme under both the
probability measur® and the new complex valued measitffe Under affine activity rates, the Laplace

transform ofT; is exponential-affine in the current level of the activity rafe$, vs|:

LY () = exp(—bR(t)v§ — cR(t) — b (t)vg — c- (1)), (37)
where j
j —nlt
b = —2wem)
20— k) (1-e ") (38)
o) = %[2in(1-15 (1-e 1))+ (i —xi)t],
and
N =/ (ki)>+202pi, «kl =k—iuploo,, j=RL.
The characteristic exponentg!, j = R L, depend on the specification of thé\ty components. We

summarize them in Table III.
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D. Traditional Jump-Diffusion Stochastic Volatility Mdde

The jump-diffusion stochastic volatility model of Bates (1996b) represertstiite of the art in
the currency option pricing literature. This model combines the jump-diffusiecification of Merton
(1976) with the stochastic volatility specification of Heston (1993). We lahelttodel as MJDSYV,
where MJD denotes the Merton jump-diffusion specification and SV deiitstegochastic volatility

feature.

To compare the MIDSV model to our SSM specification, we cast the MIDS\éIrimad the time-
changed Evy process framework and write the log return process under me@sase

&:(rd—rf)t+(J[()\)—Et)+<0W|‘t—%0'2-rt>, (39)

whereJ;(A) denotes a compound Poisson pure jump process with a Poisson ateval @onditional
on one jump occurring, the jump size in log returns is normally distributed with mgand variance
vj. The term\W denotes a standard Brownian motion, dndenotes the stochastic clock with activity

rate given by = 0T; /dt. The activity rate follows a square-root process:
dvt =K (1—w)dt+oy/wdZ,

with pdt = EQ [dWdZ]. Equation (39) makes it obvious that the MJDSV model generates stochastic
volatility purely from the diffusion component while keeping the jump arrigérconstant over time.
Furthermore, if we set = 0 and delete the jump component, the Bates (1996b) model degenerates into
the pure-diffusion stochastic volatility model of Heston (1993). We also ewithés restricted version

and denote it as HSTSV.

Equation (39) also makes it obvious that both HSTSV and MJDSV can gienstochastic volatil-
ity via the stochastic time change of the diffusion component, but neither ceanaje stochastic skew.
Under HSTSV, the average skew is determined by the correlation pargmitetereen the diffusion in

the currency return and the diffusion in the activity rate. With a fixed ¢aticaen parameter, the model
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cannot generate dramatically varying skews. Under MJDSV, the mean jamp; salso helps in gen-
erating an average skew shape. However, since it is also a fixed pgarathe MIJDSV model cannot
generate large variations in the conditional skew, either. Besides, thihéi¢he sample averages of
the implied volatility smiles are relatively symmetric dictates that to capture the avensitgeeshape,

both parameters should be set around zero.

Under the MIDSV model, the generalized Fourier transform of the atynesturn is given by
os(U) = du(ra—rit—ty’=b(t)vo—c(t) (40)
where the characteristic exponent of the concavity-adjusted jump comigene
W = Afiu(enrEl o 1) - (dmmitelq)], (41)

and the coefficientb(t) andc(t) for the diffusion component are the same as in (38) with= QP =
102(iu+u?). Equation (40) also applies to the HSTSV model wjith= 0 as the Heston (1993) model

does not have a jump component.

We estimate the MIJDSV model and its restricted version HSTSV. We comparg#niirmance
with our stochastic skew models. The number of free parameters for th&Wlaibdel is about the

same as the number of free parameters in our SSM specifications with Kand@&J jump structures.

[ll. Quasi-Maximum Likelihood With Unscented Kalman Filter

To estimate the dynamic models to the time series data of implied volatilities, we cast this mode

into a state-space form and estimate the models using the quasi-maximum likelihiwmdl me

To capture the time-series dynamics, we need to specify the currency estdractivity rate dy-
namics under the objective measiieSince the return process under meafihas limited relevance

for option pricing, we focus on the activity rate processes and leave thieetnarice of return risk
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unspecified. We assume that the market price of risk on the activity ratksility) is proportional to

the square root of the activity rates:

yv)=yWv, i=LR (42)

For symmetry, we use the same paramgtfar both activity rates. Then, thB-processes governing

the activity rates become

df = kP87 —VR)dt+ oy VRAZR, (43)
d = kP(6° —\H)dt+ o, NVHdZh,
with
P_ p__ KX
K'=K—0ywy, 6 = K ow (44)

Thus, the activity rates also follow square root processes under jbetiob measur®. We make
analogous assumptions on the volatility risk premium on the Heston (1993) mod&ates (1996hb)

model.

In the state-space form, we regard the two activity rates as the unoblgestates and specify the

state propagation equation using an Euler approximation of equation (43):

Ve = (1— )07+ dvi_1 + 0y/ Ve 1Atey, (45)

whered = exp(—kPAt) denotes the autocorrelation coefficient withbeing the length of the discrete
time interval, an@ denotes iid bivariate standard normal innovation. With weekly sampling érexyy
we setAt = 7/365. The termy = [vfﬂvtL] denotes the bivariate vector of activity rates for our SSM
models and a scalar for the Heston (1993) model and the Bates (1996b). rRodnotational clarity,

we normalize the discrete time interval to one.

Under this specification, the conditional covariance matrix of the state viscaodiagonal matrix

with state-dependent diagonal elements:
Q = diag(ojw14t),
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wherediag(-) denotes a diagonal matrix with the diagonal elements given by the vectors thsid

bracket.

We construct the measurement equations based on the observednoom@f-option prices, as-

suming additive, normally-distributed measurement errors:

Yw=0(w;0)+&, cova)==%k, (46)

wherey; denotes the observed option prices at tira@dO (v; ©) denotes the model-implied value as
a function of the parameter sétand the state vectof. The terme denotes the pricing errors, with
covariance matrixg . We convert the implied volatility quotes into out-of-money option prices and
scale all option prices by their Black-Scholes vega. With this scaling, werasthat the pricing errors
are iid normal with zero mean and variance matwx—= o,l, with o, being a scalar antibeing an
identity matrix of the relevant dimension. The dimension of the measuremertiayisad0, capturing

the 40 options quotes on each date.

How to define the pricing error and how to weigh the pricing error are impboyttrdelicate issues.
Since the risk-neutral distributional properties of the currency retbowsup most vividly on the
implied volatility surface across moneyness and maturity, it would be ideal toedtfe pricing error
as the difference between the Black-Scholes implied volatility quote and its rropkéd fair value.
Nevertheless, our algorithm generates option prices from the returaatbastic function. Converting
the option prices into Black-Scholes implied volatility involves an additional minimizatatine that
can be time-consuming when embedded in the global optimization procedurdiviBing the out-
of-the-money option prices by its vega, we are essentially converting ti@qpice into the implied

volatility space via linear approximation. Under the Black-Scholes model, tyeigsegiven by

a_C _ 5T /
3V =Se""T/IN'(dy). (47)

The scaling of,/T makes the option prices relatively on the same level across maturities. Ting fya

the normal probability density adjusts for the fact that out-of-money optomtess expensive than at-
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the-money options. For the estimation, we first convert the implied volatility quatiesut-of-money
option prices in percentages of the underlying spot. Then, we ignoretdreshrate effect and apply

time-homogeneous weighting on options prices at fixed d&Jtar(d time-to-maturityT),

1
w(0,T) = 100/AN' (N1(3))° (48)

We usev, Py, y;, A to denote the timét — 1) ex ante forecasts of timevalues of the state vector,
the covariance of the state vector, the measurement series, and therovaf the measurement
series, respectively. We useandP to denote the ex post update, or filtering, on the state vector and
its covariance at the timebased on observationg ) at timet. In the case of linear measurement
equations,

i =Hw + &, (49)

the Kalman (1960) filter provides the most efficient updates. The ex amdéctions are,

o= (1-0)6"+0%_g;
Pi = oR.10" +Q 1 (50)
Yo = Hw

Ki = HﬁtH—r + R,
and the ex post filtering updates are,

Virr = Vepr+ K (M1 —Veg)

Ri1 = Pri1—KeaAcaKily, (51)
whereK¢ 1 is the Kalman gain, given by,

_ -1 —
Kis1=S+1(Ag1) ) Sy1=PuaH.
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Thus, we can obtain a time series of the ex ante forecasts and ex posaipdaoth the mean and
covariance of the state vectors and the observed series, via the itpratbezlure defined by (50) and

(51).

In our application, the measurement equation in (46) is nonlinear. Tradlfionanlinearity is
often handled by the Extended Kalman Filter (EKF), which approximates thinear measurement

equation with a linear expansion, evaluated at the predicted states,
i ~H (W 0O)v +ea,

where
. 00 (\_/t; @)

H (%;0) o (52)

Vi =Vt
The prediction and the updates follow equations (50) and (51). Thededdrkalman filter uses only

one point (the conditional mean) from the prior filtering density for theiptoh and filtering updates.

In this paper, we use a relatively new filtering technique called the unstKatenan filter (UKF).
The UKF uses a set of (sigma) points to match not only the mean and vartarncaso the higher
moments of the state distribution. If we letdenote the number of states (one in the Bates/Heston
model and two in our SSM models) and let- 0 denote a control parameter, we generate a set of

2k + 1 sigma vectorg; according to the following equations,

Xt,O = \//\tv

Xi = %kt QBR+Q), =Lk =12

with the corresponding weightg given by,

We can regard these sigma vectors as forming a discrete distributionvitting the corresponding

probabilities. Then, we can verify that the mean, covariance, skeyargg&urtosis of this distribution
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areVi, B+ q, 0, andk+C respectively. Thus, we can use the control paramgteraccommodate

conditional non-normalities in the state propagation equation.

Given the sigma points, the prediction steps are given by:
Xi = (1—0)6°+oxui
2k
Virr = _Z)Wi(Xt,i);
1=l
B 2% .
Pry1 = '%Wi(Xt,i_vt+l)(Xt,i_\_/tJrl) ; (33)
1=
2%
Vi1 = 'Z)Wio(xt,i;e);
1=
2% -
A1 = _Z)Wi [O(Xti:©) = V1] [O(Xii©) = Vewa] +%.,
1=

and the filtering updates are given by

Vi1 = Vo1 + Kt (41— Ver) s

~

Pi1 = P —KeiAgaKla, (54)

with
2k
Kir1=341 (le) _l; S= ‘Z)Wi [Xt,i —\7t+1} [O (Xt,i ; @) — 7t+1] !

We refer to Julier and Uhlmann (1997) for general treatments of the UKF.

To estimate the model parameters, we define the log-likelihood for eachatsgsvation assuming

that the forecasting errors are normally distributed:

li41(@) = —% log "Kt’ - :*2L ((Yt+1 *7t+1)T (Acs1) - (Ver1 *7t+1)> . (55)

33



We choose model parameters to maximize the log likelihood of the data serieh,isshisummation

of the daily log likelihood values,

©=argmax (O, {ythty), Wth (O {yhiy) Zj|t+1 (56)

whereN = 419 denotes the number of weeks in our sample.

For each currency, we estimate six models, which include the Heston (A2#R8) (HSTSV), the
Bates (1996b) model (MJDSV), and four SSM models. The four SSM maaliféer in their respective
jump specifications. We label them as KISSM, VGSSM, CJSSM, and CGB@iVKJ, VG, CJ, and

CG denoting the four different jump structures.

The Bates (1996b) model has nine free parame®grs: [o;, 0%, A, 4, Vj, K, Oy, p,k"]. The Heston
(1993) constitutes a restricted version with= v; = yj = 0. Our SSM models with KJ, VG, or CJ
jumps also have nine paramete®s = [or,0% A, v}, K, 0y, pR, p-,kP]. The SSM model with CG jump
specification (CGSSM) has one extra free paranetiiat controls the type of the jump process. This
extra parametan is fixed at—1, 0, and 1 for KJ, VG, and CJ, respectively. Furthermore, the folt SS
models have two state variableg, vi-) that generate both stochastic volatility and stochastic skew in
the currency return distribution. The Bates model and the Heston modebhnéywone state variabig

that controls the instantaneous variance of the diffusion component.

V. Results and Discussion

In this section, we discuss the estimation results and address the followistipgse Which model
best captures the time series and cross-sectional behaviors ofayuopion implied volatilities? How
the estimated activity rate dynamics relate to the observed time variation in implied vokaéhiderisk

reversals?
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A. In-Sample Model Performance Comparison

We compare the in-sample model performance along two dimensions. Firsyestigate how our
new SSM models perform against traditional jump-diffusion stochastic volatiliigels, e.g., Bates
(1996b) (MJIDSV). Second, within our new SSM model framework, westigate which jump struc-

ture delivers the best performance in capturing the currency optioa lpeicavior.

Table IV reports the parameter estimates and standard errors (in paes)tfar the six models on
the two currency pairs. In the last two rows of the table, we also reporbtitenean squared pricing
error and the maximized log likelihood value for each model and each ayrréhe results in Table IV
are obtained based on the whole sample of eight years of data. Herfoenaece comparisons are in

sample.

When we compare the performance of our SSM models to the traditional jufaisidif stochastic
volatility model of Bates (1996b) (MJDSV), we find that our SSM models ndigkeutperform the
MJDSV model in terms of both the in-sample log likelihood values and the root swaared pricing
errors. For the currency pair JPYUSD, the log likelihood value for MJxSlower than values for
the four SSM models by 2,605, 2,619, 2,637, and 2,685, respectivedyrothh mean squared error is
0.984 for MIDSV and is 0.822 or lower for the four SSM models.

For the currency pair GBPUSD, the log likelihood values for the four SSMetsoare also higher
than the value for the MJDSV model, with the difference ranging from 1,537561. The root mean
squared pricing error is 0.421 for MJDSV and is 0.378 or lower for tlie 85M models.

From MJDSV to its restricted version HSTSV, we observe a further temtuin likelihood val-
ues and an further increase in root mean squared pricing errorslik€hleood difference is 409 for
JPYUSD and 604 for GBPUSD. The root mean squared error differisr0.03 for JPYUSD and 0.011
for GBPUSD. These differences show that the jump component in MJOf&¢ anprove the model

performance over the pure-diffusion stochastic volatility model of Hestea3) (HSTSV).

Within our SSM framework, we estimate four models with different jump spetidiea. In con-

trast to the large difference in log likelihood values between the SSM modeltharMJIDSV model,
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the likelihood value differences among the four SSM models are much smalledPFUSD, we de-
tect a marginal increase in the likelihood value as we move from the KJ jumpsteudo VG and then
to CJ. These three jump specifications differ by a power term in #wy Idensity. The performance
ranking corresponds to an increase in the power coeffici@md an increase in jump frequency. When
we estimate the CGSSM model wherés a free parameter, the estimate dois 1.556, higher than all
the three restricted versions. This encompassing model also generagbealikelihood value, po-
tentially indicating that a high-frequency jump specification is favored for riagleurrency options.
Nevertheless, when we compare the root mean squared pricing emrtine four SSM models, we can

hardly distinguish the differences among the four jump types.

For GBPUSD, the estimate of under the CGSSM model is1180, smaller than the estimate for
JPYUSD but still higher than all three restricted versions. Neverthelesshis currency pair, the
performance differences of the four SSM models are negligible in termstbfthe log likelihood
values and the room mean squared pricing errors. Therefore, vetudenthat our currency options
data cannot effectively distinguish between different jump types. Tiseoaly weak evidence that

favors a high-frequency jump specification with infinite variation for the UBD currency pair.

Our results on the nature of the jump specification for currency optionsoaiEs strong as those in
Carr and Wu (2003) and Huang and Wu (2004) for equity index optiBath studies find that infinite-
activity jump specifications significantly outperform finite-activity jump speatfans for pricing S&P
500 index options. Madan and Daal (2004) also find evidence that theténfictivity VG model
performs better than the finite-activity Merton (1976) jump in pricing curyeaptions. Those studies
use exchange-traded options that include very deep out-of-the-nconéacts. The over-the-counter
currency options data that we use in this paper have only five strikeadbmeaturity, all located within
approximately the tenth and 90th percentile of the return distribution. Hereeuthency options data
that we use do not provide much information on the tail (beyond the tentemé#e) of the currency
return distribution. However, it is exactly in the tails of the currency retustridution where the

alternative jump specifications display their differences.
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To test the statistical significance of the performance difference betifferent models, we adopt
the likelihood ratio statistic constructed by Vuong (1989) for non-nestedeteod-ormally, we let

LR(©;,0;) denote the log likelihood ratio between modietsd j,

LR(G1,0;) = £i(6) — £j(9;). (57)

Vuong constructs a test statistic based on this log likelihood ratio,
o = VNLR(©;,0))/5 (58)

whereN denotes the number of days in the time series@mftnotes the variance estimate of the daily
log likelihood ratio(l; —I). Vuong proves that/ is asymptotically normally distribute (0, 1) under

the null hypothesis that the two models are equivalent in terms of likelihood:

Ho:E[li—1j]=0. (59)

Based on the daily log likelihood estimates, we compute the sample mean and dtdewdation of
the likelihood ratio between each pair of models and then construct the testicsta equation (58).
In estimatings, we adjust serial dependence in the daily log likelihood ratios accordingweei and

West (1987) with the lags optimally chosen following Andrews (1991) uadekR(1) specification.

Table V reports the pairwise log likelihood ratio test statistics. For eachrayrmeair, we report
the statistics in &6 x 6) matrix, with the(i, j)th element being the statistic ¢h — ;). The diagonal
terms are zero by definition. For both currency pairs, all the off-diagelements in the first column
are positive and strongly significant, indicating that HSTSV is the wordbpamg of all six esti-
mated models. The last four elements in the second column are also stronglyeosd significant,

indicating that the performance of MJDSV is significantly worse than the$&M models.

However, as we move to th@ x 4) block in the right bottom corner, none of the elements are
significant for either currency pair. This block compares the perfoc@among the four SSM models.

Therefore, we conclude that within the SSM modeling framework, ouleaayr options data cannot
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effectively distinguish the different jump specifications. Neverthelegs S&SM models significantly

outperform the MIJDSV model and the HSTSV model.

B. Out-of-Sample Performance Comparison

To study the out-of-sample performance, we re-estimate the six models usifigstisix years of
data from January 24, 1996 to December 26, 2001, 310 weekly atigery for each series. Then, we
use these estimated model parameters to compare the model performancedaotipl@ during the
first six years and out of sample during the last two years from Jarflyé2902 to January 28, 2004
(109 weekly observations for each series). If our estimation genesttble model parameters and
the currency option price behaviors have not dramatically changedydiheriast two years, we would
expect that the out-of-sample performance for each model is similar to itsniple performance. We
also investigate whether the superior performance of our SSM modeltheveaditional specifications

such as HSTSV and MJDSV extends to out-of-sample comparison .

Table VI reports the model parameter estimates and standard errors usisgbgample of six
years of data. Both the estimates and standard errors are close to whatevebtained from the full
sample in Table IV, indicating that the currency option price behaviors haevexperienced dramatic
changes over the past two years. The one exception is the estimates 06 38VOmnodel on the
currency GBPUSD. The estimate has changed from 1.180 in the full sample estimation to -1.162
in the subsample estimation. But the new estimate shows has a very large ¢tamdgrindicating

potential identification problems for this encompassing specification.

Table VII compares the in-sample and out-of-sample performance of theagirls based on the
subsample estimation. We report the root mean squared pricing erroj (thesenean daily log likeli-
hood value £ /N), and the pairwise likelihood ratio test statistics defined in equation (58acilitéte
comparison between in- and out-of-sample performance, we normalize¢liedidd value £) by the
number of weeksN) for each sample period and report the mean daily log likelihood estimalte)(
The in-sample comparison is based on the first 310 weeks of data. Tlésataple comparison is

based on the last 109 weeks of data.
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For each currency pair and each model, we first compare the in-samptaugnf-sample perfor-
mance in terms of the root mean squared pricing error and the mean daily Ibigddde value. We
find that the in-sample and out-of-sample estimates are very close to onerafathJPYUSD, most
models generate slightly larger out-of-sample pricing errors and smallef-@atmple likelihood val-
ues than their in-sample counterpart. The one exception is the MIDSV mdueh, actually generates
smaller out-of-sample error and larger out-of-sample likelihood valuethearurrency pair GBPUSD,
all models actually generate smaller out-of-sample pricing errors and laugi@f-sample likelihood
values. Therefore, we do not observe much obvious degeneratiariation in out-of-sample per-
formance. These results confirm our inference from the parameter tegithat the currency options
behaviors during the past two years are not dramatically different frain earlier behaviors. The
model parameter estimates from the first six years of data can be readidaogghe recent two years

of data with no obvious degeneration in performance.

We now compare the performance of different models both in sample arud satple. The root
mean square and the log likelihood values show that the four SSM modetsrperfuch better than
the MIDSV and HSTSV models, both in sample and out of sample. The likeliladiodest statistics
M tell the same story. For both in-sample and out-of-sample tests, the offrdiaigoms in the first
column of thear matrix are all strongly positive for both currencies, indicating that all othedels
significantly outperform the Heston (1993) model. The last four elementseo$econd column are
also strongly positive, indicating that our four SSM models all significantipedorm the MIDSV
model of Bates (1996b).

Among the four SSM models, the in-sampie statistics show that the four models are not statis-
tically different from one another for both currencies. When we lodk@but-of-sample statistics for
JPYUSD, we find that the CG jump structure significantly outperforms all ttesteicted jump specifi-
cations (KJ, VG, and CJ). Among the three restricted jump specificatiorsgQificantly outperforms
KJ and VG; VG significantly outperforms KJ, thus generating the followingissieally significant

performance ranking in descending order: CG, CJ, VG, and KJ. Tihlitative conclusion is the same
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as from the in-sample comparison, but statistically stronger: High freguyangs perform better in

capturing the option price behavior on JPYUSD.

For GBPUSD, the out-of-sample performance ranking among the four jpegifications under
SSM goes the opposite direction, albeit with less statistically significance. rticydar, although
the encompassing CG jump specification generates slightly better in-sammenperte, its out-of-
sample performance is significantly worse than KJ and VG. Thus, optio 888 SD seem to ask for

a more parsimonious and less frequent jump specification.

Reviewing the options behavior on JPYUSD and GBPUSD, we find that itisligr JPYUSD
options have generated much larger skews (risk reversals) than opticBBPUSD. Thus, we con-
clude that high-frequency jump specification is needed for capturing feyg-normalities, but a finite-

activity jump specification suffices for capturing moderate non-normalitiesinetturn distribution.

C. Pricing Biases

Another way to investigate the robustness and performance of differedels is to check for
remaining structures in the pricing errors of these models. Since we havendated the evidence
mainly in the implied volatility space, here we convert the model-implied option pridesBlack-
Scholes implied volatilities. We define the pricing error in the volatility space adffieesthce between

the observed implied volatility quote and the corresponding values compotadtie model.

The meaning pricing error of a good model should be close to zero amdrehobvious structures
along both the moneyness and the maturity dimensions. Figure 5 plots the méag gmior in volatil-
ity percentage points along the moneyness dimension at selected maturitiesmdoth (solid lines),
three months (dashed lines), and 12 months (dash-dotted lines). Sincestirapie and out-of-sample
performances are similar for all models, from now on we only reportitebased on the full-sample
model estimation. To further reduce graphics clustering, we hencetatis bn two models, one from
our four SSM specifications and one from the two traditional specificatidihe four SSM models

generate similar performance, we choose KIJSSM as the representdtire. two traditional models,
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the Bates model (MJDSV) performs better than the pure-diffusion HestoelitdSTSV). We choose

the better performing MJDSV and compare its behaviors to KISSM.

Under the MIDSV model, the mean pricing errors show obvious remainingstes for JPYUSD
along both the moneyness and maturity dimensions. At short maturities, the nwag errors exhibit
a smile shape along the moneyness dimension, implying that the MIJDSV modet tufynaccount
for the implied volatility smile at short maturities. At longer maturities, the mean prigirageshow
an inverse smile shape along the moneyness dimension, implying that the MJD&V geaerates an

overly curved implied volatility smile at these maturities.

In contrast, under our SSM model, the mean pricing errors are very tdasro and do not show
any obvious remaining structures. For both currencies, the mean pricorg ender the SSM model

are all well within half a percentage point, the average bid-ask spredldg@amplied volatility quotes.

While the mean pricing error plots can reveal the remaining structures éintbdeies of a model,
a plot of the mean absolute pricing errors illustrates the average perfoernéthe model in fitting the
observed implied volatility quotes. Figure 6 plots the mean absolute pricingieriraplied volatility
under both MIDSV and KJSSM. Under both models, the mean absolute peitorg are smaller for
GBPUSD than for JPYUSD.

Under the MJDSV model, the mean absolute pricing errors are larger @mf-oubney options than
on at-the-money options, indicating that the MJDSV model cannot fully atdouthe observed im-
plied volatility smile. The mean absolute pricing errors are also larger at tiery and long maturities
than at moderate maturities, indicating that the model cannot fully accouthtefoerm structure of the

implied volatilities.

The mean absolute pricing errors under the SSM model are smaller tharutiaesethe MIDSV
model across all moneyness, maturities, and the two currency pairsinghitnve universal better per-
formance of the SSM model over the MJDSV model. Furthermore, underSher8odel, the mean
absolute pricing error are flat across moneyness under all maturitiesgting that the model can cap-

ture the volatility smile very well. Along the maturity dimension, the mean absolute précitogs are
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smaller at moderate maturities than at very short and very long maturities tindit@at the model has

some remaining tensions along the term structure dimension.

D. The Activity Rate Dynamics

Under the SSM models, the risk-neutral dynamics of the two activity ratesiairdy controlled
by two parametersk ando,. The parametek controls the speed of mean-reversion for the activity
rate processes. The parameigicontrols the instantaneous volatility of the process. Furthermore, the
activity rate processes interact with the currency return innovationghrtie instantaneous correlation
parameterpR andp'. Under the physical measure, the time-series dynamics of the activity éi¢es d
from the risk-neutral dynamics in terms of the mean-reverting spe®dsd the long-run meaé®.
The difference betweexiandk® captures the market price of volatility risk. When the market price of
risk coefficienty is positive, the time-series dynamics of the activity rates are more persisttatsn
have a larger long-run mean than the risk-neutral dynamics. The opposile when the coefficient

is negative.

Table IV reports the full-sample parameter estimates. For JPYUSD, the estontkte fisk-neutral
mean-reversion speadvaries from 0.387 to 0.465 as we change the jump specification. The mean-
reversion speeds under the time-series meastirare larger and range from 0.502 to 0.586. The

difference between the two sets of parameters imply that the market pricéwityerate is negative.

For GBPUSD, thex estimates for the SSM models are larger and between 1.18 and 1.211. The
corresponding time-series estimates are between 1.158 and 3.296, implgatiyeaenarket price of
risk except under CJSSM. Nevertheless, we caution the interpretatitne aharket price of risk as
we observe that the standard errors for the time-series estikfag® much larger than that for the

risk-neutral counterparts. The observation holds for both currencies.

The estimates for the instantaneous volatility coefficient of the activity mgtase also quite stable
across different jump specifications under the SSM framework. The dstraee between 1.566 and

1.675 for JIPYUSD and between 1.429 and 1.505 for GBPUSD.
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The estimates for the instantaneous correlation are significantly positivedretine positively
skewed levy component and its activity rate, and are strongly negative betweeega¢vely-skewed
Lévy component and its activity rate. As a result, the model-implied innovation inskeeversal is

positively correlated with the currency return, consistent with the obiens from the data (Table I1).

Under the HSTSV and MJDSV models, a scalar activity rate process totiteooverall stochastic
volatility. The estimates for the persistence parametensdk® and for the instantaneous volatility pa-
rameteio, are similar to those obtained under the SSM models. However, the instargargmelation
p estimates are close to zero under both currencies, consistent with @uvati that the currency

returns and changes in volatilities do not have strong cross-correlations

The unscented Kalman Filter provides a fast way to update the activity reaehitve an approxi-
mate fit to the implied volatility surface. The top two panels in Figure 7 plot the fillectdity rates for
the MIDSV model. In the bottom two panels, we plot the filtered activity ratestbfthe right-skewed

(solid lines) and left-skewed (dashed lines) return components und€dg@eM model.

Under both models, the overall time variation of the activity rates match the wpsi@mns in
the time series of the implied volatilities in Figure 1. Hence, both models can captustothastic
volatility feature of the currency options. For example, the implied volatilities ofUBD show a
large spike between 1998 and 1999, reflecting the market stress duiRysisian bond crisis and the
ensuing hedge fund crisis. The single activity rate process under M3h8ws a similar spike, and

the two activity rates under the SSM model are both high during this period.

Furthermore, under the SSM model, the relative variation of the two activitynaddches the time
variation in the risk reversals plotted in Figure 3. When the risk reversalsisiye, the activity rate for
the right-skewed return componenf( solid lines) is higher than the activity rate for the left-skewed
component\{-, dashed lines), and vice versa. To see this feature more clearly, wia Figiure 8 the
percentage differences between the two activity rates, defined as (M50- i)/ (VR + V). We also
re-plot the ten-delta risk reversal quotes for comparison. We see thatdliement of the percentage

differences in the activity rates matches the movements of the risk reveespiaell.
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E. Theory and Evidence on the Stochastic Skew

The key feature that we have observed from the OTC currency opti@nket is the strong time
variation in the risk reversal, and hence the stochastic skew. Using thedittere series on the activity
rates, we compute the model-implied option prices and Black-Scholes implied vokatilRiem the
implied volatilities, we re-construct the model-implied risk reversals and contipanewith the market

observations.

Figure 9 compares the time series of the observed risk reversals to the motietHivatues. For
clarity, we only plot one time series for each currency pair: the ten-dekaeigersal at three-month
maturity in percentages of the at-the-money implied volatility of the same maturity. d$tedbtted

lines denote data quotes, the solid lines are the values computed from the ebtitodts.

The MJDSV model can generate the overall stochastic volatilities obsertld data, but the top
two panels in Figure 9 show that this model fails miserably in capturing thewasstrong variation
in risk reversals. Compared to the strong variations in the data (dashédtimesiodel-implied values

vary very little.

In contrast, the bottom two panels in Figure 9 show that our SSM models canagemisk re-
versals that match the data very closely. The matches are close to perfecigpt ender extreme
realizations. Therefore, our SSM modeling framework contributes to thadtliter by capturing the

strong and unique feature of the OTC currency options market.

V. Conclusion

In this paper, we document the statistical properties of currency option nydiatilities across
the dimensions of moneyness, maturity, and calendar time. We find that thetmpades of OTC
currency options exhibit several unique behaviors that challengdasthmodels in the option pricing

literature. Chief among the challenging behaviors is the observation thatigktiibe average implied
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volatility smile is relatively symmetric, the risk reversals can take large valuesiypgigen date and

that these values vary greatly over time, so much so that the sign of thewgkakcan also change.

Using the time-changeddvy process framework, we design and estimate a subclass of models that
capture this unique stochastic skew behavior of currency option pridas.estimation results show
that our SSM models strongly outperform traditional jump-diffusion staahaslatility models, both

in sample and out of sample.
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Figure 1. The time series of OTC currency option implied volatilities. Lines plot the time-series
of 40 implied volatility quotes on the dollar price of yen (JPYUSD, left panet) pound (GBPUSD,
right panel). The 40 series are from eight maturities and five strike levelach maturity. Data are
weekly from January 24, 1996 to January 28, 2004, 419 obsersgdtioeach series.
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Figure 2. Mean implied volatility smiles on currency options. Lines plot the time-series average
of the implied volatility against the delta of the currency options at three optionriti@u one month
(solid lines), three months (dashed lines), and one year (dash-dotteld lline averages are on weekly
data from January 24, 1996 to January 28, 2004, 419 observatioeadh series.
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Figure 3. Risk reversals and strangle margins over calendar timeSolid lines are ten-delta risk re-
versals and dashed lines are ten-delta strangle margins, both in peessoitéite at-the-money implied
volatility. To reduce clustering, we plot the lines at three maturities (one,,threel2 months).
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Figure 4. Cross-Correlogram between currency returns and chages in one-month ten-delta risk
reversals. The stem bars represent the cross-correlation estimates betweerrémegueturns and the
weekly changes in one-month ten-delta risk reversals at different fabeads. The two dashed lines
in each panel denote the 95 confidence bands.
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Figure 5. Mean pricing bias in implied volatility. We define the pricing error as the difference
between the observed implied volatility quote and the corresponding value infiglite estimated
models, both in percentages. We then compute the mean pricing error aeaeiiness and maturity.
The three lines represent three chosen maturities at one month (solidtlimes)nonths (dashed lines),
and 12 months (dash-dotted lines).
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Figure 6. Mean absolute pricing error in implied volatility. We define the pricing error as the
difference between the observed implied volatility quote and the corresgpudine implied by the
estimated models, both in volatility percentages. We compute the mean absolutefvihlegricing
errors at each moneyness and maturity. The three lines representiibsss maturities at one month
(solid lines), three months (dashed lines), and 12 months (dash-dotted lines
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Currency = JPYUSD; Model = MJIDSV Currency = GBPUSD; Model = MIDSV
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Figure 7. Filtered activity rates. The top two panels plot the single series of the activity rates from the
MJDSV model. The bottom two panels plot the two activity rate series from ti&SKOmodel. The
solid lines denote the activity rate for the right-skewé&y. component and the dashed lines denote the
activity rate for the left-skewedévy component under the SSM model. We extract the activity rates
from the options data using unscented Kalman filter, based on the relstmmatzd models using the

whole sample of data.
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Figure 8. Activity rates differences and risk reversals. The top two panels plot the percentage
difference in the two activity rates from the KISSM model, defined as siegikessof the activity rates
from the 100x (VR — ) /(VR+ V). The bottom two panels plot the market quotes for ten-delta risk
reversals for comparison. The three lines represent the three sateatedties at one, three, and 12
months.
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Figure 9. Theory and evidence on the stochastic skewDashed lines are the market quotes on
three-month ten-delta risk reversals, in percentages of the at-the-monlggdimpatility of the same
maturity. Solid lines are the values computed from the estimated models using thesahwmple of

data.
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Table |
Summary Statistics of Currency Option Implied Volatilities

The three columns under each contract report the mean, standarticevdaad weekly autocorrelation of the contract on risk reversal (RR),
strangle margin (SM), and at-the-money implied volatilities (ATMV). Risk realsrand strangles are in percentages of the at-the-money
implied volatility. The numbers following RR and SM denote the delta of the contata are weekly from January 24, 1996 to January 28,
2004, 419 observations for each series. The first column denoteptiba maturities, with ‘w’ denoting weeks and ‘m’ denoting months.

Mat RR10 SM10 RR25 SM25 ATMV
JPYUSD
1w 15.18 16.96 0.69 1434 426 0.77 740 810 0.70 432 145 0. 11.70 3.80 0.83
Im 13.32 1521 0.85 12.15 3.40 0.89 6.90 8.04 0.87 3.60 0887 0. 1145 310 0.92
2m 1153 14.27 0.89 12.08 3.21 0.92 6.02 7.63 091 351 0687 0. 1147 284 094
3m 10.16 14.14 0.92 1220 3.29 0.94 534 7.60 0.93 347 0649 0. 1157 270 0.96
6m 8.25 1432 0.96 1230 3.67 0.96 430 7.63 0.96 341 0724 09 11.78 258 0.97
9m 7.77 14.66 0.97 1242 411 0.98 401 7.74 0.97 339 0826 09 1187 255 0.98
12m 745 1499 0.97 12.39 4.48 0.98 381 791 0.97 3.34 09®7 0. 1195 253 0.98
18m 7.95 14.42 0.97 12.03 4.95 0.98 400 7.61 0.97 3.17 1.0®7 0. 1200 249 0.98
GBPUSD
lw -0.14 1176 0.73 10.30 4.60 0.86 0.13 572 0.76 2.95 1.5089 0. 820 179 0381
Im -0.52 9.35 0.84 9.74 3.04 0091 -0.11 468 0.84 295 086808 820 147 0.90
2m  -0.33 7.48 0.88 9.22 183 0.87 -0.05 3.95 0.89 277 057708 833 131 0.92
3m -0.37 6.74 0.90 9.11 156 0.86 -0.10 355 0.91 272 047408 843 120 0.93
6m -0.44 592 0.94 880 1.72 0.92 -0.15 3.13 0.95 259 052908 861 102 0.9
9m  -0.38 560 0.96 8.63 195 0.95 -0.14 298 0.96 255 056209 869 095 0.95
12m -0.36 545 0.96 8.46 211 0.96 -0.14 291 0.97 249 0.5592 0. 877 090 0.95

18m -0.53 493 0.97 799 238 0.97 -0.24 2,63 0.97 2.26 0.6194 0. 8.88 0.89 0.95




Table Il
Cross-correlation Between Currency Returns and Changes in Imied Volatilities

Entries report the contemporaneous correlation between log curretucgs and changes in risk rever-
sals (RR), strangle margins (SM), and at-the-money implied volatilities (ATNR&k reversals and
strangles are in percentages of the at-the-money implied volatility level. Theararfddlowing RR
and SM denote the delta of the contract. The first column denotes the optioritiasituvith ‘w’ de-

noting weeks and ‘m’ denoting months. Data are weekly from January@®$ tb January 28, 2004,
419 observations for each series.

JPYUSD GBPUSD

Mat RR10 SM10 RR25 SM25 ATMV RR10 SM10 RR25 SM25 ATMV
1w 0.46  -0.06 048 -0.14 0.41 0.38 -0.01 040 -0.02 -0.02
Im 0.57 -0.06 0.58 -0.14 0.44 0.44 0.01 0.45 0.01 -0.00
2m 0.58 -0.05 059 -0.10 0.40 0.46 -0.01 0.46 0.02 0.02
3m 059 -0.06 059 -0.08 0.35 0.47 0.03 0.47 0.03 0.00
6m 059 -0.04 059 -0.04 0.25 0.44 0.04 0.45 0.04 0.02
9m 0.56 -0.04 0.57 -0.02 0.21 0.42 0.03 0.43 0.03 0.04

12m 0.57 -0.03 0.58 0.00 0.18 0.39 0.05 0.40 0.05 0.04

18m 0.53 -0.05 055 -0.01 0.18 0.37 0.06 0.37 0.07 0.02
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Table Il

Characteristic Exponents of Different Leévy Components

All L évy specifications have a diffusion component. The characteristic erpdor the diffusion
component isp® = 102 (iu+u?).

Model Right-Skewed Component Left-Skewed Component
KJ —iun [k — 5] P O e e
VG Aln(1—iuvj) —iuAlIn(1—v;) + P AIn(1+iuv)) —iuAlIn (14 vj) + P
CJ —A(1/vj—iu)In(1—iuv;) —A(1/vj+iu)In(1+iuv;)
HiUA (1/vj — 1) In(1—v;) + P HUA (1/vj + 1) In(1+vj) + P
o (A — (2 4in)”
CG Ar(-o) [ () (gijrlu) }a

AT (—a) [(%)a cgv_lj - iu)a} a

orol(§)" (31)] v

orCol(3) (101)] v
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Table IV
Likelihood Estimates of Model Parameters

Entries report the quasi-maximum likelihood estimates of the model paraméderdasd errors (in parentheses), root mean squared pricing
errors (rmse), and log likelihood values)( For each currency pair, we estimate six models: the Heston (1993) ifiE€EEV), the Bates
(1996b) model (MIDSV), and our stochastic skew models (SSM) withdifi@rent jump specifications: KJ, VG, CJ, and CG. The estimation
uses eight years of weekly option data from January 24, 1996 to 13aR8a2004 (419 weekly observations for each series). The column
under ‘Og” denotes the parameter names for the Heston model and the Bates modedlurhe ander ©s” denotes the parameter names
for our SSM models.

Currency JPYUSD GBPUSD

O Os HSTSV MIDSV KISSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSMJS8&8M CGSSM

o2 ¢ 0.020 0.006 0.006 0.005 0.004 0.003 0.010 0.008 0.003 0.003 .0020  0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) .000) (0.000) (0.000) (0.000) (0.000)
AA — 0.016 0.059 1.708 0.035 0.004 — 0.422 0.079 6.869 0.080  20.03
(—) (0.001) (0.003) (0.151) (0.002) (0.001) (—) (0.044) Q@) (0.700) (0.005) (0.015)
ViV — 0.497 0.029 0.045 0.104 0.270 — 0.003 0.012 0.017 0.031  90.03
(—) (0.013) (0.001) (0.001) (0.004) (0.056) (—) (0.000) @@) (0.001) (0.001) (0.004)

K K 0.559 0.569 0.387 0.394 0.421 0.465 1.532 1.044 1.205 1.206 .2111  1.180
(0.006) (0.011) (0.005) (0.006) (0.007) (0.010) (0.007) .000) (0.006) (0.006) (0.006) (0.008)

oy Oy 1.837 1.210 1.675 1.657 1.582 1.566 2.198 1.737 1.429 1.447 5051  1.492
(0.023) (0.022) (0.027) (0.028) (0.027) (0.031) (0.026) .023) (0.039) (0.040) (0.017) (0.018)

p  pR  0.076 0.123 0.395 0.393 0.400 0.424 -0.023  -0.061 0.848  80.84 0.849 0.836
(0.005) (0.065) (0.017) (0.018) (0.022) (0.056) (0.003) .00 ) (0.040) (0.043) (0.017) (0.016)

WPt — -0.210 -0.739 -0.758 -0.851  -1.000 — 0.002 -1.000  -0.999 .00a@  -1.000
(—) (0.024) (0.034) (0.036) (0.040) (0.144) (—) (0.001) @@7) (0.050) (0.000) (0.004)

kP kP 0.745 0.258 0.522 0.502 0.544 0.586 1.276 0.800 2.062 2.092 .1581  3.296
(0.396) (0.114) (0.289) (0.288) (0.251) (0.261) (0.345) .286) (0.213) (0.213) (0.006) (0.223)

o O 1.045 1.002 0.704 0.703 0.703 0.700 0.198 0.184 0.148 0.148 .1480  0.148
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.000) .000) (0.000) (0.000) (0.000) (0.000)

— — — — — — 1.602 — — — — — 1.180
— — — — — (0.126) — — — — — (0.155)

rmse 1.014 0.984 0.822 0.822 0.822 0.820 0.445 0.424 0.376 3760. 0.376 0.378

£,x10°  -9.430 -9.021 -6.416 -6.402 -6.384 -6.336 4.356 4.960 6.5016.502 6.497 6.521




Table V
In-Sample Likelihood Ratio Tests of Model Performance Difference

Entries report the pairwise likelihood ratio test statisticonstructed by Vuong (1989) on non-nested
models. The statistic has an asymptotic standard normal distribution. We tlepqirwise statistics
in a (6 x 6) matrix, with the(i, j)th element denoting the statistic on modeérsus mode| such that

a strongly positive estimate for this element indicates that miosighificantly outperforms modgl

The tests are in sample, based on the model estimations using the full sample geeis of data for
each currency.

M HSTSV MJIDSV KJSSM VGSSM CJSSM CGSSM
JPYUSD
HSTSV 0.00 -2.55 -4.92 -4.88 -4.75 -4.67
MJIDSV 2.55 0.00 -5.39 -5.33 -5.22 -5.07
KJISSM 4.92 5.39 0.00 -1.11 -0.86 -1.20
VGSSM 4.88 5.33 111 0.00 -0.72 -1.21
CJSSM 4.75 5.22 0.86 0.72 0.00 -1.59
CGSSM 4.67 5.07 1.20 121 1.59 0.00
GBPUSD
HSTSV 0.00 -2.64 -4.70 -4.68 -4.63 -4.71
MJIDSV 2.64 0.00 -3.85 -3.86 -3.89 -4.19
KJISSM 4.70 3.85 0.00 -0.04 0.34 -0.37
VGSSM 4.68 3.86 0.04 0.00 0.56 -0.39
CJSSM 4.63 3.89 -0.34 -0.56 0.00 -0.51
CGSSM 4.71 4.19 0.37 0.39 0.51 0.00
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Table VI

Subsample Likelihood Estimates of Model Parameters

Entries report the quasi-maximum likelihood estimates of the model parametttsstinstandard errors (in parentheses). For each currency
pair, we estimate six models: the Heston (1993) model (HSTSV), the Bat@éSi{Lhodel (MIDSV), and our stochastic skew models (SSM)
with four different jump specifications: KJ, VG, CJ, and CG. The estimatg@s the first six years of weekly option data from January 24,
1996 to December 26, 2001 (310 weekly observations for each sertesolumn under®g” denotes the parameter names for the Heston
model and the Bates model. The column und@¢™“denotes the parameter names for our SSM models.

Currency JPYUSD GBPUSD
O Os HSTSV MIDSV KJISSM VGSSM CJSSM CGSSM HSTSV MJDSV KJSSM VGSSMJSEM CGSSM
0? o? 0.022 0.011 0.006 0.006 0.005 0.002 0.010 0.009 0.003 0.003 .0020  0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) .00®) (0.000) (0.000) (0.000) (0.000)
A A — 0.016 0.074 2.486 0.053 0.004 — 2.027 0.087 7.829 0.091 1210
(—) (0.001) (0.004) (0.234) (0.004) (0.002) (—) (0.153) @@) (0.922) (0.007) (9439)
ViV — 0.491 0.027 0.041 0.087 0.273 — 0.001 0.012 0.017 0.030 10.01
(—) (0.018) (0.001) (0.001) (0.004) (0.089) (—) (0.000) @@ ) (0.001) (0.001) (0.006)
K K 0.810 0.846 0.660 0.665 0.686 0.739 1.449 1.015 1.177 1.178 .1831 1.173
(0.006) (0.013) (0.006) (0.007) (0.008) (0.012) (0.008) .008) (0.007) (0.008) (0.008) (0.012)
Oy Oy 1.943 1.171 1.945 1.922 1.881 1.777 2.091 2.041 1.428 1.452 5231 1.518
(0.025) (0.024) (0.031) (0.031) (0.032) (0.037) (0.030) .0p8) (0.047) (0.048) (0.023) (0.053)
p pR 0.050 0.062 0.270 0.267 0.252 0.299 -0.056 -0.065 0.796  40.79 0.789 0.720
(0.005) (0.078) (0.015) (0.016) (0.018) (0.092) (0.005) .0013) (0.047) (0.050) (0.022) (0.053)
boop — -0.212 -0.629 -0.642 -0.672 -1.000 — -0.001 -1.000 -0.999 1.000 -0.905
(—) (0.033) (0.035) (0.037) (0.041) (0.396) (—) (0.000) @®©) (0.062) (0.000) (0.069)
kP kP 1.090 0.636 0.924 0.879 0.822 0.813 1.308 2.529 2.022 2.060 .1661  2.192
(0.390) (0.155) (0.392) (0.385) (0.364) (0.331) (0.451) .238) (0.263) (0.260) (0.270) (0.263)
o Oy 1.095 1.072 0.746 0.747 0.746 0.744 0.217 0.200 0.175 0.175.1750 0.174
(0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.001) .00a) (0.001) (0.001) (0.001) (0.001)
— a — — — — — 1.691 — — — — — -1.162
— — — — — (0.175) — — — — — (15.37)




Table VII
In-Sample and Out-of-Sample Model Performance Comparison

Entries report the root mean squared pricing error (rmse), mean dailikéditpood value ¢ /N), and

the pairwise likelihood ratio test statistios constructed by Vuong (1989) on non-nested models. The
models are estimated using data from January 24, 1996 to December 26320@veekly observations
for each series). The in-sample statistics are from the same period. Toé&gample statistics are
computed from the remaining two years of data from January 2, 2002 tada28, 2004 (109 weekly
observations for each series) based on model parameter estimatesdrrst ttubsample.

HSTSV MJIDSV KISSMVGSSM CIJSSM CGSSM HSTSV MJIDSV KISSMVGSSIEM CGSSM

JPYUSD GBPUSD

In-Sample Performance

rmse 1.04 102 0.85 08 085 085 047 044 041 041 041 104
£/N -23.69 -23.03 -16.61 -16.60 -16.57 -16.47 8.36 10.06 12.22.271 12.26 12.28

ﬁ[STSV 0.00 -2.14 -444 -441 -433 -417 0.00 -3.34 -4.42 394.-424 -4.33
MJDSV 214 000 -474 -470 -461 -442 334 000 -340 -3.39.33 -3.33
KJSSM 444 474 000 -049 -051 -084 442 340 0.00 0.08 6 0.3-0.42
VGSSM 441 470 0.49 0.00 -051 -089 439 339 -0.08 0.00 1 0.5-0.42
CJSSM 433 461 051 051 000 -114 424 333 -0.36 -0.510 0.00.55
CGSSM 417 442 0.84 089 114 000 433 333 042 0.42 05500 0.

Out-of-Sample Performance

rmse 1.06 1.00 0.90 09 089 089 039 037 0.27 0.27 0.27 7 0.2
£/N -24.01 -21.75 -18.47 -18.35 -18.23 -18.11 14.36 15.85 23.33.29 23.26 23.25

a{STSV 000 -6.01 -590 -6.01 -6.08 -6.12 0.00 -4.88 -7.06 067.-7.05 -7.05
MJDSV  6.01 000 -3.11 -323 -3.32 -348 488 0.00 -598 -599.99 -597
KJSSM 590 311 0.00 -7.76 -681 -5.27 7.06 598 0.00 0.64 714451
VGSSM 6.01 3.23 7.76 0.00 -439 -367 7.06 599 -0.64 0.00 31.6 4.19
CJSSM 6.08 332 6.81 439 000 -311 705 599 -147 -1.630 0.00.23
CGSSM  6.12 3.48 5.27 367 311 000 7.05 597 -451 -4.19 3-0.20.00
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