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The Dynamics of Discrete Bid and Ask Quotes

Abstract

This paper describes a general approach to the estimation of security price dynamics when
the phenomena of interest are of the same scale or smaller than the tick size. The model
views discrete bid and ask quotes as arising from three continuous random variables: the
efficient price of the security, a cost of quote exposure (information and processing costs)
on the bid side and a similar cost of quote exposure on the ask side. The bid quote is the
efficient price less the bid cost rounded down to the next tick; the ask quote is the efficient
price plus the ask cost rounded up to the next tick. To deal with situations in which the
cost of quote exposure possesses both stochastic and deterministic components and the
efficient price follows an EGARCH process, the paper employs a nonlinear state-space
estimation method. The method is applied to intraday quotes at fifteen-minute intervals
for Alcoa (a randomly chosen Dow stock). The results confirm the existence of persistent
intraday volatility. More importantly they establish the existence of a persistent stochastic
component of quote exposure costs that is large relative to the deterministic intraday “U”

component.
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1. Introduction

Although most determinants of a security price are likely to be continuous
variables, institutional arrangements generally constrain the security to a discrete grid.
This grid may be coarse relative to the price variation over brief intervals, and also relative
to the economic costs of order submission and execution. This paper suggests that the bid
and ask quotes arise from an implicit efficient price and quote-exposure costs, all of which
are continuous random variables. The discrete bid quote is the implicit efficient price less
the continuous bid exposure cost rounded down to the next tick; the discrete ask is the
efficient price plus the continuous ask exposure cost rounded up. The paper proposes a
nonlinear state-space procedure for estimation and (in real time applications) online
filtering, and applies this model to fifteen-minute bid and ask quotes for a New York
Stock Exchange stock.

This paper stands at a juncture of two themes in empirical financial research: the
analysis of discreteness in security prices and the characterization of time-variation in
microstructure data. The former concentrates on estimation of latent price moments (e.g.,
“true” variances) from discrete transaction price series. The latter embraces the
deterministic (e.g. intraday) patterns in spreads, trading volumes and volatilities, but more
importantly the time-varying volatility models (ARCH and its offspring). Beyond their
obvious common concern with the dynamics of security prices, however, the two strands
have evolved along methodological lines sufficiently different to impede their integration.

The classic models of discreteness in transaction prices were motivated primarily
by the need for stock return volatility estimates based on daily closing prices. The
dominant approach involves method of moments estimators, typically derived from a
rounding transformation applied to a transaction price that lies on a continuum. The early
models (Gottlieb and Kalay (1985) and Ball (1988)) assume that the latent security price
follows a continuous diffusion process, and apply the rounding transformation directly to

the latent price. Later studies (Harris (1990) and Dravid (1991)) incorporate more
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realistic microstructure behavior, in particular the feature that transaction prices arise as
incoming orders hit standing bid and offer quotes.

Although they constitute a significant methodological improvement over simply
ignoring discreteness altogether, the transaction price discreteness models suffer generic
economic and statistical limitations. The bid and ask quotes (when modeled) are assumed
to reflect the interaction of the latent price and a spread that is fixed, and the moment
estimators require stationarity assumptions. The stationarity and fixed-spread assumptions
have largely prevented application of these methods in studies of intraday data or time-
varying volatility.

The analysis of time-varying volatility (beginning with Engle (1982) and surveyed
in Bollerslev, Engle and Nelson (1994)) has enjoyed considerable success in modeling of
volatility evolution for purposes of option pricing and risk management. The literature is
also marked by a trend toward applications involving shorter horizons. One motivation
for this trend is statistical: volatility estimates of a pure diffusion process, for example, are
enhanced by sampling at more frequent intervals. A second motivation is operational: a
volatility estimate that s updated more frequently yields more timely advice concerning
volatility shifts. At intraday and shorter horizons, however, market microstructure effects
in general (and discreteness effects in particular) become large relative to changes in the
latent security price, This suggests that satisfactory estimation of volatilities from short
horizon data may be contingent on adequate modeling of these effects. The application in
this paper constitutes the first estimation (to my knowledge) of a high-frequency ARCH
model for an individual stock.

Related research focuses on deterministic patterns in microstructure data. Equity
markets typically display elevation of volatility, spreads and volumes around the beginning
and end of trading sessions (Brock and Kleidon (1992), McInish and Wood (1992), Lee
Mucklow and Ready (1993) and Chan, Christie and Schultz (1995)). These intraday
patterns are invariably assessed, however, from discrete transaction prices or quotes, and
the intraday variation is small relative to the tick size. Lee, Mucklow and Ready, for

example, report a beginning-of—day elevation in the quoted spread for NYSE stocks of
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roughly 10% (relative to the daily mean). For an average spread of 1/4 (arguably on the
high side for a large NYSE stock), the 10% elevation is only one fifth of the 1/8 tick size.

The approach advocated in this paper jointly models the phenomena of interest in
each of these research themes. The central assumptions concern the relations between the
underlying continuous market state Qariables (the latent efficient price and the costs of
market making) and the observed discrete bid and ask quotes. The statistical model
derived from these assumptions; however, allows for generality in the underlying dynamics
of the continuous market state variables. These dynamics are jointly deterministic (as in
the intraday pattern literature) and stochastic (as in the time-varying volatility studies).

The model is applied to bid and ask quotes collected at fifteen-minute intervals for
a typical NYSE stock over a sample period when the tick size is one-eighth of a dollar.
The importance of discreteness in this sample can be motivated by two observations.
First, the changes in the discrete quotes overwhelmingly concentrate on zero, one or two
ticks. This suggests that the tick size is large relative to short-term price movements.
Second, in 45.9% of the intervals, the closing spread was one eighth. This suggests that
the tick size is frequently binding on the economic spread.

Yet the NYSE recently moved to a tick size of one-sixteenth for most stocks, and
plans to move to decimal trading by the year 2000. The question then arises as to
whether discreteness in empirical studies is fated to be a statistical nuisance effect of
fading importance.

While the diminution of the tick size obviously lessens the benefit of explicitly
modeling discreteness, fundamental economic considerations suggest that the tick size will
in equilibrium remain large relative to certain trading costs. Harris (1996, 1997) points
out that in a market that at least partially respects time priority for orders at a given price,
the tick is the cost of jumping to the head of the existing queue. An arriving buyer, for
example, can step ahead of the existing limit buy orders only by bidding one tick higher
than the best prevailing bid. To the extent that market institutions view time priority as a
desirable feature in encouraging the supply of liquidity, they are unlikely to be indifferent

to arbitrarily small tick sizes.
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Although these considerations may help motivate the present approach,
determination of the optimal tick size lies outside the scope of the present paper. Analyses
of issues related to this important question include Ahn, Cao and Choe (1996), Angel
1994), Anshuman and Kalay (1994), Bernhardt and Hughson (1996), Brown, Laux and
Schacter (1991), Chordia and Subrahmanyam (1995), Cordella and Foucault (1996),
Glosten (1994), Harris (1990, 1991)). Nor does the present model account for clustering,
the affinity of transaction prices and quotes for integers, halves, quarters, etc., in
decreasing frequency (Niederhoffer (1965, 1966), Harris (1991, 1994), and Christie and
Shultz (1995a, 1995b)). In a dynamic setting, clustering requires specification of a
stochastic mapping from continuous state variables to discrete observations that is more
complicated than the simple rounding functions employed here.

The paper is organized as follows. The next section surveys existing models of
discreteness and time-varying volatility most closely related to the present model. The
model, which describes the generating mechanism for discrete bid and ask quotes, is
presented in Section 3. The paper then turns to the problem of inference: how to estimate
the underlying model from the observed discrete bid and ask prices. Section 4 discusses
the restrictions imposed on the underlying variables by the discrete observations. Section
5 introduces the nonlinear filtering algorithm, the associated maximum likelihood
procedure and computational techniques. The full dynamic model, which incdrporates
stochastic and deterministic time variation in the cost and efficient price volatility, is
presented in Section 6. The model is estimated for a representative NYSE stock in

Section 7. A brief summary concludes the paper in section 8.

2. Background and literature review
Stock price discreteness

The present paper’s primary antecedents lie in the stock price discreteness literature.
Discrete transaction prices were initially modeled as random walk realizations, rounded to

the nearest grid point (Gottlieb and Kalay (1985), Ball (1986)). A representative model is
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mo=m,_, +u,

D= Round[m,] O

where m;, is the implicit efficient (“true”) price, p; is the reported transaction price and
Round[] rounds its argument to the nearest integer. (Throughout this paper all variables
are assumed scaled so that the tick/grid size is unity.) In this model traders negotiate a
continuous price, which is then discretized.

Harris (1990) enhances this model to incorporate bid and ask quotes that differ
from the efficient price by a half-spread c. A restatement of Harris’s model (in present

notation) is:

m,=m,, +u,
b=m-c
a=m+c 2)

_ [Round]p Jif 7, = -1
P= Round|a,Jif 7, = +1

where b, is the bid quote, a, is the ask quote, and 7, is a buy/sell indicator variable. The
bid and ask quotes (implicit in Harris’s presentation) lie on a continuum. The rounding
here is symmetrically applied only to the side of the quote that is realized. Glosten and
Harris (1988) generalize this to allow for a quote schedule linear in trade size.

Dravid (1991), citing a suggestion of Paul Pfleiderer, allows for asymmetric
rounding of the bid and ask quotes:

m=m,_, +u,

b= Floot|m, - c]

a, = Ceiling [m, +c] 3)
_[bif 7, =-1
Pi= a,if 7, = +1

where Floor[-] rounds its argument down to the next lowest grid point and Ceiling []
rounds its argument up.

The asymmetric rounding used by Dravid is also a key feature of the model
proposed in this paper. While a full discussion of this property will be deferred until

section 3, some simple considerations may help motivate the present developments. Most
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markets impose discreteness on quotes as well as transaction prices. By asymmetrically
rounding up on the ask and down on the bid, a market maker avoids the possibility of loss
on the incoming trade. If the rounding were symmetric (all prices rounded up, all prices
rounded down or all prices rounded to the nearest integer), then one or both sides of the
quotes might be associated with an expected loss. For example, if the efficient price is 5
and the cost is 1.1, nearest-integer rounding yields a bid of 4 and an ask of 6, both of
which yield expected losses. Furthermore, symmetric rounding may imply degenerate
quotes (identical bid and ask prices) if ¢ is small.

Viewing c as a fixed parameter and assuming that the fractional part of m, is
uniformly distributed between zero and unity, it is easily shown that the expected value of
the discrete spread s, =a, b, is given by Es, =1+2¢ ! If ¢ is stochastic and independent
of the fractional part of m,, then Es, =1+2Ec,. This is important because most studies of
intraday patterns in the spread estimate 2Ec, by cross-day averaging of s; taken at a given
time of day. That the expectations differ by (constant) unity suggests that discreteness
does not distort estimated time-of-day variations in the spread.

For variances and autocovariances, however, matters are more complicated. Even
if ¢ is constant, the discrete spread will be random and autocorrelated. For example, if

c=1/4, then the spread is one tick as long as the fractional part of m is between 1/4 and

! Assume that m is uniform on the unit interval, and for convenience, drop the time

. -1,if 1,if 1-
subscripts. Then b = S ond a= ‘, meiTe
2,ifm>1-c

0,if m>c
2,if0<m<cor(l-¢c)<m<1

Lifc<m<(l-c)

2,if O<m<(1-c)orc<m<1

3,if 1-c)<m<c

Integrating either of these over the distribution of m gives Es=1+2c. This argument
generalizes for c>1.

If 0<c<1/2, then s={

If 1/2<c<1 then s={
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3/4; and the spread is two ticks otherwise. Furthermore, to the extent that the fractional
part of m, is persistent (e.g., if successive u, are small relative to the tick size), the discrete
spread will exhibit positive autocorrelation. Therefore, variability and autocorrelation in
the discrete spread do not necessarily imply variability and autocorrelation in the
underlying cost determinants of the spread.

The three models described by equations (1), (2) and (3) have different (and
generally incompatible) implications for the behavior of the transaction prices. Inthe
model of equation (1), p; follows a rounded random walk. In (2), p: is a rounded signal-
plus-noise. In (3), p: can be viewed as being randomly selected from one of two rounded
random walks (one associated with the bid and the other with the ask).

Although the focus of each of models described by equations (1), (2) and (3) is the
dynamics of transaction prices, the progression displays increasingly realistic modeling of
the (implicit) quotes. In the present application, quotes are observed and are central, to
the exclusion of the trades. In general, quotes are of particular interest in microstructure
studies because they can be updated in the absence of trades to reflect changing
information, and because they reflect perceived asymmetric information costs. Quotes
furthermore constitute in many markets the primary (sometimes only) publicly available
data (e.g., most bond and foreign exchange markets).

In their empirical implementations, the models described above are augmented
with stationarity assumptions on % and 7. In Gottlieb and Kalay (1985), Ball (1986) and
Dravid (1991), the implied variances and autocovariances of the transaction price changes
are used to compute moment estimators. The stationarity assumptions are crucial to the
tractability of these estimators. These assumptions are, of course, violated in applications
where the moments are changing in a deterministic fashion (as in studies of intraday

patterns) or in a stochastic fashion (as in the time-varying volatility models). % Although

2 These comments on the restrictiveness of the stationarity assumptions apply to most
other moment-based estimators, including the GMM approach used by Madhavan,

Richardson and Roomans (1997) and the vector autoregression approaches used in, for
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Harris (1990) also assumes stationarity, this is not essential to his iterative maximum
likelihood approach. His approach is in fact a variant of the nonlinear state space model

described by Kitagawa (1987). The Kitagawa approach is used in the present paper.

Time-varying volatility

In modeling the dynamics of the latent efficient price, the present paper draws on
prior studies of time-varying volatility. The aspects of this extensive literature that are
most relevant for the present purpose involve general concerns in the application of
ARCH-family models to short-horizon security returns and specific features of the
particular process used in the present model.

As to the general concerns, the classic models of time-varying volatility in asset
returns typically model the security price as a martingale, with increments that are (by
definition) uncorrelated but of persistent stochastic variance. Price discreteness, as well
other microstructure phenomena such as inventory control and bid-ask bounce, obviously
give rise to non-martingale components. Since the original literature on stock price
discreteness arose from the need for variance estimates derived from discrete data under
the assumption that the variance is time-invariant, one might have expected discreteness to
remain a prominent concern in the analysis of variance that is time-varying.

There are perhaps several reasons why this has not occurred. Firstly, there are
methodological differences between the stationary moment estimators favored in the
discreteness literature and the likelihood methods used in the volatility studies. Secondly,
the neglect of discreteness in the characterization of the time-varying component of
volatility might be tolerable if discreteness is viewed as introducing a bias that is

approximately constant. One might further conjecture that, in many data samples the

example, Hasbrouck (1991) and surveyed in Hasbrouck (1996). Deterministic intraday
patterns in these models are typically investigated by estimating them over subperiods
(e.g., the first and last half-hour of trading) during which time the processes are assumed

stationary.
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significant moves in forecasted volatility are driven by price changes that dwarf the tick
size.

It is also the case, however, that most applications of time-varying volatility
models have been to data that are not highly discretized. Volatility models for single
stocks are invariably estimated at daily or longer horizons (e.g., Cheung and Ng (1992)
and Duffee (1995)). These models have been applied at shorter horizons for stock
indexes, in which the discreteness problem is significantly mitigated by aggregation over
securities (e.g., Nelson (1991)). They have also been used in foreign exchange markets,
where the tick size is in most respects small relative to the equity markets (e.g., Andersen
and Bollerslev (1997)).

An ARCH variant commonly used for security returns is the exponential
generalized autoregressive conditional heteroscedasticity model (EGARCH) due to
Nelson (1991):

m =m, +u,

o? = Var(y,) 4)

tn(02)=n+9(in(02,)-7)+ (¢ |-E1 S0 )

where ¢, =u, /o, is the standardized increment. The terms on the right hand side reflect a
mean (77), an autoregressive adjustment (at rate @) toward the mean, and a disturbance
component with coefficient ¥ driven by the prior period’s shock. (The asymmetry term
suggested by Nelson is omitted.) Nelson suggested that the standardized increment £, be
distributed in accordance with the generalized error distribution (GED), denoted
Fsep(C.; v) where vis the tail-thickness parameter. When v=2, the GED reduces to the
standard normal density. The expected absolute value E|§ ,| in equation (4) is
unconditional and time-invariant, depending only on the tail-thickness parameter.

Nelson applied this model to the return series computed from daily close S&P
prices. The importance of discreteness should be minimal in Nelson’s application due to
aggregation over securities and a time horizon that is (relative to the present paper) long.

An important contribution of the present paper is the extension of the ARCH framework

to high-frequency highly-discretized data.
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The question naturally then arises as to whether explicitly modeling discreteness
leads to volatility parameter estimates that meaningfully differ from those realized by the
expedient of simply estimating the continuous volatility model with discrete data. While
this paper does not address this issue in general, the present data sample does illustrate a
striking consequence of ignoring discreteness. In the present data set, when the
conventional continuous EGARCH/GED model is applied to the discrete quote-midpoint
changes, likelihood minimization with various algorithms and starting points generally fails
to converge.

Simulations suggest that the problem lies in the interaction of discreteness with the
GED distribution. As the tail-thickness parameter drops below two (the normal case), the
GED becomes sharply peaked at zero. When zero-mean continuous data are rounded, the
observations near zero are collapsed to a high peak at zero. This feature of the sample
often dominates the minimization, driving the value of v inexorably downward. In
summary, the continuous EGARCH/GED model is not (by reason of computation

infeasibility) a valid alternative to the present approach.

Other related studies

Econometric models of ordered discrete variables often employ ordered probit
models. Probit analyses relevant to the present paper include Hausman, Lo and
MacKinlay (1992) and Bollerslev and Melvin (1994). Broadly speaking, probit models are
reduced-form specifications: robust and flexible in modeling data, but difficult in some
respects to interpret structurally.

Effects in the standard probit model flow from observable predetermined variables
to an unobservable continuous variable (via a linear specification), and thence to the
observed discrete analog of the continuous variable (via a mapping function defined by a
set of breakpoints). In Hausman et al, observable variables (volume, the futures return,
the bid-ask spread, etc.) plus a random disturbance determine a latent continuous price
change, which is then maps into the observed discrete price change.

The requirement that the latent continuous variable depend only on observable

data rules out an attractive and basic feature of the discreteness models discussed above,
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viz., the dependence of the latent unobservable price on its prior value. In each of the
models given by equations (1), (2) and (3), for example, the latent unobservable
continuous price m, depends on m,.;, not on any observable discretized transform of ...
Viewed as a reduced form model, a probit specification of observed price changes may
accord well with observed data, but there are no obvious candidates for the underlying
structural model of continuous prices.

The vagueness of the underlying structural model may be tolerable in many
situations. As an example, note that in a probit model the mapping from the latent
continuous variable to the discrete observable may distribute or smooth out any sharp
peaks in the data. It was mentioned above that the sharp peak of the GED distribution
leads to computational difficulties in fitting EGARCH models to discrete fat-tailed data.
A probit-like modification to the model may ameliorate these problems.

Nevertheless many interesting microstructure models may involve structural
features that the probit approach cannot easily resolve. In the model given by equation
(3), for example, the discrete quotes reflect a continuous variable () and a continuous
parameter (). The present paper expands this framework in numerous respects, in
particular allowing c to follow a persistent stochastic process. When both m; and ¢ are
dynamic and unobservable, structural inference from a reduced form probit approach is
likely to be even more challenging. The state-space approach advocated here, in contrast,
starts from specification of processes for the unobservable continuous variables. Inference
concerning the parameters of these processes follows from the (numerical) computation of
the sample likelihood of the observed discrete data.

Although the models for discrete transaction prices given in the first part of this
section do not possess simple probit reduced forms, probit models are more general in
certain respects. Most notably, the mapping from the latent continuous variable to the
observable discrete variable in a probit model is described by a set of breakpoints which
need only be ordered. This allows for a degree of flexibility in the implicit “rounding”
function that is not available in the structural models (both the ones described above and

the one proposed in the present paper).
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The model proposed by Bollerslev and Melvin (1994) consists of a GARCH
specification for Deutschemark/dollar quotes, the output of which (conditional volatility
forecasts) feeds into a probit model for the discrete spread. They find that the spread
depends positively on the forecasted volatility. While their model and the present one
both allow the market-making costs (cf. ¢ in the above models) to vary stochastically,
there are several structural differences.

The Bollerslev-Melvin ARCH-type component is a continuous model applied
directly to the discrete data, while the ARCH-type component of the present model is
specified in terms of the continuous unobservable variable. The use of a continuous
likelihood for discrete data is feasible in foreign exchange data because the tick size is
relative small. As noted above, this practice is not computationally feasible in the present
data set (U.S. equity data), where the tick size is larger.

A more fundamental difference concerns the way at which discreteness is imposed.
In Bollerslev and Melvin, the latent cost of market making is transformed in the probit
mapping into a discrete spread. In Dravid’s model (equation (3)) and the one advanced
here, on the other hand, the latent bid and ask quotes are discretized separately. The
model proposed in this paper is in this sense more complete. It will be seen as well to
incorporate different costs on the bid and ask sides of the market.

In allowing the cost of market making to reflect the volatility forecast, however,
the market characterization in the Bollerslev-Melvin analysis is richer than present model.
The present analysis assumes that the implicit efficient price and the costs of market
making evolve independently. This simplification is mandated by present computational
limitations, however, and is not fundamental to the overall approach.

Another group of analyses relevant to the present paper focuses on modeling time
passage and time deformation in market processes. The connection to price discreteness
arises from the view that the discrete price grid defines a set of permeable barriers in the
space where the continuous latent price evolves. If transactions are assumed to occur
when the latent price crosses one of these barriers, the observable crossing times can be

used to infer parameters of the latent price process. This approach is advocated by Marsh
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and Rosenfeld (1986) and Cho and Frees (1988). More recent studies of time
passage/deformation, however, stress characterization of the underlying implicit

information process rather than discreteness (Engle and Russell (1995) and Engle (1996)).

3. The model

As in the preceding section let m be the implicit efficient price of the security in the
usual sense of the expectation of the security’s terminal value, conditional on all public
information. (For ease of exposition, the time subscripts are suppressed in this section.)
The agent establishing the bid quote is assumed to be subject to a nonnegative cost of
quote exposure 320 for small trades, such that in the absence of discreteness restrictions
she would quote a bid price of m-£. This cost may be provisionally assumed to reflect
fixed transaction costs and asymmetric information costs. As in the Dravid (1991) model,
she is assumed to quote a discrete bid price that is rounded down: b= Floor[m - Al
Similarly, the agent establishing the ask quote is assumed to be driven by a quote exposure
cost @0 (also for small trades), such that in the absence of discreteness restrictions he
would quote an ask price of m+a. Constrained by discreteness, he rounds up to a discrete
ask quote of a = Ceiling [m+ ). In summary, the bid and ask prices are given by

b = Floor[m - Bl
a = Ceiling [m + )

)

This construct can be motivated by most simple models of dealer behavior. Inthe
framework of Glosten and Milgrom (1985) quote setters face a population of informed
and uninformed traders. m is the expectation of the final value of the security conditional
on all public information (including the transaction price history). The quote exposure
costs are defined implicitly by the conditions that m—f3 and m+ a ensure the quote-setter(s)
zero expected profits and no ex post regret, an outcome supported by Bertrand
competition.

Due to the asymmetric rounding, a Glosten-Milgrom dealer will achieve 2 profit
(both ex ante and ex post) on each trade. These profits need not lead to competitive price

cutting because the discreteness restriction ensures that any such action, if feasible, will
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result in a loss. Nor need these profits lead to a surge of new entrants. Even markets
(such as the NYSE) that allow nondealers to enter limit orders usually enforce local time
priority. The probability of execution and therefore the incentives for limit order
placement diminish with the length of the queue.

More generally, B is the quote setter’s marginal cost on the bid side of the market
at a particular time. From an economic perspective, it is useful to recognize that some of
the components of this cost may be negative, as long as the total f is nonnegative. An
example of this arises in the context of inventory control. Suppose that the cost of
clearing a trade is 0.5 (ticks). A dealer who is short (relative to her desired holdings)
might nevertheless bid as if #=0.2, reflecting a greater propensity to accumulate a position.
There is an implicit benefit of accumulation that may be viewed as a negative cost of -0.3.
If the same dealer were also offering the security, we might also expect her & to be high
relative to the clearing cost, reflecting her reluctance to accommodate further sales.
(Similar remarks apply, of course, to the ask exposure cost.)

Negative cost components may also aﬁse in the case of quotes established by
public limit order traders. Their principal alternative to a limit order is a market order.
They are not seeking to realize a dealer’s profit on average, but merely to reduce their
costs of trading (Harris and Hasbrouck (1996) and Harris (1994)). Although the dealer
(quote setter) in most microstructure models is assumed to be uninformed, the quote
exposure costs may reflect the dealer’s private information by including a displacement m-
m”, where m" is the dealer’s (informed) estimate of the security’s value.

From a modeling viewpoint, nonnegative a and f serve to prevent the bid and ask
implied by (5) from coinciding or crossing. In general practice, the bid and ask quotes
prevailing at a point in time reflect entered orders that have been subjected to a matching
procedure according to the rules of the market. The assumptions of a common m and
nonnegativity of @ and f are expedients that avoid the necessity of explicitly modeling this
matching process.

Most interesting applications will involve situations where the quote exposure

costs are random. This randomness can be viewed as arising from several sources. Along
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the lines of the Glosten-Milgrom model, there may be random time variation in the
determinants of this cost, such as perceived exposure to adverse information or holding
costs. In this view all dealers and potential dealers are subject to the same cost.
Alternatively, we may view the quote setter as an agent drawn from a population of
traders with random cost functions. If more than one such agent is active at an instant,
then the relevant costs are the minimum &’s and f’s in the set.

Although this model allows for randomness in &, B and m, the discreteness aspect
of the model arises from a nonstochastic transformation. There is no discreteness “error”
or disturbance that is required to impound the effect of discreteness.

There is no assumption that all trades take place at the posted quotes. Following
Rock (1996), the posted quotes modeled here are viewed as the best available prices
absent knowledge of the full size of the incoming order. - A trader (such as a specialist or
floor trader) who can bid or offer conditional on the incoming order size may better the
posted quotes. In practice, such agents bid or offer after the order has been received, and
these implicit quotes do not prevail after the transaction has occurred.

In the present model the quote setter’s solution to an implicit continuous
optimization problem (e or A) is subjected to a transformation to yield discrete quote
placement strategies. This must be viewed as an approximation to a decision process in
which discreteness is more fundamentally incorporated into the calculation, i.e., an integer
programming problem. Models along these lines include Anshuman and Kalay (1994),
Glosten (1994), Chordia and Subrahmanyam (1995), Bernhardt and Hughson (1996) and
Cordella and Foucault (1996). These models are stylized in numerous respects (typically
allowing a restricted set of traders and permissible interactions) and focus almost
exclusively on information costs. In these characterizations, a continuous “pre-rounding”
cost constructs (such as the present @ and ) do not explicitly arise. It could nevertheless
be argued that such quantities exist implicitly, and that they impound the costs of quote-

setting mentioned above (although they would also incorporate discreteness effects).
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4. Inference from observed bid and ask quotes.

Viewed as a transformation of continuous random inputs (m, @ and /) into discrete
bid and ask prices, the model described by (5) is a very simple one. From the perspective
of the econometrician (and that of many market participants), however, the observed bid
and ask prices are given, and inference focuses on the unobserved inputs. Viewed in this
direction, the model is more complex.

As a function of the observed bid and ask quotes (3, a), the feasible region for
(m, a, P) consistent with model (5) is:

Q(b,a):{(m,a,,B):a>0,,B>0,bSm—,B<b+1 anda—l<:m+a$a} (6)

The inequalities define a convex polytope (geometric solid) of up to six faces.

Although the estimations in this paper are based on (6), it is easier to visualize the
special case in which the quote exposure costs are the same on both bid and offer sides.
In this equal-cost model ¢= a= f, and the feasible region is

Q(b,a)={(m,c):c>0, bsm——c<b+1anda—1<m+c.<_a} (N

These inequalities define a two-dimensional region. Figure 1 depicts these feasible regions
for representative one-, two- and three-tick spreads. The diamond shape of the region
Q(b=0, a=2), for example, can be viewed as arising in the following way. When c is just
slightly greater than zero or slightly less than one, the range of m consistent with 5=0 and
a=2 is a small neighborhood about one. When c is 2, m can range from Y2 to 1%.

Given a prior probability density function f(m,c), the posterior density

conditional on observing bid and ask quotes b and a is:

f(m’C)i mcle a
f(m,c|b,a): Pr(b,a) £ (m,c)eQ(b,a)

0, otherwise

(8)

where Pr(b,a) = IQ@ v (m,c)dmdec is the probability of observing discrete bid and ask

quotes b and a. Since this conditioning imposes a truncation on the ranges of the
variables, it might seem that the conditional densities would be simple truncated versions

of the priors. The truncations defined by 0(b,a), however, apply to linear combinations of
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the variables, not the variables themselves. The shape of Q(b,a) effectively forces a
nonlinear transformation on the priors.

The nature of this distortion can be illustrated by supposing flat priors, i.e.,
assuming that m and ¢ are each independently and uniformly distributed over the positive
real line (or, more properly, over a finite region of the positive real line large enough to
encompass any values of potential interest). It might be supposed that flat priors would
suffice to generate uniform posteriors. On observing a bid of zero and an ask of two, and
being unwilling or unable to model ¢, for example, one might first conjecture simply that
the efficient price is uniformly distributed between zero and two. In fact, by integrating
over the diamond-shaped feasible region defined by O(6=0, a=2) in Figure 1, the correct
posterior for m is triangular between % and %. Thus, the model imposes structure even
under the assumption of flat priors.

The geometry of the feasible region also carries implications for estimation. Still
assuming a flat prior for m, the posterior for m conditional on observing =0, a=2 and in
addition knowing c, the posterior for m is always symmetric triangular about one for all ¢
in the feasible range. This suggests that knowledge about c will be less informative about
the location of m, but more informative about the dispersion of m. Since the location of m
is not sensitive to our prior for ¢, the cost of assuming a flat prior on ¢ when we are
estimating the dynamics of m may be acceptably low. It is worth reemphasizing that even
in this case, however, the model imposes structure. Similar arguments can be made for
the distribution of m conditional on c.

Similar remarks apply to the more general model with distinct bid- and ask-side
exposure costs. By integrating over the & and f axes in the feasible region defined in
equation (6), it can be shown that under flat priors on all the variables, the posterior for m
conditional on observing bid 4 and ask a is in general trapezoidal over (b, a). The
location-invariance property of the symmetric cost case does not hold here, however.
That is, given =0 and a=2, the location of the posterior for m depends on « and £.

As a numerical example of a nontrivial prior on ¢, consider the case where In(c) is

assumed normal with mean 4=-1 and standard deviation 0=0.6. This implies
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Pr{a-6=1] = 0.29, Pr{a—b=2] = 0.58, Pr[a-b=3]=0.11, and Pr{a-6>3]=0.03, i.e,,
frequencies of one-, two- and three- tick spreads that might be observed for a typical
NYSE stock. Assume a flat prior for m, i.e., that m is uniformly distributed on ©, »
where kis “large” (but not infinite). The choice of «is arbitrary; it integrates out of all
calculations. The cost parameter is assumed to be independent of the price level, which
implies that the prior density of the latent variables may be written as fim, c)=fm) fc).
Figure 2 depicts the prior and conditional density functions conditional on
observing bid and ask quotes 5=0 and a=2. The prior for m is drawn as a flat line of
height ™. The conditional density for m is not uniform over the allowable range of m
(1/2<m<3/2). If m is near an endpoint, the range of feasible ¢ values is small, with
correspondingly low probability. If m is near the center of the range, the feasible set for ¢
is larger. Similarly the conditional density for c is not simply a truncated log normal, but
slopes down gradually to the boundary defined by c=1. When c lies on this boundary, the
set of m values consistent with the observed quotes is a single point (of probability zero,
given the continuous prior assumed for m). As we move inward from this constraint, the

set of feasible m becomes larger.

5. Maximum Likelihood Estimation.

Suppose now that the quote generation process occurs over time periods =1, . . _,
T with state variable realizations z={m, a, £} and corresponding observed bid and ask
quotes g={b,, a;}. In most applications the state variables will not be i.i.d.. Typically m,
might follow a random walk with non-i.i.d. increments, and the latent cost variables might
also exhibit serial correlation. The model in such cases is neither linear nor Gaussian. The
general estimation approach follows Hamilton (1994a, 1994b) and Harvey (1991). The
numerical technique is due to Kitagawa (1987), which is summarized in Hamilton (1994b).
(Glosten and Harris (1988) employ another variant of this method.)

The essence of the procedure is a recursive likelihood calculation. Suppose that
the probability density function of the current state variables conditional on current and

past observations, f (z,[qt,q,_,,...) is known for some time #. Looking ahead to #+1,
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G- )= | £ |z ) (@)a, 90 ), ©)

f(zl+|

where f (zM z,)is the (possibly time-dependent) state transition density function. The

conditional probability of observing g,,, is

Pl'(qm |qn 915 ) = J.f (zx+1

zt+| € QH-I

q:, qz—l"") dzm ’ (10)

where Q,,, =0(5,,,,a,,,) as defined in equation (6). The sequence of these probabilities
may be used to construct the likelihood function.

The range of the integration in (10) is a distinctive feature of the present problem.
In typical filtering applications the integration region is R” where d is the dimension of the
state vector. In the present application, however, the quotes serve to bound the possible
values of the state variables: O, defines a small region of z, space. In an online forecasting
application we would be interested in computing the probabilities given by (10) for a
number of possible realizations of ¢,;. In an estimation situation, however, we need only
compute the probability for the value of g+, that actually occurs in the sample.

Next, note that the joint density of next period’s state variables and quotes is

f(zt+| ’qH-l

simplification peculiar to the present problem: computation of the right-hand-side density

q,,q,_,,...)= f (zmlq,,q,_,,...) if z,,, €0,,, and zero otherwise. This too reflects a

usually involves integration over a density function of the observational errors. Here, the

observations (the quotes) are a deterministic function of the state variables. Therefore

f(zl+l |qr+1 ’qt ’qt-l > ) = f(zt+l)qr+| Iqt )qt—l ”»e ')/Pr(ql+l anql—l Lol '): lf zr+] € Q'H-l and zero

otherwise. This completes the update.

In an estimation context, the state transition density is assumed to depend on a
parameter vector 6 f (z,[zt_l)= f (z,lz,_l; 6). Maximum likelihood estimation proceeds by
maximizing the sum of the log of the conditional probabilities Pr(qmlq,,q,_,, ey 0). It
should be noted, however, that the procedure does not provide estimated residuals that
might be used to test the specification of the transition densities.

Although straightforward in principle, this update requires the evaluation of two

integrals for which closed-form solutions are not readily available. In the standard Kalman
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filter, all joint, marginal and conditional densities are normal, and the results of the
integrations are summarized by update formulae for the conditional means and variances.
In the present case, successive updates involve computation of nested, truncated densities
of increasing dimension. These are calculated using a grid approximation. Appendix A
discusses the computational details. Appendix B presents some simulation results.

As an estimation approach, maximization of a grid-approximated likelihood function
is flexible in accommodating a wide range of transition densities and is perhaps
conceptually and computationally simplest. Other approaches may offer greater
computational efficiency (Kitagawa and Gersch (1996)). Markov Chain Monte Carlo
methods also hold promise (Shephard and Manrique (1997)), particularly in view of their

apparent ability to accommodate state vectors of high dimension.

6. The full dynamic model

The present implementation assumes that the efficient price evolves independently
of the quote exposure costs. The efficient price is modeled as the EGARCH/GED given
in equation (4). In the present application, however, |¢;| on the r.h.s. of (4) is not
observed. As a more tractable alternative to carrying o; as a (fourth) unobservable state
variable, I assume for purposes of estimation that the variance process is driven by the
.| in(4)is

replaced by its conditional expectation £ Hé’ ,Hq,, iy ..], which is easily computed in the

conditional expectation of the absolute efficient price increment. That is,

course of the iterative update.

To allow for the intraday “U” shapes frequently exhibited by market data, the level
term 77 in (4) is allowed to vary as a function of time-of-day. A parsimonious function that
permits end-point elevation can be built from exponential decay functions. The
deterministic component of the variance is modeled as:

(11)

L exp(—- l;’"”r,"""")+ I, if tis an intraday interval
* | ™ if tis an overnight interval

b

close

where 7% is the elapsed time since the opening quote of the day (in hours) and 77°is

the time remaining before the scheduled market close (in hours).
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The bid and ask quote exposure costs are assumed to evolve as:

ln(ar) =H T ¢(ln(at-1)_ :ut—l)+ vra (12)
ln(ﬂr) =T ¢(ln(ﬂt—l)— Fay )+ v:ﬂ
where v* and v/ are independently distributed as N (O, ol ) . This specification allows for
deterministic time variation in the mean, and also a persistent stochastic component.

The deterministic component of the cost process is:

p = I + I exp(— P ) + kg exp( - lc;“"%:‘”') (13)

::losc l s

where 72" is the elapsed time since the opening quote of the day (in hours) and 7
the time remaining before the scheduled market close (in hours).

The assumption of independent evolution allows the state transition density
flm,a, Blm, e, f..;) to be factored as f (mfm,_,)f (e )f (ﬂ,| fB.,). While this
appreciably enhances the speed of the computations, it is less desirable from a modeling
viewpoint. The assumption of independence between & and /3 is most appropriate to a
market setting in which the bid and ask quotes reflect limit orders originating from
different idiosyncratic liquidity traders. In the case where the quotes reflect the interests
of a single dealer or derive from common influences, it would be more appropriate to
allow for positive correlation between the two costs. One might also expect (following
Bollerslev and Melvin) correlation between the quote exposure costs and volatility in 7.
With one exception, these generalizations are not at present computational feasible,
although they certainly provide directions for future research. The exception involves the
equal-cost model defined by a=/=c, in which case the state space is two-dimensional (m
and c).

The specification described above jointly models the bid and ask quote exposure
costs and the efficient price. Given the computational complexity of the likelihood
calculation, however, it is also useful to consider simpler models. For example, if only the
quote exposure costs are of interest, the model might be estimated assuming at each point
in time a flat prior on the efficient price. This variant, consisting solely of the cost

equations (12) and (13) is termed the cost model. When m is eliminated as a state
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variable, the numerical grid approach is still necessary due to the stochastic variation in the
cost, but the reduction in dimension speeds computation. Alternatively, if the efficient
price dynamics are the sole concern, one might estimate the EGARCH/GED component
of the model under the assumption of flat priors on the quote exposure costs. This variant
is termed the EGARCH/GED model. Both of the cost and EGARCH/GED submodels are
in principle misspecified, but as a practical matter the cost of the misspecification may be

small relative to the computational gains.

7. Estimation

Data

I estimate the specifications described in the last section to NYSE bid and ask
quotes for Alcoa (ticker symbol AA) for all trading days in 1994. Alcoa is the first Dow
Stock (in alphabetical ordering) and is viewed as a representative high-activity security.
Bid and ask quotes are those prevailing at the close of fifteen-minute intervals. The first
observation of a day generally corresponds to 9:45, the last to 16:00 (26 points). There
are 6,780 observations. The fifteen-minute interval was chosen as a frequency that is high
enough to be of microstructure interest, yet still yield a computationally tractable number
of observations.

Table 1 reports descriptive statistics for the absolute value of the bid first-
differences. (Results for ask first-differences were virtually identical.) The proportion of
intervals for which the bid change is zero is 39% (intraday) and 18% (overnight). Not
reported in the table is the additional finding that in 24% of the intraday intervals and in
8% of the overnight intervals, there was no change in either the bid or the ask quote. If
the underlying changes in the efficient price are viewed as arising from a continuous
distribution of modest leptokurtosis, these figures suggest that the efficient price changes
are not large relative to the tick size. The extreme values in the sample lie roughly seven
standard deviations from the mean for the intraday intervals and five standard deviations

from the mean for the overnight intervals.
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(For a normally-distributed variate, the probability of observing an extreme value
seven standard deviations from the mean in a sample of 6,528 observations is
approximately 1x107; that of an extreme value five standard deviations from the mean
in a sample of 251 observations is approximately 1x1077.)

Table 2 reports descriptive statistics for the bid-ask spread. There is clear
variation in the spread. In a sense, one purpose of the present model is the allocation of

this variation to deterministic and stochastic effects.

Estimates of the full model

Table 3 reports parameter estimates. For purposes of exposition, these may be
grouped as cost- and EGARCH (variance)-related. The EGARCH-related parameter
estimates suggest a strong persistent stochastic component of the return variance. The
autoregressive variance parameter estimate of ¢=0.88, however, implies a half-life of
about six (15-minute) periods. The intraday persistence reflects, therefore, phenomena
different from those underlying daily and longer-term volatility persistence. The GED
tail-thickness parameters of v** = 0.86 and V™™ =102 For comparison purposes,
Figure 3 graphs the GED density with 1=0.86 against the standard normal.

A GED with v=0.86 has a standardized kurtosis in excess of the normal of roughly
4.6. To place this in perspective, the intraday 15-minute bid changes for the present
sample (standardized by time-of-day standard deviation) exhibit an excess kurtosis of 3.84.
It is recognized, however, that both discreteness and ARCH effects acting separately can
affect kurtosis (see Gottlieb and Kalay for the former; Bollerslev et al (1994) for the
latter). The present analysis therefore suggests that the kurtosis in the bid price changes is
similar in magnitude to that estimated for the underlying efficient price process (the
driving GED). This implies that kurtosis is fundamental and not an artifact of the
observation process.

The v estimates are lower than Nelson’s estimate for daily CRSP returns (about
1.6). The present estimates imply a more pronounced leptokurtosis, consistent with a
“lumpy” intraday information arrival process for individual stocks. This is less

pronounced in the daily index returns due to aggregation over firms and time.
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Turning now to the quote-exposure cost estimates, the deterministic parameters
depict the usual U-shaped intraday pattern, although the standard errors of the decay rates
are large. Of more interest is the characterization of the stochastic component. Both the
disturbance variance o, and the autoregressive parameter 4 are strongly positive. The
autoregressive parameter suggests that 37% of the excess log cost persists at the
subsequent time point (fifteen minutes later). _

The relative importance of the deterministic and stochastic sources of variation in
the quote exposure cost can be ascertained from simulations of the model using the
parameter estimates. For a simulation of 2,500 days, Figure 4 depicts the time path of the
10®, 50% and 9ot percentiles of the cost expressed in dollars per share. The 50™ percentile
(the median) displays the “U” shape characteristically found in spreads. The median is
roughly four cents per share at the open and two cents thereafter, rising slightly at the
close. Most importantly, the elevation associated with the beginning and end of trading is
modest compared with the stochastic variation implied by the 10™ and 90* percentile
bands. This suggests that the stochastic component is relatively large.

The finding of a mean-reverting persistent component in the cost of quote
exposure is consistent with several models of economic behavior. It may reflect mean-
reversion in the underlying cost determinants (such as asymmetric information exposure
costs or inventory holding costs related to risk) that are common across all actual and
potential quote-setters. It may also reflect, however, the arrivals and departures of
individual traders with differing costs. A buyer anxious to trade, for example, might enter
a limit order that betters the prevailing bid. At some point this limit order is likely to be
removed, either because it has been hit or else because the trader has withdrawn it and

replaced it with a market buy order.

Estimates of the cost and EGARCH/GED models.
Both the cost and EGARCH/GED models are computationally simpler subcases of

the full model. The first follows from an ongoing assumption of a diffuse prior for the
efficient price; the second assumes a diffuse prior on the quote exposure costs. The

resulting estimates are given in the last two columns of Table 3. Not only are the
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estimates virtually identical to those obtained for the full model, but so are the estimated
standard errors. Although one might have suspected that the full specification would
result in more precise estimates, this does not appear to be the case.

Several considerations could account for this. One possibility is simply general
model misspecification. But even in a correctly specified model, the information about &
and A contributed by m (and vice versa) might be small. Section 4 pointed out that the
model imposes structure even under the assumption of flat priors. With flat priors in the
equal-cost model defined by c=a=p, it was shown that c is likely to be more informative
about the dispersion of m than the location. In estimates of the equal-cost model (not
reported), the parameters governing the dynamics of m were essentially similar to those of
the full model reported here.

The equal-cost and full models may be thought of as resulting from polar
assumptions about the correlation (one and zero, respectively) between @ and . The
similarity of estimates may stem from the inability of the data to identify the correlation.
Ignoring discreteness issues for the moment (which compounds the difficulties), the
statistical situation is similar to one in which we are attempting to infer the joint
distributional properties of two unobserved variables (@ and £) on the basis of observing
their sum (the spread). The decreased informativeness of the sum taxes both the data and

the model specification.

8. Conclusion

This paper has presented a dynamic model of discrete bid and ask quotes. The
discrete quotes are rounded transformations of a continuous efficient price and continuous
quote exposure costs. The latter are presumed to capture most of the costs usually
associated with market-making or limit order placement, such as fixed transaction costs
and asymmetric information costs. The full statistical model is a rich one, allowing for
stochastic and deterministic time variation in the efficient price volatility and the quote

exposure cost. The model is estimated by maximum likelihood using a nonlinear state-

space filtering approach due to Kitagawa (1987).



Page 26

This specification is estimated for NYSE bid and ask quotes collected at the end of
15-minute intervals for Alcoa over 1994. The estimates confirm the existence of
deterministic “U” shapes in the quote cost and efficient price volatility, and also
persistence in stochastic volatility. More importantly, however, the estimates confirm the
existence of a persistent stochastic component of the quote exposure cost. The magnitude
of this component is roughly comparable to the variation associated with the “U” shapes.

Logical and economically desirable extensions of the model mentioned earlier
include allowing for correlations between the quote exposure costs and between these
Costs and the efficient price variance, One would additionally wish to allow for exogenous
variables (especially signed trades) in the efficient price evolution, e.g |
m =m,_ +Ax, +u,, where x, is the signed trade volume (positive for buyer-initiated
trades) and A is the market-depth parameter. It s relatively easy to allow for deterministic
time-variation in A. These extensions would require modifications of the state-transition
density that are conceptually simple, but (once we can no longer conveniently factor
f (Zm ’z,)) computationally taxing.

The next level of generalization would allow for stochastic market depth and
endogenous trades. This would require modeling the dynamics of these variables, and
including them in the state vector. The Kitagawa approach to maximum likelihood
estimation employed in this paper, however, relies on numerical integration over the state
vector. The curse of dimensionality looms large with state dimensions beyond the level
(three) employed in the present paper. Other methods of functional approximation or

Monte Carlo approaches may offer more promising paths.



Page 27

Appendix A.
Approximation Methods.

The present analysis follows Kitagawa (1987) in approximating the conditional
densities required in Section 5 by step functions defined over a lattice. The three-
dimensional state variable is z, = {m,c,,5,}e RxR" xR". The space RxR*xR" is
assumed to be partitioned into a set of lattice cells {C,',C,Z,. . } where each

q‘,qt_l,...) is

C! eRxR*xR" is a rectangular solid. The conditional density f (z,

approximated as

Felgngn)= Y81 €C) (A1)

where [ is an indicator variable and the §’s are parameters. The state transition densities

C, ), and the

f (Zm ]z,) are replaced by the discrete transition probabilities Pr(C,"+l

integration in (9) is becomes the summation:

991 r- ) = i Pr(Cle

i=1

C)er(Clg. g (A2)

Pr(C,’;l

The integration in (10) becomes:

2 : VollCZ, ~Q
Pr(qm |qnq:—1 r* ) = Z Pr(Cl]H |qt i1 ) o\(/o’l*(ICZ‘Q)M) (A3)

j=1
where Vol(') is the volume (in cubic ticks) of its argument. When the lattice cell lies

0o Gt -)-
But when only a portion of the cell lies within the feasible region, the probability is

entirely within the feasible region Oy, the summand in (A.3) is simply Pr(C,’,',l

weighted by the ratio of the feasible volume to the total. (The calculation of the
intersection volume was performed using the computational geometry algorithms and
software routines discussed in O’Rourke (1994). Although these algorithms have not, to
my knowledge, been used in econometrics, they are standard and are implemented in a
number of software packages.)

As with the integration in (10), computation of the summation in (A.3) is

facilitated by the restrictions implied by Qr.;. The intersection C,, N Q,,, is empty for
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virtually all of cells in the z, space, and it is easy to specify the small set of nonempty cells.

Furthermore, if the purpose of the calculation is “off-line” estimation (rather than real-time

forecasting), we can economize on the calculation of the Pr(C,ﬂ, " Y ) in equation
(A.3) by computing only the values that will be used in the subsequent probability
calculation. These simplifications greatly reduce the computational burden.

(ﬂi

In approximating the discrete transition probabilities Pr(C" C ) , I generally took

t+1
pelCL|Ci)= vollcL ) A (e,

z) (A4)

where z/ and z! were the cell midpoints. This should be a good approximation when the

t+1

density function is relatively constant over C;,;. When the transition from C; to

t+1 "
C/, included the point of no change in the efficient price, however, concerns over the
sharp peak in the GED distribution led me to use

¢~ [f(a

z,, €C,

t+1

Pr(C, AL (A.5)

where the integration calculation used the midpoint approximation (as in (A.4)) for o; and
[, and Chebyshev integral approximation along the m axis.

At time ¢, the set of lattice cells {C,'} was computed as the cross-product of three
one-dimensional lattices, one for each of the state variables ¢, f, and m. The break-
points for the  lattice were (in ticks): 0., 0.01, 0.2, 0.04, 0.07, 0.13, 0.24, 0.46, 0.88,
1.67, 3.16 and 6 (the maximum spread in the analysis). These breakpoints approximate
fixed intervals in In(@). The lattice for m ranged from the lowest bid in the sample to the
highest ask, in 0.2-tick increments.

The number of cells necessary to cover a given quote region J(a,b) depends only
on the spread a-b. For spread sizes of one through six ticks, the corresponding cell counts
are: 282, 352, 218, 218, 198, 162 (for the full model); 5, 10, 15, 25, 30 (for the restricted
EGARCH-only model); 74, 95, 42, 40, 40, 25 (for the restricted cost-only model).
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Appendix B.

Simulations.

The estimation technique employed here involves numerical approximations and
computations of moderate complexity. To assess the adequacy of these approximations
and verify performance of the software, I conducted a series of simulations. The simulated
model consists of equation (4) for the EGARCH/GED evolution of the efficient price and
equation (12) for the evolution of the quote exposure costs: The parameter values are
n=1,0=09,y=03,v=1, u=-174=04ando, =09 (chosento approximate the
values estimated from the sample). The model is essentially identical to the one applied to
the actual sample data, with the exception that I did not introduce deterministic (intraday)
patterns. This was done to reduce the dimensionality of the optimizations, and should not
materially affect the parameter estimates for the stochastic components of the model.

I generated 25 samples of 1,000 observations (vs. roughly 6,000 in the actual
sample), and estimated parameters and standard errors (with the same approximation grids
used over the actual sample). Table B-I summarizes the results. Overall, convergence to
population values is good, and the estimated standard errors agree with the dispersion
found in the sample estimates. As in the actual sample data, the results for the full model
and two sub-models are in good agreement. On a 200 mHz Pentium Pro, the average
convergence times for the likelihood optimization were 22:42 (minutes:seconds) for the

full model, 00:40 for the EGARCH/GED model and 00:41 for the cost model.
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Table 1.
Descriptive statistics for 15-minute bid changes, Alcoa, 1994.

Bid changes (in 1/8 dollar ticks) were computed for Alcoa for all trading days in 1994

(plus the overnight change).

Intraday Overnight
N 6,528 251
Min (ticks) -10 -15
Max (ticks) 11 19
Mean (ticks) 0.03 -0.21
Std. Dev. (ticks) 1.58 3.70
Distribution
% with no change 39% 18%
% with 1-tick change 37% 27%

% with >1-tick change 25% 47%
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Table 2.
Descriptive statistics for bid-ask spread at 15-minute intervals, Alcoa, 1994.
Spreads (in 1/8 dollar ticks) were computed for Alcoa at fifteen minute intervals during

the trading day, for all trading days in 1994

N 6,780
Min 1
Max 5
Mean 1.65
Std 0.67
Distribution

1-Tick 45.9%
2-Tick 43.5%
3-Tick 10.3%

4 or more ticks 0.3%
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Table 3.
The state variables in the model are z, = {m,, a,, , } where m, is the implicit efficient price,
a is the quote exposure cost on the ask or offer side of the market, and £ is the quote
exposure cost on the bid side of the market. ¢ indexes 15-minute intraday intervals (plus
the overnight period). The dynamics of the state variables are:
m,=m,_ +u, _

In (a,) =y +¢(n (@) o )+ ve

m(ﬂz) =4t ¢(ln(ﬂt-l)— ,uz-l)"' vl
where v* and v/ are independently distributed as N’ (O, 0',2) . The efficient price
disturbance, u,, has standard deviation o. Its standardized value ¢, =, /o, is distributed
as f,z(¢,;v) where vis the tail-thickness parameter. The efficient price variance follows

a modified EGARCH process:

In(0?) = 7, +p{In(02,) = ) + (Bl G =BG

where E,_|{_|= E[I Uy 1[G Gias ] / o, is the filtered estimate conditional on the bid and
ask prices through #-1.
The deterministic component of the cost process is:

,Ll, - k] +k20pcn exp(_ k;penrlopen)_'_k;lou exp(_ k;loser‘r:lose)

close :

where 7% is the elapsed time since the opening quote of the day (in hours) and 77" is
the time remaining before the scheduled market close (in hours). The deterministic

component of the variance is:

{I, + L7 exp(— l;""”'f,""‘")+ I, if tis an intraday interval
=

777" if t is an overnight interval

2

The observations are the discrete bid and ask quotes: &, = Floor[m, - B,] and
a, = Ceiling [m, +a,].

The column corresponding to the “full” model gives parameter estimates based the
Kitagawa nonlinear filtering procedure. The “cost” model is estimated assuming at each

point in time a flat prior for the efficient price. The “EGARCH” model is estimated
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Table 3 (Continued).

assuming at each point in time a flat prior for the quote exposure costs. The models are

estimated for Alcoa over all trading days in 1994, with ¢ indexing 15-minute intervals

within the day (and the overnight interval). Standard errors are reported in parentheses.
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Model
Full Cost EGARCH
Quote exposure k -1.67 -1.68
cost parameters: (0.03) (0.03)
kg 0.45 0.46
(0.06) (0.06)
kP 242 2.40
(0.72) (0.69)
ko~ 0.21 0.19
(0.07) (0.07)
st 3.48 3.50
(2.50) (2.68)
¢ 0.37 0.39
(0.03) (0.03)
o, 0.86 0.86
(0.03) (0.02)
EGARCH 11 0.39 0.35
parameters: (0.06) (0.07)
e 1.73 1.76
(0.23) (0.24)
I 1.11 1.11
(0.23) (0.23)
Jlose 0.59 0.61
(0.14) (0.15)
e 2.73 2.73
(0.13) (0.14)
@ 0.88 0.90
(0.02) (0.02)
4 0.29 0.28
(0.03) (0.03)
it 0.86 0.81
(0.02) (0.02)
ormiht 1.02 1.01
(0.12) (0.11)
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Figure 1
Feasible Regions for the Equal Cost Model.
As a function of the efficient price m and quote exposure cost c, the discrete bid and ask
quotes are given by b=Floor(m—c) and a=Ceiling(m+c). Given bid and ask quotes a and

b, the region of feasible m and c is:
Q(b,a):{(m,c):c>0,b$m—c<b+l anda—l<m+c.<_a}

The figure depicts the regions Q(0, 1), Q(0, 2) and Q(0, 3).
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Figure 2
Figure depicts prior and poster probability densities for the efficient price m and quote
exposure cost ¢. The prior density of ¢ is lognormal: In(c)~ N(u=~-1,0=0.6). The
prior density for m is a uniform prior on the interval (0, x), where xis an arbitrary positive
constant (and does not appear in the posterior densities). The posterior densities are

conditional on observing bid and. ask quotes of =0 and a=2.

Panel A. Prior and posterior densities of the quote exposure cost c.

J© Jicb=0,a=2

Panel B. Prior and posterior densities for the efficient price m.

Jm fmb=0, a=2

1/« \
. ——m ; —-m
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Figure 3
Figure depicts the probability density functions for the standard normal and standard GED

with tail-thickness parameter 1=0.86.
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Figure 4
Figure depicts the time of day patterns in the quote exposure cost for ticker symbol AA
implied by the model and estimates given in Table 3. The solid line is the 50" percentile
of the cost. The upper and lower dashed lines are the 10™ and 90" percentiles

(respectively). (NB: these are not estimation confidence intervals.)
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