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Security Bid/Ask Dynamics with Discreteness and Clustering:

Simple Strategies for Modeling and Estimation

Abstract

This paper proposes a dynamic model of bid and ask quotes that incorporates a stochastic cost of

market-making, discreteness (restriction of quotes to a fixed grid) and clustering (the tendency of

quotes to lie on “natural” multiples of the tick size).   The Gibbs sampler provides a convenient

vehicle for estimation.  The model is estimated for daily and intradaily US Dollar/Deutschemark

Reuters quotes.
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1. Introduction.

Security price dynamics over short horizons are frequently viewed as reflecting long run

or permanent informational components and also transient components arising from the trading

mechanism.  Whether one regards these latter, microstructure components as chief concerns or

nuisance effects, cursory consideration of their magnitude suggests that they be addressed in

some fashion in the modeling process.  This paper proposes a simple structural model for bid and

ask quote dynamics that incorporates several key microstructure effects common to most security

markets: a stochastic cost of market-making, discreteness (restriction of feasible prices to a grid)

and clustering (the tendency of observed prices to lie on “natural” multiples of the minimum

tick).   The present paper estimates the model for bid and ask quotes in the U.S. Dollar/

Deutschemark market, but application to other markets (such as US equities) is a natural

extension.

The economic features of the model figure prominently in the microstructure literature.

There are strong theoretical arguments and compelling empirical  evidence that the fixed and

informational costs incurred by dealers are impounded in the bid and ask quotes they expose to

the market.  O'Hara (1995) surveys theoretical models.  Hasbrouck (1996) reviews empirical

approaches to measuring and resolving these components.  Although equity markets provided the

initial impetus for this work, recent analyses have focused on foreign exchange (FX) markets

(Lyons (1996); Lyons (1995); Yao (1997)).

Discreteness of security prices became an important empirical consideration when option

valuation applications gave rise to a need for estimates of stock price volatility.  The earliest

papers view transaction prices as symmetrically rounded random walks.  Later work incorporates

more realistic and complete microstructure effects.1  Although statistical models incorporating

                                                

1 Gottlieb and Kalay (1985) and Ball (1988) advocate the rounded-random-walk paradigm.  The

analyses of Dravid (1991) and Harris (1990) incorporate a bid/ask spread in a covariance-
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discreteness have become progressively more refined, however, the normative analysis of

economic behavior with a discrete price set is not yet fully developed.2  As noted below, the

rounding scheme used in the present paper is consistent with Bertrand competition among

dealers in some (but not all) market structures.

Like discreteness, clustering first arose as an empirical concern.  Ball, Torus, and

Tschoegl (1985) find clustering in the London gold market.  Harris (1991) notes that for U.S.

equity markets (in a sample that predates the recent switch to sixteenths), prices lying on whole

numbers are more common and prices ending in “odd-eighths” (e.g., 5/8) are more rare (relative

to the unconditionally expected incidence).  Prior to recent reforms, quotes in the U.S. Nasdaq

equity market exhibited dramatic clustering.  (See Christie and Schultz (1994); Christie, Harris,

and Schultz (1994).  Schwert (1997) reviews these and related papers.Chan, Christie, and Schultz

(1995))  Bessembinder (1994) and Bollerslev and Melvin (1994) note spread clustering in US

$/DM quotes.

From an economic perspective, clustering is often characterized as arising when market

participants agree (perhaps implicitly) to a price increment that is coarser than the technically-

mandated minimum.  Harris (1991, 1994, 1997) suggests that such a convention arises from

traders seeking to minimize negotiation costs, to avoid extended rounds of bargaining over

                                                                                                                                                            

stationary method-of-moments framework.  Probit models have been estimated for discrete

transaction price changes (Hausman, Lo, and MacKinlay (1992)) and spreads (Bollerslev and

Melvin (1994)).  Closest in approach to the present paper are the latent-variable state-space

models used by Glosten and Harris (1988) and Hasbrouck (1998).  Hasbrouck (1998) reviews

these and related developments.

2 Economic analyses of the effect of the tick size on agent behavior and/or the optimal tick size

include Ahn, Cao, and Choe (1996), Angel (1997), Anshuman and Kalay (1998), Bernhardt and

Hughson (1996), Brown, Laux, and Schachter (1991), Chordia and Subrahmanyam (1995),

Cordella and Foucault (1996), Glosten (1994), Harris (1990) and Harris (1991).
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amounts of diminishing importance.  Natural multiples (round numbers) arise as focal points in

the negotiation game (see Schelling (1960)).  Christie and Schultz suggest that the Nasdaq quote

clustering reflected a collusive coordination mechanism, a hypothesis to which subsequently

subpoenaed trading room tapes have lent considerable support (U. S. Securities and Exchange

Commission (1996)).

Bearing these economic considerations in mind, the present model may be summarized as

follows.  The permanent price component common to the observed bid and ask quotes follows a

random walk.  The dealer posting a bid or ask quote is subject to a stochastic trading cost that

encompasses clearing, asymmetric information and inventory (position management) costs

specific to the next trade and some allocation of fixed costs. These costs imply ask and bid

reservation prices (the permanent component plus and minus the trading cost), which map in turn

onto the posted discrete quotes via a stochastic rounding process.

The rounding process is governed by a stochastic tick/pip size.3   In the DM/$ market the

minimum tick available on the computer systems is 0.0001 DM/$.  Nevertheless, bid and ask

quotes tend to concentrate on multiples of 0.0005.  In the present model, the implicit tick size is

viewed as a Bernoulli random variable.  Conditional on the implicit tick, the rounding is

asymmetric.  The posted bid quote is the permanent component less the cost of trading rounded

down to the next available (implicit) tick multiple.  Similarly, the posted ask quote is the

permanent component plus the trading cost rounded up.

The structural model is similar to that of Hasbrouck (1998) in its incorporation of

stochastic quote exposure costs and asymmetric rounding of bid and ask quotes.  The modeling

of clustering in the present paper is new.   The estimation approaches of the two papers also

                                                

3 As a matter of terminology, both “tick” and “pip” generally refer to the smallest unit in which a

price may be quoted.  The former term predominates in usage related to most markets (including

most equities, futures and options), while the latter is more common in FX markets.  As the focus

of this paper is on broader issues of discreteness, the more widespread term (“tick”) is used.
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differ significantly.  Whereas Hasbrouck (1998) relies on maximization of an approximate

likelihood function (based on Kitagawa (1987)), the present study uses a Gibbs sampler approach

that is more computationally efficient and amenable to extension.

The paper is organized as follows.  First, to motivate the model and provide an

application, the next section characterizes in a preliminary fashion a sample of daily $/DM

exchange rate quotes.  A simple model broadly consistent with the features of the data is

presented in Section 3.  Section 4 discusses estimation via traditional methods and the alternative

MCMC strategy.  Results for the $/DM data are reported in Section 5.  Section 6 describes

extensions to the simple model.  A brief summary concludes the paper in Section 7.

2. A preliminary look at the data.

As a representative series, this study examines bid and ask quotes in the U.S.

Dollar/Deutschemark market.  The structure is a continuous dealer market.  Bid and ask quotes

are disseminated by Reuters (among other systems), but there is also an active interdealer market

for which no public quotes are visible.   Bessembinder (1994), Bollerslev and Melvin (1994),

Lyons (1995), Peiers (1997) and Yao (1997) discuss the structure of this market and certain

features of the data relevant to the present study.

The sample consists of bid and ask quotes prevailing on the Deutschemark as of noon

(GMT) on regular U.K. business days in 1996, quoted in DM per U.S. dollar.  The data are

Reuters quotes from the Olsen Associates HFDF II data set.  The frequency of this data set is

half-hourly, but most detailed results in the present study are based on an extracted daily series

(values as of noon GMT, which is roughly the middle of the London trading day).  A

representative model is estimated, however, for the half-hourly data.

The Reuters quotes are indicative quotes entered by participating dealers.  The bid and

ask quotes used here are simply those most recently entered (as of noon GMT).  Although they

are the most timely quotes, they are not necessarily “best”, since the bid or ask (or both) might be

dominated by prices submitted earlier that are still considered active by the dealers who posted
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them.  These quotes are not, in any event, firm.  Furthermore, they are often dominated by bids

and asks available in the interdealer market (Lyons (1995)) and on electronic trading systems

such as the Reuters D2000-2 system.4   Prices are quoted to four decimal places, e.g., 1.4123

DM/$.  The tick size imposed by the information systems is thus 0.0001 DM/$.  For

convenience, all prices in this paper will be reported in ticks, e.g., 14,123.

Figure 1 depicts the distribution of the spread (the ask less the bid).  The spread exhibits

considerable variation, but is almost always ten ticks or less.  (In only 0.4% of the cases was the

spread greater than ten ticks.)  This suggests that the resolution of the spread is generally less

than ten percent of its magnitude.  Even in light of the discreteness mandated by the tick size,

however, the distribution of the spread can by no means be considered smooth.  The distribution

is sharply bimodal, with peaks at five and ten ticks.  Bessembinder (1994) and Bollerslev and

Melvin (1994) note spread clustering in the Reuters indicative quotes.  Goodhart, Ito, and Payne

(1996) note, however, that clustering is not observed in the D2000-2 quotes.

It might be hypothesized that this clustering simply reflects a bimodal cost structure, two

regimes in which the costs of market making are near five and ten ticks.  This hypothesis can be

investigated by considering the distribution of bid and ask prices separately.  Figure 2 plots the

distribution of the last digit of the bid and ask prices.  If the clustering of the spread were arising

from clustering in the underlying costs, one would still expect to observe a flat distribution of

price last-digits.  Figure 2 suggests that this is not the case.  The bid and ask prices considered

separately exhibit considerable clustering.

Not only do we observe a higher-than-expected occurrence of five- and ten-tick bids and

offers, but if the bid lies on a five-tick multiple, there is a higher probability that the ask also lies

on a five-tick multiple.  A simple classification test soundly rejects the null hypothesis of

                                                

4 I am indebted to Charles Goodhart and Michael Melvin for their comments on the limitations of

the Reuters quotes.
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independence.  It should also be noted that the data are drawn from a time of the day (noon)

when the market is extremely active.  Clustering is more pronounced at other times.

These features of the data are broadly consistent with a model that distinguishes between

the minimum tick feasible with the markets technology and regulations and the implicit tick that

arises as a convention among traders.  From a data modeling perspective, we might hypothesize

a tick size that switches between one and five, with the former being somewhat more likely.

The model described in the next section is parameterized by the mean and variance of a

quote exposure cost that approximates the “half-spread”, the variance of the daily random walk

component of the price and the probability that the implicit tick size at a given time is five.

Table 1 summarizes related quantities computed from the discrete data.

3. The basic model.

This section describes key features of the model.  No claim is made that the specification

is in any sense optimal.  Rather, the intent is to establish a parsimonious specification that is

comprehensive enough to capture the features of the representative quote series discussed in the

last section: the bid-ask spread, discreteness and clustering.

The latent price variable in the market is an implicit efficient price, Mt,  that is

economically interpreted as the expectation of end-of-trading value of the security conditional on

all public information.  It is assumed to follow a lognormal random walk:

ttt umm += −1 (1)

where ( )tt Mm log=  and the ( )2,0~ u

iid

t Nu σ  reflect updates to public information.

Dealers are assumed subject to a nonnegative cost of market making or quote-exposure,

denoted Ct ,  that impounds fixed and marginal (per trade) costs of their operations.  Stochastic

variation in the determinants of these costs (particularly volatility and asymmetric information) is

presumed to induce variation in the overall cost.  Furthermore, the FX quotes modeled in the

present paper represent a random draw from a population of market-makers.  The quote exposure

cost will also therefore impound the effects of cross-sectional variation.  Although some of the
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cost determinants (particularly volatility) are known to be serially correlated, the cost is assumed

here to be i.i.d..  More precisely, it is assumed lognormal: ( ) ( )2,~log cc

iid

tt NcC σµ= .

I assume that in the absence of tick restrictions, a market maker would bid tt CM −  and

offer (ask) tt CM + .   The mapping of these continuous analogs of the quotes onto the discrete

quotes is a rounding transformation.    Without loss of generality, let the prices be scaled so that

the mandated tick size is unity, i.e., that quotes are constrained to the set {1, 2, . . .}.   In the

absence of clustering, the rounding transformation is assumed to be:

( )
( )






+

−
=








=

tt

tt

t

t
t CM

CM

ask

bid
q

Ceiling

Floor
(2)

where the floor and ceiling functions round down (and up, respectively) to the next integer.

The asymmetric rounding is motivated by models of Bertrand competition in which no

competitor is willing to make a market at an expected loss.  This view is compatible with most

models that incorporate discreteness (Glosten (1994), Chordia and Subrahmanyam (1995) and

Kandel and Marx (1997)).   On the other hand, Bernhardt and Hughson (1996) show that in a

market where absolute time priority is enforced (first-come, first-served at a given price),

strategic considerations may cause dealers to post bid and ask quotes that are less aggressive than

the present rounding model would suggest.  Time priority is not observed, however, in most

dealer markets (such as the FX market).  Even in equity markets time priority is enforced at best

locally.

Clustering is introduced by specifying the discrete price grid as { }K,3,2, ttt KKK  where

Kt is a positive integer random variable.  Intuitively, Kt may be viewed as the tick size used by

the quote-setter at time t.  When Kt=1, the price grid is the set of positive integers (as above);

Kt=5 gives the set of five-multiples {5, 10, 15, . . .}.  The modified rounding transformation is

( )
( )






+

−
=








=

ttt

ttt

t

t
t KCM

KCM

ask

bid
q

,Ceiling

,Floor
(3)

where the Floor and Ceiling functions round to the next lower and higher multiples of Kt.  Thus,

when Kt=1, all positive integer prices are observable.  When Kt=5, only multiples of five are
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permitted.  The clustering variable is a latent structural construct, rather than an observed datum.

The distinction may be illustrated by example.  Observing a bid and offer of 100 and 105 (both

of which are multiples of five) does not imply that Kt=5.  It might be the case that Kt=1 and the

values of Mt and Ct happen to round (via equation (3)) to the observed values.  The implicit tick

size is assumed to be distributed as an i.i.d. Bernoulli variable:

( )


 −

=
k

k
Kt y  probabilit  w.5,

1y probabilit  w.1,
(4)

The parameter k has a natural interpretation as the clustering probability or intensity.

Harris (1991) suggests that clustering depends (positively) on the dispersion in traders

reservation prices, which is itself likely to depend (positively) on volatility and extent of

information asymmetries.   Stochastic variation in the latter can therefore lead to randomness in

the clustering tendency.   Clustering theories based on market structure (e.g., Dutta and

Madhavan (1997) and Kandel and Marx (1997)) do not directly predict variation in clustering.

They are not, however, incompatible with variation in clustering, since underlying factors (such

volatility and information asymmetry) are likely to affect the costs and benefits of forming and

sustaining coalitions and collusive agreements.

Although the market-structure studies address the pre-reform Nasdaq market, the latter

resembles in certain respects the FX market.  The FX markets and pre-reform Nasdaq are/were

both dealer markets with non-anonymous quotes and a minimum tick size.  Both markets

possess/possessed an interdealer market in which dealers could lay off positions at prices that are
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not available to outside customers.5  In both markets there are/were arrangements or affinities

that bind individual customers to particular dealers.6

For a rogue dealer who is contemplating breaking the established implicit tick

convention, both of these features decrease the expected benefits and increase the expected costs.

The strong relationships between customers and their dealers suggest that more aggressive

pricing will not be rewarded by increased market share.  If the aggressive pricing leads to the

dealer being shunned in the interdealer market, their inventory management costs will increase.

Similarities notwithstanding, there are also significant differences between the two

markets.  While the quotes set by pre-reform Nasdaq dealers established actual transaction prices

for a large volume of retail trades, customers in the FX market are primarily institutions who

have more leverage in negotiation.  As noted in Section 2, the FX market comprises alternative

trading mechanisms that may offer bids and asks that are better than the indicative quotes used

here.  Thus, transaction prices (which are not reported in the FX market) may reflect an effective

spread that is substantially narrower than that publicly quoted.  Furthermore, the clustering

behavior on the pre-reform Nasdaq market was a fairly stable phenomenon.  Transitions from

eighth quoting to quarter quoting and vice versa were rare.  In contrast, clustering in the DM/$

market is much more transient, with no obvious regime breaks.

The three stochastic variables in the model (efficient price, dealer cost and clustering

intensity) are assumed independent.  This independence is not used as an identifying restriction

                                                

5 Nasdaq has an interdealer system (SelectNet) on which dealers can post quotes visible only to

other dealers.  The FX market, too, has interdealer brokers.  The institution seems to be a regular

feature of dealer markets, being present as well in the U.S. government bond market and the

London Stock Exchange.

6 The Nasdaq market features preferencing and payment for order flow.  In the FX market, it is

the usual practice for a customer to check quotes only at banks with whom they already have a

relationship of some sort.
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in the estimation.  It is nevertheless clear that commonality of underlying determinants is likely

to induce dependence.  For example, both clustering intensity and market-making cost are likely

to depend on volatility.  Allowance for correlations among the variables is therefore a logical and

desirable extension.

The model represents a simple structural approach to dealing with security prices

confined to a discrete support.  Standard techniques for modeling discrete data suggest

alternative approaches.  Hausman, Lo, and MacKinlay (1992) use an ordered probit model to

characterize short-term transaction price transitions for NYSE stocks. Bollerslev and Melvin

(1994) estimate an ordered probit model for the spread in the $/DM market.  Discrete transitions

could also be modeled as draws from a multinomial density.

These alternative approaches are reduced form models, capable of modeling the spread or

quote transitions in a highly flexible fashion. It may be more difficult, however, to attach

economic interpretation to these specifications.  The simple model described in this section, for

example, does not possess a conventional ordered probit representation.  Furthermore, although

one could easily compute multinomial transition probabilities from the model, the reverse

inference (from transition probabilities to model parameters) is extremely difficult.  Problems of

interpretation are not limited to highly-structured models.  Most microstructure models of price

evolution, for example, reflect a distinction between a martingale (information-related)

component and transient (market- or liquidity-related) components.  Yet even this general

characterization is difficult to extract from a probit or multinomial specification. As is usually

the case, the choice between reduced-form or structural models turns on whether the objective is

fitting/forecasting the observed data, or investigating latent economic features of interest.
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4. Estimation and Testing

a. Estimation

At each time t, the unobserved state vector of the model is ( )tttt Kcms ,,= .  Based on a

sample of observed quotes { }Tqqqq K,, 21=  we wish to make inferences about the parameter set

( )kccu ,,, 22 σµσ=Θ .

The log likelihood function of the observations is

( )=Θ;log qf  ( )∑ Θ−+ ;,,,log 111 qqqqf ttt K . (5)

The summands on the right-hand side are prediction densities.  Given ( )11 ,,, qqqsf ttt K− ,

( ) ( ) ( )∫ ∫
+∈+

+−+−+ =
11

1111111 ,,,,,,
tqts

tttttttttt dsdsqqqsfssfqqqqf KK (6)

where ( )tt ssf 1+  is the transition density of the state variables (and Θ has been suppressed for

notational convenience).  The 11 ++ ∈ tt qs  notation indicates that the integration is over all values

of the state variables that map to the observed quotes.  (This restriction is redundant in the inner

integral because ( ) tttt qsqsf ∉=  allfor  0,K .)

The transition density for this model is relatively simple:

( ) ( ) ( ) ( ) ( )ttttttttttttt KcfmmfKcmKcmfssf Pr,,,, 11111 ++++++ == (7)

where the three r.h.s. densities are respectively normal, lognormal and Bernoulli.   Due to the

truncated integration regions in equation (6), however, the prediction densities do not possess

convenient closed-form representations.  In state-space models of this sort (nonlinear and non-

Gaussian), Kitagawa (1987) suggests approximating the conditional densities by step functions

on a fine grid and performing the integrations numerically.  Estimation then proceeds via

maximum likelihood.  Hasbrouck (1998) uses this technique to estimate a variant of the model

proposed here.

The present paper departs from this approach by casting the estimation in a Bayesian

framework and using a Gibbs sampler to compute the posterior densities.   To the reader who has

previously encountered Bayesian analysis solely as a tool for incorporation of prior beliefs, it

should be emphasized that the priors used in the present problem are diffuse, and their content is
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therefore low.   The principal motivation is instead the conceptual and computational simplicity

afforded by the modern Bayesian perspective in dealing with latent data (such as the state

variables in the present problem).   The conceptual simplicities arise from treating unobserved

data  in the same manner as the unobserved parameters.  The computational efficiencies result

from characterizing analytically intractable densities using simulation, invoking “. . .the essential

duality between a sample and the density (distribution) from which it is generated” (Smith and

Gelfand (1992)).

The estimation is formulated in a Bayesian framework as follows.  Given a prior

distribution on the parameter set( )Θf  and observed quotes q, we seek a posterior( )qf Θ  to use

in summary analysis or tabulation.  This posterior is constructed as the marginal of the joint

conditional density ( )qsf ,Θ  where { }Tssss ,,, 21 K=  is the set of unobserved states.  The density

( )qsf ,Θ  is joint over both parameters and unobserved data and lies at the heart of the analysis.

Although it is analytically intractable, it may be characterized by a large sample of random draws

( ) ( )ii s and Θ  for i=1,. . ., N.  To analyze the parameter posterior, for example, we essentially

“discard” the ( )is  draws and plot the histograms (or kernel density estimates) of the ( )iΘ draws.

The ( ) ( )ii s and Θ  draws are generated using a Gibbs sampler, a technique that produces

joint draws by iterating over conditional draws.  Specifically:

Step 0.   Initialize s.

Step 1.   Draw new Θ from ( ) ( )sfqsf Θ=Θ , .

Step 2.   Draw new s from ( )qsf ,Θ

Step 3.   Repeat steps 1 and 2.

Each iteration of this process is called a scan or sweep.  Under mild regularity conditions, in the

limit (as the number of scans goes to infinity), successive draws of s and Θ can be viewed as

(dependent) draws from the target distribution ( )qsf ,Θ .  In practice, the draws are monitored to

assess the convergence.  When the stream of simulated values is judged to be sufficiently large

and well mixed, posterior parameter distributions may be constructed from the simulated

parameter draws.
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Excellent general introductions to MCMC analysis include Casella and George (1992),

Chib and Greenberg (1996), Gilks, Richardson, and Spiegelhalter (1996), Smith and Gelfand

(1992) and Tanner (1996).  Chib and Greenberg (1996) survey applications in econometrics.

Jacquier, Polson, and Rossi (1994) present an application to stochastic volatility modeling (see in

addition the comments and response for this paper in the same volume).  Kim, Shephard, and

Chib (1998) discuss further aspects of stochastic volatility modeling.  Key references in the

MCMC analysis of state space models include Carter and Kohn (1994), De Jong and Shephard

(1995), Shephard and Pitt (1997b) and Shephard and Pitt (1997a).  Manrique and Shephard

(1998) and Manrique (1997) discuss general issues in the application of MCMC methods to

limited dependent variable time series analysis (such as the present application).  Closest to the

present paper, Manrique and Shephard (1997) present an MCMC estimation of a variant of the

model suggested in Hasbrouck (1998).

As N gets large, the drawn sample of ( )iΘ  tends to exactly characterize the small sample

posterior ( )qf Θ  for a given set of observations.  (N is not limited by the size of the original data

sample, T.)   In the present application the posteriors are data-dominated (i.e., not highly

sensitive to prior specification).   The posterior modes therefore approximate the frequentist

maximum likelihood estimates and possess the usual large-sample properties (consistency and

asymptotic normality).   With at least 250 observations, the present sample sizes would normally

be considered sufficiently large to justify the asymptotic approximation, but the appeal to

asymptotic behavior is not necessary for Bayesian estimation.

The above algorithm describes the implementation of the Gibbs sampler at the “top level”

of the problem, successively conditioning on Θ and s.  In what follows, Gibbs samplers are also

implemented within steps 1 and 2, to draw from ( )sf Θ  and ( )qsf ,Θ .  It is important to note

that these latter “lower level” samplers need not be iterated to convergence within each of the

steps 1 and 2.  Rather the entire process can be viewed as a single Gibbs sampler with many

steps, each of which involves a single draw of one parameter or latent variable conditional on all

the remaining parameters and variables.  We now turn to the specifics of the draws.
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i. Sampling from ( )sf Θ

The distribution ( )sf Θ  is proportional to the product ( ) ( )ΘΘ gsf , where ( )Θsf  is the

usual model likelihood and ( )Θg  is the prior distribution.  (Were the states observed, ( )sf Θ

would be the posterior parameter distribution.)   Although ( )sf Θ  possesses no convenient closed

form, random draws from this distribution can be generated using a Gibbs sampler.  That is, we

may make sequential draws from ( )
ii sf θθ /,Θ  where 

iθ/Θ  is the parameter vector with θi deleted.

The motive for use of a Bayesian approach in this application is computational simplicity,

not the desire to incorporate prior beliefs.  This suggests use of noninformative priors.  The

standard noninformative prior densities are improper, however.   Verification that the posterior

derived from an improper prior is itself proper is usually accomplished by direct inspection of

the posterior.  This is not feasible in this (and most) Gibbs sampler situations.   Despite this

limitation, for simplicity of exposition, the present analysis employs noninformative (improper)

priors.  The numerical results were virtually unchanged, however, when diffuse proper priors

were employed.

The distribution of the quote exposure cost, ( ) ( )2,~log cc

iid

tt NcC σµ= , has two parameters.

The noninformative prior for µc is flat over the real line.  The posterior,

( )
c

sf c µµ /,Θ = ( )2
1 ,,, cTc ccf σµ K  is normal with mean ( ) Tcc t∑=  and variance  2 Tcσ .  The

noninformative prior for 2
cσ  is ( ) 22 1 ccf σσ ∝ .  The posterior ( )2/

2 ,
c

sf c σσ Θ = ( )cTc ccf µσ ,,,1
2 K  is

an inverse-chi squared distribution, denoted ( ) 22~ −
=∑ Tdftc χ , where ctt cc µ−=~ .  Similarly for 2

uσ ,

with a prior ( ) 22 1 uuf σσ ∝ , the posterior is ( ) 2
1

2~ −
−=∑ Tdftu χ  where  1

~
−−= ttt mmu .  The

noninformative prior for k is the beta distribution ( )21,21 == βαB .  The posterior is

( )nTnB −+=+= 21,21 βα  where n is the number of “hits” (occurrences of  “5” in the

set { }TKKKK ,,, 21 K= ).  (These are textbook results discussed in Carlin and Louis (1996),

Press (1989) and Tanner (1996), among other sources.)
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ii. Sampling from ( )qsf ,Θ .

We may sample from ( )qsf ,Θ  by successively drawing from ( )qssf tt ,,/ Θ  where

{ }tiTiss it ≠==  and ,,1:/ K , i.e., a Gibbs sampler over t.  At each time t, furthermore, we may

draw from ( )qssf tt ,,/ Θ  by successively drawing from the components of st, from

( )qsKmCf tttt ,,,, / Θ , ( )qsKCmf tttt ,,,, / Θ  and ( )qsCmKf tttt ,,,, / Θ , i.e., a Gibbs sampler

within each t.

To sample from ( ) ( )tccttttttt qKmCfqsKmCf ,,,,,,,, 2
/ σµ=Θ , note first that the effect of

conditioning on mt , Kt and qt is to impose a truncation consistent with equation (3).  That is,

equation (3) implies:

askCMKask

KbidCMbid

<+<−
+<−<

(8)

where the time subscript is suppressed and meM ≡ .   Holding the other variables constant, the

implied bounds on C are:

[ ] [ ]MaskbidMCKMaskKbidM −−<<−−−− ,Min,,0Max (9)

We may therefore sample Ct from the lognormal density ( )2,; cctCf σµ  subject to this truncation.

To sample from ( ) ( )tuttttttttt qmmKCmfqsKCmf ,,,,,,,,, 2
11/ σ+−=Θ  for t=2,…,T-1, note

that ( )2
11 ,, uttt mmmf σ+−  is normal with mean ( ) 211 +− + tt mm  and variance 22

uσ .  We may

sample from this distribution subject to the bounds implied by equation (8):

[ ] [ ]CaskKCbidMCKaskCbid −++<<−−+ ,Min,Max (10)

The endpoint modification for t=1 and t=T is direct.

To sample from ( ) ( )tttttttt qkCmKfqsCmKf ,,,,,,, / =Θ , note that a straightforward

application of Bayes Law gives the conditional probability

( ) ( )
( ) ( ) ( )1,,Pr15,,Pr

5,,Pr
,,,5Pr

=−+=
=

==
KCMqkKCMqk

KCMqk
qkCMK (11)

Given that the mapping from state variables to quotes is nonstochastic, the probabilities on the

r.h.s. are merely indicator variables that are equal to one if the conditioning state variables are
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compatible with the observed quotes and zero otherwise. Kt may then be drawn as a Bernoulli

random variable with the conditional probability given in (11).7

b. Model evaluation.

In the absence of a convenient and widely-accepted goodness-of-fit measure applicable to

the present class of models, this paper will instead examine the spread distribution implied by the

model.  This is motivated by a desire to examine how well the model fits with respect to the

discreteness and clustering features that are the model’s main points of distinction, as well as by

simplicity.  This is not to assert that the model is likely to be adequate in all other respects (such

as the assumed homoscedastic lognormality of the efficient price innovations), only that the

discreteness and clustering features are the most interesting.8

The model may also be compared to alternatives in which the clustering mechanism is

suppressed and/or the rounding transformation is assumed to be symmetric.  These estimates are

presented below along with numerical likelihoods, which could in principle be used in

comparison procedures based on Bayesian or Akaike information criteria (discussed, for

example, in Carlin and Louis (1996)).

                                                

7 The actual sequencing of the Gibbs sampler used here deviates slightly from that described

above.  Since the draws for Ct and Kt do not depend on the state variables at any other time,

computational efficiency is enhanced by separately drawing Ct and Kt for t=1,…,T  in two

(vectorized) steps.  The draw of mt, on the other hand, depends on 11  and +− tt mm , however, and

we must therefore iterate over t.

8 Were the observed qt in this model continuously distributed random variables, the sequence of

conditional distribution function values ( ) [ ]1111 ,,~Pr,, qqqqqqqF ttttt KK −− <≡  would be i.i.d.

uniform on [0,1] (Rosenblatt (1952)).  Shephard and Pitt (1997a) (among others) describe how

sample analogs to this sequence can form the basis for goodness-of-fit tests.  This approach does

not carry over directly to discrete observations.
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Numerical likelihoods are computed using the auxiliary particle filter suggested by

Shephard and Pitt (1997a).   In this approach ( )11 ,,, qqqsf ttt K−  is approximated by a “cloud” of

(conditionally simulated) points its  and associated probabilities i
tπ  for i=1, …, M .  The number

of simulated points, M, determines the quality of the approximation.  The prediction density

needed for likelihood computation  is approximated (cf. equation (6)) by:

( ) ( )∑ ∫= ∈ ++−+
++

= M

i qs t
i
tt

i
tttt

tt

dsssfqqqqf
1 11111

11

,, πK (12)

The integrated conditional probabilities are computed numerically (using Gaussian quadrature).

(They are also used to weight the auxiliary variable draws, as described in Shephard and Pitt

(1997a).)

The appearance of a likelihood computation at this point in the discussion may cause the

reader to question the paper’s earlier claim that the Gibbs sampler approach achieved a

computational advantage over maximum likelihood estimation.  Indeed, Shephard and Pitt

(1997a) discuss maximum likelihood estimation as one of the uses of the auxiliary particle filter.

In the present application, however, although the accuracy of the simulated likelihood function

approximation is sufficient to warrant use in model comparisons, it is not sufficiently well-

behaved to merit use as a maximization objective function.  This deficiency is fundamental (and

also suggests infeasibility of EM and simulated EM approaches).  The state-

sampling( )i
ts  theof draws  is performed using rejection, a procedure that is not smooth in model

parameters.  A small parameter variation (such as that associated with the computation of a

numerical derivative or search near the optimum) might “move” a previously-acceptablei
ts

outside of the region that maps to the observed quote.  The drop in( )i
tt sqf  from one to zero will

induce a discontinuity in the computed likelihood function.

5. Estimation of the $/DM series.

a. Analysis of the model with clustering and asymmetric rounding

To start the sampler, the model parameters were initialized as µc=10,

10,10 22 == uc σσ and k=0.  The choice of k is convenient because it forces all Kt to be equal to



Page 18

one, a value that is compatible with all observed quotes.  The other initializations were chosen

(after preliminary testing of the sampler) as “bad” starting values, i.e. values sufficiently

removed from the final parameter estimates that convergence might be challenged.  The mt were

all initialized to the log midpoint of the observed bid and ask.  All of the Kt were initialized to

one.  I computed 11,000 iterations of the sampler.  The program was implemented in the matrix

language OX (Doornik (1996)) and took roughly seven minutes on a 200 mHz Pentium Pro.

Figure 3 plots for each parameter the first 2,000 draws of the sampler, as well as

correlograms and histograms for the last 10,000 draws (i.e., after discarding the initial 1,000).

Visual inspection of the draws suggests that the sampler converges quickly.  The µc and k

parameters exhibit the slowest convergence, but even here the effects of the starting values

appear to die out after roughly one hundred draws.  A Gibbs sampler does not produce

independent draws.  Since it is difficult to discern serial dependence from plots of the draws, it is

useful to examine the correlograms.  The autocorrelations are generally modest, with the largest

arising for the clustering probability k.  The rightmost graph for each parameter gives the

histogram of the simulated parameters.  This is an approximation to the exact small-sample

posterior distribution for the parameters.  The approximation is exact in the limit as the number

of sweeps goes to infinity, holding the number of observations fixed.

Table 2 reports summary statistics for these simulated posteriors.  At the posterior mean

values, the cost parameter ( )196.0,779.0~ 2 == cct Nc σµ .  Restated to level terms using the

lognormal transformation, the mean and standard deviation of tc
t eC =  are 2.40 ticks and 1.12

ticks, respectively.  These quantities are roughly the same magnitude as the (one-tick) resolution

of the discrete spread.  Both figures are slightly lower than the corresponding values computed

on the basis of the observed discrete spreads (cf. 6.1/2 and 2.3/2 from Table 1)

The mean estimate of 2uσ is quite close to the corresponding value estimated from the

discrete quote midpoints (2.06×10-5 vs. 2.03×10-5).  This is a consequence of the fact that at a

daily frequency, the typical sizes of quote midpoint changes are large relative to the tick size.

This may not be true, of course, for shorter intervals.  Finally, the mean estimate of k implies that



Page 19

the implicit tick size is five roughly 13% of the time.  In the discrete data, the bid and ask were

found to lie on five-tick multiples 23% of the time.  From the perspective of the model, however,

these events include states where the implicit tick size is one, but the pre-rounded quantities just

happen to lie close to a five-tick multiple.

The standard error of the mean estimate in Table 2 is a spectral estimate that corrects for

autocorrelation.  For example, the correlograms suggest that the most pronounced

autocorrelation is found in the estimates of the k parameter.  With a sample standard deviation of

0.027 and 10,000 observations (11,000 draws less the 1,000 discarded initial draws), the usual

standard error of the mean under the independence assumption would be

00027.000,10027.0 = .  The spectral estimate (0.00080) is over twice as large.

Some insight into the estimated model may be obtained by considering representative

implied transition probabilities.  As a convenient starting point, suppose that we are initially in a

steady state defined by bid=15,000 (DM/$ x 10,000) and ask=15,002.  (That is, these are the

current noontime quotes, and they are unchanged from recent days.)  Table 3 describes several

outcomes (observed quotes as of noon on the next day) and the associated transition

probabilities.   The probabilities are all relatively low, because the total probability is not

concentrated on a small number of states.  The effect of clustering is nevertheless highly visible

from the probabilities of the clustered outcomes relative to nearby non-clustered outcomes.  For

example, the clustered outcome (bid=15,000, ask=15,010) has a probability of 0.0027, while the

non-clustered outcome (bid=15,001, ask=15,011) has a probability of 0.0001, even though the

spread in both cases is ten ticks.

It is also useful to consider how the structure of the model affects what we might infer

from observing particular quotes.  Suppose that we observe bid=15,000 and ask=15,005.

Suppressing all considerations of discreteness, but maintaining the usual assumption that the bid

and ask quotes symmetrically bracket the “true” (efficient) price, we would exactly infer that the

efficient price is 15002.5 (the midpoint) and that the cost of market making is 2.5 (the half-
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spread).  From the present perspective, however, the discrete quotes arise from rounding.  This

introduces indeterminacy in our beliefs.

Figure 4 illustrates the nature of this inference.  Suppose that the model structure and

parameters are known.  (For illustration purposes, I fix them at their estimated values.)  Our

priors (before observing the quotes) are depicted in the left-hand graphs.  Our beliefs about C are

simply those given by the lognormal unconditional distribution.  Our beliefs about M are

“diffuse”, with a probability density represented in the figure as a flat line of  “infinitesimal”

height.  Our prior belief that the quotes are clustered is k=0.13 (“13 percent”).

Given the observed quotes (bid=15,000; ask=15,005), the right-most graphs depict the

posteriors.  (The posterior estimate of the clustering probability is k=0.40.)  The posteriors for C

and M are a blend  of two component posteriors (center graphs), reflecting beliefs with and

without clustering.  The posterior for M is centered at the midpoint of the bid and ask, but there

is also substantial probability mass away from this midpoint.  The posterior for C shows that the

actual quote exposure cost is almost certainly lower than 2.5, and may well be lower than 1.0.

The peakedness of the posteriors reflects the truncation imposed by conditioning on the observed

quotes (cf. equation (3)).

b. Model comparison and evaluation.

As noted above, the model is most distinctive with respect to its treatment of clustering

and rounding.  One obvious alternative model is one in which clustering is suppressed, i.e., in

which Kt=1 for all t.  A simple sensible alternative to the asymmetric rounding assumed in

equation (3) is symmetric rounding:

( )
( )






+
−

=







=

ttt

ttt

t

t
t KCM

KCM

ask

bid
q

,Round

,Round
(13)

where ( )K,Round ⋅  rounds to the nearest K-multiple.  This model is a priori suspect in that it may

generate crossed quotes (states of equal bid and ask).

Table 4 presents log likelihood values for the four models arising from the clustering and

rounding possibilities.  (The model described in the previous section, with asymmetric rounding
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and clustering, is model C.)  The rounding variants without clustering (A and B) are virtually

indistinguishable.  Clustering, however, is strongly supported.  By either the Bayesian or Akaike

Information Criteria, the evidence favoring model C (clustered) over A (not clustered) is

overwhelming.  Interestingly, there is also strong evidence favoring D (symmetric rounding)

over C (asymmetric rounding).

As this last finding runs counter to the economic hypotheses underlying the model, it

deserves fuller illumination.  Figure 5 presents the spread distributions implied by the four

models, along with that of the actual data (from Figure 1).   All models tend to overpredict the

incidence of large (above ten-pip) spreads.  This suggests that the lognoral distribution assumed

for the underlying exposure costs is too fat-tailed.  Manrique and Shephard (1997) report a

similar finding for the spread on an NYSE stock.

Neither of the non-clustered models (A and B) closely capture the peaks at five and ten

pips.  Both clustered models (C and D) perform better in this respect, but the model D

(symmetric rounding) achieves a better fit at the five-pip peak.  This is apparently driving the

likelihood magnitudes.

From an economic viewpoint, symmetric rounding of the quotes has two drawbacks.  The

first is that a bid or ask formed in this fashion might be associated with an expected loss.  The

quotes in this market, however, are merely indicative, not binding.  The market maker may

refuse to honor a previously posted quote, albeit at some cost in reputation.  The second

drawback is that with symmetric rounding, the discrete bid and ask may be equal, a state which

is in most senses incompatible with most microstructure models.9  This problem may be

remedied by positing some sort of censoring process.  For example, the observed bid and ask

may be viewed as arising from a probability model in which, once M is determined, a market

                                                

9 In actual markets, crossed quotes can arise from communication failures, credit problems (one

side refuses to trade with the other) and pricing conventions (e.g., only the aggressor in a trade

“pays” a commission), among other things.
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maker is drawn from a large population.  If her value of C is such that her quotes would cross,

she declines to participate.  Market makers are drawn until a set of non-crossed quotes arises.

c. Intraday Patterns

To investigate time-of-day patterns in market behavior, Model C (clustering, asymmetric

rounding) was estimated allowing for different parameter values for each of the forty-eight half-

hour periods.  The estimated parameter values (means) for each period are plotted against time-

of-day in Figure 6.   (Active trading hours in this market are roughly 8:00 to 20:00, with London

dominating in the early hours and New York in the later times.)

The efficient price volatility parameter 2
uσ  exhibits the usual elevation during active

trading.  The spread parameters also change markedly during the trading day.  Away from the

active hours, the mean cost ( )cµ  is lower; the cost volatility ( )2
cσ  is higher; and the clustering

probability k is higher.  The latter finding suggests that more activity (and competition) among

market makers leads to more aggressive (and less clustered) quoting practices.  The intraday

negative relation between clustering and volatility is consistent with that found by Harris (1991)

and Ball, Torus, and Tschoegl (1985) in other markets.

The simple model’s suitability over horizons as short or shorter than a half-hour,

however, is open to question.  Most studies of security returns suggest that deviations from

normality are more pronounced at higher frequencies.  It is also more likely that the cost variable

would exhibit serial correlation at higher frequencies.  Approaches to these and other

complications are discussed below.

6. Extensions.

The discussion in this section turns to refinements that may make the simple model

implemented here more useful and appealing.  In general, the easiest extensions involve

deterministic patterns in the parameters (e.g., the intraday analysis presented above).  These

generally require minimal modifications to the parameter and state simulations.  It is also
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relatively easy incorporate additional sources of randomness that are serially independent.  These

will usually involve only an additional step in the Gibbs sampler.

Extensions that incorporate serial dependencies in the state variables are more

challenging.  If these dependencies can be modeled as transitions of Gaussian state variables,

Shephard (1994) among others suggests that simulation is still quite practical.  It is important to

emphasize that the model need not be fully Gaussian, only conditionally so.  The framework for

dealing with limited dependent variable processes suggested by Manrique (1997) and Manrique

and Shephard (1998) are particularly useful in this respect.

Perhaps most importantly, the MCMC approach does not suffer from the curse of

dimensionality.  Incorporation of additional state variables or parameters requires only that these

quantities be simulated in each sweep.  The incremental computational burden of this simulation

does not (to a first approximation) depend on the number of variables or parameters already

present in the model.

a. Time-varying volatility

The intraday analysis discussed above allowed for deterministic time-of-day effects in

2
uσ    Volatility that changes in a random fashion is a little more involved.  There are two main

approaches here.  In ARCH-family models, 2
,tuσ depends solely on prior disturbances ut.  In

stochastic volatility models, 2
,tuσ follows a random process with increments that are independent

of ut at all leads and lags.  ARCH-type models predominate in the empirical literature, probably

in part due to the ease of estimation.  Stochastic volatility models predominate in the MCMC

literature, however, at least in part for the reason that the MCMC paradigm provides a
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computationally-efficient likelihood-based approach to estimation.10  Either ARCH or stochastic

volatility extensions could be implemented here.  These are obvious and desirable refinements.

b. Time-varying and serially correlated trading costs

In many markets discrete spreads are found to exhibit periodicities at daily frequencies.

Spreads are typically elevated at the start and end of trading sessions.  This may be incorporated

(as in the intraday analysis, above) by allowing the quote exposure cost parameters to be indexed

by time-of-day.  It is also reasonable (in high-frequency data) to allow the cost to have persistent

stochastic components (arising perhaps from persistence in volatility or asymmetric information

intensity).  Hasbrouck (1998) suggests an autoregressive dependence.  Manrique and Shephard

(1997) implement this (and asymmetric bid and ask costs) in an MCMC framework.

c. Asymmetric bid and ask costs

In the present model, the quote exposure cost is the same on both the bid and ask sides of

the market.  This is a reasonable assumption if the same quote-setter is active on both sides of the

market, and if the quotes are not sensitive to current inventory positions.  In many markets,

however, the bid and ask quotes may reflect different individual limit order traders, presumably

subject to different trading costs. Hasbrouck (1998) captures this by modeling trading costs as

two processes that evolve independently of each other.

d. Alternative clustering models

The implicit tick size in the simple model is a Bernoulli random variable.  In some

applications, a more refined multinomial specification may be desirable.  Harris (1991), for

example, suggests that the implicit tick size may be a function of volatility and trading costs.

                                                

10 Exceptions to this alignment in the literature include Kim, Shephard, and Chib (1998), who

estimate a GARCH model in an MCMC framework, and Fridman and Harris (1998), who

estimate a stochastic volatility model using a numerical-integration-based likelihood approach.
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7. Conclusions

Structural models of security prices over short intervals usually reflect microstructure

effects arising from the manner in which the security is traded.   The model in this paper features

stochastic costs of market-making.  Discreteness in the quotes is enforced by an explicit

rounding mechanism.  Clustering in the quotes arises from a random implicit tick convention.

Despite the simplicity of the model, however, there are no convenient closed-form

representations for moments or conditional probabilities.  Inference using minimum distance

estimators (maximum likelihood or method of moments) is therefore beset with computational

difficulties.  Inference in a Bayesian framework, however, is greatly simplified by the Gibbs

sampler.

An application to $/DM exchange rate bid and ask quotes illustrates the usefulness of the

method.  Analysis of alternative specifications supports the superiority of a model that allows for

clustering.  Nevertheless, the clustering in the quote data appears to be even more pronounced

than the present models are capable of capturing.  A more surprising finding concerns the

underlying rounding process.  Economic considerations suggest that the quotes should be

rounded asymmetrically, i.e., that the bid should be rounded down and the ask should be rounded

up (to preclude expected market making losses).  In these data, however, a clustered model in

which the (implied continuous) bid and ask quotes are simply rounded to the nearest tick

outperforms a model in which the rounding is asymmetric.  For none of the models investigated

here, however, does the implied spread distribution closely match that found in the data.

The models and estimation approaches discussed here do not by any means establish the

limits of what is technically and computationally feasible.  Markov chain Monte Carlo

procedures (including the Gibbs sampler used here) tend to grow but linearly in complexity and

computational demands with the number of latent state variables and parameters.  The

procedures are, furthermore, modular.  For example, once a given set of implicit efficient prices

( )tM  has been simulated in the framework of the present paper, these prices could be used as the

input to an MCMC stochastic volatility estimation.  These approaches therefore open the door to
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the investigation of broad classes of structural, and (ideally) more realistic models of price

evolution.
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Table 1 Preliminary Descriptive Statistics for $/DM Quotes

Mean of bid-ask spread (ticks) 6.1

Standard deviation of bid-ask spread (ticks) 2.3

Variance of daily log quote midpoint price changes 2.03×10-5

Percentage of quotes in which both the bid and ask lie on a five-tick
multiple.

23.4%

Notes: $/DM quotes as of noon (GMT) for all trading days in 1996 (257 observations).  (Source:

Olsen Associates HFDF II).
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Table 2.  Summary of Posterior Parameter Distributions

Parameter Mean Mode Std.Error of
Mean

Std. Dev.

cµ 0.779 0.779 0.00062 0.031

2
cσ 0.196 0.193 0.00050 0.022

2
uσ 2.06×10-5 2.15×10-5 2.5×10-8 1.8×10-6

k 0.130 0.126 0.00080 0.027

Summary statistics for simulated posterior distributions of the parameters for the a model of

discrete bid and ask quotes with clustering and asymmetric rounding.   The quote exposure cost

is distributed as ( ) ( )2,~log ccNC σµ ; 2
uσ  is the variance of the implicit efficient price changes; k

is the clustering intensity (the probability of rounding to five-tick multiples).  The model was

estimated for $/DM quotes as of noon (GMT) for all trading days in 1996 (257 observations).

The posteriors were constructed using a Gibbs sampler over 11,000 iterations, with the first

1,000 discarded.  The mode is a smoothed estimate.  The standard error of the mean estimates is

a spectral estimate (using a Parzen window) that corrects for autocorrelation in the sample draws.
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Table 3.  Representative Transition Probabilities

Given that the market is initially in the steady-state with bid=15,000 (DM/$ x 10,000) and

ask=15,002, the table reports the estimated transition probabilities associated with moving to the

indicated bid and ask one day later.

Bid Ask Probability

15,000 15,001 7102 −×

“ ” 15,002 5106 −×

“ ” 15,003 0.0005

“ ” 15,004 0.0010

“ ” 15,005 0.0018

. . .

“ ” 15,009 0.0002

“ ” 15,010 0.0027

“ ” 15,011 5108 −×

. . .

“ ” 15,014 5102 −×

“ ” 15,015 0.0005

“ ” 15,016 6106 −×

15,001 15,006 0.0011

“ ” 15,011 0.0001
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Table 4.  Comparison of Alternative Models

Model:

A: Asymmetric
rounding;  no
clustering

B: Symmetric
rounding; no
clustering

C: Asymmetric
rounding,
clustering

D: Symmetric
rounding,
clustering

Log Likelihood -2000.87 -2001.10 -1968.62 -1949.33

Number of
parameters

3 3 4 4

Notes:  Log likelihoods for four alternative models of bid and ask quotes, estimated for $/DM

quotes as of noon (GMT) for all trading days in 1996 (257 observations).  Log likelihoods are

estimated at modal parameter values using an auxiliary particle filter.
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Figure 1.  Distribution of Bid-Ask Spread

Notes: Frequency (in DM 0.0001 ticks) of bid ask spreads for $/DM exchange rates as of noon,

GMT, 1996
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Figure 2.  Distributions of Last Digits in Bid and Ask Quotes

Notes: Frequency (in DM 0.0001 ticks) of the last digit in the bid and ask quotes for all trading

days in 1996 as of noon GMT.
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Figure 3.  Simulated Parameters.

Figure is based on a single Gibbs sampler run of 11,000 iterations as described in Section 4.  For
each of the model parameters, the leftmost graph depicts the first 1,000 draws.  The middle graph
shows the autocorrelations of the last 10,000 draws (after the first 1,000 were discarded as burn-
in period).  The rightmost graph is the histogram of the last 10,000 draws.
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Figure 4.  Prior and Posterior Probability Distributions Implied by Estimated Model.

The graphs below depict priors and posteriors for the estimated model.  The top row corresponds to the efficient price (M); the bottom
row to the quote exposure cost (C).  Leftmost graphs reflect agent beliefs before observing the bid and ask.  (The improper prior for M
is depicted.)  The remaining graphs are conditional on observing bid=15000 and ask=15005.  Middle graphs reflect the posteriors
conditional on no clustering (K=1) and clustering (K=5).   Rightmost graphs are the posteriors.
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Figure 5.  Spread Distributions: Actual and Implied by Alternative Models.

Notes: Distributions of bid-ask spreads predicted by each of four alternative models, and the

actual distribution of the spreads in the sample ($/DM exchange rates as of noon, GMT, 1996;

257 observations).
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Figure 6.  Intraday Patterns in Model Parameters.

Notes: Results for a model with symmetric rounding of the bid and ask quotes and clustering,

estimated for bid and ask quotes in the $/DM market at half-hourly intervals for 1996.  2
uσ  is the

(half-hourly) variance of the efficient price innovations; cµ  and 2
cσ  are the mean and variance of

the (log) quote-exposure cost; k is the clustering intensity.
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