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Abstract

U.S. trading in non-U.S. stocks has grown dramatically. Round-the-clock, these stocks

trade in the home market, in the U.S. market and, potentially, in both markets simultane-

ously. We develop a general methodology based on a state space model to study 24-hour

price discovery in a multiple markets setting. As opposed to the standard variance ratio

approach, this model deals naturally with (i) simultaneous quotes in an overlap, (ii) miss-

ing observations in a non-overlap, (iii) noise due to transitory microstructure effects, and

(iv) contemporaneous correlation in returns due to market-wide factors. We provide an

application of our model to Dutch-U.S. stocks. Our findings suggest a minor role for the

NYSE in price discovery for Dutch shares, in spite of its non-trivial and growing market

share. The results differ significantly from the variance ratio approach.
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and Vrije Universiteit Amsterdam and for their comments. We gratefully acknowledge the support of Euronext

in building the database. For research assistance in the early stages of the project we are grateful to Karoy

Hornyak. The usual disclaimer applies.



1 Introduction

In the last decade, international firms have increasingly sought a U.S. listing, oftentimes

achieved through cross-listing their shares at either the New York Stock Exchange (NYSE)

or at the NASDAQ. At the end of 2002, 467 non-U.S. firms were listed at the NYSE and

generated approximately 10% of total volume that year (numbers are taken from the 2003 an-

nual report). The NASDAQ lists even more non-U.S. firms. This trend has prompted many

academic studies. Most of them focus on the benefits of cross-listings, such as reduced cost of

capital and enhanced liquidity of a firm’s stock.1

A relatively unexplored question is how much U.S. trading contributes to round-the-clock

price discovery over and above domestic trading. Reasoning could go both ways. On the one

hand, the home market being closest to the company’s headquarters and, therefore, closest to

where information is produced, may be most important (see, e.g., Bacidore and Sofianos (2002),

Hau (2001), and Solnik (1996)). On the other hand, U.S. stock exchanges being the largest

and most liquid exchanges in the world may imply an important role in price discovery also for

non-U.S. stocks, particularly now that their share in total U.S. volume is rapidly increasing.

Chan, Hameed, and Lau (2003), for example, find that trading location matters irrespective of

business location for a group of companies that changed listing from Hong Kong to Singapore.

Our objective is to develop a general methology to determine how informative trading is

for round-the-clock price discovery in a multiple markets setting. It enables the analysis of the

questions raised for U.S. trading in non-U.S. stocks, but applies more generally to securities

trading in multiple venues and, possibly, multiple time zones. Examples include securities

trading on multiple trading platforms or through multiple broker-dealers, oftentimes referred to

as fragmented trading (see Stoll (2001a)), London and Tokyo trading in U.S. treasury securities

(see, e.g., Fleming and Lopez (2003)), and foreign listings at European exchanges.2

The empirical literature on round-the-clock price discovery dates back to single market

studies comparing variance ratios of open-to-close and close-to-open returns. They generally

find trading periods to produce more information than non-trading periods (see e.g. Oldfield

and Rogalski (1980), French and Roll (1986), Harvey and Huang (1991), and Jones, Kaul,

and Lipson (1994)). A natural extension of this approach to our multiple-markets setting is

to single out economically relevant timepoints in the day and compare return variances across

time, averaged across all stocks. This approach fails for three reasons. First, in our setting,

calculating returns involves arbitrary choices for prices in overlapping periods, as we observe

prices in multiple markets. Second, midquotes and transaction prices are potentially noisy

1See, e.g., Alexander, Eun, and Janakiramanan (1987, 1988), Foerster and Karolyi (1999), Karolyi (1998),

Domowitz, Glen, and Madhavan (1998), Pagano, Roëll, and Zechner (2002), and Miller (1999)
2Pagano, Randl, Roëll, and Zechner (2001) report a non-trivial number of listings at the European exchanges

are foreign, up to 50% for Amsterdam, Brussels, Frankfurt, and Switzerland.
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proxies for the unobserved efficient price due to microstructure effects such as the market

making mechanism and minimum tick sizes (see, e.g., Stoll (2001b)). Such noise is negligible

for weekly, monthly, or annual returns, but not for intraday returns. This is illustrated by

studies that find that 24-hour returns based on opening prices are, on average, up to 20% more

volatile than those based on closing prices (see Forster and George (1996), Gerety and Mulherin

(1994), Amihud and Mendelson (1987), and Stoll and Whaley (1990)). Market microstructure

noise is potentially distorting because it artificially inflates price discovery within a trading day.

Third, Ronen (1997) criticizes the standard variance ratio approach as it does not account for

contemporaneous correlation.

In this paper, we develop a methodology based on a state space model to account for the

three main criticisms of the standard variance ratio approach. Such a model arises naturally

after characterizing the (unobserved) efficient price process. Consistent with modern finance,

we model the efficient price as a random walk (see, e.g., Campbell, Lo, and MacKinlay (1997)).

To study round-the-clock price discovery, we endow this random walk with deterministic, time-

varying volatility. To account for transitory price changes, we model the observed midquote as

the unobserved efficient price plus short-term “microstructure” noise and we allow for potential

market under- or overreaction to information (see, e.g., Amihud and Mendelson (1987)). In the

overlap, both midquotes are functions of the same unobserved efficient price plus idiosyncratic

noise. To account for cross-correlation in returns, we model returns as the sum of a common

and an idiosyncratic factor in the spirit of Hasbrouck and Seppi (2001).3. The model is esti-

mated using maximum likelihood. The Kalman filter is used to calculate the likelihood at each

step in the optimization. A major advantage of the Kalman filter in our setting is that it deals

naturally with missing values in the non-overlap trading periods. Moreover, the model-based

smoother allows for decomposition of an observed price change into a transitory and a perma-

nent component based on the entire sample, that is past as well as future observations (see

Durbin and Koopman (2001)).

For partially overlapping markets, the state space approach compares favorably to alterna-

tive methologies. In related work, Hasbrouck (1995) proposes a vector error-correction model

to measure “information shares” of exchanges for price discovery during the period when both

exchanges are open. Although this approach accounts for transitory price changes, it does

not extend to our setting as it cannot deal with missing values in one of the markets in the

non-overlap. Barclay and Hendershott (2003) use weighted price contribution (WPC) to study

how informative after-hours trading is. The WPC approach, however, does not explicitly allow

for transitory effects. In their pioneering study, Barclay and Warner (2003, p. 300) develop

WPC and acknowledge “it is not clear how any bias from ignoring temporary price-change

3The common factor represents macro-economic information or portfolio-wide liquidity shocks (see Subrah-

manyam (1991), Chowdhry and Nanda (1991), Kumar and Seppi (1994), and Caballe and Krishnan (1994))

3



components could drive our results.”

The state space model is estimated on a 1997-1998 sample of Dutch blue chips cross-listed

in New York. The U.K. excluded, Dutch stocks are the European stocks that generate most

volume in New York. The dataset is rich, since it includes all trades and quotes on both sides of

the Atlantic, as well as intraday quotes on the exchange rate and intraday prices on the major

Dutch index and the S&P500.

The results demonstrate the empirical relevance of the model, as the estimated variance

pattern of the efficient price innovations differs significantly from the pattern based on the

standard variance ratio approach. Such an approach was pursued in earlier papers on British

and Dutch cross-listed stocks (see Werner and Kleidon (1996) and Hupperets and Menkveld

(2002), respectively). The major difference is that the variance ratio approach finds that

continued trading in New York after the Amsterdam close is significantly more informative than

the overnight period, whereas the state space model does not.4 This difference is primarily due

to significant noise in New York midquotes, which is, implicitly, assumed to be absent in the

variance ratio approach.5 Interestingly, such noise is insignificant for Amsterdam midquotes

outside the overlap. We quantify price discovery consistent with existing literature and find

that price discovery in Amsterdam is a factor three higher than in New York or the overnight

period. These numbers compare to a factor seven reported for NYSE stocks comparing daytime

and overnight price discovery (see George and Hwang (2001)). These results survive a number

of robustness tests, including potential non-zero correlation between transient, microstructure

noise and efficient price innovations (see, e.g., Hasbrouck (1993) and George and Hwang (2001)).

The rest of the paper is structured as follows. Section 2 presents and discusses a multivariate

state space model for midquotes of securities that are traded in different markets. Section 3

elaborates on trading Dutch securities in Amsterdam and New York. Section 4 presents the

model estimates and contains robustness tests. Section 5 summarizes the main conclusions.

2 Model

The principles of the analysis in this paper are based on an unobserved “efficient” price and

observed midquotes in two markets that trade the same security. State space models are a

natural tool in this setting as the efficient price can be modeled as an unobservable state

variable and the midquotes as observations of this variable with measurement error to reflect

transitory microstructure effects.

4This is consistent with Barclay, Litzenberger, and Warner (1990) who find, for U.S. stocks cross-listed in

Japan, that Japanese trading does not increase the level of return variance.
5This finding is consistent with Barclay and Hendershott (2003) who find less efficient price discovery in

after-hours trading at the NASDAQ.
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2.1 The unobserved efficient price model

Consistent with modern finance, we model the efficient price as a random walk. We include a

deterministic linear trend to account for positive expected returns. For the purpose of studying

round-the-clock price discovery we pick T economically interesting time points in the day. The

efficient price process is subject to deterministic, time-varying volatility depending on the time

of day. The efficient price innovation is decomposed into a common factor and an idiosyncratic

innovation. The common factor is associated with a macro-economic or portfolio-wide liquidity

shock (see Subrahmanyam (1991) and Caballe and Krishnan (1994)). The process for a multiple

of n stock prices, T intraday timepoints and D trading days can therefore be described as

αt,τ+1 = αt,τ + βξt,τ + ηt,τ , ξt,τ ∼ N(0, σ2
ξ,τ), ηt,τ ∼ N(µτ , σ

2
η,τC), (1)

for t = 1, . . . , D, τ = 1, . . . , T and with αt+1,1 = αt,T+1. The n × 1 state vector αt,τ contains

the unobserved efficient prices of n stocks at day t and timepoint τ . The scalar variable

ξt,τ is the unobserved common factor and the n × 1 vector β is fixed and contains unknown

coefficients or factor loadings. The common factor is a zero mean random variable with a

deterministic intraday dependent variance structure. The idiosyncratic disturbance vector ηt,τ

is normally and independently distributed with intraday varying n × 1 mean vector µτ and

n×n diagonal variance matrix σ2
η,τC. The mean vector µτ represents the intraday seasonality of

expected returns whereas the scaling variance σ2
η,τ is for the intraday seasonality in the volatility

of returns. The scaled variance matrix C = diag(c1, . . . , cn) captures inter-stock volatility

differences. The common and idiosyncratic shocks are mutually and serially uncorrelated at all

time points.

The model (1) can also be represented using a single disturbance term, that is

αt,τ+1 = αt,τ + ζt,τ , ζt,τ ∼ N(0, Σζ,τ), Σζ,τ = σ2
ξ,τββ ′ + σ2

η,τC, (2)

where ζt,τ = βξt,τ + ηt,τ . To ensure identification of the model, we impose the parameter

restrictions
1

n

n
∑

i=1

β2
i = 1,

1

n

n
∑

i=1

ci = 1. (3)

where βi is the ith element of vector β for i = 1, . . . , n. These two restrictions allow σ2
ξ,τ and σ2

η,τ

to be interpretated as the average (over n stock prices) systematic and idiosyncratic variance,

respectively. Round-the-clock price discovery in the sample is then determined by

σ2
E,τ = σ2

ξ,τ + σ2
η,τ , (4)

where σ2
E,τ is defined as the average variance of the efficient price innovations.
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2.2 The observation model

Although we do not observe the efficient price, midquotes in either or both markets at day t and

time τ are the best proxies as they do not suffer from the bid-ask bounce in transaction prices

(see e.g. Roll (1986)). They are, nevertheless, noisy as they suffer from transient microstructure

effects, such as rounding errors due to discrete price grids, temporary liquidity shocks, or

inventory-management by market makers. The model for n midquotes observed during T

intraday timepoints and D days and for K different markets is specified as

pk,t,τ = αt,τ + εk,t,τ , εk,t,τ ∼ N(0, σ2
ε,k,τ · In), (5)

where pk,t,τ contains midquotes for n stocks traded at market k with k = 1, . . . , K, t = 1, . . . , D

and τ = 1, . . . , T . The transitory error εk,t,τ is solely due to microstructure effects. The

observation error variances depend on the time-of-day and on the market but they are assumed

to be equal across all stocks, an assumption that will be relaxed at a later stage.

2.3 The observation model with price reaction

The basic observation equation (5) is extended to allow for market under- or overreaction to

information, which cannot be excluded ex-ante in high frequency analysis (see, e.g., Amihud and

Mendelson (1987)). A natural way to do this is to include the efficient price change αt,τ −αt,τ−1

in the observation equation. We obtain

pk,t,τ = αt,τ + θ(αt,τ − αt,τ−1) + εk,t,τ

= αt,τ + θζt,τ−1 + εk,t,τ

= αt,τ + θβξt,τ−1 + θηt,τ−1 + εk,t,τ ,

(6)

where scalar coefficient θ measures the price reaction to information. This specification, how-

ever, does not distinguish between, for example, underreaction to firm-specific or common factor

information. Further, coefficient θ may vary within the day. To allow for these generalizations,

we consider the specification

pk,t,τ = αt,τ + θξ,τβξt,τ−1 + θη,τηt,τ−1 + εk,t,τ , (7)

where θξ,τ and θη,τ are scalar coefficients for τ = 1, . . . , T . The common factor (firm-specific)

efficient price innovation at time τ is pre-multiplied by θξ,τ (θη,τ ) to indicate that midquotes

underreact (negative θ’s) or overreact (positive θ’s) to the innovation. The modelling framework

allows us to determine whether these effects exist by testing the null hypothesis that θ’s are

equal to zero.
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2.4 State space representation

The standard state space model is formulated for a vector of time series ys with a single time

index s and is given by

ys = Zsδs + νs, δs+1 = Tsδs + Rsχs, s = 1, . . . , M, (8)

where disturbances νs ∼ N(0, Hs) and χs ∼ N(0, Qs) are mutually and serially uncorrelated.

The initial state vector δ1 ∼ N(a, P ) is uncorrelated with the disturbances. In the case elements

of the state vector follow nonstationary processes, the initial state vector cannot be specified

properly and is regarded as being partially diffuse. The system matrices or vectors Zs, Ts, Rs,

Hs and Qs, together with the initial mean a and variance P , are assumed as fixed and known

for s = 1, . . . , M . This general state space model is explored further in textbooks of Harvey

(1989) and Durbin and Koopman (2001), amongst others.

The basic model (2) and (5) can be represented as a state space model (8) by choosing

ys =
(

p′1,t,τ , . . . , p
′
K,t,τ

)′
, δs = αt,τ , s = (t − 1) · T + τ,

with nK × 1 observation vector ys, n × 1 state vector δs and M = TD. The state space

disturbance vectors are specified as

νs =
(

ε′1,t,τ , . . . , ε
′
K,t,τ

)′
, χs = ζt,τ .

The state space matrices are then given by

Zs = ℓ′K ⊗ In, Ts = Rs = In, Hs = diag(σ2
ε,1,τ , . . . , σ

2
ε,K,τ) ⊗ In, Qs = Σζ,τ ,

where ℓK is the K × 1 vector of ones and In is the n × n unity matrix. We notice that Hs and

Qs only vary within a trading day t for t = 1, . . . , D.

The model of interest (1) and (7) can also be casted in state space form. The state vector

needs to be extended to include the lagged disturbances ξt,τ−1 and ηt,τ−1 in the model. The

(2n + 1) × 1 state vector δs and the (n + 1) × 1 state disturbance vector are then defined as

δs =
(

α′
t,τ , η

′
t,τ−1, ξt,τ−1

)′
, χs =

(

η′
t,τ , ξt,τ

)′
,

while observation vector ys remains as defined. The state space matrices are

Zs = ℓ′K ⊗ [In, θη,τIn, θξ,τβ], Ts =







In 0 0

0 0 0

0 0 0






, Rs =







In β

In 0

0 1






, Qs =

[

σ2
η,τC 0

0 σ2
ξ,τ

]

,

while Hs remains as defined.
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2.5 Estimation and signal extraction

The Kalman filter and associated algorithms can be used for inference and signal extraction

(see, e.g., Durbin and Koopman (2001)). The Kalman filter evaluates the conditional mean

and variance of the state vector δs given the past observations Ys−1 = {y1, . . . , ys−1}, that is

as|s−1 = E(δs|Ys−1), Ps|s−1 = var(δs|Ys−1), s = 1, . . . , M,

where a1|Y0
= a and P1|Y0

= P . The recursive equations are given by

as+1|s = Tsas|s−1 + Ksvs, Ps+1|s = TsPs|s−1T
′
s + RsQsR

′
s − KsF

−1
s K ′

s,

with one-step ahead prediction error vector vs = ys − Zsas|s−1, its variance matrix Fs =

ZsPs|s−1Z
′
s + Hs and Kalman gain matrix Ks = TsPs|s−1Z

′
sF

−1
s for s = 1, . . . , M . The re-

cursions need various adjustments when the initial state is partially diffuse. Further it can

be shown that when the model is correctly specified the standardized prediction errors are

normally and independently distributed with a unit variance.

An important feature of state space methods is their ability to deal with missing values,

which are paramount in our dataset, since no observations are available on one of the exchanges

during the non-overlap. When all elements in ys are missing, the recursive equation for example

reduces to

as+1|s = Tsas|s−1, Ps+1|s = TsPs|s−1T
′
s + RsQsR

′
s.

The parameters in the state space model are estimated by maximizing the loglikelihood that

can be evaluated by the Kalman filter as a result of the prediction error decompostion. The

loglikelihood function is given by

l = −nKM

2
log 2π − 1

2

M
∑

s=1

log |Fs| −
1

2

M
∑

s=1

v′
sF

−1
s vs.

For the application of round-the-clock price discovery, the observation vector ys is of a high

dimension. It follows that the variance matrix Fs is of a high dimension which is inconvenient

since it needs to be inverted and its determinant needs to be computed for each s. Consequently,

the computations are relatively slow for a single loglikelihood evaluation. During the process

of loglikelihood maximization, the Kalman filter is carried out repeatedly many times. A more

computational efficient implementation of the Kalman filter for vector observations is based on

updating ys element by element. This reduces the computational load considerably because

inversions of large matrices are no longer required, see Durbin and Koopman (2001, section

6.3) for more details and for computational comparisons.

Signal extraction refers to the estimation of the unobserved efficient price given all ob-

servations YM . The conditional mean vector δ̂s = E(δs|YM) and conditional variance matrix
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Vs = var(δs|YM) can be computed by a smoothing algorithm. Estimation and signal extraction

were done in Ox (see Doornik (2001)) using the SsfPack state space routines (see Koopman,

Shephard, and Doornik (1999), www.ssfpack.com). A recent version of SsfPack has imple-

mented the Kalman filter with exact diffuse initializations and with an element by element

treatment of ys.

3 Data from Amsterdam and New York markets

The volume of non-U.S. shares grew to approximately 10% of total NYSE volume in 2002.

European shares accounted for most of this volume—approximately one-third. Not surprisingly,

U.K. shares accounted for most European volume, followed by Dutch shares that generated more

volume than French and German shares combined. The cross-listed Dutch shares studied in

this paper are NY Registered Shares as opposed to the more common American Depositary

Receipts (ADRs). These are, however, not regarded as materially different in the eyes of

investors, according to Citibank, one of the key players in the Depositary Services industry.

Most important is that both the NY Registered Share and the ADR can be changed for the

underlying common share at a small fee of approximately 15 basis points.

In our sample, Dutch shares traded from the Amsterdam open, 3:30 EST, to the New York

close, 16:00 EST, with a one-hour trade overlap as is depicted in Figure 1. To study round-

the-clock price discovery, we select 6 economically relevant timepoints inspired by the variance

patterns reported in earlier studies (Werner and Kleidon (1996) and Hupperets and Menkveld

(2002)). The first timepoint is 4:00, which is half an hour after the Amsterdam open. We choose

not to take the actual open as trading might not start directly, creating a missing observation.

Subsequent time points in the Amsterdam trading period are 8:00, 9:00, and 10:00. These are,

purposefully, located around the economically interesting event times 8:30 and 9:30, since at

these times U.S. macro-announcements are published and the NYSE opens, respectively. In

the U.S. trading period we further select 11:00 to incorporate the Amsterdam close and 15:30

to study price discovery during the remainder of the trading day. We choose to stay half an

hour ahead of the close to minimize disturbance due to last minute trading.

The Amsterdam and the New York Stock Exchange are both continuous, consolidated auc-

tion markets in the terminology proposed by Madhavan (2000). Both exchanges release trade

and quote information in real time. The main difference is that New York is a hybrid mar-

ket, because orders can arrive at the floor through both brokers and the electronic Superdot

system. Amsterdam is a pure electronic market in which orders are routed to a consolidated

limit order book and are executed according to price-time priority. In our sample period, a

market maker (“hoekman”) was assigned to each book with the obligation to “smooth price

discovery” by inserting limit orders at times of illiquidity. For the blue chip stocks we study,
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however, they rarely intervened. And, for our sample period, tick sizes were comparable across

both exchanges: US$ 1/16 at the NYSE and NLG 0.1 (≈US$ 0.05) at the Amsterdam Stock

Exchange.

The dataset used in this study consists of trade and quote data from Euronext-Amsterdam

and the NYSE for July 1, 1997 through June 30, 1998. Seven Dutch blue chip stocks cross-listed

in New York have been selected for the current study: Aegon (AEG), Ahold (AHO), KLM,

KPN, Philips (PHG), Royal Dutch (RD) and Unilever (UN). These firms are multinationals in

different industry groups and represent more than 50% of the local index in terms of market

capitalization.

Summary statistics for trading in the seven Dutch stocks are tabulated in Table 1. They

are very diverse as is apparent from trade variable averages such as volatility, volume, and

spread.6 A closer look reveals that they are similar in two important ways. First, for none

of the stocks has New York been able to generate more volume than Amsterdam. Second,

quoted spreads are larger in New York, up to almost 300%. This is most likely due to the

different market structure in New York, where many orders receive price improvement from the

floor. The effective spread, in this case, is a more appropriate measure, as it is based on actual

trades. Changing to this measure, we find that differences shrink and for some stocks New

York spreads are lower. This result should be interpreted with care, since average trade size is

higher in Amsterdam (see Hupperets and Menkveld (2002)). Hence, the average Amsterdam

trade potentially bites deeper into the limit order book and, therefore, suffers a higher effective

spread. Although finding the most competitive exchange is beyond the scope of this paper,

effective spread results show that exchanges are very competitive, which is a promising result

in view of the price discovery questions addressed in this study. Comparing Amsterdam to New

York based on statistics for the overlapping hour yields a similar picture. The main difference

is that average values for all variables are higher during the overlap.

4 Empirical Results

4.1 Variance ratio estimates

As a preliminary analysis we follow the standard variance ratio approach and calculate the

variance pattern of intraday and overnight returns. The intraday returns are calculated based

on the six identified timepoints τi, where we arbitrarily choose the average midquote as a proxy

for the price during the overlap.7 Table 2 reports the variance estimates, which are translated

6You find the definition of these variables are described in the caption of the table.
7For all estimates reported in this paper “outliers” were removed for different reasons. First, in 1998 the

change to daylight savings time in the Netherlands happened one week before the U.S. As a result, there was

10



into hourly equivalents to enable comparisons. For the three intervals in the Amsterdam trading

period, the average variance equals 3.6 · 10−5, which corresponds to a standard deviation of 60

basispoints per hour or an annualized volatility of 47%.8 Variance for the hour containing the

Amsterdam close is a significant 48% higher. Consistent with existing literature, we translate

this finding into stating that price discovery—the information flow per unit of time—in this

hour is a factor 1.5 higher (see, e.g., Jones, Kaul, and Lipson (1994), French and Roll (1986),

Ronen (1997), and George and Hwang (2001)). Additionally, the Amsterdam non-overlap is

a significant factor 2.4 more informative than the NYSE non-overlap, which, in turn, is a

significant factor 1.3 more informative than the overnight hours.

To motivate the state space model advocated in this paper, Table 3 reports the autocorrela-

tions for intraday returns. If measurement errors exist and if they are economically significant,

we should find negative first order autocorrelation. Most of these autocorrelations are indeed

negative and two of them are significant. We find a significantly positive autocorrelation for

the period containing the Amsterdam close. Apparently, markets underreact to information in

the New York open, causing persistence in returns for the subsequent Amsterdam close period.

Higher order autocorrelations are insignificant, except for the Amsterdam close period, but this

appeared to be entirely caused by a specific day in the sample as the autocorrelation turns

insignificant after removing that day from the analysis.

4.2 Estimation results

We proceed by re-estimating the intraday variance pattern using the state space model advo-

cated in this paper. We test for significance of parameters at a 95% level and leave out the

insignificant ones. The results are in Tables 4 and Table 5. The first table is organized in

two different panels. Panel A features the estimate of the variance pattern, which is plotted in

Figure 2 along with the variance pattern based on the direct variance ratio approach reported

no trading overlap from March 30 to April 3, 1998. This period was removed from the sample as it is not

representative. Second, at the end of the trading day on October 27, New York prices collapsed by 7%. They

fully recovered at the New York open the next day. This overnight period was removed from the sample as it

was a clear temporary distortion. Third, on a Unilever quarterly announcement on May 1, 1998, the share price

jumped by roughly 8% on the Amsterdam open. This jump was removed as it clearly was a one-time event and

not representative for regular round-the-clock price discovery.
8We do realize, however, that for the first interval from 4:00 to 8:00, variance is skewed towards the first

two hours after the opening, consistent with the stylized fact of an intraday U-shape in volatility. We still

aggregate these trading hours into one period, as we are primarily interested in the role of both markets in

round-the-clock price discovery, which motivates the proposed time periods. This is consistent with existing

literature that studies average hourly price discovery for trading and non-trading periods by aggregating the

full trading period and studying variances of open-to-close returns and close-to-open returns (see, e.g., Oldfield

and Rogalski (1980), French and Roll (1986), Harvey and Huang (1991), and Jones, Kaul, and Lipson (1994))
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in Table 2. The state space model estimates differ in two important ways. First, trading in

New York after the Amsterdam close is not significantly more informative than the overnight

non-trading hours. The main reasons are that the New York midquotes contain significant

noise and that the New York market appears to overreact significantly (87%) to firm-specific

information. At the same time, the market underreacts to common-factor information, but this

effect is much smaller (16%) and, as we will show later, is not robust. Second, most information

is attributed to the New York open period, instead of the Amsterdam close period. The reason

is market underreaction to both common-factor and firm-specific information (35% and 34%,

respectively) in the New York open period. In other words, the information present in the New

York open period is not yet fully revealed in midquotes halfway through the overlapping pe-

riod. This is consistent with the hypothesized behavior of institutional and informed investors,

who strategically split their orders both through time and across markets in the presence of

noise traders (see, e.g., Kyle (1985), Chowdhry and Nanda (1991)). The intuition is that this

enables them to hide their orders more easily and suffer less market impact. We attribute

the firm-specific underreaction to informed investors and the common-factor underreaction to

institutional investors, who, by trading portfolios, are likely to cause commonality in order

flow.9 This is shown to be the major cause of commonality in returns (see Hasbrouck and

Seppi (2001)). For partially overlapping markets, it is optimal for these two types of investors

to concentrate their orders in the overlap (see Menkveld (2003)). Similarly, the market under-

reaction (30%) to firm-specific information in the Amsterdam close period can be interpreted

as continued trading in New York by informed investors, who did not yet fully exploit their

information in the overlap.

To further characterize round-the-clock price discovery, we decompose information into firm-

specific and common-factor information by time of day. Figure 3 illustrates this decomposition

and leads to three important observations. First, the significantly larger innovations in the

efficient price during the overlap are due to increased firm-specific rather than common-factor

information. Apparently, the hypothesized order-splitting is primarily carried out by privately

informed traders, as opposed to portfolio-trading institutional investors. Second, the New York

preopening period is characterized by common-factor rather than firm-specific information. Al-

though this period is not significantly more informative than the preceding Amsterdam trading

hours, its common-factor component is significantly higher and its firm-specific component is

significantly lower. This is consistent with U.S. macro-announcements in this period or, al-

ternatively, with earnings releases by major U.S. companies10 that potentially affect market

9We do not claim that these two investor types do not overlap. On the contrary, privately informed investors

are oftentimes institutional investors.
10These releases are typically published before the market opens, so as to give investors time to read and

analyze them.
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sentiment for the oncoming U.S. trading day. Third, the “New York only” period is neither

significantly more informative on the firm-specific component, nor on the common-factor com-

ponent.11

Panel B of Table 4 reports the estimates of the observation error variance. In the optimiza-

tion, they converge to zero for all timepoints in Amsterdam outside the overlap. We cannot

reject the null of no observation error for these midquotes. For New York midquotes outside

the overlap, however, we do reject the null of no observation error. During the overlap both the

Amsterdam and the New York midquotes are significantly noisy. The non-zero pricing errors are

interesting for two reasons. First, New York midquotes in the overlap are significantly noisier

than Amsterdam midquotes. The estimates imply a 33 basispoint standard deviation for New

York errors, which is 26% higher than Amsterdam. This, together with the non-overlap results,

is yet another sign of Amsterdam’s dominance in price discovery. The errors are economically

significant as they are of the same magnitude as hourly efficient price innovations. The New

York midquote at 15:30, just ahead of the close, is noisiest and economically significant, since

the error’s standard deviation is more than half the standard deviation of the efficient price

innovation over the entire NYSE non-overlap, from 11:00 to 15:30. The next morning, just

prior to the market open, one should realize that the last New York midquote, although the

most recent observation, also bears significant noise.

Figure 4 illustrates price discovery as it plots the estimate of the efficient price and the

midquote observations for Royal Dutch. In the three-days-plot (lower panel), we see that

midquotes at the timepoints with non-zero noise differ from the efficient price estimate. Partic-

ularly interesting is that the efficient price in the overlap is closer to the Amsterdam midquote

than the New York midquote. This illustrates our finding that the midquote in New York is

noisier.

Tables 5 reports the stock-specific parameter estimates of the vector of loadings β and the

scaled variance matrix C in the price model (1). For five out of seven stocks the estimate of β

differs significantly from one. Casual comparison of these estimates with the “true” β weights,

as reported in, for example, the Bloomberg system, we find a correlation of 0.82. The correlation

is not perfect, since β measures different exposures—high- versus low-frequency exposures to

market-wide “shocks” or macro factors. Cross-sectional variation is even higher for inter-

stock variance differences measured by C as for every stock this parameter differs significantly

from one. This heterogeneity in β and in the variance matrix C makes decomposition of

the total variance of efficient price innovations into an idiosyncratic and a common factor

component, stock-specific. The general pattern reported in Figure 3 should be interpreted

carefully. Whereas it is informative on how both components, irrespective of each other, behave

11This is consistent with Craig, Dravid, and Richardson (1995) who find that only a small portion of overnight

volatility in the Nikkei index occurs during U.S. trading hours.
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through time, it is not informative on how important they are for the total variance of a specific

stock. To study how this decomposition is affected, we have to inflate the common-factor-

variance to idiosyncratic-factor-variance ratio for stock i by β2
i /ci. These factors are reported

in panel C and, not unexpectedly, vary significantly across stocks. Interestingly, the common-

factor component is highest for Aegon, Royal Dutch, and Unilever. This is probably due to

these stocks’ high exposure to the U.S. market in our sample period, as Aegon just took over

the U.S. company Transamerica, while Royal Dutch and Unilever were members of the S&P500.

Finally, the state space approach provides us with an estimate of the common factor con-

ditional on the observations, which we can compare with local market indices—the AEX and

the S&P500—for each time of day. In Table 6 we report the correlation between the smoothed

common factor estimate and index returns. The correlation is highest, 0.57, and significant

for the start of the trading day in Amsterdam. This is not surprising as our stocks represent

more than 50% of total market capitalization of the index stocks in the sample period.12 It

drops significantly to 0.38 in the New York preopening, indicating that the cross-listed stocks,

collectively, start price discovery less related to the remainder of the Dutch market. This effect

is particularly strong for the hour containing the NYSE open, as correlation with the AEX

now drops to an insignificant 0.08. For the remainder of the trading day, the common factor

significantly correlates with the S&P500 with correlation coefficients of 0.21 and 0.28. These

levels are lower than the Amsterdam non-overlap, as these stocks, obviously, do not make up

a significant part of the S&P500. Interestingly, the correlation with the local market is higher

outside the overlap than during the overlap. This reinforces the finding in Chan, Hameed, and

Lau (2003) that “price fluctations are affected by country-specific investor sentiment.”

4.3 Checking robustness

In this section we validate our findings for robustness and perform diagnostic analysis on filtered

state innovations. We also discuss the model assumption that measurement error is independent

of the efficient price innovation, as microstructure papers indicate this might be too strong

an assumption. Although all results are discussed in this section, we only report the most

important results in tables and figures to conserve space. The results not reported here are

available through an appendix that is accessible through the corresponding author’s website.

As our primary interest in the paper is round-the-clock price discovery, we test robustness

of the estimated intraday variance pattern in two ways. First, we split the sample in two subpe-

riods and estimate the model for each period. Second, we allow for stock-specific measurement

error variances. The results, reported in panels B and C of Table 7, show that the main results

12The weight these stocks have in the Dutch market index (AEX), however, is far less as the index is not

weighted by market capitalization.
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are largely unaffected, i.e., the round-the-clock information pattern, the market under- and

overreaction parameters, and the significantly noisier NYSE prices in the overlap. The only

difference is that the common-factor underreaction during New York only trading vanishes in

the second subperiod.

We base our diagnostic analysis on the scaled filtered state innovations, which should be

white noise if the model is specified correctly. Figure 5 shows a plot of (i) the innovations with

all stocks in consecutive order, (ii) their empirical distribution against the standard normal,

(iii) autocorrelations up to the tenth lag, and (iv) autocorrelations of the squared innovations

up to the tenth lag. Innovations are heavy-tailed, a standard phenomenon in empirical finance.

Autocorrelations are insignificant. The autocorrelations of squared returns are positive, indi-

cating GARCH effects, but small. Further inspection using scatterplots, however, shows that

this may be spurious as they seem to be driven by a few relatively large observations. Though

accounting for stochastic volatility might affect the estimates of the confidence intervals, it is

unlikely to change the deterministic intraday variance pattern (see Andersen, Bollerslev, and

Das (2001)).

The assumed independence of the efficient price innovation and the measurement error seems

at odds with common microstructure models. In a standard structural model, the transaction

price at time t equals the sum of an efficient price and a linear expression in signed volume

of the previous two trades (see, e.g., George and Hwang (2001)). Since the innovation in

the efficient price is a linear function of the same signed volumes (plus additional terms), the

independence assumption for εk,t,τ and ηt,τ in our state space model could be violated. Ideally,

we would relax the assumption to test the robustness of our results, but this is, econometrically,

not possible as the model would become underidentified (see Hasbrouck (1993)). Instead, we

argue it is unlikely that the issue impacts our main results for three reasons. First, we model

midquotes instead of transaction prices, which eliminates one of the signed volume terms in

the “transaction price” equation. Second, the remaining signed volume term relates to the

cost for a single market maker to carry inventory through time. This is not an issue for the

Amsterdam market as it is fully electronic and highly liquid, so that virtually all trades are

executed without the intervention of the designated market maker (“hoekman”).13 In New

York, the market maker (“specialist”) is an active intermediary, but Madhavan and Sofianos

(1998) document that market makers “control their inventory positions by selectively timing

the size and direction of their trades rather than by adjusting their quotes”.14 Third, panel D

in Table 7 shows that the main results are not affected by pre-setting the correlation to 0.175,

which is our best guess based on George and Hwang (2001)).15

13This was confirmed by an exchange official.
14This explains the weak inventory effects documented for the NYSE in Madhavan and Smidt (1993) and

Hasbrouck and Sofianos (1993)
15George and Hwang (2001) report that 9% of the transitory component (“measurement error”) variance and
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5 Conclusion

This paper studies round-the-clock price discovery for cross-listed stocks in markets that do not

fully overlap. We propose a state space model for multiple stocks with an efficient price as the

unobserved state and midquotes as observations. Compared to other approaches, the model’s

appeal lies in its ability to deal naturally with (i) simultaneous quotes in an overlapping period,

(ii) missing observations in the non-overlap, (iii) noise due to short-term microstructure effects,

and (iv) contemporaneous correlation in returns due to common market-wide factors. As a

matter of fact, our specification enables us to estimate the common factor return, conditional

on the data. We compare it to the return on the local market indices to find out to what extent

the common factor mirrors these indices.

We exploit a rich dataset on Dutch stocks cross-listed at the NYSE with tick data on trades,

quotes, exchange rates, and both local market indices. We find that the overlapping period is

the most important period in 24-hour price discovery, followed by the “Amsterdam only” period.

Least important are the “New York only” and the overnight period, which, perhaps surprisingly,

are equally informative. Further evidence of the NYSE’s minor role in price discovery is the

significant noise in midquotes throughout the trading day. Amsterdam midquotes, however,

are not noisy outside the overlap and significantly less noisy during the overlap. The round-

the-clock price discovery process can be further analyzed by decomposing the information by

time-of-day into a firm-specific and a common-factor component. We find that it is firm-

specific information that causes the overlap to be relatively more informative. Interestingly,

we also find that the NYSE preopening period is characterized by common-factor information,

consistent with U.S. macro-announcements that are published in this period. Further study of

the common-factor estimate reveals that it correlates highly with the Dutch market index in

early Amsterdam hours, but this correlation decreases substantially in the course of the day, as

34% of the permanent component (“efficient price innovation”) is due to signed volume. Following microstructure

theory, we assume all correlation between the two components is caused by signed volume. Based on these

observations, we estimate the correlation at 0.175. This is easily seen by writing down a simultaneous model of

the transitory (t) and the permanent (p) component:

t = c + ε, ε ⊥ c,

p = αc + η, η ⊥ c, η ⊥ ε.

The correlation between t and p is now easily calculated as:

ρt,p =
cov(t, p)

σtσp

=
ασ2

c
√

1

0.34
σc

√

1

0.09
ασc

=
√

0.09 · 0.34 ≈ ±0.175.

As we can exclude a negative signed volume effect, because we use midquotes and not transaction prices, the

remaining signed volume effect for “inventory reasons” suggests a positive sign, i.e. +0.175.
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we get closer to the start of trading in New York. The correlation is low and insignificant around

the New York open, indicating that the cross-listed stocks exhibit common price discovery

independent of the rest of the home market. During New York trading hours, the common

factor significantly correlates with the S&P500. Again, this correlation is lower during the

overlap than outside the overlap. These findings suggest that efficient price innovations are

driven by country-specific investor sentiment (see, e.g., Chan, Hameed, and Lau (2003)).

Incidentally, the empirical results for the overlap — most information, strongest market

underreaction, and significant noise — are consistent with theoretical studies that predict that,

in the presence of noise traders, privately-informed traders should split their orders across

markets (see, e.g., Chowdhry and Nanda (1991), Menkveld (2003)) and through time (see, e.g.,

Kyle (1985)) to minimize market impact. The decomposition of information reconfirms this

claim as the increase in information in the overlap is firm-specific rather than common.
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Table 1: Summary Statistics Trading Amsterdam and New York

This table contains summary statistics for trading in Amsterdam and New York from July 1, 1997, through June

30, 1998. Panel A contains averages for the full trading day; panel B for the overlapping hour. All variables are

15-minute averages. Trade Price Volatility is calculated as the variance of the 15-minute squared returns based

on transaction prices and measured in basispoints. Midquote Volatility is calculated the same way, but based

on midquotes. Quoted Spread is calculated as the time-weighted average of all prevailing quoted spreads in a

15-minute interval. Effective Spread is calculated as the time-weighted average of twice the difference between

the transaction price and the prevailing midquote. Both spreads are measured in basispoints. Volume is the

15-minute average number of shares traded.

Panel A: Trading Statistics Full Day (15-minute averages)

Share

AEG AHO KLM KPN PHG RD UN

Trade Price AMS 922 1,360 1,284 1,005 1,412 730 581

Volatility (bp2) NY 336 1,214 753 376 808 859 493

Midquote AMS 544 1,076 929 642 1,118 600 438

Volatility (bp2) NY 274 799 686 390 743 914 533

Quoted AMS 23 40 37 32 25 20 18

Spread (bp) NY 51 106 66 90 38 44 19

Effective AMS 18 26 28 25 18 15 14

Spread (bp) NY 19 49 32 35 15 15 13

Volume AMS 34 89 20 53 77 139 57

(1,000 shares) NY 3 1 6 1 24 72 20

Panel B: Trading Statistics Overlapping Hour (15-minute averages)

Share

AEG AHO KLM KPN PHG RD UN

Trade Price AMS 1,437 2,116 2,321 1,779 2,096 1,017 966

Volatility (bp2) NY 933 2,007 1,840 733 1,508 1,291 619

Midquote AMS 1,038 1,708 1,949 1,325 1,783 897 827

Volatility (bp2) NY 888 1,466 1,679 815 1,553 1,284 710

Quoted AMS 23 41 36 31 25 21 20

Spread (bp) NY 61 120 83 90 44 47 20

Effective AMS 20 28 32 28 20 17 16

Spread (bp) NY 51 82 58 83 33 17 21

Volume AMS 53 124 33 81 123 232 95

(1,000 shares) NY 5 3 11 2 38 120 34
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Table 2: Hourly Variance for Intraday and Overnight Returns

This table contains estimates of the midquote return variance for different intraday time intervals based on July

1, 1997, through June 30, 1998. All stocks are included. Midquote returns for are first demeaned by subtracting

the time-proportional average mean over the entire sample and then scaled to correct for inter-stock volatility

differences. Standard deviations are in parentheses.

Time Intervals, τi − τi+1

Event Start

AMS

NY

PreOpen

NY

Open

AMS

Close

NY

Only

Over-

night

Start (EST) 4:00 8:00 9:00 10:00 11:00 15:30

End 8:00 9:00 10:00 11:00 15:30 4:00

σ2
τ 0.36 0.36 0.36 0.53 0.15 0.12

(×10, 000) (0.01) (0.05) (0.05) (0.05) (0.01) (0.00)

Table 3: Intraday Return Autocorrelations

This table presents the raw return autocorrelations up to the second lag of intraday and overnight midquote

returns. The midquote in the overlapping interval was arbitrarily fixed at the average of the Amsterdam and New

York midquote. The autocorrelations are calculated for the full sample period, from July 1, 1997, through June

30, 1998, and averaged across all stocks. We explicitly account for commonality in returns when determining

confidence intervals.

Time Interval Event Lag 1 Lag 2

4:00-8:00 AMS Only -0.077

8:00-9:00 NY PreOpen 0.056 -0.020

9:00-10:00 NY Open -0.125 ∗ -0.005

10:00-11:00 AMS Close 0.251 ∗ -0.170 ∗

11:00-15:30 NY Only -0.050 0.039

15:30-4:00(+1) Overnight -0.165 ∗ -0.022
∗: Significant at a 95% confidence level.
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Table 4: Estimation results for efficient price and observation models

This table contains maximum likelihood estimates of the state space model (1) and (7) based on intraday

midquotes for the period from July 1, 1997, through June 30, 1998. The model is for observation vector pk,t,τ

that contains the midquotes for all stocks traded in market k at day t and timepoint τ . In Panel A estimates are

presented for the efficient price innovation variance σ2

E,τ , the common price variance σ2

ξ,τ , the price reaction to a

common innovation θξ,τ , the firm-specific price variance σ2

η,τ and the price reaction to a firm-specific innovation

θη,τ . Note that σ2

E,τ = σ2

ξ,τ + σ2
η,τ . In Panel B estimates are presented for the variance of the measurement

error in both markets, σ2

ε,k,τ with k ∈ {A, NY}. Standard deviations are in parentheses.

Panel A: Variance Efficient Price Innovation (×10, 000, Hourly)

Time Intervals, τi − τi+1

Event Start

AMS

NY

PreOpen

NY

Open

AMS

Close

NY

Only

Over-

night

Start (EST) 4:00 8:00 9:00 10:00 11:00 15:30

End 8:00 9:00 10:00 11:00 15:30 4:00

σ2
E,τ 0.35 0.33 0.43 0.38 0.09 0.10

(0.02) (0.02) (0.02) (0.03) (0.01) (0.01)

σ2
ξ,τ 0.13 0.18 0.16 0.15 0.05 0.05

(0.01) (0.02) (0.02) (0.02) (0.01) (0.01)

θξ,τ -0.35 -0.16
(0.04) (0.04)

σ2
η,τ 0.22 0.15 0.27 0.23 0.05 0.05

(0.01) (0.01) (0.01) (0.02) (0.01) (0.00)

θη,τ -0.34 -0.30 0.87
(0.02) (0.08) (0.13)

Panel B: Variance Measurement Error (×10, 000)

Time Points, τi, (EST)

Start (EST) 4:00 8:00 9:00 10:00 11:00 15:30

σ2
ε,A,τ 0.00 0.00 0.00 0.07

(0.00) (0.00) (0.00) (0.01)

σ2
ε,NY,τ 0.11 0.07 0.14

(0.01) (0.02) (0.00)
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Table 5: Estimation results for decomposition parameters

This table contains maximum likelihood estimates of the state space model (1) and (7) based on intraday

midquotes for the period from July 1, 1997, through June 30, 1998. The model is for observation vector

pk,t,τ that contains the midquotes for all stocks traded in market k at day t and timepoint τ . Estimates are

presented for the common factor loading vector β and diagonal variance matrix of firm-specific innovations. For

ease of interpretation, the common factor variation relative to firm-specific variation is signalled by β2

i /ci for

i = 1, . . . , n. Standard deviations are in parentheses.

Share

AEG AHO KLM KPN PHG RD UN

βi 0.98 1.23 0.87 0.87 1.11 1.00 0.88
(0.03) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)

ci 0.55 1.21 1.54 0.67 1.83 0.75 0.46
(0.03) (0.06) (0.06) (0.03) (0.07) (0.04) (0.03)

β2
i /ci 1.75 1.25 0.49 1.12 0.68 1.34 1.68

(0.16) (0.10) (0.05) (0.10) (0.06) (0.11) (0.15)

Table 6: Correlation Common Factor and Market Index

This table contains the correlations between the (smoothed) common factor estimate of the state space model

and intraday returns on the AEX index and the S&P500 indices for different intraday time intervals. Standard

deviations are in parentheses.

Time Intervals, τi − τi+1

Event Start

AMS

NY

PreOpen

NY

Open

AMS

Close

NY

Only

Start (EST) 4:00 8:00 9:00 10:00 11:00

End 8:00 9:00 10:00 11:00 15:30

ρ(Common Factor, AEX) 0.57 0.38 0.08
(0.07) (0.07) (0.07)

ρ(Common Factor, S&P500) 0.21 0.28
(0.07) (0.07)
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Table 7: Robustness Checks

This table contains estimates of the efficient-price-innovation variance and other parameters for various models. They represent robustness checks of

the main results of Table 4. Panel A repeats the estimates of Table 4. Panel B splits the sample in two sub-periods: (i) July 1, 1997, through December

31, 1997, and (ii), January 1, 1998, through June 30, 1998. Panel C allows for stock-specific measurement error variances σ2

ε,k,τ . Panel D sets the

correlation ρ(ηt,τ−1, εk,t,τ ) between the efficent price innovation and the subsequent measurement error equal to 0.175, inspired by microstructure

theory and empirical work by George and Hwang (2001). Standard deviations are in parentheses.

σ2
E,τ θξ,τ θη,τ σ2

ε,A,τ σ2
ε,NY,τ

Start

AMS

NY

Pre-

Open

NY

Open

AMS

Close

NY

Only

Over-

night

NY

Open

NY

Only

NY

Open

AMS

Close

NY

Only

4:00 8:00 9:00 10:00 11:00 15:30 9:00 11:00 9:00 10:00 11:00

8:00 9:00 10:00 11:00 15:30 4:00 10:00 12:00 10:00 11:00 15:30 10:00 10:00

A: Basic Model

0.35 0.33 0.43 0.38 0.09 0.10 -0.35 -0.16 -0.34 -0.30 0.87 0.07 0.11
(0.02) (0.07) (0.02) (0.01) (0.01) (0.00) (0.04) (0.04) (0.02) (0.08) (0.13) (0.01) (0.01)

B:Sub-Periods

First 0.41 0.48 0.51 0.43 0.11 0.09 -0.40 -0.25 -0.39 -0.36 1.13 0.08 0.12
(0.03) (0.04) (0.04) (0.04) (0.01) (0.01) (0.05) (0.04) (0.03) (0.10) (0.24) (0.00) (0.01)

Second 0.28 0.18 0.39 0.31 0.08 0.10 -0.23 0.00 -0.31 -0.17 0.66 0.06 0.09
(0.02) (0.01) (0.03) (0.03) (0.01) (0.01) (0.09) (0.00) (0.03) (0.15) (0.14) (0.00) (0.01)

C: Stock-Specific

0.35 0.33 0.42 0.39 0.08 0.10 -0.34 -0.16 -0.34 -0.48 1.03 0.06 0.09
(0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.05) (0.04) (0.02) (0.08) (0.15) (0.00) (0.01)

D: ρ = 0.175

0.35 0.33 0.41 0.32 0.08 0.10 -0.32 -0.16 -0.31 -0.31 0.63 0.07 0.11
(0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.04) (0.04) (0.02) (0.07) (0.09) (0.00) (0.01)
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Amsterdam

New York

↑ ↑ ↑ ↑ ↑ ↑
τ 1 2 3 4 5 6

EST 4:00 8:00 9:00 10:00 11:00 15:30

Figure 1: Time line. This figure illustrates the time line for trading in Amsterdam and New York using

Eastern Standard Time. The economically interesting timepoints modelled in this paper are indicated with

arrows. Most are self-explanatory, except for the 8:00 timepoint, which was introduced to pick up the potential

effect of U.S. macro-announcements and pre-market-open press releases of rival U.S. firms.

0.2

0.4

0.6 Intraday Variance Pattern (Hourly, 1/10000)

4:00−8:00
AMS Only

8:00−9:00
NY PreOpen

9:00−10:00
NY Open

10:00−11:00
AMS Close

11:00−15:30
NY Only

15:30−4:00
Overnight

0.2

0.4

0.6 Intraday Variance Pattern As Estimated Using State Space Model (Hourly, 1/10000)

Figure 2: Variance Pattern Raw Returns vs. Variance Pattern State Space Model. The top figure

illustrates the estimate of the intraday variance pattern based on raw returns of all stocks taking into account

inter-stock volatility differences. It is presented on an hourly basis to enhance comparability. The bottom figure

represents the variance pattern based on the returns of the unobserved efficient price as estimated by the state

space model. The bars represent point estimates; the dotted lines 95% confidence intervals.
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0.1

0.2

0.3
Intraday Variance Pattern Common Factor (Hourly, 1/10000)

4:00−8:00
AMS Only

8:00−9:00
NY PreOpen

9:00−10:00
NY Open

10:00−11:00
AMS Close

11:00−15:30
NY Only

15:30−4:00
Overnight

0.1

0.2

0.3
Intraday Variance Pattern Idiosyncratic Factor (Hourly, 1/10000)

Figure 3: Variance Decomposition into Common and Idiosyncratic Component. The state space

model specification allows for decomposition of the efficient-price returns into two components: a common

component due to a common (market-wide or macro) factor driving the returns across all stocks and an id-

iosyncratic component due to firm-specific returns. Hence, the variance can be decomposed by time of day. The

efficient-price variance pattern, as depicted in Figure 2, is therefore the sum of two components: the top figure

represents the common factor component, the bottom figure the stock-specific or idiosyncratic component. The

bars represent point estimates; the dotted lines 95% confidence intervals.
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4.10 Royal Dutch: Full Sample 7/1/97−6/30/98

Log Midquote AMS 
Log Efficient Price (Estimate) 

Log Midquote NY 
 

3.98

3.99

4.00

4.01

4.02

Royal Dutch: 3 Random Days 7/21/97−7/23/98

Figure 4: Midquotes and Efficient Price Estimates for Royal Dutch. This figure illustrates the model

estimates by plotting for Royal Dutch the estimate of the efficient price against the observed midquote in

Amsterdam and New York. The upper panel shows the full sample from July, 1, 1997, through June 30, 1998;

the lower panel a random sample of three consecutive days: July 21, 22, and 23, 1997.
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Figure 5: Diagnostic Analysis of Filtered Innovations. This figure contains four graphs to illustrate the

model’s performance. The top left figure plots the scaled filtered state innovations, i.e. the difference between

the predicted state conditional on all observations through t − 1 and the observation, scaled by the standard

deviation estimate based on all observations through t − 1. It plots all stocks in consecutive order. The top

right figure shows the empirical density and the bottom left figure shows the correlogram of these innovations.

The bottom right figure shows the correlogram of the squared innovations.
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