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Abstract

The consistent finding in papers that estimate the interest rate diffusion function is that interest rate

volatility is an increasing function of the spot rate. This paper introduces and implements regression

tests of monotonic diffusion functions using an implied volatility proxy for objective volatility.

Using the case of three-month LIBOR rates, this paper documents that the relationship between

interest rate levels and interest rate volatility is insignificant over the period 1985 through 1998.

While rate volatility is clearly stochastic, it is not characterized by an increasing function (either linear

or nonlinear) of rates.
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I. Introduction

Recently, a number of papers have estimated generalized diffusion processes for short term interest

rates using a variety of techniques. Ait-Sahalia (1996a, 1996b), Stanton (1997), Conley, Hansen,

Luttmer, and Scheinkman (1997), and Bandi (1998). Other than Ait-Sahalia (1996b), these papers

focus on the drift function, providing inference about the stationarity of interest rates.

However, each of these papers also estimates the diffusion function, which relates instantaneous

interest rate volatility to a function of the level of the short term interest rate. This specification is

intended to incorporate the time-varying volatility evidenced in interest rate time-series. While the

estimation techniques and model specifications vary, the consistent finding in these papers is that

volatility is an increasing function of the spot rate.

This paper evaluates the performance of diffusion functions, in which volatility is an increasing

function of the interest rate, using volatilities inferred from interest rate options prices. Option-based

volatility estimates are useful, because they do not require a complete specification of the volatility

process, which may or may not be accurate. In addition, the ability to “observe” volatility rather than

use a proxy based on a squared return, lends additional power to testing methods. Amin and Ng

(1997) have found that Eurodollar futures option implied volatilities provide accurate forecasts of

Eurodollar interest rate volatility.

Several recent papers have considered the adequacy of generalized diffusions as models for the

equity index return process using option market data. Dumas, Fleming, Whaley (1998) evaluate

deterministic volatility function models (generalized diffusion models) by measuring out-of-sample

option pricing performance of these models. Their paper documents time-instability in the diffusion

function, indicating that these models provide a poor description of the equity returns process.

Rosenberg (1999) also finds evidence indicating that equity diffusion functions, in which the only

state volatility function variable is the index level, are misspecified. Rosenberg suggests a dynamic

volatility function which incorporates at-the-money implied volatility as a state variable. Jackwerth

and Rubinstein (1996) find that deterministic volatility models are outperformed by an ad-hoc

alternative.

Generalized diffusion models are relatively new to the equity index returns area, with the

exception of the constant-elasticity of variance model (Cox, 1996). One reason may be that
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representing equity index volatility (which is generally found to be stationary) as a stationary function

of a non-stationary variable (the index level) is difficult.

In the interest rate modeling area, generalized diffusion models, in which the interest rate

volatility is a function of the level, are generally accepted as providing an adequate characterization of

the data. A detailed comparison of a number of parametric specifications is given in Chan, Karolyi,

Longstaff, and Sanders (CKLS, 1992). They state: “We find that the most successful continuous-time

models in capturing the dynamics of the short term interest rate are those that allow the volatility of

interest rate changes to be highly sensitive to the level of the riskless rate (p. 1209).”

This work has been extended using non-parametric estimates of the diffusion function. Ait-

Sahalia (1996a, p. 544, Figure 4), Stanton (1997, p. 1996, Figure 5), and Bandi (1998, pp. 30-31,

Figures 6a and 7a) document a monotonically increasing relationship between interest rates and

interest rate volatility. An exception is Ait-Sahalia (1996b, Figures 4c and 5c) although no confidence

intervals are given, so it is difficult to interpret the significance of the decline in volatility with

interest rates which occurs in the range from 0% to 11% (p. 409, Figure 4c) or 0% to 8% (p. 411,

Figure 5c). In the same paper, the FGLS results (p. 417, Figure 7b) show an increasing relationship

between returns and volatility over the observed data range.

There is a developing literature that combines GARCH-type stochastic volatility and level

dependent volatility. These models generally find that the addition of a stochastic volatility factor

improves model performance significantly and results in substantially smaller (but positive) estimates

of interest rate elasticity. See, for example, Brenner, Harjes, and Kroner (1996, Figure 4, p.102) as

well as Koedijk, Nissen, Schotman, and Wolff (1997, Table 2, p.112). In related work, Longstaff and

Schwartz (1992) reject a level dependent volatility model in favor of a two factor model, while

Heston and Nandi (1999) document mixed performance for two-factor model without a level effect.

Using the case of three month LIBOR rates, this paper documents that the relationship between

interest rate levels and interest rate volatility is insignificant over the period 1985 through 1998.

While rate volatility is clearly stochastic, it is not characterized by an increasing function (either linear

or nonlinear) of rates. The presence of significant estimates of this relationship in previous papers

may be due to spurious inference.

The remainder of this paper is organized as follows. Section II formulates and implements tests of

monotonicity in diffusion functions. Section III concludes the paper.

II. Option-based tests of diffusion functions
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II.a. The testing regime

Generalized diffusion models are defined by a stochastic differential equation in which the drift

function, µ(rt), and the diffusion function σ(rt) depend of state variable (rt). In the interest rate

modeling context, rt is an instantaneous interest rate, usually proxied by a short term interest rate.

(1) dr r dt r dWt t t t= +µ σ( ) ( )

Existing parametric specifications for σ(rt) include σ(rt) = σ, (Vasicek, 1977), σ(rt) = σ√ rt (Cox,

Ingersoll, and Ross, CIR, 1985), σ(rt) = σrt
γ (Chan, Karolyi, Longstaff, and Sanders, 1992), and σ(rt)

= β0 + β1rt + β2rt
β3 (Ait-Sahalia, 1996b). Recent papers such as Ait-Sahalia (1996a), Stanton (1997),

and Bandi (1998) use non-parametric techniques to estimate the diffusion function.

The tests used in this paper are based on estimating the sign of the diffusion function. If the

diffusion function is monotonically increasing (decreasing) in instantaneous volatility, then its first

derivative with respect to volatility is positive (negative). Hence, the expected value with respect to

volatility is positive (negative). This suggests the following regression tests:

(2) Test 1: σ α β ε ∂σ
∂

βt t t
t t

t

r
r

r
= + + 






 =1 1 1              E  

( )

σ α β ε βt t tr= + + ≤$ $
$1 1
1

2                           t  reject monotonically increasing function

(3) Test 2: σ σ α β ε ∂σ
∂

βt t t t t
t t

t

r r
r

r
− = + − + 






=− −1 2 2 1 2( )

( )
               E

σ σ α β ε βt t t t tr r− = + − + ≤− −1 2 2 1
2

2$ $ ( ) $                               t  reject monotonically increasing function

This paper proposes a linear regression of option implied volatilities (and changes) against interest

rate levels (and changes) to estimate the parameters β1 and β2, which measure the expected volatility

response to interest rate changes. Newey-West (1987) heteroskedasticity and autocorrelation

consistent standard errors are used to evaluate the statistical significance of the estimated parameters.

Positive and statistically significant estimates of β1 and β2, based on robust t-statistics, would be in

accord with the predictions of existing models.
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The proposed regression tests measure the global relationship between interest rates and rate

volatility. It is not necessary to estimate the entire empirical volatility function —  or to specify the

nature of its non-linearity —  to test the differences in the global predictions of existing models versus

the data. Since the existing models predict a locally positive derivative at all points, this corresponds

to a positive expected derivative.

A difference between option implied volatility and the instantaneous volatility defined by the

diffusion function is that option implied volatility reflects volatility over the remaining life of the

option, which in this paper ranges from 10 to 100 days. Even so, volatilities over different maturities

are typically highly correlated. This suggests that implied volatilities are a good instrument for

instantaneous volatilities; hence, it is likely that this difference will have little effect on the results of

Test 1. In addition, Test 2 should not be subject to this concern, since it utilizes daily changes which

are a reasonable proxy for instantaneous changes.

II.b. Implied volatility as an estimator of objective volatility

A great deal of research has focused on whether equity option implied volatilities are unbiased and

sufficient predictors of future volatility. Examples of this literature include Day and Lewis (1992),

Canina and Figlewski (1993), Christensen and Prabala (1998), Fleming (1998), and many others.

The volatilities extracted from option prices are risk-neutral rather than objective; but, as long as

there is approximately a constant or proportional risk-adjustment this should have no effect on

measurement of correlation of rate levels and rate volatility. To the extent that the risk adjustment is

stochastic and uncorrelated with the actual volatility and interest rate levels, there will be noise added

to the results, reducing the power of the test, but there should be no bias. In this sense, implied

volatility is acting as an instrument for true, but unobserved, volatility.

To provide a more specific justification for the use of at-the-money Eurodollar option implied

volatilities as an estimator of LIBOR volatility, several tests are performed. (See Section II.c for a

description of the data and technique used to obtain the implied volatilities). First, the average implied

volatility is compared to the annualized sample standard deviation of daily LIBOR returns (log-

differences). The sample standard deviation is 18.17% over the sample period, while the average

option implied volatility over the period is 14.38%. There is a statistically significant difference

between these estimates. However, as mentioned previously, if there is a constant difference between

risk-neutral and objective volatility, this will not affect the tests.
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A GARCH(1,1) model of objective volatilities over this period is estimated and the conditional

volatilities are compared with implied volatilities. A regression of implied volatilities on conditional

volatilities provides an r-squared of 61%; the correlation coefficient is .78.

As a final comparison, implied volatilities on each date are correlated with and regressed on

realized volatilities measured as (annualized) LIBOR return standard deviations over the subsequent

twenty days. The regression r-squared is 34.08% and the correlation is .5838.

These results from comparisons of implied and objective volatilities indicates that there is a great

deal of common information in these variables. Hence, it is natural to utilize implied volatility as an

instrument for objective volatility.

II.c. Implementing the tests

The volatility time-series is estimated using implied volatilities calculated using the full history of

Eurodollar futures options prices. This database was obtained from the Futures Industry Institute,

along with a database of Eurodollar futures prices. Eurodollar futures options commenced trading in

March of 1985, so the model tests cover the period from 1985 through 1998.

While this is a shorter sample period than the estimation period used in the previously mentioned

papers (often beginning in the 1973 with a separate estimation after the “Fed experiment” from 1980-

1982), the tests are still quite useful. If existing models are unable to fit the interest rate volatility

behavior over the most recent thirteen year period, it seems reasonable to conclude that they are

inadequate.

Implied volatilities are calculated each day by selecting the nearest maturity, closest to-the-money

call and put options with at least ten, but no more than 100 days until expiration, and at least five

contracts traded. Daily option settlement prices are used in the implied volatility estimation. These

prices have the advantage of being synchronized with the corresponding futures price at the end of the

day, using several exchange determined rules. Under most circumstances, the settlement price is the

average of the highest and lowest transaction prices in the last 30 seconds of trading. For additional

details, see Rule 813 of the Chicago Mercantile Exchange Rulebook.

The Black (1976) formula is numerically inverted, with the futures price and strike price

expressed in rates and the option price measured in basis points. The futures rate is the difference

between 100 and the futures settlement price, the strike rate is the difference between 100 and the

option strike price, the discount rate is the contemporaneous three-month British Banker’s
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Association LIBOR rate, and the time until expiration the number of calendar days until expiration.

While the Eurodollar contract has American exercise-style, implied volatility comparisons using the

Black (1976) model and the Barone-Adesi and Whaley (1987) model (which incorporates the value of

early exercise) indicate the differences are not significant in this context.

The interest rate series used is three-month LIBOR, as reported daily by the British Banker’s

Association. The series is chosen because it is the underlying asset for the Eurodollar futures contract;

as such, it is the rate used in calculation of the final settlement price. The rate is determined based on

a survey of the lending rates to prime customers by 16 banks which are major participants in the

London Eurodollar Market.

The first panel of Table 1 describes characteristics of the three-month LIBOR interest rate series

used in the tests. Over this period, LIBOR (in annualized terms) ranges from a low of 3.13% to a high

of 10.62%. The first order autocorrelation is nearly equal to one, suggesting non-stationarity. This is

confirmed by an augmented Dickey-Fuller test with five lags. There is also strong evidence for

stochastic volatility, documented by an ARCH test p-value less than .0001.

The second panel of Table 1 describes characteristics of Eurodollar futures option data used to

estimate at-the-money implied volatilities. Using the screening rules mentioned previously, there are

3170 of 3388 trading days on which implied volatilities are calculated. Implied volatilities (in

annualized terms) range from a low of 3.38% to a high of 43.97%. The average implied volatility is

14.38% with a standard deviation of 5.50%.

Figure 1 plots the time-series of interest rates and interest rate volatilities. The peak in interest

rates over this period is in 1989 with a trough in 1992. The peaks in interest rate volatility are around

the 1987 stock market crash and in 1992. Interestingly, the 1992 volatility peak corresponds to a

period of low interest rates, and the most recent period of stable rates is associated with declining rate

volatility.

Figures 2 plots LIBOR volatility against LIBOR. If the diffusion function is increasing in the

interest rate, there should be a scatter around a positively sloped curve. Figure 2 suggests that the

relationship (either positive or negative) between rates and volatility is tenuous, at best. Especially

noticeable is the high volatility at low rates shown in the left portion of the figure. High rates, shown

in the right portion of the figure, are associated with average, rather than the highest levels of

volatility. Figure 3, which plots volatility changes against interest rate changes, suggests that there is

no discernable relationship between these variables.
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Table 2 presents the results using formal tests described in Section II.a. The p-values for the

parameter estimates are calculated using Newey-West (1987) heteroskedasticity and autocorrelation

consistent standard errors.

The first regression test, of volatility on interest rate levels, results in a beta parameter (β1) which

is statistically insignificant. The point estimate of β1 is -.20, so in addition to insignificance, the sign

is incorrect. The second test, of volatility changes on interest rate changes, has similar results. The

point estimate of β1 is -.16, which is also statistically insignificant. From these tests, it is concluded

that there is no statistically significant relationship between Eurodollar interest rates and interest rate

volatility over the period 1985 through 1998.

Further evidence is provided by comparing the fitted volatilities from several parametric

specifications with the “true” volatilities inferred from option prices. In particular, the CKLS (1992)

specification (σ(rt) = σrt
γ) is adopted to estimate fitted volatilities at γ levels of .5, 1.5, and 1.75. The

σ parameter, for each choice of γ, is selected to scale the estimates to match the average implied

volatility (14.38%) over the sample period.

The first choice of γ provides estimates consistent with the CIR (1985) model, the second choice

is close to the empirical estimate in CKLS (1992), and the third estimate is at the center of the

acceptable range found by Conley, Hansen, Luttmer, and Scheinkman (1997). Daily LIBOR fitted

volatilities are obtained by evaluating each specification using the three-month BBA LIBOR rate over

the period from 1985 through 1998.

Figure 4 plots these LIBOR fitted volatilities against LIBOR implied volatilities. The fitted

volatilities are correlated with each other due to their dependence on the same factor, and the

magnitude of the elasticity parameter determines the dispersion of the fitted volatilities. Pearson

correlation coefficients for the fitted volatilities and implied volatility are -0.09, -0.04, and -0.02.

Only the first is statistically significant at the 1% level, and it has the incorrect sign.

A final comparison with parametric level dependent volatility models is provided by estimating

the CKLS volatility function using maximum likelihood estimation for daily LIBOR returns over the

sample period. The estimated σ is statistically significant and equal to .0089 which corresponds to an

annualized volatility of 17%. The estimated γ is -.02 and is not statistically significant.

II.d. Interpreting the results
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These results are at odds with the prediction of existing models that there is a monotonically

increasing relationship between interest rates and rate volatility. Hence, previously estimated

generalized diffusion based interest rate models appear to be misspecified.

The presence of significant estimates of a positive level and volatility relationship in previous

papers may be caused by spurious inference due to the particular choice of sample period in previous

studies or misspecification of the drift and diffusion functions and the impact of outlying

observations.

To test the sample dependency of the levels effect, a CKLS model is estimated using daily LIBOR

returns from 1973 - 1998, 1973 - 1982, and 1983 - 1998. For the full sample, the γ parameter is

statistically significant and equal to .48; for the first period, the γ parameter is statistically significant

and equal to -.02; and, for the second period, the γ parameter is statistically significant and equal to -

.06.

In models with nonlinear mean reversion, misspecification of the drift function may generate

spurious inference for the diffusion function. Ait-Sahalia (1996b, Figure 7b, p. 417) uses FGLS to

estimate the drift function and plots the squared residuals (a proxy for instantaneous volatility) against

interest rate levels. This figure suggests a strong relationship between these variables. However,

notice that the estimated nonlinear drift function predicts large rate increases when rates are low and

large decreases when rates are high. If, in fact, the drift function is a scalar, then the misspecified

nonlinear drift will generate large residuals at very high and low rates, which will be reflected in a

parabolic estimate of the diffusion function.

As a comparison, Figure 5 graphs squared one-day LIBOR returns against LIBOR levels over the

period 1985 through 1998. This plot shows that there is no strong relationship between volatility and

interest rates over the sample period. A regression of squared returns on LIBOR and LIBOR squared

indicates that there is a statistically significant nonlinear relationship, but that the predictive ability of

LIBOR for squared returns is very small with a regression adjusted R-squared of .06%. The lack of

variability in the fitted squared returns, also plotted in Figure 5, confirms that the explanatory power

of LIBOR is low.

These results suggest that the appearance of a strong volatility and interest rate relationship in

models with nonlinear mean-reversion may be an artifact of misspecification of the drift function.

Evidence against a nonlinear drift function is provided in several recent studies including Jones

(1998), Pritsker (1998), and Chapman and Pearson (1999).
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III. Conclusions

This paper has proposed and implemented regression tests of monotonicity in interest rate diffusion

functions. These tests are based on the measured relationship between observed interest rates (and

changes) and interest rate volatility (and changes) inferred from option prices.

Evidence from the Eurodollar market suggests that interest rate volatility is stochastic but

unrelated to rate levels. If there is a level effect, it is very weak compared to other factors that drive

interest rate volatility. This suggests that generalized diffusion models provide a poor characterization

of the data, and that interest rate models with stochastic volatility (e.g. Longstaff and Schwartz

(1992); Fong and Vasicek (1992); Chen and Scott (1992); Brenner, Harjes, and Kroner (1996);

Koedijk, Nissen, Schotman, and Wolff (1997); Andersen and Lund (1997); and Heston and Nandi

(1999)) are warranted.
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Table 1
Data description

Three-month BBA LIBOR
Daily, 1985-1998

Levels Changes
N 3388 3388
Mean    6.33% 0.00%
Median 6.06% 0.00%
Maximum 10.62% 0.38%
Minimum 3.13% -0.69%
Std. Dev.  1.79% 0.06%
Skewness  -0.0002 -1.0967
Kurtosis  2.2237 17.5801
Autocorrelation 0.9990 0.0697
Aug. Dickey-Fuller stat. -1.71 -23.23
ARCH p-value <.0001 <.0001

Eurodollar futures option data (at-the-money nearest maturity call and put)
Daily, 1985-1998

N Mean Std. dev. Minimum Maximum
Moneyness (K/Ft - 1) 3170 0.0001 0.0131 -0.0369 0.0369
Time until expiration (days) 3170 54.01 26.01 10.00 100.00
Trading volume (contracts) 3170 5255.68 5783.63 20.00 64173.00
Implied volatility (annual) 3170 14.38% 5.50% 3.88% 43.97%

This table reports characteristics of the interest rate data and option data used in the diffusion
function tests. The interest rate data is three-month LIBOR reported daily by the British Banker’s
Association (BBA). The augmented Dickey-Fuller (1979) test statistic measures the presence of
non-stationarity (a unit root) using five lags. A test statistic smaller than -2.56 indicates rejection of
the null of a unit root in the data. The ARCH test p-value is the p-value from Engle’s (1982) ARCH
test which measures the presence of stochastic volatility as evidenced by correlation of squared
residuals using five lagged squared residuals. Kurtosis is reported in excess terms.

The futures options data is daily data distributed by the Futures Industry Institute (FII) for all
contracts traded from the inception of trading in March 1985 through 1998. Only nearest maturity
(between 10 and 100 days), nearest to the money, put and call contracts with daily volume of at
least 5 contracts are used in this study. For each option contract, the corresponding futures
contract settlement price is obtained using a database from the FII. Futures prices and strike
prices are converted to rates (Ft = 100 - futures price; K = 100 - strike price). The option
proportional moneyness is K/Ft - 1. Time until expiration is measured in calendar days. Implied
volatilities are obtained by numerically inverting the Black (1976) formula, using this data, along
with the BBA three-month LIBOR rate as the discount rate.



Table 2
Option-based tests of interest rate diffusion functions

Regression of volatility on interest rates
Variable Coefficient Std. Error t-Statistic Prob.  
α1 0.16 0.0117 13.37 0.0000
β1 -0.20 0.1646 -1.20 0.2290
Adjusted R-squared 0.0038
Durbin-Watson stat. 0.0575
F-probability 0.0003
Number observations 3170

Regression of volatility changes on interest rate changes
Variable Coefficient Std. Error t-Statistic Prob.  
α2 0.00 0.0002 -1.31 0.1905
β2 -0.16 0.7248 -0.21 0.8301
Adjusted R-squared -0.0003
Durbin-Watson stat. 2.3294
F-probability 0.6825
Number observations 3170

This table reports tests of interest rate diffusion functions based on regressions of volatility levels
on interest rates and volatility changes on interest rate changes. Interest rate (LIBOR) volatilities
are estimated using Eurodollar futures option at-the-money implied volatility. LIBOR rates are
daily three-month LIBOR rates reported by the British Banker’s Association. Standard errors and
t-statistics are calculated using the Newey and West (1987) heteroskedasticity and
autocorrelation consistent procedure with eight lags.



Figure 1
LIBOR and LIBOR volatility 
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Figure 2
Volatility and interest rates

(LIBOR, 1985-1998)
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Figure 3
Volatility changes and interest rate changes

(LIBOR, 1985-1998)
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Figure 4
LIBOR implied and fitted volatilities

Daily, 1985-1998
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Figure 5
LIBOR and LIBOR squared return

Daily, 1985-1998
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