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Abstract

We propose a hybrid model of portfolio credit risk where the dynam-
ics of the underlying latent variables is governed by a one factor GARCH
process. The distinctive feature of such processes is that the long-term
aggregate return distributions can substantially deviate from the asymp-
totic Gaussian limit for very long horizons. We introduce the notion of
correlation spectrum as a convenient tool for comparing portfolio credit
loss generating models and pricing synthetic CDO tranches. Analyzing al-
ternative specifications of the underlying dynamics, we conclude that the
asymmetric models with TARCH volatility specification are the preferred
choice for generating significant and persistent credit correlation skews.

1 Introduction
In this paper we propose a simple model of portfolio credit risk with a one fac-
tor GARCH structure of the loss generating latent variables. Our objectives in
designing the model were to give a plausible explanation to the prominent cor-
relation skew observed in the synthetic CDO markets, and to investigate which
of the properties of the underlying portfolio loss generating models are most
relevant for this task. Our conclusions confirm some of the results known to
analysts in this field, such as the importance of asymmetry in the loss distribu-
tion, and provide a substantially more detailed understanding to the origins of
this asymmetry, its dynamics and dependence on term to maturity and other
model parameters.
We begin the paper by providing the motivation for the choice of the model

type in section 2. In particular, we argue that one can draw many parallels be-
tween modeling synthetic CDO tranches and modeling out of money put options
on equity indexes. From these analogies it follows that a dynamic model with
a richer structure than the standard log-normal Black-Scholes-Merton model
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must be considered to account for the important features of derivatives traded
in the marketplace, most importantly the volatility skew and term structure
(for equities market) and correlation skew (for synthetic CDO market). We
conclude that various versions of the GARCH model have the right properties
as candidates for the underlying dynamics describing credit correlations.
Assuming a factor-GARCH model for single-period returns, we derive In

section 3 analytical formulas for the skewness and kurtosis of the cumulative
return distributions for a variety of specifications of the single period return
GARCH process. We conclude that for sufficiently long horizons (greater than
several months) the effects of the stochastic volatility and volatility asymmetry
dominate the effects of non-normality of single-period return shocks. We then
demonstrate that the empirically estimated parameters of the market factor
time series do indeed lead to non-Gaussian distribution of cumulative returns
for horizons up to 5 or even 10 years.
The connection with credit correlation modeling is made in section 4, where

it is shown that the pairwise lower tail dependence of equity returns and the
pairwise default correlation defined in a latent variable framework via the same
returns are asymptotically equal as the default threshold (tail threshold) is taken
to lower zero limit. The pairwise default correlations produced by one factor
GARCH model leads to a significantly different dependence of both measures
on the risk threshold compared to the previously studied copula models. Both
the lower tail dependence and the pairwise default correlations are shown to
increase at very low thresholds which is precisely the behavior that would be
expected of any model that aims to explain the steep correlation skew growing
toward higher attachment points (i.e. lower default thresholds).
In section 5 we lay the groundwork for extending our analysis to portfolio

credit risk models by giving a brief introduction to general copula framework,
pricing methodology for synthetic CDO tranches, and the large homogeneous
portfolio approximation which we adopt in the rest of the paper. In section 5.2
we argue that the simple pairwise credit correlation is insufficient for description
of the portfolio loss distributions even in the LHP approximation, as it only
relates to the second moment of the distribution, the volatility of losses, and
does not fully specify the shape of the distribution tails. As a tool for a more
complete description of portfolio loss distribution, we introduce the correlation
spectrum measure which both simplifies and extends the widely used notion of
base correlations to a framework suitable for comparison of various default loss
generating models.
In section 6 we use the computed correlation spectra for loss generating mod-

els based on GARCH specifications considered in section 3 to study the impact
of various stylized characteristics of market factor dynamics on the portfolio
credit risk. We are able to discriminate between time series model specifica-
tions and practically rule out those models which do not have an asymmetric
volatility process. We demonstrate that the empirical parameters estimated for
S&P 500 as a market factor correspond to a substantial credit correlation skew
in our methodology, thus confirming that a large portion of the synthetic CDO
tranche pricing reflects real risks and not just risk premia. We conclude the sec-
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tion by examining the dependence of the correlation skew on term to maturity,
level of hazard rates and various model parameters — and thereby demonstrate
one of the most important advantages of our methodology, in which the correla-
tion skew is not an input but an output of the model and therefore its properties
and dependencies can be predicted rather than postulated.
Section 7 presents a brief summary and outline of remaining open questions

and possible extensions of our methodology. The Appendices present additional
proofs and empirical details.

2 Modelling Credit and Equity Derivatives
The credit derivatives market, which exceeds $4 trillion according to most re-
cent estimates from the British Bankers’ Association [2], encompasses a wide
range of instruments, from plain vanilla credit default swaps, to credit swap-
tions, portfolio CDS, and synthetic CDO tranches which are becoming a part
of the standard toolkit of credit investors [14]. Together with the growth of the
credit derivatives market there has been a great deal of progress in the quanti-
tative modeling for both single-name credit derivatives and for structured credit
products (see [?] and [21] for a textbook treatment and further references).
The latest advances in the credit correlation modeling were in part motivated

by the growth and sophistication of the so called correlation trading strategies,
namely strategies involving standardized tranches referencing the Dow Jones
CDX (US) and iTraxx (Europe) broad market indexes. The synthetic CDO
market in general, and the standard tranche market in particular, allows in-
vestors to take rather specific views on the shape of the credit loss distribution
of the underlying diversified collateral portfolio. The investor’s views on vari-
ous slices of this distribution are now well exposed through the pricing of liquid
standard tranches, which in turn is expressed through their implied correlations.
Quoting the implied volatility of an equity option (together with the level

of the underlying stock and the option strike) is equivalent to quoting its price
within the standard Black-Scholes model. In the same fashion quoting the
implied correlation (together with spread levels of the reference portfolio and
the tranche attachment and detachment levels) is equivalent to quoting the price
of a synthetic CDO tranche within the so called Gaussian copula model which
has become a de-facto standard in the industry. The Gaussian copula model as
applied to portfolio credit risk [15] extends similar approaches developed earlier
for portfolio market value-at-risk [?, 5], and long-term insurance portfolio loss
[8] modeling.
More recently, market participants have switched from using implied cor-

relations defined for each tranche, to the notion of base correlation which has
proven useful because it allowed translation of the pricing function of the set
of standard tranches which was a function of two variables (attachment and
detachment points) to a one-dimensional pricing function of the base equity
tranches which only depends on the detachment point. This mapping is simi-
lar to a mapping of the bull/bear spread options with various lower and upper
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limits onto a sequence of call options with various strikes — with the base eq-
uity tranches being analogous to a call option on the survival of the portfolio,
and the generic mezzanine tranches being analogous to bull spread options on
survival(see [19] and [?] for more details).
Furthermore, just as the observation of a non-trivial implied volatility surface

reflects deviations from the Black-Scholes model assumptions, the observation
of the non-trivial base correlation skew reflects deviations from the Gaussian
copula model assumptions. These assumptions are essentially equivalent to
those of CreditMetrics model of portfolio loss distribution [3] which, in turn,
were derived from an adaptation of the Merton’s structural model of credit risk
[18] with corresponding assumption of the log-normality of asset returns. In the
Gaussian copula model, the multi-variate probability distribution of times to
default is generated as a transformation (with a constant dependence structure)
of the multi-variate distribution of asset returns of portfolio constituents. Thus,
it stands to reason that either the assumption of the single-factor log-normal
distribution of asset returns, or the assumption of the constant dependence
structure implied in the Gaussian copula model, or both, are inconsistent with
the synthetic CDO tranche pricing as reflected by the well established presence
of the base correlation skew.
The observation that using the Gaussian copula model is in principle equiv-

alent to using a version of Merton’s original model is under-appreciated by
many researchers. With this implicit use of Merton’s model also come certain
well-known drawbacks such as the insufficient probabilities of downside risks
for investment grade issuers in the near- and intermediate terms. From the
econometric perspective, the main drawbacks of the classic Merton model are
its inability to account for a number of well established stylized facts regarding
the time series properties of observed equity returns, such as the stochasticity
and persistence of volatilities, asymmetry of volatility response to returns with
levels that are well beyond what that can be explained by the simple leverage
effect, and the presence of fat tails and other non-Gaussian features.
The adaptation of the copula-based methodology to reduced-form models

of default risk [22], and its re-interpretation in terms of generic latent variable
models [9] have opened the possibility to reconcile the parsimony of the copula
methodology with more flexible models of single-name credit risk. In particular,
one no longer has to explicitly assume that the latent variable driving the times
to default generation is log-normally distributed. Among the important steps
towards more realistic modeling of the dependence structure of portfolio risks
within this hybrid framework are the multi-factor Gaussian copula models [10],
the extension to non-Gaussian copulas and in particular to Student-t copulas [16]
reflecting the fat-tailed distribution of asset returns, and the explicit modeling
of asymmetric latent variable distributions [1].
A lot of intuition about the shape of the base correlation can be gained by

simply noting that, given a certain level of underlying index spreads, the higher
the attachment point K, the farther out-of-money is the senior tranche (i.e. the
tranche which is exposed to losses above K and up to 1). In the case of the equity
index options the out-of-money put options are typically priced with a higher
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Figure 1: Compounded and base correlation skew for CDX.NA.IG series 3 as of March
2005 (left hand side) and implied volatility skew for S&P 500 index options with 1
year expiry as of March 2005 (right hand side).

level of implied volatility which corresponds to a much fatter downside tails of
the implied return distribution. Similarly, the senior synthetic CDO tranches
are typically priced at a higher level of base correlation which corresponds to
fatter downside tails of default loss distributions (compare the figures in 1, where
we have drawn the correlation skew graph in somewhat unusual way, by placing
the farther out-of-money senior tranches to the left of x-axis to emphasize the
similarity with put options).
Such pricing is commonly attributed to investors’ risk aversion to large loss

scenarios and correspondingly higher risk premia demanded for securities ex-
posing them to such scenarios. However, we believe that it would be unfair to
think of the entire cost premium between various in- and out-of-money tranches
as risk premium and that there are real risks which are being compensated by
these additional costs, albeit perhaps still accompanied by (relatively smaller)
risk premia.
To justify this line of thought let us return for a moment to the case of equity

index options and recall that the empirical distribution of returns does indeed
exhibit significant downside tails, and that a large part of the implied volatility
skew can be explained by the properties of the empirical distribution [4]. Let us
list some of the key stylized facts that are known to be relevant for explanation
of the equity index option pricing: 1) the fat tails in the return distribution can
explain the implied volatility smile; 2) the asymmetry in the return distribution
is a necessary ingredient for explaining the implied volatility skew; 3) there
exists an implied volatility surface with non-trivial strike and term structure;
4) the term dependence of the volatility surface is determined by the long-run
aggregated return distribution characteristics which can be significantly different
from those of the short-term (single-period) return distribution; 5) the implied
volatility surface has a much more pronounced skew for stock indexes than for
individual stocks, reflecting a more important role of the common driving factors
compared to idiosyncratic returns in the explanation of the downside risks.
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Given the above mentioned analogies between the synthetic CDO tranches
and equity index options, it is quite natural to look for similar stylized facts
that could explain the shape of the base correlation as a function of detachment
level and, potentially, term to maturity, and its key dependencies on the market
and model parameters. As we already noted, the standard Gaussian copula
framework implicitly relies on the Merton-style structural model for definition
of the default correlations.
Therefore, if we are to give empirical explanation to the observed base cor-

relation skew we must start by giving an empirical meaning to the variables in
this model. Our working hypothesis in this paper will be that the meaning of
the "market factor" in the factor copula framework is the same as the market
factor used in the equity return modeling. As such, it is often possible to use
an observable broad market index such as S&P 500 as a proxy for the economic
market factor, with an added convenience that there exists a long historical
dataset for its returns and a rich set of equity options data from which one can
glean an independent information about their implied return distribution.
This hypothesis is not uncommon in portfolio credit risk modeling — for

example, the authors of the paper [16] emphasized the importance of using a
fat-tailed distribution of the asset returns in the copula framework in part by
citing the empirical evidence from equity markets. However most researchers
have focused on the single-period return distribution characteristics.
In contrast, we focus in this paper on the long-run cumulative returns, and

prove that their distribution is quite distinct from that of the short-term (single-
period) returns. As we will show in the rest of this paper, it is the time aggre-
gation properties and the compounding of the asymmetric volatility responses
that make it possible to explain the credit correlation skew for 5- or even 10-
year horizons. Moreover, a dynamic explanation of the skew such as presented
in this paper, allows one to make rather specific predictions for the dependence
of this skew on both the term to maturity and on the hazard rates and other
model parameters.

3 Time series models of short and long horizon
equity returns

In many applications we first specify time series properties of stock returns for
high frequency time intervals (daily and weekly) and then derive the distribu-
tion of stock prices over longer horizons measured in months or even years.
The popular log normal assumption that forms the basis of the Black-Scholes-
Merton option pricing model assumes constant mean returns and volatilities
and iid Gaussian return shocks which leads to the same (log-normal) shape of
the distribution of stock prices for all future horizons.
Models with more realistic dynamics can lead to richer distribution of time

aggregated returns with fat tails and negative skewness even if we assume Gaus-
sian distributions for the return innovations. In particular, models of GARCH
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type conform well to the stylized facts regarding both short- and long hori-
zon equity returns. The autoregressive stochastic volatility process captures the
essence of the volatility persistence and clustering observed in the historical time
series. In an extended GARCH framework, the non-Gaussian return shocks and
the asymmetric response of volatility to return innovations account for a signif-
icant amount of the explanatory power in most versions of model specification,
especially with regard to description of long-horizon aggregate returns. The
term structure of fat-tailness and skewness of aggregated returns depends on
the parametric form chosen for the volatility process.
Volatility and correlation dynamics affect not only the marginal distribu-

tions of stock returns but also the distribution of stock co-movements over long
horizons or more generally the copula of long horizon returns. The log nor-
mal model implies a Gaussian copula for any time horizon whereas multivariate
models with more realistic dynamic properties result in non-Gaussian copulas.
In this paper we focus on two non-Gaussian features of long horizon return

copulas: tail dependence and asymmetry. In this section we describe a simple
one factor model with TARCH(1,1) dynamics that allows us to incorporate
persistence and asymmetry in volatility and correlations and yet is tractable
enough to derive qualitative and quantitative results for non-Gaussian properties
of long horizon return distributions. We begin by describing the univariate
model, and then generalize it to a multi-variate framework with a single factor
structure of returns.

3.1 Univariate model: TARCH(1,1)

Let rt be log return of a particular stock or an index such as SP500 from time
t − 1 to time t . zt denotes the information set containing realized values of
all the relevant variables up to time t. We will use the expectation sign with
subscript t to denote the expectation conditional on time t information set:
Et (.) = E (.|zt) . The time step that we use in the empirical part is 1 day or 1
week. As we already mentioned, predictability of stock returns is negligible over
such time horizons and therefore we assume the conditional mean is constant
and equal to zero1:

mt ≡ Et−1(rt) = 0

Conditional volatility σ2t ≡ E(r2t |zt−1) of rt in TARCH(1,1) has the autoregres-
sive functional form similar to standard GARCH(1,1) but with an additional
asymmetric term

rt = σtεt (1)

σ2t = ω + αr2t−1 + αDr
2
t−11{rt−1≤0} + βσ2t−1

1We will discuss later the "risk-neutralization" of the return process which requires certain
drift restrictions in the derivatives pricing context.
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We assume that {εt} are iid with zero mean, unit variance, finite skewness
sε and kurtosis kε.We also assume that ω > 0 and α, αD, β are non-negative so
that the conditional variance σ2t is guaranteed to be positive.
Let us introduce the notations for the moments of εt that will be used in

some of the formulas below:

mε ≡ E (εt) = 0 (2)

vε ≡ E
¡
ε2t
¢
= 1

vdε ≡ E
¡
ε2t1{εt≤0}

¢
sε ≡ E

¡
ε3t
¢

sdε ≡ E
¡
ε3t1{εt≤0}

¢
kε ≡ E

¡
ε4t
¢

kdε ≡ E
¡
ε4t1{εt≤0}

¢
The persistence of stochastic volatility in the model is governed by the pa-

rameter ρ which is calculated as follows2:

ρ ≡ E
¡
β + αε2t + αDε

2
t1{εt≤0}

¢
= β + α+ αDv

d
ε (3)

If ρ ∈ [0, 1) then conditional variance mean-reverts to its unconditional
level σ2 = E

¡
σ2t
¢
= ω

1−ρ . We can rewrite 1 in terms of the increments of
the conditional volatility ∆σ2t+1 ≡ σ2t+1 − σ2t and the volatility shocks ηt ≡
α
¡
ε2t − 1

¢
+ αD

¡
ε2t1{εt≤0} − vdε

¢
rt = σtεt (4)

∆σ2t+1 = (1− ρ)
¡
σ2 − σ2t

¢
+ σ2t ηt

The speed of mean reversion in volatility is 1 − ρ and is small when ρ is
close to one which is usually true for daily and weekly equity returns — hence
the persistence of the stochastic volatility. Using this result, we can estimate
the term dependence of the periodic (short-term) returns variance

Et−1σ
2
t+i = σ2 + ρi

¡
σ2t − σ2

¢
for i ≥ 0 (5)

The TARCH(1,1) volatility shocks ηt are iid, with zero mean and the follow-
ing variance:

var(ηt) = var(αε2t +αDε
2
t1{εt≤0}) = (α+ αDγ)

2 kε+α2D (1− γ) γ (kε + 1) (6)

Persistent and volatile volatility produces fat tails in the unconditional return
distribution even for models with Gaussian shocks. It is easy to see from 4 that
conditional volatility of σ2t+1 is proportional to σ

4
t and var(ηt)

vart−1
¡
σ2t+1

¢
= vart−1

¡
σ2t ηt

¢
= σ4t var(ηt) (7)

2Note that for ε2t with symmetric distribution vdε = 0.5.
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The correlation of returns and future conditional volatility depends on co-
variance of return and volatility innovations

corrt−1
¡
rt, σ

2
t+1

¢
= corrt−1 (εt, ηt) =

αsε + αDs
d
εp

var(ηt)
(8)

The negative correlation of return and volatility shocks, often cited as the
"leverage effect"3, is the main source of the asymmetry in the return distri-
bution. We can see from formula 8 that negative return-volatility correlation
can be achieved either through negative skewness of return innovations sε < 0,
through asymmetry in volatility process αD > 0 or combination of the two. We
call these static and dynamic asymmetry, respectively.
In this paper we are interested in the effects of the volatility dynamics on

the distribution of long horizon returns. While a closed form solution for the
probability density function of TARCH(1,1) aggregated returns is not available,
we can still derive some analytical results for its conditional and unconditional
moments: volatility, skewness and kurtosis.

3.1.1 Volatility

The conditional variance Vt+1,t+T of the normalized log return Rt+1,t+T =

1√
T
(lnSt+T − lnSt) = 1√

T

t+TX
u=t+1

ru from t + 1 to t + T follows directly from

the term structure dependence of the periodic returns variance 5

Vt+1,t+T = EtR
2
t+1,t+T =

1

T
Et

⎛⎝ X
t+1≤u≤t+T

σ2u

⎞⎠ = σ2 +
¡
σ2t+1 − σ2

¢ 1
T

1− ρT

1− ρ

(9)
The unconditional variance is therefore the same as for the short-term re-

turns:
VT = E(Vt+1,t+T ) = σ2 (10)

The deviation of the T-horizon conditional volatility Vt+1,t+T from its uncon-
ditional level σ2 depends on the current deviation of the short horizon volatility
σ2t+1 − σ2, aggregation horizon T and the level of volatility persistence ρ.

3.1.2 Skewness

Skewness is a convenient measure of return distribution asymmetry. The fol-
lowing proposition gives the formulas for conditional and unconditional third
moments of aggregated returns generated by the TARCH(1,1) model.

3Though we note here that the magnitudfe of this "leverage effect" in return time series
for stocks of most investment grade issuers far exceeds the amount that would be reasonable
based purely on their capital structure leverage.
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Figure 2: Term structure of conditional variance of time aggregated return Rt+1,t+T .
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σ2 = 1, α = 0.01, αD = 0.10, β = 0.92, εt ∼ N(0, 1). We plotted volatility term
structure for three different initial volatilities: σ2/2, σ2and 2σ2

Proposition 1 Suppose 0 ≤ ρ < 1 and the return innovations have finite skew-
ness, sε, and finite "truncated" third moment, sdε. Then the conditional third
moment of Rt+1,t+T has the following representation for TARCH(1,1)

EtR
3
t+1,t+T =

1

T 3/2
sε

TX
u=1

Et

¡
σ3t+u

¢
+

3

T 3/2
¡
αsε + αDs

d
ε

¢ TX
u=1

1− ρT−u

1− ρ
Et

¡
σ3t+u

¢
(11)

In addition, if Eσ3t is finite, then unconditional skewness of Rt+1,t+T is given
by

ST ≡
ER3t+1,t+T

E(R2t+1,t+T )
3/2

=

∙
1

T 1/2
sε + 3

1

T 3/2
¡
αsε + αDs

d
ε

¢ T (1− ρ)− 1 + ρT

(1− ρ)2

¸
E
³σt
σ

´3
(12)

Proof. See appendix A for the details.

The conditional third moment is a function of the conditional term structure
of σ3t , term horizon T and volatility parameters. The conditional skewness can
be computed using second and third conditional moments derived above. The
asymmetry in the return distribution arises from two sources - skewness of re-
turn innovations and asymmetry of the volatility process. Note that the second
term in the formulas for conditional and unconditional skewness is directly re-
lated to the correlation of return and volatility innovations. If return-volatility
correlation is zero (αsε + αDs

d
ε = 0) then ST =

1
T1/2

sεE
¡
σt
σ

¢3
. If return inno-

vations are symmetric then asymmetric volatility drives the asymmetry in the
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return distribution. On Figure 3 we show conditional and unconditional skew-
ness term structures. For realistic parameters corresponding approximately to
parameters of the TARCH(1,1) estimated for weekly SP500 log returns, both
conditional and unconditional skewness is negative. It decreases in the medium
term, attains the minimum at approximately the 2 year point and then decays
to zero as T increases. The skewness term structure conditional on the high/low
current volatility is above/below the unconditional skewness.
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Figure 3: Term structure of conditional skewness of time aggregated return
Rt+1,t+T .TARCH(1,1) has persistence coefficient ρ = 0.98 and the following
parametrization: σ2 = 1, α = 0.01, αD = 0.10, β = 0.92, εt ∼ N(0, 1). We
plotted unconditional skewness term structure and conditional for three different ini-
tial volatilities: σ2/2, σ2and 2σ2. The term structure of Etσ

3
t+uwas computed from

10,000 independent simulations.

3.1.3 Kurtosis

The fourth conditional moment, if it exists, describes the fat-tailness of the
conditional return distribution and volatility of the return volatility. Formula
7 gives us the conditional volatility of the conditional volatility. The fourth
conditional moment of one period return is proportional to the kurtosis of the
return innovation

Etr
4
t+1 = σ4t+1kε

For symmetric return shocks and symmetric volatility dynamics (sε = 0 and
αD = 0) kurtosis KT has a simple representation in terms of the model param-
eters, according to the following proposition.

Proposition 2 If the distribution of εt is symmetric and αD = 0 then uncon-
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ditional kurtosis of RT , if exists, is given by the following formula:

KT = 3 +
1

T
(K1 − 3) + 6

γ1
T 2

T (1− ρ)− 1 + ρT

(1− ρ)2
for T > 1 (13)

K1 = kε
1− ρ2

1− γ
(14)

where kε is unconditional kurtosis of one period return innovations εt and

γ ≡ E
¡
β + αε2t + αDε

2
t1{εt≤0}

¢2
= β2 + α2kε + α2Dk

d
ε + 2αβ + 2αDβv

d
ε + 2ααDk

d
ε .

(15)

γ1 ≡ corr
¡
r2t−1, r

2
t

¢
= α (kr − 1) + αD

¡
kdr − vdr

¢
+ βkr/kε (16)

Proof. See appendix A for the details.

3.2 Multivariate model: One factor ARCHwith TARCH(1,1)
volatility dynamics

Let us now turn to a multi-variate model of equity returns for M companies,
with a simple dynamic factor structure decomposing the returns into a common
(market) and idiosyncratic components. To concentrate on the time dimension
of the model we assume a homogeneity of cross-sectional return properties,
namely that factor loadings and volatilities of idiosyncratic terms are constant
and identical for all stocks. Thus, our homogeneous one factor ARCH model
has the following form.

ri,t = bσm,tεm,t + σεi,t (17)

∆σ2t+1 = (1− ρm)
¡
σ2m − σ2m,t

¢
+ σ2m,tηm,t (18)

where

• b ≥ 0 is the market factor loading and it is the same for all stocks

• rm,t is the market factor with conditional volatility σ2m,t ≡ Et−1(r
2
m,t) and

zero conditional mean Et−1(rm,t) = 0

• σεi,t are idiosyncratic return components with conditional volatilities σ2

and zero conditional means Et−1(σεi,t) = 0

• {εi,t, εm,t} are zero mean shocks with unit variance, mutually independent
(for each i, m and t) and identically distributed for each given i and m

In this model conditional volatilities and pairwise conditional correlations of
stock returns are time varying and depend only on the volatility dynamics of
the market factor.

σ2i,t ≡ V art−1(r
2
i,t) = b2σ2m,t + σ2 (19)

ρ(i,j),t =
Covt−1(ri,t, rj,t)q

σ2i,tσ
2
j,t

=
b2σ2m,t

σ2 + b2σ2m,t

(20)
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The unconditional correlation between returns of any two stocks is given by

ρ(i,j) =
b2σ2m,t

σ2 + b2σ2m,t

(21)

The conditional pairwise correlation ρ(i,j),t is a strictly increasing function
of market volatility σ2m,t if b > 0 and therefore the persistence and asymme-
try of the market volatility σ2m,t+1 translates into the persistence and dynamic
asymmetry of the stock correlations ρ(i,j),t.
Because of the simple linear factor structure and constant market loadings

time aggregated equity returns Ri,T =
1√
T

TX
u=1

ri,u also have a one factor repre-

sentation4

Ri,T = bRm,T +Ei,T (22)

where Rm,T =
1√
T

TX
u=1

rm,u and Ei,T =
1√
T
σ

TX
u=1

εi,u are independent condi-

tional on z0.
The conditional variance, skewness and kurtosis of aggregated returns Ri,T

can be easily computed in terms of the corresponding moments of market and
idiosyncratic returns.

Vi,T = E0
¡
R2i,T

¢
= b2Vm,T + σ2 (23)

Γ(i,j),T = corr(Ri,T , Rj,T |z0) =
b2Vm,T

b2Vm,T + σ2
(24)

Si,T =
E0
¡
R3i,T

¢
V
3/2
i,T

= Γ
3/2
(i,j),TSm,T +

¡
1− Γ(i,j),T

¢3/2
SE,T (25)

Ki,T = Γ
2
(i,j),TKm,T + 6Γ(i,j),T

¡
1− Γ(i,j),T

¢
+
¡
1− Γ(i,j),T

¢2
KE,T (26)

We can see from Figure 4 that indeed the term structure of conditional
pairwise correlation resembles that of the conditional variance in Figure 2.

3.3 SP500 as a proxy for market return

To provide some empirical context to the theoretical discussion above, let us
consider the estimation results of several TARCH(1,1) specifications for SP500
daily and weekly returns. We obtained the daily levels of SP500 from CRSP
database. The total number of observations is 10699 and covers the period from
07/02/1962 till 12/31/2004. We constructed daily and weekly log returns and
estimated the parameters of TARCH and GARCH models with Gaussian and
Student-t shocks for 2 samples - full and post-1990.

4To simplify the notations we assume that the initial time t = 0 and use only subscipt for
the time aggregation horizon T.
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Figure 4: Conditional Correlation Term Structure of time aggregated returns Ri,T

and Rj,T . TARCH(1,1) has persistence coefficient ρm = 0.98 and the following
parametrization: σ2m = 1, αm = 0.01, αm,D = 0.10, βm = 0.92, εm,t ∼ N(0, 1).
We plotted conditional correlation term structure for three different initial volatilities:
σ2m/2, σ

2
mand 2σ

2
m.

Tables 1,2,3 in appendix B show estimated parameters and various data
statistics. Note that the Student-t distribution has an additional parameter,
degrees of freedom, that adjusts the tails of the error distribution5. Since the
Gaussian distribution is nested within the Student-t as a limit of large degrees
of freedom, and since the estimates of the full unconstrained model result in a
relatively small and statistically significant value of the degrees of freedom, we
conclude that the data points toward the fat-tailed return shock distribution.
On the other hand, the asymmetric TARCH model is nested within the

symmetric GARCH in the limiting case αD = 0. The estimated asymmetric
coefficient αD in the TARCH model is not only non-zero, but significantly higher
than the symmetric coefficient α for both complete and post 1990 samples, both
daily and weekly frequencies and Gaussian and Student-t shock distributions.
Thus, we conclude that the asymmetric volatility is prominently present in the
data.
The best fit model among those considered is the TARCH(1,1) with Student-

t distribution of return innovations. The additional parameters of this model
are statistically significant. In Figure 5 we show the estimate of skewness for
overlapping returns of different aggregation horizons measured in days. The

5The Student-T distribution sometimes critiqued as a model for continously componded
returns because the expectation of the exponent of Student-T variable is infinite and therefore
expected return over one period is also infinite. In practice (estimation) we can think of
Studen-T distribution as being truncated at far enough tails so that the estimation procedure
is not changed, while the expectation of the exponent is finite.
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full sample shows high negative skewness for one day return because of the 1987
crash. On the post 1990 sample negative skewness rises with aggregation horizon
up to 1 year and then slowly decays toward zero. Both samples show significant
skewness for horizons of several years. We should note that confidence bounds
around skewness curves are quite wide due to the persistence and high volatility
of the squared returns and serial correlation of the overlapping observations.
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Figure 5: Term structure of skewness for SP500 time aggregated log returns estimated
with overlapping samples moments for full and post-1990 data.

To make sure that asymmetry in volatility is not a result of several extreme
negative returns like 1987 crash we provide data statistics and re-estimated
parameters of TARCH models for trimmed full and post 1990 samples. The
trimming is done by cutting excess volatility in the most extreme 0.05% ob-
servations of both positive and negative return. We can see from Tables 1b
and 2b that trimming significantly reduced skewness, sr ,of daily returns but
the volatility of daily returns is still significantly asymmetric. Weekly returns
are less affected by trimming both in terms of TARCH parameters and uncon-
ditional skewness and kurtosis. However, the long-run skewness of aggregate
returns remains largely unaffected by the trimming because it is driven mostly
by the asymmetry of the volatility and the value of αD does not change much
due to trimming, especially for the model versions with Student-t distributed
return shocks.

4 Modeling Tail Risk and Default Correlation
The dynamic models of aggregate equity returns presented in the previous sec-
tion can serve as an important ingredient for modeling of tail risks and default
correlations. In this paper we are interested in the effects of the return dynamics
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on the joint distribution of RT = [R1,T , ..., RK,T ]
06 . Denote

• FT (di) ≡ P (Ri,T ≤ di|z0) conditional cdf of Ri,T

• GT (di) ≡ P (Ei,T ≤ di|z0) conditional cdf of Ei,T

• FT (d) ≡ P (RT ≤ d|z0) joint conditional cdf of RT

• CT (u) ≡ FT
¡
F−1T (u1) , ..., F

−1
T (uM )

¢
conditional copula of RT

Note than the assumption of one factor structure implies that equity returns
RT are independent conditional on the market return Rm,T and therefore FT (d)
can be computed as expectation of the product of conditional cdfs e.g. for
unconditional7 distribution:

_
FT (d) = E

Ã
MY
i=1

_
P (Ri,T ≤ di|Rm,T )

!
= E

Ã
MY
i=1

_
GT (di − biRm,T )

!
(27)

where Rm,T and {Ei,T }i=1,M are independent aggregated market and id-
iosyncratic return components.
The tail dependence coefficient and the "default correlation" coefficient are

convenient measures of the risk of joint extreme movements for a pair of assets.
Suppose Ri,T and Rj,T are the stock returns for companies i and j over the [0, T ]
time horizon. The coefficient of lower tail dependence and the default correlation
coefficient for two random variables with the same continuous marginal cdfs,
FT (R) , are defined as

λDi,j = lim
p→+0

P (Ri,T ≤ dp|Rj,T ≤ dp) = lim
p→+0

CT (p, p)

p
(28)

ρDi,j (p) = corr(1{Ri,T≤dp}, 1{Rj,T≤dp}) =
CT (p, p)− p2

(1− p)p
(29)

where p is the probability of crossing the threshold (also interpreted as the de-
fault probability), and is related to the latter via the relationship dp = F−1T (p) .
Both measures depend only on the bivariate copula of the two random variables
and asymptotically are equivalent: lim

p→+0
ρDi,j (p) = λDi,j .

On Figure 6 we show the default correlation ρD1,2 as a function of p for 4
different models - TARCH, GARCH, Gaussian and Studen-t copula. For all
4 models the linear correlation of latent returns is set to 0.3. The Gaussian
copula is symmetric and have zero tail dependence for both upper and lower
tails. We can see on the graph that it also has lowest default correlation for
all default probabilities in the range of [0,0.2]. The Student-t copula is also
symmetric but has fatter joint tails compared to the Gaussian copula. Its default
correlation is above the Gaussian for all p and converges to a positive number

6 the bold letters denote N dimentional vectors e.g. x≡ [x1, ..., xN ]0 .
7 for unconditional distributions and copulas we use the same notations but with bar above

the corresonding letter, e.g
_
FT .
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(the tail dependence coefficient) as p decreases to zero. TARCH and GARCH are
calibrated to have volatility dynamics parameters corresponding approximately
to the weekly SP500 returns and the time aggregation horizon is set 5 years.
We can see that TARCH has higher default correlation than other 3 models
and for very low quantiles is upward sloping. The upturn for the extreme
tails is a consequence of the left tail shape of the common factor. The default
correlation for very low default probabilities should be close to 1 since the left
tail of the factor is fatter than the left tail of the idiosyncratic shocks. The
GARCH default correlations are closer to the Gaussian because the 5 year time
aggregated market factor is "almost" Gaussian. As we showed in the previous
sections both kurtosis and skewness of the market factor converge to zero faster
for GARCH than TARCH given the same level of volatility persistence.
On Figure 7 we show default correlation ρD1,2 as a function of p for the

TARCH model but for different aggregation horizons. The default correlations
for 1 and 5 year horizons are significantly above the 1 week horizon. The term
structure of skewness for this example is shown on Figure 3 in the previous
section. We can see from the skewness term structure figures that weekly re-
turns are symmetric whereas time aggregated returns for longer horizons(1 and
5 years) have significant negative skewness which increases the default correla-
tions.
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ρ
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GARCH

T-Copula (v =12)

Figure 6: Default correlation as a function of p for TARCH, GARCH,T-
Copula and Gaussian models are calculated using 100,000 Monte Carlo sim-
ulations. The linear correlation parameter is 0.3 for all 4 models. T-
Copula degrees of freedom parameter is 12. TARCH and GARCH mar-
ket factors correspond to 5 year log returns which are computed based
on the returns simulated over weekly intervals. TARCH(GARCH)parameters
are α = 0.01(0.06), αD= 0.1(0), β = 0.92(0.92), Gaussian shocks and idiosyn-
crasies.
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Figure 7: Default correlation as a function of p for the TARCH model for 1 week,
1 year and 5 year time horizons which are calculated based on 100,000 Monte Carlo
simulations of weekly returns. The linear correlation is 0.3. TARCH parameters are
α = 0.01, αD = 0.1, β = 0.92, Gaussian shocks and idiosyncrasies.

5 Modeling Portfolio Credit Risk

5.1 General Copula Framework

In this section we describe a hybrid semi-dynamic approach to model default
correlations in a large homogeneous portfolio of credit exposures. Consider a
portfolio of M credit-risky obligors. We start with a static setup with a fixed
time horizon [0, T ] and to simplify notation skip the time subscript for time
dependent variables. At time t = 0 all M obligors are assumed to be in non-
default state and at time T firm i is in default with probability pi.We assume we
know the individual default probabilities p = [p1, ..., pM ]

0 (either risk-neutral,
e.g. inferred from default swap quotes, or actual, e.g. estimated by rating
agencies). Let τi ≥ 0 be the random default time of obligor i and Yi = 1{τi≤T}
the default dummy variable which is equal to 1 if default happened before T
and 0 otherwise.
The loss generated by obligor i conditional on its default is denoted as li > 0.

The loss li is a product of the total exposure size ni and percentage losses in
case default occurs 1−

_
Ri where

_
Ri ∈ [0, 1] is the recovery rate. We also assume

that li is constant (see [1] for discussion on stochastic recoveries). Portfolio loss
LM at time T is the sum of the individual losses for the defaulted obligors

LM =
MX
i=1

li1{τi≤T} =
MX
i=1

liYi (30)

The mean loss of the portfolio can be easily calculated in terms of individual
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default probabilities:

E (LM ) =
MX
i=1

liE (Yi) =
MX
i=1

lipi (31)

Risk management and pricing of derivatives contingent on the loss of the
credit portfolio, such as CDO tranches, require knowing not only the mean but
the whole distribution of portfolio loss with cdf FL (x) = P (LM ≤ l) . Portfolio
loss distribution depends on the joint distribution of default indicators Y =
[Y1, ..., YM ]

0 and in a static setup can be conveniently modeled using a latent
variables approach (see e.g. [9]). Particularly, to impose structure on the joint
distribution of default indicators we assume that there exists a vector of M
real-valued random variables R = [R1, ..., RM ]

0 and M dimensional vector of
non-random default thresholds d = [d1, ..., dM ]

0 such that

Yi = 1⇐⇒ Ri ≤ di for i = 1, ...,M (32)

Denote F : RM → [0, 1] as a cdf of R and assume that it is a continuous
function with marginal cdf {Fi}Mi=1. For each obligor i the default threshold di
is calibrated to match the obligor’s default probability pi by inverting the cdf of
its aggregate returns Ri : di = F−1i (pi). According to Sklar’s theorem, under
the continuity assumption F can be uniquely decomposed into marginal cdfs
{Fi}Mi=1 and the M -dimensional copula C : [0, 1]M ⇒ [0, 1]

F (d) = C (F1 (pi) , .., FM (pM )) (33)

Several popular copula choices are the Gaussian copula model [15], Student-t
[16] and Clayton:

• Gaussian copula

CG(p;Σ) = ΦΣ
¡
Φ−1 (p1) , ...,Φ

−1 (pM )
¢

• Student-t copula

CT (p;Σ, v) = tΣ,v(t
−1
v (p1) , ..., t

−1
v (pM ))

• Clayton

CCl (p) = max

Ã
1−M +

MX
i=1

p−βi

!β

The choice of copula C defines the joint distribution of default indicators
from which the portfolio loss distribution can be calculated. The number of
names in the portfolio can be large and therefore the calibration of the copula
parameters can be problematic. To reduce the number of parameters some form
of symmetry is usually imposed on the distribution of default indicators. Gordy
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[12] and Frey McNeil [9] discuss the mathematics behind the modeling of credit
risk in homogeneous groups of obligors and equivalence of the homogeneity
assumption to the factor structure of default generating variables. Conditional
on the factors, defaults are independent and the conditional joint distribution
of default indicators can be easily calculated using multinomial distribution.
To simplify the calculations even more, a large homogenous portfolio (LHP)
approximation can be used to approximate the multinomial distribution with a
finite number of obligors. Schonbucher and Shubert [22] and Vasicek [26] show
that LHP approximation is quite accurate for upper tail of the loss distribution
even for mid-sized portfolios of about 100 names. We use symmetric one factor
LHP setup in this paper for analytical tractability.
Assumption 1(Symmetric One Factor Model): Assume that loss given

default li = (1 −
_
Ri)ni, individual default probabilities pi are the same for all

M names in the portfolio and the latent variables admit symmetric linear one
factor representation:

ni = n (34a)
_
Ri =

_
R (34b)

pi = p (34c)

Ri = bRm +
p
1− b2Ei with 0 ≤ b ≤ 1 (34d)

where Rm and E are independent zero mean, unit variance random vari-
ables. E 0is are identically distributed with cdf G(.).
Suppose we increase the number of names in the portfolio while keeping

the total exposure size of the portfolio constant so that ni = N/M . Condi-
tional on Rm the loss of the portfolio contains the mean of independent iden-

tically distributed random variables, LM =
³
1−

_
R
´
N 1

M

PM
i=1 1{Ri≤d}, which

a.s. converges to its conditional expectation as M increases to infinity. We use
L without subscript to denote the portfolio loss under LHP assumption.

Proposition 3 (LHP Loss) Under Assumption 1

L ≡ lim
M→∞

"³
1−

_
R
´
N
1

M

MX
i=1

1{Ri≤d}

#
=
³
1−

_
R
´
NP (Ri ≤ d|Rm) = (35)

=
³
1−

_
R
´
NG

µ
d− bRm√
1− b2

¶
a.s. for any Rm ∈ supp (G)

Proof. see proposition 4.5 in [9]
Based on 35 cdf of L can be expressed in terms of the cdf of Rm

P (L ≤ l) = P (Rm ≥ d1 (l)) (36)

d1 (l) =
d

b
−
√
1− b2

b
G−1

⎛⎝ l³
1−

_
R
´
N

⎞⎠
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The probability of a small loss in a diversified portfolio is high when the
probability of "market return", Rm, falling below barrier d1 is low. In other
words a small loss corresponds to the right tail of the market return distribution.
The left tail of the market return distribution corresponds to the large portfolio
loss - the thicker the left tail the more probable large loss is. d1 depends on the
single name default barrier d, market factor loadings and the loss-per-obligor
parameters. Note that d1 is not necessarily monotonic function of b. Only for
small losses, such that l <

³
1−

_
R
´
NG(0), it is increasing in b. For Gaussian

copula we have familiar formula for the LHP loss derived by Vasicek [26]:

LG =
³
1−

_
R
´
NΦ

µ
Φ−1 (p)− bRm√

1− b2

¶
(37)

P (L ≤ l) = 1− Φ
¡
dG1 (l)

¢
(38)

dG1 (l) =
Φ−1 (p)

b
−
√
1− b2

b
Φ−1

⎛⎝ l³
1−

_
R
´
N

⎞⎠ (39)

5.2 From Loss Distributions to Correlation Spectrum

The mean of the loss distribution is not affected by the choice of copula. The
second and higher moments of the loss distribution depend on the copula char-
acteristics. In particular, the variance of the loss can be expressed in terms of
bivariate default correlation coefficients, ρD (p) , defined in Section 4.

V ar(LM ) = V ar

Ã
(1−

_
R)N

1

M

MX
i=1

1{Ri≤dp}

!
= (40)

(1−
_
R)2N2p(1− p)

µ
1

M
+

M − 1
M

ρD (p)

¶
V ar(L) = (1−

_
R)2N2p(1− p)ρD (p) (41)

where ρD (p) = corr(1{Ri≤dp}, 1{Rj≤dp}). By comparing the default corre-
lation coefficients, as we did in Section 4, we therefore implicitly compare the
impact of the copula choice on the loss variance.
In addition to the variance of L we are also interested in measuring(pricing)

the extreme risks - the likelihood of the small and large losses. To do that
we define the loss tranches which allow us to look at the particular slices of
the portfolio loss. Let (Kd,Ku] denote a tranche with attachment point Kd and
detachment pointKu expressed as fractions of the reference portfolio notional so
that 0 ≤ Kd < Ku ≤ 1. The notional of the tranche, N(Kd,Ku], is N (Ku −Kd)
where N is the notional of the portfolio. The loss L(Kd,Ku] of the tranche is the
fraction of L that falls between Kd and Ku. For simplicity assume that total
notional N is normalized to 1.
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L(Kd,Ku] = f(Kd,Ku] (L) (42)

f(Kd,Ku] (x) ≡ (x−Kd)
+ − (x−Ku)

+ (43)

Tranches with zero attachment point, (0,Ku] , and unit detachment point,
(Kd, 1] , are called equity and senior tranches correspondingly. Loss of any
tranche can be decomposed into losses of two equity tranches L(Kd,Ku] = L(0,Ku]−
L(0,Kd]. Expected loss of the equity tranche (0,K] depends on the portfolio loss
distribution and in LHP setup can be computed using only the distribution of
the market factor

EL(0,K] = Ef(0,K] (L) = E

∙
G

µ
d− bRm√
1− b2

¶
1{Rm≥d1(K)}

¸
+KP (Rm < d1 (K))

(44)
The expectation in (44) can be computed by Monte Carlo simulation or numer-
ical integration if we know G and distribution of Rm (see appendix C). For the
Gaussian copula, the integral can be taken in closed form.

EGL(0,K] =
³
1−

_
R
´
Φ
¡
Φ−1 (p) ,−d1;−

√
ρ
¢
+KΦ (d1) (45)

d1 =
1
√
ρ
Φ−1 (p)−

√
1− ρ
√
ρ
Φ−1

µ
K

1−
_
R

¶
(46)

Because of its analytical tractability, it is convenient to use the Gaussian
copula as a benchmark model when comparing different choices of dependence
structure. In option pricing applications one uses the implied volatility as way
to translate the results of more complex models into the framework of the
benchmark Black-Scholes-Merton model with its lognormal distribution of stock
prices.
For the Gaussian copula, the correlation parameter plays a similar role to

the implied volatility for equity options because an equity tranche (0,Ku] is es-
sentially a call option on the surviving part of the underlying portfolio. Like any
long call option position, its value is increasing as a function of the uncertainty
of the underlying. The underlying in this case is the distribution of the portfolio
losses, and its uncertainty increases with the correlation parameter ρ = b2.

V ar(L) = EL2 −
³
1−

_
R
´2

p2 =
³
1−

_
R
´2 £
Φ
¡
Φ−1 (p) ,Φ−1 (p) ; ρ

¢
− p2

¤
Thus, by finding the correlation levels that in certain sense replicate the

results of the complex portfolio loss generating models in the context of the
Gaussian copula framework, we can translate the salient features of such com-
plex models into mutually comparable units. More specifically, we define the
correlation spectrum as follows:
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Definition 4 Suppose the loss distribution of a large homogeneous portfolio is
generated by a model

n
C, p,

_
R
o
with copula C, equal individual default probabili-

ties p and recovery rate
_
R. Let L(0,K] ∈

h
pf(0,K]

³
1−

_
R
´
, f(0,K]

³³
1−

_
R
´
p
´i

be the expected loss of the equity tranche (0,K] . We define the correlation
spectrum ρ(K, p,

_
R) of the model

n
C, p,

_
R
o
as the correlation parameter of the

Gaussian copula that produces the same expected loss EL(0,K] for the tranche
(0,K] for the given horizon T and given single-issuer default probability p

ρ(K, p,
_
R) solves EGL(0,K] (ρ) = EL(0,K] for all K ∈ [0, 1] (47)

where EL(0,K] is expected loss of the tranche

(0,K] generated by model
n
C, p,

_
R
o

where EGL(0,K] is defined in (45).

The correlation spectrum as defined above is closely related but not identical
to the notion of the base correlation used by many practitioners [19], [14], [?]
.The difference is that the base correlation is defined using the prices of the
equity tranches, which in turn depends also on interest rates, term structure of
losses, etc. By contrast, the correlation spectrum is defined without a reference
to the market price of a given equity tranche. It characterizes the portfolio loss
generating model, rather than the market pricing conventions. Therefore we
believe it is a more convenient tool for comparing different models, while the
base correlation is presumably better for comparing the relative value between
actual tranches.
Another important point is that the correlation spectrum depends implicitly

on the term to maturity via the cumulative default probability p. However, this
is not the only dependence — potentially, the dependence structure characterized
by the copula C also exhibits some time dependence when viewed within the
context of the Gaussian copula. This statement needs a clarification — the copula
C itself is defined in a manner that encompasses all time horizons and therefore
cannot depend on any particular horizon. However, when we translate the
tranche loss generated with this dependence structure into the simpler Gaussian
model the transformation that is required may depend on the horizon. As we will
see in subsequent sections, this is indeed the case for the portfolio loss generating
models based on GARCH dynamics, which are therefore characterized by a non-
trivial term structure of the correlation spectrum.
To ensure that the correlation spectrum is well defined we need to prove

that a solution of (47) exists and is unique. The proposition below shows that
for the Gaussian copula, expected loss of an equity tranche is a monotonically
decreasing function of ρ and attains its maximum(minimum) when correlation
is 0(1).

Proposition 5 For the Gaussian copula EG
ρ L(0,K] < 0 for any ρ ∈ (0, 1). The

expected loss monotonically decreases from f(0,K]

³³
1−

_
R
´
p
´
to pf(0,K]

³
1−

_
R
´
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as ρ increases from 0 to 1.
Proof. Using (45) and the properties of Gaussian distribution8

EG
ρ L(0,K] ≡

∂

∂ρ
EGL(0,K] = (48)

−
³
1−

_
R
´ ∙ 1

2
√
ρ
Φ3
¡
Φ−1 (p) ,−d1;−

√
ρ
¢
+Φ2

¡
Φ−1 (p) ,−d1;−

√
ρ
¢ ∂

∂b
d1

¸
+

+Kφ (d1)
∂

∂b
d1 = −

1−
_
R

2
√
ρ
φ
¡
Φ−1 (p) ,−d1;−

√
ρ
¢
< 0 for any ρ ∈ (0, 1)

By transforming the loss distribution to the correlation spectrum we do not
lose any information about the loss distribution. The next proposition shows
how to calculate the loss cdf using the correlation spectrum and its slope along
the K-dimention.

Proposition 6 Suppose ρ(K, p,
_
R) is the correlation spectrum for model

n
C, p,

_
R
o

and the probability distribution function of the portfolio loss is a continuous
function then the loss cdf can be computed from the correlation spectrum:

P (L ≤ K) = PG (L ≤ K) + ρK(K, p,
_
R)EG

ρ L(0,K] (49)

where

PG (L ≤ K) = 1− Φ (d1) (50)

EG
ρ L(0,K] =

³
1−

_
R
´ 1

2
√
ρ
φ
¡
Φ−1 (p) ,−d1;−

√
ρ
¢

(51)

d1 =
1
√
ρ
Φ−1 (p)−

√
1− ρ
√
ρ
Φ−1

µ
K

1−
_
R

¶
and ρ = ρ(K, p,

_
R) (52)

Proof. first note that the derivative with respect to K of the expected tranche’s
loss under true copula C is related to the cdf of the loss

d

dK
EL(0,K] =

d

dK
E
¡
L− (L−K)+

¢
= − d

dK
E (L−K)+ = E1{L−K≥0} = 1−P (L ≤ K)

(53)
8The following properties of 2 dimentional Gaussian cdf are used in the calculation

Φ2 (x, y; ρ) = φ (y)Φ

Ã
x− ρyp
1− ρ2

!
∂

∂ρ
Φ (x, y; ρ) = φ (x, y; ρ)

where φ (.) denotes, depending on the number of agruments, pdf of standard Normal distri-
bution and pdf of bivariate Normal with standard Normal marginals and correlation coefficient
as a third argument. Numerical subscript denotes the partial derivative with respect to the
corresponding argument. First formula is straitforward. The proof of the second can be found
in Vasicek([27])

24



therefore

P (L ≤ K) = 1− d

dK
EL(0,K] = 1−EG
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where EG
KL(0,K] is computed as

EG
KL(0,K] ≡
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EGL(0,K] = −
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¡
Φ−1 (p) ,−d1;−
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ρ
¢ ∂
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d1+ (55)

+Kφ (d1)
∂

∂K
d1 +Φ (d1) = Φ (d1)

We defined the correlation spectrum for the loss distribution with a fixed
time horizon. In the next section we illustrate the pricing of portfolio tranche
swap contracts and show that the value of the swap depends on the whole term
structure of expected tranche losses up to the maturity of the swap.

5.3 Pricing of Synthetic CDO Tranches

In this section we briefly define the payoff structure of synthetic CDO tranche
contracts and their pricing. Consider a synthetic CDO with fixed maturity T
written on a synthetic portfolio. The loss L(Kd,Ku] (t) of the tranche (Kd,Ku]
at time t ≤ T is a fraction of portfolio loss L (t) that falls between Kd and Ku.

L(Kd,Ku] (t) = f(Kd,Ku] (L(t)) (56)

The swap contract for a particular tranche is swap of cash flows between the
"premium leg" and the "protection leg". The protection buyer agrees to pay a
fixed fee s to the protection seller in the proportion to the survived notional of
the tranche. The protection seller compensates the tranche losses to the insured
until the maturity of the contract.
Since the swap contract is a contingent claim on the portfolio loss it can be

priced using the risk-neutral distribution of the portfolio losses. We assume that
interest rate risk is not correlated with credit risk and denote by D (0, t) the
price at time 0 of a zero coupon bond maturing at time t. The payoff structure
of both premium and protection legs is linear in the tranche’s loss and therefore
to price these legs when the interest rates are not correlated with default risk we
only need to know the term structure of expected tranche losses. Introduce the
tranche’s default probability P(Kd,Ku] (t) as expected fraction of the tranche’s
notional that is lost due to defaults by time t.

P(Kd,Ku] (t) =
E0
£
L(Kd,Ku] (t)

¤
N(Kd,Ku]

(57)
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For simplicity assume that time is continuous. The value of the protection
leg at time 0

V protection
0 = E0

ÃZ T

t=0

D (0, t) dL(Kd,Ku] (t)

!
= N(Kd,Ku]

Z T

t=0

D (0, t) dP(Kd,Ku] (t)

(58)
Assuming that protection fee is paid in ∆q intervals e.g. quarterly the value

of the premium leg at time 0

V premium
0 = E0

⎛⎝T/∆qX
q=1

D (0, q∆q)
£
N(Kd,Ku] − L(Kd,Ku] (q∆q)

¤
s∆q

⎞⎠ = (59)

= N(Kd,Ku]s∆q

T/∆qX
q=1

D (0, q∆q)
£
1− P(Kd,Ku] (q∆q)

¤
The par spread of the swap contract is the spread that makes the values of

protection and premium legs equal. As we already mentioned swap contract
cash flows are linear functions of the tranche losses and therefore the values of
the both legs depend only on the tranche’s expected losses. Because timing of
the losses is important when the interest rates are not zero we need the whole
term structure of the tranche’s expected losses up to the maturity of the swap
to price the contract.
The portfolio loss L(t) at time t in the Gaussian copula framework depends

on time t only through the single-issuer default probability pt
9 . As we showed

in proposition 2 the correlation spectrum is the equivalent representation of the
loss distribution for a fixed time horizon. The dependence of the correlation
spectrum ρ(K, p,

_
R) on t is also achieved through the second argument - single-

issuer default probability p. For example the expected tranche loss at time t
is the expected tranche loss of the Gaussian model with correlation parameter
ρ
³
K, pt,

_
R
´
and single-issuer default probability pt:

EL(0,K] (t) = EGL(0,K]

³
ρ
³
K, pt,

_
R
´
, pt

´
(60)

The expected tranche loss that happens between t and t+ dt can therefore
be computed from the correlation spectrum using its level and the slope in the
p-dimention:

dEL(0,K] (t) =
dEGL(0,K] (t)

dpt
dpt =

³
EG
p L(0,K](t) + ρp

³
K, pt,

_
R
´
EG
ρ L(0,K](t)

´
dpt

(61)

9The portfolio loss generating copula does not change with T because it corresponds to
the copula of time to default distribution which by definition does not depend on T.
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_
R
´

(64)

Thus, both legs of the swap contract can be priced using the correlation
spectrum surface, single-issuer default probability term structure and formulas
(57) -( 61).

6 Comparing Portfolio Loss Generating Models
In section 4 we demonstrated that dynamic models such as GARCH and TARCH
can produce significant pairwise default correlation even for very low default
thresholds. Thus, one can hope that these models should also be able to cap-
ture the important aspects of multi-variate default losses in a diversified portfolio
setting. But in order to discriminate between these models and to understand
which of their characteristics are the most important from a credit modeling
perspective, one must have a good measure that makes such comparisons not
only possible but hopefully apparent and intuitive. The market standard mea-
sure is the base correlation. However, this measure is best suited for comparison
of pricing of similar tranches rather than comparison of different models. In par-
ticular, base correlation implicitly depends on the level and term structure of
interest rates, as well as conventions such as coupon payment frequency, up-front
pricing, etc.
Our goal in this paper is not so much to price a specific set of tranches

under given market conditions as to provide a general framework for judging
the versatility of various dynamic portfolio credit risk models. All such models,
whether defined via dynamic multivariate returns model like in this paper or in
various versions of the static copula framework ([15], [9], [22], [16], [10], [1]), can
be characterized by the full term structure of loss distributions. Thus, without
loss of generality, we can refer to all models of credit risk as loss generating
models, with an implicit assumption that any two models that produce identical
loss distributions for all terms to maturity are considered to be equivalent. The
correlation spectrum, introduced in section 5.2, conveniently transforms specific
choice of a loss generating model into a two dimensional surface ρ(K,T ) of the
Gaussian copula correlation parameter, with the main dimensions being the loss
threshold (detachment level) K and the term to maturity T . All other inputs
such as the recovery rate R, the term structure of (static) hazard rates h, the
level of linear asset correlation ζ, the Student-t degrees of freedom ν, various
GARCH model coefficients, etc. — are considered as model parameters upon
which the two-dimensional correlation spectrum itself depends. Note that in
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the previous sections we have expressed the correlation spectrum as a function
of detachment level and the underlying portfolio’s cumulative expected default
probability p rather than the term to maturity T . Given our assumption of the
static term structure of the hazard rates h these two formulations are equivalent.
In this section we prefer to emphasize the dependence on maturity horizon in
order to facilitate the comparison with base correlation models and also to
analyze the dependence on the level of hazard rates separately from the term
to maturity dimension.
In this framework, we can compare various dynamic and static loss generat-

ing models by comparing their correlation spectra, as well as the characteristic
dependencies of the correlation spectra on changes of model parameters. Of
course, the correlation spectrum of a static Gaussian copula model [15] is a flat
surface with constant correlation across both detachment level K and term to
maturity T . Any deviation from a flat surface is therefore an indication of a
non-trivial loss generating model, and we can judge which features of the model
are the important ones by examining how strong a deviation from flatness do
they lead to.

6.1 Models with static dependence structure

Let us begin with the analysis of one of the popular static loss generation models.
On Figure 8 we show the correlation spectrum computed for the Student-t
copula with linear correlation ρ = 0.3 and ν = 12 degrees of freedom. Student-t
copula is in the same elliptic family as the Gaussian copula but has non-zero
tail dependence governed by the degrees of freedom parameter. As a model of
single-period asset returns the Student-t distribution has been shown to provide
a significantly better fit to observations than the standard normal [16].
However, from the Figure 8 we can see that the static Student-t copula does

not generate a significant skew in the direction of detachment levelK, and in fact
generates a mild downward sloping skew, which is contrary to what is observed
in the market. The main reason for this is the symmetric nature of the model —
the model has the upper tail as "thick" as its downside tail, and the tails of the
idiosyncratic returns are tied to the tails of the market factor. The fat upper
tail of the return distribution leads to reduction in the expected equity tranche
loss (the issuers in the collateral portfolio are more likely to survive together),
whose relative importance grows with the reduction in the detachment level,
thereby leading to a somewhat artificial increase of correlation spectrum with
decreasing K.
On the other hand, we can see that the correlation spectrum is downward

sloping with increasing maturity T and cumulative default rate p while remain-
ing flat throughout. Under the assumptions of a static copula model, the greater
p corresponds to the default boundary being closer to the center of the Student-t
distribution and therefore leads to smaller effects of tail-dependence and lower
correlation spectrum. These conclusions are in broad agreement with the anal-
ysis in [17], and can be taken as an indication of the general inadequacy of
symmetric static models for purposes of explanation of the correlation skew.
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Figure 8: Correlation spectrum for Student T Copula with 12 degrees of freedom and
linear correlation 0.3. The x-axes is labled with both time and default probability cor-
responding to the time horison. The term structure of single-issuer default probability
is assumed to be 1− (1− p)Twhere one year default probability p = 0.02

6.2 Multi-Period (Dynamic) Loss Generating Model

Let us now turn to loss generating models based on latent variables with multi-
period dynamics. On Figure 9 we show the correlation spectrum computed for
a loss generating model based on GARCH dynamics with Gaussian residuals,
with a linear correlation set to ρ = 0.3, and GARCH model parameters taken
from the weekly SP500 estimates in Appendix B.
As we can see, this model does exhibit a visible deviation from the flat corre-

lation spectrum for short maturities. However, as we already noted in section 3,
the distribution of aggregate returns for the symmetric GARCH model quickly
converges to normal. Therefore, it is not surprising to see that the correlation
spectrum also flattens out fairly quickly and becomes virtually indistinguish-
able from a Gaussian copula for maturities beyond 5 years. Thus, we conclude
that the symmetric GARCH model with Gaussian residuals is inadequate for
description of liquid tranche markets where one routinely observes steep corre-
lation skews at maturities as long as 7 and 10 years.
Based on the empirical results of 3.2 we know that a GARCH model with

Student-t residuals provides a better fit to historical time series of equity returns.
A natural question is whether allowing for such volatility dynamics can lead to a
persistent correlation skew commensurate with the levels observed in synthetic
CDO markets. The results of section 3.2 suggest that the additional kurtosis
of the single-period returns represented by the Student-t residuals does not
matter very much for aggregate return distributions at sufficiently long time
horizons. Indeed, Figure 10 shows that the GARCH model with Student-t
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Figure 9: Correlation spectrum for GARCH model (α=0.045, β=0.948) with Gaus-
sian shocks and the slices of the correlation spectrum for 1, 3, 5 and 7 year maturities.

residuals exhibits a correlation skew that is quite a bit steeper at the short
maturities, yet is almost as flat and featureless at the long maturities as its
non-fat-tailed counterpart — there is a small amount of skew at 10 years, but it
is too small compared to the steepness observed in the liquid tranche markets.
Thus, we conclude that one has to focus on the dynamic features of the market
factor process in order to achieve the desired correlation skew effect.

Our next candidates are the TARCHmodels with either Gaussian or Student-
t return innovations. We have seen in 3 that the asymmetric volatility dynamics
of these models leads to a much more persistent skewness and kurtosis of aggre-
gated equity returns that actually grow rather than decay at very short horizons,
and survive for as long as 10 years for the range of parameters corresponding to
the post-1990 sample of SP500 weekly log-returns. Hence, our hypothesis is that
a latent variable model with TARCH dynamics might be capable of producing
a non-trivial credit correlation skew for up to 10 year maturity.
The Figures 11 and 12 show the correlation spectra for the TARCH-based

loss generating models. The most immediate observation is that both versions of
the model produce a rather persistent correlation skew. Although the correlation
spectrum surface flattens out with growing term to maturity, the steepness
of the skew is still quite significant even at 10 years. Just as in the case of
the symmetric GARCH model, the fat-tailed residuals lead to only marginal
steepening of the correlation spectrum.

6.3 Dependence on Model Parameters

As explained in the beginning of this section, we consider the correlation spec-
trum surface as an embodiment of the particular loss generating model. Each
such model contains various parameters some of which are empirically estimated
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Figure 10: Correlation spectrum for GARCH model (α=0.045, β=0.948) with
Student-t shocks (v=8.3) and the slices of the correlation spectrum for 1, 3, 5 and
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Figure 12: Correlation spectrum for TARCH model (α=0.004, αD=0.094, β=0.927)
with Student-t shocks(v=8.3) and the slices of the correlation spectrum for 1, 3, 5 and
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(e.g. the degrees of freedom of the Student-t distribution) and some of which are
calibrated to a particular problem at hand (e.g. the level of hazard rates and ex-
pected default probabilities for the collateral portfolio underlying the synthetic
CDO tranches under question). While the empirically estimated parameters
are not likely to change, the calibrated ones will do so quite frequently as the
market conditions change.
In particular, the implied hazard rates can and do change quite significantly

even for investment grade credit portfolios. Therefore, the analysis of the de-
pendence of the correlation spectrum on the level of hazard rates has not only
an academic relevance as a matter of investigation of the model’s range of ap-
plicability, but also a practical importance due to reliance of many practitioners
on the base correlation methodology which normally takes the correlation skew
as an exogenous input and does not incorporate correlation skew adjustments as
the market spreads and implied hazard rates change. By contrast, the dynamic
multi-period models introduced in this paper produce the correlation spectrum
as an output of the model, and therefore can give a specific prediction regarding
the way the correlation skew is supposed to change when the model parameters
move.
As an example of such predictive behavior of the model consider the correla-

tion spectrum dependence on the hazard rates depicted in Figure 13, where we
have shown a particular maturity slice, the 5-year skew, as a function of hazard
rates. From the visual comparison of Figures 13 and 11 it appears that the
dependence of a correlation skew for a fixed term to maturity but varying level
of hazard rates is very similar to the dependence of the correlation spectrum on
the term to maturity. The similarity is natural, as the first order effect is the
dependence on the level of the cumulative default probability which depends on
the product of h · T rather than on the hazard rate or the term to maturity
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h=100bp, 2) T=10-yr h=100bp, 3) T=5-yr h=200bp

separately. For each level of this product, we get a specific level of the default
threshold in the latent variable credit risk model. The higher this threshold,
the closer is the sampled region to the center of the latent variables distribution
and the less it is affected by the tail risk — thus leading to a lower level of the
credit correlation.
However, there is a second order effect which makes these two dependencies

somewhat different. It is related to the shape of the distribution of aggregate
returns for the market factor. Assuming that the parameters of the GARCH
process are the same in both cases, we can deduce that the dependence on the
term to maturity with fixed hazard rate should exhibit a faster flattening of
the correlation spectrum than the dependence on the hazard rate with fixed
term to maturity because the increasing aggregation horizon for market factor
returns leads to gradual convergence of its distribution towards normal and, as
a consequence, to progressively flatter correlation skew.

To make the visual comparison easier, we note that the effect of flattening
of the skew while going from a 5-year horizon to the 10-year horizon must be
compared against the flattening of the skew while going from 100bp hazard
rate to 200bp hazard rate. The right hand side Figure in 13 contains a direct
comparison of these three particular slices of the correlation spectrum surface
and confirms the intuition put forward above.

7 Summary and Conclusions
In this paper we have introduced and studied a new class of credit correlation
models defined via a dynamic portfolio loss generation process within a latent
variable approach where the latent variable follows a factor-ARCH with asym-
metric TARCH volatility dynamics. We have shown this model to be superior
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to alternative simpler characterizations of the time series processes including
symmetric GARCH volatility dynamics with Gaussian or Student-t residuals
when it comes to ability to produce a significant and persistent correlation skew
commensurate with the levels observed in the liquid synthetic CDO tranche
markets.
To build the foundation for our model, we have studied the time aggregation

properties of the multivariate dynamic models of equity returns. We showed that
the dynamics of equity return volatilities and correlations leads to significant
departures from the Gaussian distribution even for horizons measured in several
years. The asymmetry appears to "survive aggregation" longer than fat tails
do based on the parameters estimated from the real data. The main source of
skewness and kurtosis of the return distribution for long horizons is the dynamic
asymmetry of volatility response to return shocks or so-called leverage effect.
We introduced the notion of the correlation spectrum as a tool for comparing

the loss generating models, whether defined via a single-period (static) copula,
or via multi-period (dynamic) latent-variable framework, and for simple and
consistent approach to non-parametric pricing of CDO tranches. We showed
that for a portfolio loss distributions with smooth pdf the loss distribution can
be easily reconstructed from the correlation spectrum using its level and slope
along the K-dimention.
Importantly, in our dynamic loss generating model framework, the corre-

lation spectrum is not only explained, but predicted — based on empirical pa-
rameters of the TARCH process and the parameters describing the reference
credit portfolio. The model also predicts a specific sensitivity of the correlation
spectrum to changes in various such parameters, including the hazard rate. The
structural inability of the static models to incorporate the changes in the base
correlation have been at the heart of the recent difficulties faced by these models
during the synthetic CDO market dislocation in April/May of 2005. While our
model is not likely to have given all the answers in such turbulent market con-
ditions either, its ability to accommodate the changes in the correlation skew
could help the practitioners get a better handle on the fast moving markets.
One of the possible directions for generalization of our model is to move

from a single market factor to a multi-factor framework. The well-documented
importance of both macro and industry factors for explanation of equity returns
suggests that the same factors could be instrumental in getting a more accurate
model of credit correlations as well.
Whether in a single factor or a multi-factor setting, many of our conclusions

reflect the limitations of the large homogeneous portfolio approximation which
we have adopted in this paper. In particular, it is clear that even deterministic
but heterogenous idiosyncrasies, market factor loadings and hazard rates could
lead to significant changes in portfolio loss distribution and consequently to the
correlation spectrum of the model. An extension of our model to such het-
erogenous case is possible, although the computational efforts will increase very
significantly. Still, the promising features demonstrated by our approach even
in the LHP approximation suggest that despite the computational difficulties,
such extensions might be a worthy effort. In particular, the explicit modeling
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of the heterogeneous reference portfolio would have been absolutely necessary
if one were to attempt to explain the tranche pricing during significant market
dislocations.
Another important simplification which we have made when discussing the

results of our model with regard to the correlation spectra is that we have only
considered the unconditional return distributions and have not explored the
effects of the initial shocks to either TARCH returns of volatility. From the
perspective of a credit investor this means that we have described the "equilib-
rium" (in a loose sense of that word) state of the tranche market, but not the
effects related to the relaxation towards the equilibrium. One could expect to
find interesting results in this line of research, which would be that much more
relevant given the credit market’s propensity to undergo unexpected short-term
dislocations as we have witnessed several times over the past couple of years.
Among the more practical questions that remain for future investigation are

the calculation of the deltas or hedge ratios of synthetic CDO tranches within our
framework, defining relative value measures for tranches reflecting the model’s
ability to produce the "fair" or "predicted" correlation spectrum.
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A Kurtosis and Skewness of Aggregated TARCH
Returns

In this notes we analyze kurtosis and skewness of aggregated returns RT =

1√
T

TX
t=1

rt when rt is assumed to follow TARCH(1,1) process

rt = σtεt

σ2t = (1− ρ)σ2 + αr2t−1 + αDr
2
t−11{rt−1≤0} + βσ2t−1

where returns innovations εt are assumed to be iid, have zero mean and unit
variance. We are interested in variance, skewness and kurtosis of time aggre-
gated returns. To make sure that those moments are finite we need correspond-
ing moments of the return innovations to be finite. Particulaly, we assume that
εt has finite kurtosis. Let us introduce the following notations for the central
and truncated moments of εt

mε ≡ E (εt) = 0

vε ≡ E
¡
ε2t
¢
= 1

vdε ≡ E
¡
ε2t1{εt≤0}

¢
sε ≡ E

¡
ε3t
¢

sdε ≡ E
¡
ε3t1{εt≤0}

¢
kε ≡ E

¡
ε4t
¢

kdε ≡ E
¡
ε4t1{εt≤0}

¢
Lemma 7 The following recursions hold for TARCH(1,1) model

covt−1
¡
rkt , r

2
t+u

¢
= ρcovt−1

¡
rkt , r

2
t+u−1

¢
for u>1

covt−1
¡
rkt r

2
t+1

¢
= αvart−1

¡
rk+2t

¢
+ αDvart−1

¡
rk+2t 1{rt≤0}

¢
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Proof.

covt−1
¡
rkt , r

2
t+u

¢
= covt−1

¡
rkt
£
(1− ρ)σ2 + αr2t+u−1 + αDr

2
t+u−11{rt+u−1≤0} + βσ2t+u−1

¤¢
=

0 + αcovt−1
¡
rkt , r

2
t+u−1

¢
+ αDcovt−1

¡
rkt , r

2
t+u−11{rt+u−1≤0}

¢
+ βcovt−1

¡
rkt , σ

2
t+u−1

¢
if u>1 then

covt−1
¡
rkt , r

2
t+u−11{rt+u−1≤0}

¢
= vdεcovt−1

¡
rkt , r

2
t+u−1

¢
covt−1

¡
rkt , σ

2
t+u−1

¢
= covt−1

¡
rkt , r

2
t+u−1

¢
If u=1 then

covt−1
¡
rkt , σ

2
t+u−1

¢
= 0

Proposition 8 Suppose 0 ≤ ρ < 1 and the return innovations have finite skew-
ness, sε, and finite "truncated" third moment, sdε, then conditional third moment
of Rt+1,t+T has the following representation for TARCH(1,1)

EtR
3
t+1,t+T =

1

T 3/2
sε

TX
u=1

Et

¡
σ3t+u

¢
+

3

T 3/2
¡
αsε + αDs

d
ε

¢ TX
u=1

1− ρT−u

1− ρ
Et

¡
σ3t+u

¢
In addition if Eσ3t is finite then unconditional skewness of Rt+1,t+T is given

by

ST ≡
ER3t+1,t+T

E(R2t+1,t+T )
3/2

=

∙
1

T 1/2
sε + 3

1

T 3/2
¡
αsε + αDs

d
ε

¢ T (1− ρ)− 1 + ρT

(1− ρ)2

¸
E
³σt
σ

´3
Proof. Using Lemma # we have

Et

Ã
t+TX

u=t+1

ru

!3
= Et

⎛⎝ X
t+1≤t1≤t2≤t3≤t+T

rt1rt2rt3

⎞⎠ =
TX

u=1

Etr
3
t+u +

X
t+1≤t1<t2≤t+T

3Et

¡
rt1r

2
t2

¢
=

TX
u=1

Et

¡
r3t+u

¢
+ 3

X
t+1≤t1<t2≤t+T

ρt2−t1−1
³
αEt

¡
r3t1
¢
+ αDEt

³
r3t11{rt1≤0}

´´
=

TX
u=1

Et

¡
r3t+u

¢
+ 3

TX
u=1

1− ρT−u

1− ρ

¡
αEt

¡
r3t+u

¢
+ αDEt

¡
r3t+u1{rt+u≤0}

¢¢
=

sε

TX
u=1

Et

¡
σ3t+u

¢
+
¡
αsε + αDs

d
ε

¢ TX
u=1

1− ρT−u

1− ρ
Et

¡
σ3t+u

¢
Using the law of iterated expectations

E

Ã
t+TX

u=t+1

ru

!3
= E

⎛⎝Et

Ã
t+TX

u=t+1

ru

!3⎞⎠ =

∙
Tsε + 3

¡
αsε + αDs

d
ε

¢ T (1− ρ)− 1 + ρT

(1− ρ)2

¸
E (σt)

3

ST is then computed using the simple formula for the unconditional variance
E(R2t+1,t+T ) = σ2.
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To derive unconditional kurtosis we define the following unconditional auto-
correlations

γn = γ−n = corr(r2t−n, r
2
t )

ϕn = corr(rt−n, r
2
t ) for n ≥ 1

ψi,j ≡ E
¡
rt−irt−jr

2
t

¢
for 1 ≤ j < i

Lemma 9 γn, ϕn and ψi,j decay exponentially as n and i− j increase

γn = ργn−1 = ρn−1γ1 for n ≥ 1
ϕn = ρϕn−1 = ρn−1ϕ1 for n ≥ 1
ψi,j = ρψi−1,j−1 = ρj−1ψi−j+1,1 for 1 ≤ j < i

where γ1, ϕ1 and ψk,1 are given by

γ1 = α (kr − 1) + αD
¡
kdr − vdr

¢
+ βkr/kε

ϕ1 = αsr + αDs
d
r

ψk,1 = αE
¡
rt−k+1r

3
t

¢
+ αDE

¡
rt−k+1r

3
t 1{rt≤0}

¢
with vdε =

E(r2t 1{rt≤0})
Er2t

, sr =
E(r3t )
(Er2t )

3/2 , sdr =
E
³
r3t 1{rT<0}

´
(Er2t )

3/2 , kr =
E(r4t )
(Er2t )

2 and

kdr =
E(r4t 1{rt≤0})

(Er2t )
2 .

Proposition 10 If

ρ ≡ E
¡
β + αε2t + αDε

2
t1{εt≤0}

¢
= β + α+ αDv

d
ε < 1

γ ≡ E
¡
β + αε2t + αDε

2
t1{εt≤0}

¢2
= β2 + α2kε + α2Dk

d
ε + 2αβ + 2αDβv

d
ε + 2ααDk

d
ε < 1

then unconditional kurtosis of rt, K1, is finite and

K1 ≡
Er4t

(Er2t )
2 = kε

1− ρ2

1− γ

Proof. If the 4th moment of rt exists then the following equation must hold

Er4t = E
¡
ε4t
¢
E
¡
σ4t
¢
= kεE

¡
(1− ρ)σ2 + αr2t−1 + αDr

2
t−11{rt−1≤0} + βσ2t−1

¢2
=

kε((1− ρ)2 σ4 + 2 (1− ρ)σ2E
¡
αr2t−1 + αDr

2
t−11{rt−1≤0} + βσ2t−1

¢
+¡

αr2t−1 + αDr
2
t−11{rt−1≤0} + βσ2t−1

¢2
) = kε

³
(1− ρ)

2
σ4 + 2 (1− ρ) ρσ4 + γEσ4t−1

´
Therefore Er4t nessecerily solves

Er4t = kε
¡
1− ρ2

¢
σ4 + γEr4t
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Proposition 11 If the distibution of εt is symmetric and αD = 0 then uncon-
ditional kurtosis of RT , if exists, is given by the following formula:

KT = 3 +
1

T
(K1 − 3) + 6

γ1
T 2

T (1− ρ)− 1 + ρT

(1− ρ)2
for T > 1 (65)

K1 = kε
1− ρ2

1− γ
(66)

where kε is unconditional kurtosis of εt and

γ ≡ E
¡
β + αε2t + αDε

2
t1{εt≤0}

¢2
= β2 + α2kε + α2Dk

d
ε + 2αβ + 2αDβv

d
ε + 2ααDk

d
ε .

γ1 ≡ corr
¡
r2t−1, r

2
t

¢
= α (kr − 1) + αD

¡
kdr − vdr

¢
+ βkr/kε

Proof.

E

Ã
t+TX

u=t+1

ru

!4
=

TX
u=1

E
¡
r4t+u

¢
+ 6

X
t+1≤t1<t2≤t+T

E
¡
r2t1r

2
t2

¢
=

TX
u=1

E
¡
r4t+u

¢
+ 6

X
t+1≤t1<t2≤t+T

£
cov

¡
r2t1 , r

2
t2

¢
+E

¡
r2t1
¢
E
¡
r2t2
¢¤
=

TE
¡
r4t
¢
+ 6

T (T − 1)
2

E
¡
r2t
¢2
+ 6cov

¡
r2t−1, r

2
t

¢ X
t+1≤t1<t2≤t+T

ρt2−t1−1 =

TE
¡
r4t
¢
+ 6

T (T − 1)
2

E
¡
r2t
¢2
+ 6cov

¡
r2t−1, r

2
t

¢ T (1− ρ)− 1 + ρT

(1− ρ)2

substituting the derived 4th moment into the definition of the kurtosis KT =

E

Ã
t+TX

u=t+1

ru

!4
/E
¡
r2t
¢2
completes the proof.

B Estimation Results for SP500

Table 1 SP500 moments.
Sample period Daily Weekly

sr sdr kr vdr sr sdr kr vdr
1962-2004 -1.40 -2.43 39.83 0.53 -0.55 -1.35 7.01 0.55
1990-2004 -0.11 -1.14 6.67 0.51 -0.64 -1.36 6.10 0.56

SP500 moments(After trimming 0.1% of extreme positive and negative returns )
1962-2004 0.05 -1.03 5.95 0.50 -0.39 -1.18 5.26 0.54
1990-2004 0.04 -1.01 5.56 0.50 -0.64 -1.36 6.10 0.56
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Table 2
Estimated parameters of GARCH(1,1)/TARCH(1,1) with Gaussian/Student-T shocks

on daily(D) and weekly(W) SP500 returns for.[01/01/1990-12/31/2004].

D W D W D W D W
α 0.056 0.044 0.007 0.007 0.047 0.045 0.006 0.004
αD - - 0.100 0.112 - - 0.095 0.094
β 0.941 0.953 0.933 0.918 0.951 0.948 0.941 0.927
ν - - - - 7.25 7.77 8.21 8.31

After trimming 0.1% of extreme positive and negative returns
α 0.062 0.094 0.023 0.032 0.062 0.088 0.022 0.030
αD - - 0.067 0.112 - - 0.073 0.104
β 0.935 0.896 0.941 0.895 0.936 0.90 0.938 0.90
ν - - - - 8.82 10.64 9.63 11

Table 3
Estimated parameters of GARCH(1,1)/TARCH(1,1) with Gaussian/Student-T shocks

on daily(D) and weekly(W) SP500 returns for.[01/01/1962-12/31/2004].

D W D W D W D W
α 0.076 0.107 0.029 0.037 0.064 0.09 0.027 0.032
αD - - 0.081 0.136 - - 0.072 0.106
β 0.923 0.886 0.928 0.877 0.934 0.897 0.934 0.894
ν - - - - 7.86 9.26 8.44 10.19

After trimming 0.1% of extreme positive and negative returns
α 0.051 0.044 0.004 0.007 0.046 0.045 0.004 0.004
αD - - 0.093 0.112 - - 0.096 0.094
β 0.945 0.953 0.940 0.918 0.952 0.947 0.941 0.926
ν - - - - 7.78 7.77 9.011 8.31

C Monte Carlo Simulation of Portfolio Loss un-
der LHP Assumption

Because of the one factor structure of the model we can use LHP setup described
in proposition 1 to calibrate the loss of a large homogeneous portfolio using the
distribution of the aggregated market return generated by TARCH(1,1) model.
The latent variables are assumed to have symmetric one factor structure with
the factor following TARCH(1,1) model. We calibrate the loss of the portfolio
using the one factor GARCH model described in and the formula 35 for LHP
loss

LT =
³
1−

_
R
´
Φ

µ
dT − bRm,T√

1− b2

¶
where
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• Rm,T =
1√
T

TX
u=1

rm,u is return over horizon T generated using aggregation

of simulated TARCH(1,1) returns with unconditional volatility equal to 1

• dT is calibrated so that the probability of Ri,T = bRm,T +
√
1− b2ET

hitting dT is equal to single name default probability pT

P
³
bRm,T +

p
1− b2ET ≤ dT

´
= pT

• b is the factor loading that is chosen to match a given unconditional linear
correlation ρ = b2

To calculate the expected tranche losses generated by the model and to
calibrate dT we use I = 100, 000 independent Monte Carlo simulations of the
factor and then use corresponding sample moments:

dT solves
1

I

IX
i=1

Φ

Ã
dT − bR

(i)
m,T√

1− b2

!
= pT

EL(0,K] =
1

I

IX
i=1

f(0,K]

Ã³
1−

_
R
´
Φ

Ã
dT − bR

(i)
m,T√

1− b2

!!

For T-copula model the loss of a large homegenous portfolio conditional on

L =
³
1−

_
R
´
NΦ

µ
St−1v (p)W −√ρRm√

1− ρ

¶
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