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The Investor Recognition Hypothesis in a Dynamic
General Equilibrium: Theory and Evidence

Abstract

This paper analyzes equilibrium in a dynamic pure-exchange economy under a generalization of
Merton’s (1987) investor recognition hypothesis (IRH). Because of information costs, a class of
investors is assumed to possess incomplete information, which suffices to implement only a par-
ticular trading strategy. The IRH is mapped into corresponding portfolio restrictions that bind
a subset of agents. The model is formulated in continuous time, and detailed characterization
of equilibrium quantities is provided. The model implies that, all else equal, a risk premium on
a less visible stock need not be higher than that on a more visible stock with a lower volatility
— contrary to results derived in a static mean-variance setting. An empirical analysis suggests
that a consumption-based capital asset pricing model (CCAPM) augmented by the IRH is a
more realistic model than the traditional CCAPM for explaining the cross-sectional variation in

unconditional expected equity returns.



1. Introduction

A fundamental question in financial economics is how frictions affect equilibrium in capital mar-
kets. The real-world frictions that motivate our analysis are information costs. In a world of
costly information, some investors will have incomplete information (as defined below). There-
fore, we ask, first, how equity portfolios of informationally constrained investors (ICI) can be
characterized, and second, how the presence of these investors affects equilibrium. We formulate
the answer to the first question as a hypothesis; our premise is that the aggregate portfolio of
ICI combines a direct investment in visible stocks with funds whose management is entrusted to
others (who may possess broader information). The main objective of this paper is to develop
a model that can accommodate our premise, thereby offering a detailed answer to the second

question. The joint validity of the premise and the model is then evaluated empirically.

Merton (1987), using a static mean-variance model, advanced the investor recognition hy-
pothesis (IRH) to describe the portfolio formation of ICI. In its pure static version, the IRH
states that investors buy and hold only those securities about which they have enough informa-
tion, and the revealed portfolio formation under the IRH is observationally equivalent to that
under exogenous portfolio constraints.! The increasing empirical support for an IRH-consistent
behavior (e.g., Falkenstein (1996), Huberman (1999)) warrants a further theoretical analysis of

what this hypothesis implies when examined outside the static mean-variance world.

This paper adds to the IRH a dynamic dimension. Specifically, because of information costs,
a class of investors is assumed to possess incomplete information, which suffices to implement
only a particular trading strategy. We refer to this formulation of the IRH as the generalized IRH
(G-IRH). Under the G-IRH, portfolio rebalancing is treated as if it were subject to constraints
that may evolve stochastically over time (and, as a special case, may exclude a non-visible stock
from a portfolio). To better understand the impact of such constraints on equilibrium, we work
in a familiar and well-understood framework. We present a continuous-time general equilibrium
model of a Lucas (1978)-type pure-exchange economy, which is populated by heterogeneous
agents. Only a subset of the population faces portfolio constraints (as described in Section 3).
Under the G-IRH, we analyze implications for the risk-return tradeoff, the risk-free spot interest
rate, and the optimal consumption policy of each class of agents. The case of pure IRH (P-IRH),

where ICI trade only a subset of stocks, is then studied in detail.

INeither in Merton (1987) nor in this paper do issues of asymmetric information arise; trade always occurs
between equally informed investors, and the pure IRH coincides with an assumption of segmented capital markets.
International segmentation has been analyzed in a two-date mean-variance setting (e.g., Subrahmanyam (1975),
Errunza and Losq (1985)), and in continuous-time production economies (e.g., Sellin and Werner (1993), Devereux
and Saito (1997)). These models are equally applicable in a domestic context under an appropriate variant of
the IRH. Indeed, the work of Errunza and Losq (1985) and that of Merton (1987) are close methodologically and
share similar implications. Levy (1978) also studies a static mean-variance model of domestic segmentation.



The intertemporal feature of our model is cast in a continuous-time framework for tractabil-
ity. The portfolio choice of ICI can then be analyzed using recently developed duality tech-
niques (He and Pearson (1991), Cvitani¢ and Karatzas (1992)), which augment the martingale-
representation approach of Karatzas et al. (1987) and Cox and Huang (1989). Agents in our
economy have time-additive state-independent utility functions, and we assume that ICI have
logarithmic preferences. We characterize equilibrium using construction of a representative agent

with time-additive but state-dependent utility.?

The main results from our model are as follows: First, under the G-IRH, we provide a new
characterization of risk premia in a form of a two-beta consumption-based capital asset pricing
model (CCAPM). The first beta is with respect to changes in aggregate consumption, as in the
CCAPM of Breeden (1979). However, our formulation of the IRH reduces the dimensionality
of the investment-opportunity set for a subset of agents; ICI effectively trade a single portfolio,
referred to as the IRH index. This incompleteness also affects unconstrained agents who are
forced to clear the market. Therefore, risk premia depend on an additional term that reflects
the spanning properties of the IRH index, and this term varies across assets depending on the

beta of each asset with respect to changes in the IRH index.

Second, the dynamics of the interest rate are modified to depend on the volatility of the IRH
index. For example, under the P-IRH, where the IRH index represents unrestricted assets, the
interest rate depends on the volatility of aggregate dividends, as in the unconstrained-benchmark
case. However, the interest rate also depends on the endogenously determined correlation be-
tween unrestricted assets and aggregate dividends. This dependence stems from the nature of
market incompleteness under the P-IRH for which the interest rate and the risk premia must
compensate so that all markets clear. Overall, two sources of volatility drive the interest rate:

the exogenous volatility of dividends and the endogenous volatility of returns.?

Third, focusing on the P-IRH, it becomes evident that the conclusions of static mean-variance
models, regarding the effect of constraints on risk premia in the cross-section, do not hold in our
setting. For example, our model suggests that a risk premium on a less visible stock need not be
higher than that on a more visible stock with a lower volatility, all else being equal. The reason
for this result is that an asset whose risks cannot be shared may still offer considerable benefit

as a hedge against shifts in investment opportunities. This result is important for the growing

’In analyses of frictionless markets (e.g., Dumas (1989), Wang (1996)), to derive explicit solutions, it is
common to assume that a subset of agents has logarithmic utility. With constraints, this assumption is made
almost without exception by the recent continuous-time literature (e.g., Detemple and Murthy (1997), Basak and
Cuoco (1998)). The representative agent’s utility is state-dependent whenever each class of agents uses a different
system of state-prices to value future consumption (Cuoco and He (1994)).

3An endogenously determined interest rate under a different set of constraints was derived by Sellin and
Werner (1993) and Devereux and Saito (1997). But they fix exogenously constant volatilities for linear production
technologies, and by construction cannot allow any endogenous role to stock-market volatility.



empirical literature that examines the effects of listing stocks on a more visible exchange (e.g.,

Kadlec and McConnell (1994), Foerster and Karolyi (1999)).4

Methodologically, our model builds on, and complements, the work of Basak and Cuoco
(1998) who study restricted stock-market participation in a pure-exchange economy with a
single risky asset. Our analysis incorporates several risky assets and what we believe is more
realistic investment behavior. With multiple risky assets, we derive cross-sectional implications.
With more flexible constraints, we accommodate a variety of departures from the benchmark
model and derive new results. We also illustrate how restricted participation presents a special

case in our model.

We examine the joint implication of our premise and our model for the variation in the cross-
section of unconditional expected returns. This central theme of empirical finance is a subject
of numerous studies. To facilitate comparisons with prior research, while keeping the empirical
analysis focused, we subject the model to portfolios designed by Fama and French (1992) and
subsequently analyzed by Jagannathan and Wang (1996) (JW), among others. Surprisingly, this

broad cross-section of portfolios has not been examined outside the so-called CAPM debate.

Consistent with our premise, the return on the IRH index is measured by a return on a combi-
nation of two proxies: The first proxy, in adherence with Merton’s (1987) arguments, represents
large firms. The second proxy intends to capture the return on the portion of wealth invested in
pension funds, which account for an increasing fraction of U.S. equities — more than 25% at the
end of our sample period (Lakonishok et al. (1992)). Consequently, we identify the second proxy
with a portfolio that is biased towards stocks with good past-return performance — consistent
with a characterization of the pension-fund industry by Lakonishok et al. (1997). We assume

that the two proxies span any (aggregate) investment of ICI made via mutual funds.

The main econometric approach we use is the two-pass cross-sectional regression. We cor-
roborate results using both OLS and GLS procedures with an empirical design that draws from
Shanken (1992) and JW. In addition, we test our econometric specification using the Hansen
and Jagannathan (1997) distance, and also use finite-sample likelihood-ratio tests to examine
the implications of our framework for the composition of the unconditionally tangent portfolio.
Within the context of our econometric specification, the findings indicate that the CCAPM
augmented by the IRH performs better than other well-known models. In particular, over the

period covered by the Fama and French (1992)/JW sample, the data fail to reject the joint

“Working in a static model with CARA preferences but with consumption in the initial and final periods,
Basak (1996) has demonstrated the non-robustness of many results derived in the extant mean-variance literature
without intertemporal consumption. Still, his model agrees with the cross-sectional implications of that literature.
Cuoco (1997) provides a general characterization of risk premia under constraints in a continuous-time economy
(he analyzes a partial equilibrium and has no implications for the interest rate). Nevertheless, the mapping of
the constraints that we examine into an explicit two-beta CCAPM is a new result.



validity of our premise and our model, and we are able to explain over 55% of the cross-sectional

variation in average real monthly and quarterly returns.

Section 2 describes the economy. Section 3 maps the G-IRH into portfolio constraints and
solves the individual’s optimization problem. Section 4 characterizes the equilibrium and pro-
vides our main asset-pricing results. Section 5 lays out the empirical design and reports the

findings. Section 6 concludes the paper. The appendices contain the proofs.

2. The Economy

We consider a finite-horizon ([0, T]) economy. Aside from incorporating constraints, the setting
is standard, and given our focus is on characterization, we do not state the required regularity
conditions (which can be found, for example, in Karatzas and Shreve (1998)). Uncertainty is
represented by a filtered probability space (Q,F,F, P), on which is defined a two-dimensional
Brownian motion w(t) = (wy(t),wa(t))". A state of the world is described by w € Q. The
filtration F = {F;} is the augmentation under P of the filtration generated by w (F = Fr).
All random processes are assumed progressively measurable with respect to F. All equalities
and inequalities involving random variables are understood to hold P-almost surely. There is
a single perishable consumption good (the numeraire), and C denotes the set of non-negative

consumption-rate processes c.

Investment opportunities are represented by three securities. The “bond,” is in zero net

supply, and earns instantaneous interest r over [0,7]. The bond-price process B satisfies
dB(t) = B(t)r(t)dt. (1)

We normalize the initial bond value to unity, without loss of generality. The “stocks” are cach
in a constant supply of one unit. A stock is a claim to an exogenous dividend paid at a strictly
positive rate. Denote by Sj, j = 1,2, the ex-dividend stock-price process. Let ; denote the

dividend-rate process corresponding to Sj. The aggregate dividend-rate process 6 is given by
d5(1) = dby () + dbs(t) = (1)t + o5(t) du(t), 2)

where ps = ps, + ps, and os = o5, + 05, are set exogenously. We assume that, in equilibrium,

S; follows an Itd process

dS;(t) = (Sj(t)p;(t) = &5(t))dit + S;(t)o; (t)dw(?). (3)

The interest rate process r, the drift coefficients p = (p1,p2) ', and the volatility (diffusion)
matrix o = {0k, j = 1,2; k = 1,2} may be path-dependent, and are to be determined endoge-

nously in equilibrium. The o matrix is assumed to have full rank.



The economy is populated by two types of agents. Let a;(t) denote the amount that agent i,
(i = 1,2), invests at time ¢ in the bond. Let 6;(t) = (0;1(t),0:2(t)) " be the amounts invested
in stocks. Agent 1 does not face constraints on 61, whereas agent 2 is restricted in his choice
of B (as specified in Section 3.1). Preferences of agent i are represented by a time-additive von
Neumann-Morgenstern instantancous utility function u;(c), yielding the expected utility func-
tional Uj(c) = FE {fOT e‘ptui(c(t))dt} , where p > 0 is the rate of subjective time preferences. We
assume that us(c) = loge, uy is three times continuously differentiable, and «} has a continuous
and strictly decreasing inverse f1 that maps (0, 00) onto itself. Agent 2 is endowed only with

b > 0 units of the bond.> Agent 1 initially owns both stocks and —b units of the bond.

A trading strategy (o, 6;) is said to (strictly) finance a consumption plan ¢; € C if the

corresponding wealth process, W; = «; + 9; 1, satisfies the dynamic budget constraint
AW(t) = [Wilt)r(t) + 6:6) T (u(t) = r(OT) = es(t)] dt + 03(8) T () (), (4)

where 1= (1,1)T. An arbitrage opportunity is a nonzero ¢ € C that can be financed with zero
initial wealth. A trading strategy is admissible if W;(t) > 0 (a sufficient condition to rule out

arbitrage opportunities). The set of admissible trading strategies is denoted by ©.

3. The Individual Optimization Problem under the IRH

We depart from the standard setting by acknowledging that, when choosing trading strategies,
agent 2 may be affected by real-world frictions not captured in the above description of the
economy. Rather than model these frictions explicitly, we treat them in a reduced form using

portfolio constraints.

3.1 The IRH and Portfolio Constraints
Consider the following family of stochastic constraints imposed on agent 2:
A(t,w) = {(aa(t,w), 02(t,w)) : Oo1(t,w) = q1(t,w)b(t,w), (t,w) € [0,T] x Q},

where ¢1(t) is a stochastic process, which can depend on the dynamics of asset prices. A reflects
our premise that due to frictions, exogenous to the model, agent 2 resorts to a trading strategy

that is suboptimal. Specifically, information costs are assumed to be the primary cause for a

5This simplified endowment structure insures that at ¢ = 0 the stock investment of agent 2 complies with any
constraint, which belongs to the family described in Section 3.1. For a given member of that family, we can specify
a more general endowment structure at the cost of introducing additional notation and, except for the P-IRH
case, at the cost of a further restriction on the endogenously-determined values of S;(0) and S2(0) (a restriction
that may interfere with the existence of equilibrium). A different endowment, provided it admits an equilibrium,
will affect the equilibrium path, but will not affect our equilibrium-characterization results in the sequel.



behavior that deviates from one based solely on the fundamentals of Section 2. This family of

constraints allows us to model a variety of trading rules. Special cases of interest are as follows:

(a) qi(t) = q, for a constant q. (g = oo, is understood as unconstrained investment in stock 1
and zero investment in stock 2.) We will elaborate in the sequel on the case of ¢ = 0; it models
incomplete information about stock 1, as discussed by Merton (1987). In particular, it applies
to an economy with multiple stock exchanges, where some investors will not trade a stock unless
it is listed on a visible exchange such as the NYSE (Kadlec and McConnell (1994)). Similarly,
investors may not hold shares in small firms, which lack extensive media coverage (Falkenstein
(1996)). When 0 < ¢ < 1, it is the case of a less extreme preference towards stock 2. This
applies in cases where agents invest (or short) more in familiar stocks (Huberman (1999)) or in
stocks with longer listing history (Barry and Brown (1984)), or exhibit home-biased patterns in

an international or a domestic (Coval and Moskowitz (1999)) context.

(b) qi(t) = g;gg, means that agent 2 holds an equal number of shares in each asset. Since the
supply of each stock is normalized to one, agents trade a fraction of the market portfolio. Hence,
one-fund separation holds. If ¢1(¢) = 7l (weR,), agent 2 includes stock 1 in his portfolio only if
he learns about the stock on the occurrence of some Fi-measurable event Ey (for example, if the
rate of return on stock 1 during [t — At,t] exceeds some benchmark). Our empirical analysis

focuses on (a combination of) the strategies in (a) and (b).

(¢) Consider an exogenous process V whose dynamics are
dV (t) = py(t)dt + v1(t)dwy (t) + va(t)dwa(t), (5)

where v? + v # 0. The process may represent a macroeconomic indicator or an index that
summarizes information such as analysts’ forecasts. Suppose that agent 2 uses the innovations
in V to form a trading strategy. It is easy to verify that

_oa (t)va(t) — o22(t)v1(t)
o11(t)va(t) — o12(t)v1(t)

(6)

q(t) =

allows the agent to choose a portfolio so that the corresponding wealth process is perfectly,
instantaneously correlated with V. On the other hand,

B 091 (t)’l)l (f) “+ 099 (t)’l)g (f)
o11 (t)’l)l (f) “+ 019 (t)’l)g (f)

q(t) = (7)

allows the agent to choose a portfolio that is instantancously uncorrelated with V. A particular
example of V is a process that maintains a prespecified correlation® with § (p,s = p). An-

ticipating future results, when V' indeed coincides with aggregate dividends (p = 1) then, in

5We abuse notation slightly by using p without subscripts to denote the agents’ impatience for consumption,
and p with subscripts to denote instantaneous correlation conditional on F;.



equilibrium, the economy is equivalent to an unconstrained economy if (6) holds, and is equiv-
alent to a restricted participation economy (defined by 0 = 0) if (7) holds. (In Appendix A.2,

we present another example in the context of which we also verify existence of equilibrium.)

Agent 2 may implement a strategy on his own. Equivalently, he may invest in stocks via a

“managed fund.” Consistent with A, when ¢;(t) # —1, a unit of wealth invested in the fund is

} . N . q1 (t) 1
split by the fund manager into O+ MOESE

respectively. It is convenient to introduce a fund price-process whose dynamics are given by

7 and which are reinvested in stock 1 and stock 2,

dF(t) = F(t)up(t)dt + F(t)os(t)dwl(?), (8)

where
pe(t) = q(t) () /qt) "1, ou(t) = q(t) o(t)/q(t) ' T,

and q(t) = (q1(t),1)". Note that rank(oz(t)) = 1 because o(t) has full rank. Also, without
loss of generality, set F'(0) = 1. The wealth-evolution equation (4) for agent 2, subject to the

constraint that (ag, f2) € A, can be restated using (8) as

aWalt) = aalt) o+ (W)~ aa(0) S — ol

which illustrates that the constrained agent allocates wealth between the bond and the fund, and
effectively faces an incomplete market. F summarizes the investment opportunities of agent 2
in risky assets. We call F' the “IRH index.” The latter is appropriate because agent 2 must
“recognize” (i.e., possess information about) the dynamics of F'. As long as he recognizes F', he
does not have to recognize (be informed about) the dynamics of individual stocks. For brevity,
we refer to the constrained position of agent 2 in equities as a position in the IRH index. The

amount invested in the IRH index will be determined based on maximizing expected utility.”

"The process in (8) is introduced for expositional purposes. It illustrates that although we study micro-behavior
of agents, the IRH index can be viewed, along the lines of Merton (1992, chapters 14, 16), as a fund offered to
investors by an intermediary. The class of investors who face relatively high information costs will prefer to invest
(at least part of) their funds via the intermediary route. The fund’s management style, ¢, will not be optimal for
each investor within the class, but the economy of information achieved by this investment vehicle presumably
compensates investors relative to the costs of investing directly (Grossman (1995)). Note that in the sequel, results
are derived using projections constructed from ¢ "o, and all goes through with ¢ = —1. Then, F is interpreted
as a zero-investment position (with pur and or redefined not to include the qTI denominator), and instead of
being long (short) in the IRH index, agent 2 takes a positive (negative) exposure to it in the absolute amount of
|#21] = |f22|. A key point to emphasize is that although o is constructed from o, the model (via constraints)
mirrors a world where learning about ¢ is “too costly” for agent 2, leading him to learn only about or — from
observing F (through the quadratic covariation of F' with w; and ws), or from exogenous sources (not explicit
elements of our model, such as intermediaries) that have cheap access to the primary information (o). Although
actual costs are not incorporated directly into the model, it is monitoring the vector o, rather than the matrix o,
that renders the investment/consumption problem of agent 2 a relatively “low-cost” task; indeed, as shown in
the sequel, it is oF (and not o) which is used to construct the optimal policies of agent 2. Moreover, our model
is easily generalized to N sources of uncertainty, with K < N strategies (“funds” / “investment styles”), and then
the informational burden on agent 2 (in terms of monitored processes) is only of O(K x N) instead of O(N?).



3.2 Consumption and Portfolio Choice

We characterize the optimal consumption of agent 2, using the duality approach of Cvitani¢ and
Karatzas (1992), as if he had faced a unique state-price density (SPD) process of a fictitious,
unconstrained economy. Equipped with this SPD, which accounts for the constraints faced by

the agent, we can proceed to derive other quantities, analogously to the complete-markets case.

Proposition 1. The optimal consumption policy of agent 2 with (ag,02) € A satisfies

c3(t) = €™ [ (ama(t)), (9)

where 1y = (1 — e PT)/pb is the Lagrange multiplier associated with the static budget constraint
of the agent, E {fOT 7r2(s)c§(s)d5} =0b. The SPD process faced by the agent is

ma(t) = B oo (- [ as) Tdu(s) — 5/ t Ira(o)] s ) (10)

with the relative risk process expressed by
ra(t) = Zp(t)k(t), (11)

where k() = o(t) L (u(t) —r(t)1) and Tp(t) = op(t) (ox(t)op(t) ) Lop(t) are the relative

risk process faced by agent 1, and the projection matriz on Span(oy), respectively.

When agent 2 follows his optimal policy, we interpret mo(f,w) in (10) as his Arrow-Debreu
price (per unit of probability P) of one unit of consumption good at state w and time ¢. Equa-
tion (9) is the usual result that e™Pul(c}(t)) = w;m;(t), which holds for i = 1,2. At the optimum,
the marginal benefit from an additional unit of consumption at state w and time ¢ is propor-
tional to the cost of that unit. The cost structure faced by agent 2 accounts for the nature
of the allowed trading strategy as specified in (11): The relative risk process used for mo(t) is
a projection of the relative risk process faced by the unconstrained agent (k1(t) = k(t)) on a

restricted investment opportunity set summarized by o ().

Note that ma(t) can indeed be viewed as the unique SPD process in a fictitious unconstrained

economy, where the drift of risky assets is given by 4+ v. The “shadow” process v is set to
v(t) = —o(t)u(t)k(), (12)

where

is the projection-matrix process on the space orthogonal to Span(cy), and I is the identity

matrix. Optimal policies of an agent with (Us, ) in the fictitious unconstrained economy, with



price coefficients (r, 1+ v, ), coincide with optimal policies of our constrained agent.® Standard

arguments, along with (12), then imply that the stock investment, Wy — a3, is

1703(t) =17 (o (D)o(t) ")~ (u(t) + v(t) — r())Wa(t) = %Wg(t), (13)

where, Ws(t) = E (ftT ?ri((g cs(s)ds| ft) = L;(T_ﬂc;(t)

4. Characterization of Equilibrium under the IRH

This section provides our main results, which include characterization of risk premia, interest
rates, and consumption policies. Under the TRH, the economy is mildly restricted (only a
subset of agents faces constraints), hence we denote it Exrp, and identify it by its primitives:
Evr ={(Q,F,F,P),b, 61,60, ui(-),log(-), A}. Section 4.1 focuses on the economy Eyp in its
general formulation (which corresponds to the G-IRH). Section 4.2 elaborates on the case where
q1(t) = 0 (the P-IRH), thereby allowing us to contrast our model with the static literature.
In addition, results for Eyyp are compared to a benchmark, complete-markets unconstrained

economy: & = {(, F,F,P),b,61,062,u1(-),log(-)}.

Definition 1. A competitive rational expectations equilibrium for the economy Epygr s a price
system (v, ju,0) and a set {c}, (af,07)}2_,, such that

(i) c; = argmax.cc. Ui(c), i = 1,2, where

C1 ={c€C:cis financed by (ay,01) € O, with a1(0) + 6;(0)TT = S1(0) + S2(0) — b},

Co = {c €C: cis financed by (az,0) € O, with az(0) + 02(0) "1 = b and (as(t), O2(t)) € A(t)}.

(ii) The consumption-good market and the securities markets clear;
Alt) () =6(1),  ai(t) +a3(t) =0, 07;() +65;(t) = 5;(1), j=1,2.

In Eyg, as in &y, it is convenient to characterize equilibrium quantities using a construction
of a representative agent. Let u(c, ) = maxe, 4¢e,—c u1(c1) + Aua(cz), for some A > 0. In &y, a
representative agent’s utility, u(6(¢), A(0)), is a linear combination of individual utilities (see, e.g.,
Duffie and Zame (1989), Karatzas et al. (1990)). In Eypr, because agents use different SPDs
to price consumption, the representative agent is characterized by a state-dependent utility,
u(6(t), A(t)), with a stochastic weighting process (as in, e.g., Cuoco and He (1994), Basak and
Cuoco (1998)). The absolute risk aversion and absolute prudence (as in Kimball (1990)) of
agent i and of the representative agent are denoted by A;(t), P;(t), A(t), and P(t), respectively;
Ailt) = —1',755 g)))) » Fult) = _Zlflflgcc (<:)))) » Al) = _?;;CC<(§(<ft))7;<(ft))))’ P(t) = —foc?(;((f))’AA((f))))'
AU ACAL e(0(1), AlT Lee(0(1), At

8In the fictitious economy, the presence of the constraints in A is mapped into a modified drift, but does not
affect the interest rate. This is so because no restrictions are imposed on as.




4.1 The Generalized Investor Recognition Hypothesis

We assume that an equilibrium exists, and provide its characterization.

Theorem 1. When Epg is in an equilibrium, then the weighting process, \(t) = u(c;(t))c5(t),

is a strictly positive solution to the stochastic differential equation (SDE)
AA(E) = ~A(8) Ax(F)os(t) TLa(t)du (),
and X\(0) is the unique strictly positive solution to
b=(1—e ")p A0)uc(8(0), A(0)) .
The interest rate and risk premia are
(1) = p+ AlDs(t) — 50 PW los0)]* ~ SAGPE) ~ PO TR0
pu(t) —r(t)1 = A(t)o(t)os(t) + (Ai(t) — A(t))o (H)Ip(t)os(t).

Optimal consumption policies are ci(t) = f1(uc(6(t), A(t))), c5(t) = A(t)/uc(6(t), A(t))
with

de; (t) = pe ()dz‘—l—ac() dw(t), 1=1,2,
where
2lt) = kst + (1= ok ) Melthos(o)
_ AN LAWE[AG) PO,
) = S0+ T [ 2 10!
LAGR (P - PO | P (A
Sam | (- ) mees o
75t) = o) - o TEs(0)
A LA [P P
) = L0+ 35,07 [ ~ g IOl

1LA(1)? [ Pi(t) — P(t)
T2 As(1) { f

The relative risk processes faced by the agents are

k1(t) = A(t)os(t) + (Ar(t) — A()p(t)os(t), ra(t) = A(t)os(t) — A()Ip(t)os(t).

The results in (14)(19) are better understood in light of the following corollary:
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Corollary 1.

(a) When the portfolio of agent 2 is perfectly correlated with 6(t) and b < 6(0)(1 — e=*T)/p, then
A(t) = A(0), and there exists a unique equilibrium for Exrr, which coincides with that in Ey, with
all equilibrium quantities obtained by substituting M p(t)os(t) = 0 in Theorem 1. In particular,
u(t) — ()T = A@o(t)os).

(b) When the portfolio of agent 2 is uncorrelated with 6(t), b < §(0)(1 —e=1)/p, and there
exists a unique, strictly positive solution \(t) to the SDE d\(t) = —A\(t)A1(t)os(t) "dw(t), then
there exists a unique equilibrium for Epyrp, which coincides with that in a restricted-participation
economy (05(t) = 0), with all equilibrium quantities obtained by substituting I p(t)os(t) = os(t)
in Theorem 1. In particular, pu(t) —r(t)1 = A(t)o(t)os(t).

(¢) When Eprg is in an equilibrium, the risk premium of stock j is given by

pi(t) —r(t) = ai(t)cov <d;‘7(%) , %(:))) + as(t)cov <d;‘7(%) , dFF—(E‘I;)> , j=1,2, (20)

where
a0 lloso)l
200" NI

(d) The risk premium of the IRH index is given by pup(t) —r(t) = A(t)op(t)os(t), and the risk
premium of §* is given by g (t) —1(t) = A(t)os(1)os(t)[1+(1— pps(t)?)AL(t)/Aa(1)], where 6*
is a stock-only portfolio perfectly correlated with 6. The risk premium in (20) is equivalently
gwen by i;(t) —r(t) = bjs«(t) (s« (t) — r(t)) + bje(t)(pue(t) — r(t)), where bjs« and bjp are the

multiple-regression coefficients.

ai(t) = Ai(t)6(t),  ag(t) = —A(t)

Corollary 1(a) shows how the familiar characterization results for the unconstrained, benchmark
economy &y are obtained in our setting. Corollary 1(b) asserts that the economy analyzed by
Basak and Cuoco (1998) can also arise as a special case in our model, and although their model
was formulated with a single stock, we see that their characterization results are readily extended

to the case of multiple risky assets.

Comparing the results in Eyp and &y, note that in Eyp, as in &y, agents adjust their
marginal rate of substitution (MRS) for consumption at different states and in different times to
equal the relative prices of consumption (as we saw in Section 3.2). Since agents face different
(non-negatively correlated) SPD processes, the MRS of agent 1 between any two points in
Q2 x [0,7] is different from the MRS of agent 2. The two agents will not choose consumption in
the same fashion. Hence, unlike in &y, the optimal consumption policies in (18) are not perfectly

correlated with aggregate consumption, but rather maintain a non-negative correlation.

The interest rate has a new fourth term in (16) compared to its expression in . To under-

stand this term, suppose that agent 1 has a decreasing absolute risk aversion (so that P; > 0)

11



and is the more prudent agent (so that P; > P). Then, compared to &, agent 1 must be
further deterred from investing in the bond (and encouraged to borrow) to fulfill his dominant
role in clearing the stock market. Therefore, the new term acts to lower the interest rate, so that
in equilibrium it will countereffect the precautionary savings motive of agent 1. The spanning
characteristics of F' determine the role of agent 1 in clearing the stock market, and hence the

extent to which his prudence affects r via the new term.

The additional state variable in €y g, compared to &y, is A(t) and this is translated into a
“two-beta” CCAPM in (17). At any instant, the excess expected return on assets is a linear
function of their covariance with the two state variables (6,\). In turn, the instantanecous
covariance of A(t) with 6(t) is —A(#) A1 (t)||IIp(t)os(t)||>. Hence, A(t) tends to increase during
times of recession and to decrease during times of expansion. Although A(#), in general, cannot be
observed by an econometrician, the cross-sectional implications of equation (17) are nevertheless
formulated using quantities with acceptable empirical counterparts. Corollary 1(c) clarifies the
risk-return tradeoff under the IRH by rewriting the risk premia in (17) using a conventional
notation of instantancous conditional covariances. The model predicts that the cross-section of
instantaneous expected returns, conditional on Fy, is proportional to instantaneous conditional
covariances between the rate of return on asset j and two economic variables. The first variable
is the consumption growth, as in the CCAPM of Breeden (1979). The second variable is the rate
of return on the IRH index. For our formulation of the IRH (i.e., when ¢(t) is set to mirror our
hypothesis about the impact of information costs) the discrete-time analog of the latter return

can be constructed using data on asset returns in the economy.

To understand the intuition for the cross-sectional differences between securities, consider
an example with pps > 0, where stocks have equal consumption betas but ojo0p > g20p > 0.
First, when pps = 1, agent 2 behaves as he would have optimally behaved in £y, and hence Eyp
coincides with the benchmark case (in particular, (20) reduces to Acjos, as in Corollary 1(a)).
Second, when agent 1 holds the entire stock supply (ps = 0), only the first term in (20) remains,
as is the case in Corollary 1(b), because agent 1 does not share stock-market risks with agent 2.
Third, with 0 < pps < 1, if agent 2 becomes very risk averse (A — co) due to shrinking wealth,
the first term again dominates (with A — Aj) and there are no cross-sectional differences;
agent 1 effectively becomes the representative agent in a complete market, because agent 2 is
a negligible participant in the economy (agent 2 is an insignificant player in the stock market
due to high risk aversion, and low Wy implies he is also insignificant in the money market).
Finally, a different picture arises when Aj is finite. As noted, the first term in (20), Ai0;0s, is
the correct premium when agent 1 alone bears the stock-market risks. This premium must be
adjusted because there is agent 2 to share risks with (As < oo) and there are indeed risks to

share (pps > 0). The magnitude of the adjustment depends on Aﬁ—;, which captures the ability
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of agent 2 to share risks, while pps captures the incentives agent 2 has to share risks. ||os||/||oF||
acts as a scale factor to normalize the asset-specific correction ojop. To see the direction of the
correction, in the context of this example, note from (18), and pps > 0, that ¢} is positively (in
fact, perfectly) correlated with the IRH index, and Agent 2 must then be long in the IRH index
to finance his consumption policy. Agent 1 effectively holds the entire stock supply and takes
a short position in the IRH index. Favorable realizations of § tend to coincide with favorable
realizations of F', which is undesirable for agent 1. It is stock 1 that offers him better insurance
against an unfavorable realization of the short position. Because of its hedging value, stock 1

becomes more desirable than stock 2, and is required to offer a relatively lower risk premium.

Corollary 1(d) provides the risk premium for two portfolios (6%, F'), and uses these to express
risk premia of individual stocks. The special structure of the two portfolios yields somewhat
simplified formulations for their risk premia. The premium of the IRH index agrees with its
expression in £y because this portfolio is (the only one) accessible to both agents, and hence is
priced through the risk aversion of the representative agent alone. This will not hold for any
other portfolio. For example, when opogs = os«0s > 0, then 6* commands a higher risk premium

than F' because, unlike with F', agent 1 cannot share with agent 2 the risks associated with 6*.

4.2 The Pure Investor Recognition Hypothesis

The P-IRH, in its static form, has attracted considerable interest in the literature. To gain more
insight about the P-IRH in a dynamic world, let stock 2 represent the visible asset, and stock 1

represent the asset not recognized by agent 2.

Proposition 2. When Eyp is in an equilibrium, with q1(t) =0, then:
(a) The interest rate and risk premia are given by

r(t) = p+ Alt)us(t) — AW P@)los(t)]]? — 3A)(Pr(t) — P()(1 — pas(t)*)[as(®)]I,
pa(t) —r(t) = A(t)oa(t)os(t),

() —r(t) = A{B)or (Dos(t) + T(t);}gg (1— pralt?) W<d;1<%)>

(21)

dS(t) (t)|| dSa(t) dbé(t)  dW(t)
+ Yoo (a7 Pl ol S 5 ~ W)
where W (t) = Wi (t) + Wa(t), and T(t) = R(t) 745 38 Ro(t) = As(t)es(t), R(t) = A(1)S().
(b) When wuy(-) = log(-), and the aggregate endowment follows a geometric Brownian motion
ds(t) = 6(t)usdt + 5(t)od dw(t), where pis and o5 = (051,052) " are constant, then:

(i) The relative risk processes are k1(t) = o5+ A(t)a(t)os, and ko(t) = o5 — a(t)os.

In Eyg, agent 1 (agent 2) faces state prices with higher (lower) volatility compared to & .
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(ii) The optimal consumption policies are c;(t) = 6(t)W;(t)/W(t), i=1,2,
and satisfy dci(t) = c;-k(t),uc: (t)dt + ¢ (t)ac: (t) "dw(t),
pres (1) = ps 4+ (L + M)A (1 = p2s(t)?)|los|]?, oer = g5 + A()2(t)0s,
fiey(t) = pis — (L 4+ A1) (1 — pas(t)?)|os| [, o5 = 05 — Lz(t)os.
The expected consumption-growth rate of agent 1 and the volatility of his consumption-growth
rate are higher in Eyrp compared to Ey, while those of agent 2 are lower.
(iii) The welfare of agent 1 in Enrg, Ui(c}), is higher than in &y, whereas Us(cy), is lower.
(iv) The interest rate is 7(t) = p+ ps — ||os||* — %fgg(l — pas(t)))]|os||?,
and is lower than in Ey. For a given distribution of wealth, r(t) is increasing in pos(t)?.
. . W: S
(v) The risk premia in Eprp are py(t) —r(t) = o1(t)os + ngg W}Eg(l — pr2()H)]|o1 ()| %,
pa(t) — r(t) = og(t)os. For a given o1(t), the risk premium of stock 1 is higher than in Ey.

Proposition 2(a) states that when Pi(t) > P(t), then r(f) has a parabolic dependence
on pPys(t) with the minimum at p,5(t) = 0. Clearly, under the P-IRH, fluctuations in r(t) are
explicitly related to fluctuations in oo(t), all else being equal. This link between the volatility

of the visible portion of the market and the interest rate is a novelty of our model.

The risk premia differ across securities depending on their visibility (e.g., exchange-listing
status). The second and third terms on the right-hand side of (21) state two reasons for why
the risk premium of stock 1 is modified relative to its expression in &y: First, there is a change
in diversification opportunities, because there is an adjustment of portfolios to the constraint
itself. Second, there is a change in the ability of agent 1 to hedge against shifts in the investment
opportunities. Because the second term in (21) compensates agent 1 for bearing all the risk of
stock 1, it is positive and is similar to the compensation for lost risk-sharing opportunities
predicted by static models (Errunza and Losq (1985), Merton (1987), Basak (1996)). Contrary
to Merton’s measure of investor base, our model identifies the proportionality factor T with the
ratio of consumption streams, normalized by relative risk aversions. The third term in (21) arises
because, when smoothing consumption, agent 1 owns the entire supply of stock 1. If stock 1
and stock 2 are very close substitutes (p;5 — 1), the second and third terms are insignificant.
If the dynamics of aggregate wealth coincide with the dynamics of aggregate consumption (e.g.,
if both agents are myopic and do not hedge intertemporally), then the third term vanishes. In
general, however, the sum of the second and third terms in (21) need not be positive, because
full ownership of stock 1 may be a desirable strategy if the value of stock 1 as an intertemporal
hedging instrument outweighs the cost of owning its entire supply. It is easy to verify that if,
for example, 0105 = 0905 > 0, then p; < pg holds if, and only if, ||o1||p9 > ||o2||. Therefore,
contrary to mean-variance results, a less visible stock with a higher volatility may, nevertheless,

be required to offer a lower expected return, all else equal.
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Under the G-IRH, the event of listing stock 1 on a more visible exchange, at time t,
corresponds to ¢; being zero up to tz,, and then, over [t1, T], being as required by the benchmark
model. Clearly, if consumption betas remain stable during the listing event, then, for some
stocks, one may detect a higher expected return after listing. Consequently, when averaging
abnormal returns across securities in event-time, the impact of listing can take many forms.
This may potentially account for the somewhat inconclusive results in exchange-listing studies

(see, e.g., Kadlec and McConnell (1994) pp. 614-615).

In Proposition 2(b), to clarify differences between 3 under the P-IRH and &y, we impose
further structure on w; and on the dynamics of §(t). The weighting process then coincides
with the wealth distribution; A(t) = Wa(t)/Wi(t), and 1 + A(t) = W(t)/Wi(t). Also note
that o5 = ow(t)/W(t). Unambiguous, direct comparisons (V(t,w) € [0,T] x Q) between Epp
and &y are provided in (i) (iv): Agent 1 bears more risk and has more volatile consumption,
compared to agent 2 and compared to the benchmark. The interest rate is lower in Eyrg, which

induces agent 1 to hold stock 1, and the lower borrowing costs increase his welfare.

Risk premia in (v) deserve two comments. First, both agents are myopic, and the extra term
in the risk premium of stock 1 is positive. However, in an intertemporal model, this per se does
not imply a higher risk premium compared to the benchmark (as illustrated by Basak (1996)).
The risk premium on stock 2 is also ambiguously related to its benchmark value. Second,
A = Wy /W7 measures the relative investor base for stock 1, and from (14) it is negatively
correlated with 6. Intuitively, given a positive outlook for future dividends, Wi(t) tends to
increase relative to Wa(t) because agent 1 benefits from full ownership of stock 1. Therefore,
our model, even in its myopic version, has a new implication for the P-IRH; all else equal, the

cross-sectional differences between securities with different visibility are counter cyclical.

5. Empirical Evidence

Our premise is that the costs of gathering and processing data lead some investors to focus
on stocks with high visibility and, in addition, to entrust a portion of their wealth to money
managers employed by pension plans. Hence, the return on the portfolio of ICI is characterized
as a combination of two proxies: a proxy for the return on their investment in visible stocks,
and a proxy for the return on their indirect investment via pension plans. Given these proxies,
we test the implications of our premise for the cross-section of unconditional expected returns.
Section 5.1 presents our econometric approach. Section 5.2 identifies the two components of the

IRH index. Sections 5.3 and 5.4 describe our data and results.
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5.1 Econometric Specification

The pricing equation (17) and its two-beta reformulation in (20) are readily generalized to N
assets, as shown in Appendix A.1. Let ;41 = [S;(t + 1) + fttﬂ 6i(s)ds — S;(t)]/S;(t),
gie1 = [6(t+ 1) = 6(1)]/6(t), and heyq = [F(t 4+ 1) — F(t)]/F(t), where j =1,..., N, one unit
of time corresponds to a month or a quarter, ¢ takes discrete values, gy11 is the growth rate
of aggregate consumption, and the IRH is characterized by q(t) = (q1(t),...,qn-1(t),1), fixed
between ¢ and ¢ 4 1, so that the rate of change in the IRH index is hyy1 = 2;_\1:1 djtTj1+1, Where
gjt = qj(t)/Z;-Vzl gj(t). Using the stochastic Euler approximation to (1)-(3) and (8), we can
restate (20) as

Elrji1|Ft] = aor + a1¢Covirj i1, gi+1|Ft] + aCovirjipr, e |Fe], j=1,...,N, (22)

where ay; and ag are as given in (20), and ag; captures interested-rate fluctuations and ap-
proximation errors (assumed to be homoskedastic). Equation (22) is the starting point of our
empirical analysis; we examine whether the conditional formulation in (22) is consistent with
the cross-section of unconditional expected returns. Using (22), with additional assumptions

stated in Appendix B.1, we get the following result:

Theorem 2. Assume that B3j4 = Cov(rjs, gt)/Var(g:), Bjn = Cov(rjs, he)/Var(h:) exist and are

linearly independent. If G; is known Vt, then there exist some constants (ag,a1,a2) such that
Elrj:] = ao + a18j9 + a2l . (23)

If g; is unknown, assume the IRH index to be a combination of two portfolios; hiy1 = wihy 41+
(1 — w¢)hot41, where wy is unknown but the weights within hi 441, ho 41 are known. Let ﬁjhp =

Cov(rji, hypt)/Var(hp), p=1,2. Then, there exist some constants (ag, a1, az,as) such that
E[Tjt] =ag + (llﬂjg + ag,@jhl + (l3,3jh2 . (24)

The specification in (24) agrees with our premise, and we will refer to it as the G-IRH model

(denoted Mc_rp). It is testable? given the empirical counterparts of (g, hy, ha).

9The unconditional specification does not explicitly incorporate the particular structure of the coeflicients
n (22). A test based on Theorem 2 lacks power against a model that has covariance structure as in (24) with
different loadings, but to the best of our knowledge, no other model in the literature offers theoretical justification
to combine consumption growth with the proxies for the visible and retirement-oriented portfolios to explain
expected returns. Clearly, one can transform (24) into an alternative cross-sectional formulation with multivariate
betas, which are the slopes in a time-series regression of excess returns on the portfolio unconditionally most highly
correlated with consumption growth (MCP), hi, and hs. Since constructing the MCP introduces another source
of estimation error, we choose to focus on the implications in (23) and (24). We will return to the unconditional
mean-variance implications of the model in Section 5.4. Also note that our econometric specification relies on
assumptions that one would ideally like to translate to assumptions on the model’s primitives. Unfortunately, the
complexity of the model renders such a mapping infeasible.
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To examine the prediction of Theorem 2, we adopt the two-pass cross-sectional regression
(CSR) approach. In the first pass, cach univariate beta is estimated using ordinary least squares
(OLS). The second pass is a single CSR of average returns on betas, and it is also convention-
ally estimated using OLS. The advantages of estimating the CSR with generalized least squares
(GLS) are improved asymptotic efficiency (Shanken (1992)) and robustness to proxy misspecifi-
cation (Kandel and Stambaugh (1995)). However, for GLS, we need the inverse of the unknown
covariance matrix of returns. Neither estimation approach is decisively superior. Using monthly
consumption data is desirable to increase the number of time observations and get more precise
estimates. Quarterly intervals are likely to yield a more accurate measurement of consumption
growth (Breeden et al. (1989)). Overall, as detailed in Appendix B.2, we report monthly and
quarterly CSR results estimated with OLS and GLS (at the second pass, where standard errors
are corrected for a bias induced by OLS sampling errors in the first-pass univariate betas). Since
expected returns vary cross-sectionally, if the model is valid, we must have at least one non-zero
slope coefficient. We check this using the Wald test statistic. Under the CSR approach to testing
asset-pricing models, if the Wald test, based on both OLS and GLS estimates, rejects the null
hypothesis of zero slopes, it is interpreted as a failure to reject the model. Then, the Hausman
(1978) specification (HS) test can asses if the OLS and GLS estimates are as close as a correctly

specified model would imply.'?

Another way to evaluate equation (24) is to restate it as
E[(1 +7j¢)(bo + b1ge + bahae + bzha)] = 1, (25)

where (bg, b1, ba, b3) are some constants. The term y; = bg + b1 gt + bahyt + bgha is the stochastic
discount factor implied by (24). The empirical proxies for (g¢, hit, hot) may not coincide with
their theoretical counterparts, leading to the use of a misspecified proxy for the true discount
factor. If no proxy can price correctly the N assets, then for a set of discount factor proxies,
which correspond to different models (e.g., CAPM, CCAPM, or Mc.rp), it is of interest to
quantify how misspecified one proxy is compared to the others. Therefore, we estimate the
magnitude of misspecification using the Hansen and Jagannathan (1997) distance (HJ-d). On
the other hand, for a correctly specified discount factor the HJ-d is zero. Hence, we test the
model (i.e., the null hypothesis of a correctly specified discount factor) by testing whether the

estimated HJ-d is insignificantly different from zero.!!

YHS = (aprs — aarg) ' (Var(aors) — Var(agrs)) *(aors — agLg), where hats denote estimates, and a
excludes the intercept. HS (as the Wald statistic) has an asymptotic chi-square distribution with dim(a) degrees
of freedom. HS is reported only when both OLS and GLS Wald statistics reject the null hypothesis, Ho : @ = 0.

HTet y;(b) be the examined proxy that depends on b. The HJ-d is the minimum least-squares distance,
in L? space, between y;(b) and an m, that prices correctly the N assets. In our case, the HJ-d is given by
d = [(B[Rey:(b)] — 1) T (E[R: R ]) " *(E[Rsy: (b)] — 1)]*/2. To compute it, we use consistent estimates of the moments
(with the b that minimizes d). The HJ-d has an appealing interpretation; it is the maximum pricing error when
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5.2 Identification of the IRH index

We now identify the empirical counterparts for (h1, ha). For h1, by our premise, agent 2 considers
only the stocks visible to him — those about which he has sufficient information to implement
optimal portfolio rebalancing. Information about the larger firms is likely to be available at
a lower cost, and we identify visibility with large capitalization. The claim that large firms
are more widely known is consistent with the evidence that large firms have more shareholders
(Merton (1987)). Moreover, large firms usually have a longer listing history. Falkenstein (1996)
reports that both the size and the age characteristics of a firm are positively correlated with the
number of news stories in major newspapers about that firm. We further assume that a single
index can capture well the investment of agent 2 in visible stocks. The natural proxy to use then
for hy is the Standard and Poor’s 500 index (S&P 500). Agent 2 is not required to have detailed
information about the 500 large-capitalization firms in the index, although he must know enough
to optimally rebalance wealth between the S&P 500 portfolio and other investments. In fact,

since the S&P 500 is a good market proxy, only market-wide information may suffice.

For hs, the second aspect of our premise states that agent 2 entrusts a portion of his wealth
to money managers who have better access to information. We focus on pension funds.'? Agent 2
receives all necessary reporting from the sponsor to be able to optimally allocate wealth between
the money market, the S&P 500, and his pension fund. To construct hsy, due to data-availability
constraints, we rely on aggregate evidence provided by Lakonishok et al. (1997) (LSV), who
characterize the aggregate portfolio (a “superfund”) of a large collection of tax-exempt pension
funds. Their sample covers about 20% of the total actively-managed equity holdings of pension
funds. LSV find that, relative to the S&P 500, the superfund has a high proportion of stocks
with good long-term past-return performance. For example, on average, 65.2% of the S&P
portfolio is invested at any given time in those stocks that over the past three years performed
better than the stock in the S&P 500 with a median performance. The comparable figure for the
superfund is 83.9%. LSV call this overexposure to well-performing stocks — a glamour bias. We

assume that the fund component of agent 2 mirrors the LSV superfund. Hence, we construct hg

using y; to price positions in the N assets, where position payoffs are standardized to have a unit norm in L2. Under
the null, an estimator of the HJ-d has an asymptotic distribution equal to a mixture of chi-square distributions.
We report the associated p-value (computed as suggested by JW). Under the alternative of a misspecified proxy,
the estimator is asymptotically normal, and we report its standard error (accounting for serial correlation as in
Newey and West (1987) with lag 12 for monthly data and lag 4 for quarterly data).

12We do not consider explicitly the mutual-fund sector. This will not bias the results if the investment of ICI in
mutual funds is spanned by our proxies for h; and hs. Moreover, investments in mutual funds are made directly
by individuals, whereas investments in pension funds are guided by the fund sponsor. Note that hi captures
investment in large firms by ICI, as a group, whether if owned directly or indirectly through equity and index
funds. The key idea is that the “investment style” of hi is chosen directly by ICI based on the visibility argument,
while not so with the investment style of he, which is merely reported to them, and is taken into account in their
asset allocation. The different decision process in arriving to he adds an extra layer of potential distortions in
investments and hence justifies our separate treatment of retirement assets.
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as follows: At the beginning of each period ¢, we compare the past three years’ return of each
of the N assets in our sample with the return on the S&P 500. Only assets that outperformed
the S&P 500 are selected. Their equally-weighted return over period ¢ defines the value of hg.

This procedure, however crude, mimics the LSV characterization of the superfund.

A test of M@g.iry nests the following tests: When a; = a3 = 0, we test the CAPM with the
S&P 500 as the market proxy (henceforth, Mcapy). When ag = ag = 0, we test the CCAPM
(denoted Mccapm). Setting as = 0 identifies the IRH index with a glamour-biased portfolio;
the tested specification, denoted Mqgranm, assumes that agent 2 invests in stocks only via its
professionally managed retirement funds. Finally, we set ag = 0 to test the premise of the
P-TRH that agent 2 invests only in visible stocks (henceforth, Mp_jgy). Mp_ry is of particular
interest, because it implies that consumption beta and market beta jointly determine the cross-
sectional variation in expected returns. Mankiw and Shapiro (1986) examine which beta is
more related to returns using 464 NYSE stocks, with the S&P 500 as the market proxy.'® They
conclude that, unlike the market beta, the consumption beta is unrelated to expected returns.
However, their sample suffers from a survivorship bias. Epstein and Zin (1991) and Bakshi
and Chen (1996) analyze models where the consumption beta and the market beta enter the
pricing equation.' They do not focus on comparative beta performance and use a small number
of assets in their empirical investigations. Campbell (1996) builds upon the Epstein and Zin
(1991) model, and concludes that the covariance with the market appears to capture most of
the cross-sectional variation in expected returns across the 25 portfolios that he examines. We
provide new evidence on the performance of the consumption beta versus the market beta using

a large cross-section of portfolios.

5.3 The Data and Main Results

As our N assets, we choose a set of portfolios that has generated considerable interest since its
introduction by Fama and French (1992). JW use this set to demonstrate that the conditional
CAPM fits the data much better than the static CAPM examined by Fama and French (1992).
To facilitate comparisons with that research, we test our model with the N = 100 NYSE/AMEX
size-beta portfolios used by JW.'5 The data consist of monthly returns from July 1963 to De-

13The literature that empirically examines either the CAPM or the CCAPM, but not both, is too vast to survey
here. See Campbell et al. (1997) for more details.

1411 the Epstein and Zin (1991) model, the representative agent has recursive preferences and the aggregate
wealth (“market”) enters the pricing equation because it proxies for the subsequent period’s utility index. In the
model of Bakshi and Chen (1996) wealth enters the pricing equation because the representative agent cares about
wealth-induced status. In our model preferences are standard. Wealth enters the pricing equation (in Mp_jgry)
to account for pressure imposed on the unconstrained agents by those who choose to trade only the market.

151 thank Ravi Jagannathan and Zhenyu Wang for making their data available to the public. See JW for the
description of portfolio formation and for summary statistics. I use the JW data here and in Section 5.4. T also
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cember 1990, and these returns are used to construct the glamour-biased return. The return of
the S&P 500 is taken from CRSP. Consumption data are from CITIBASE. We use per-capita
personal-consumption expenditures on nondurables and services. Consumption and returns are
converted into real terms by the implicit price deflator. Monthly growth rates are computed
using monthly data. As suggested by Mankiw and Shapiro (1986) and Breeden et al. (1989),

quarterly growth rates are computed using monthly data as of the end of each quarter.

Results are reported in Tables 1-2, and are representative of those obtained with similar
specifications of (g, h1,h2), such as using consumption of nondurables only or of services only,
using the top size decile or a broader market index for hj, and using a shorter return history
when constructing hg. To avoid redundancy, we do not report the estimates of b in (25). In
general, when an estimate of a; in (24) is statistically significantly different from zero, so is the

estimate of the corresponding b;. The few exceptions to this do not affect our conclusions.

Table 1 presents estimates for Mcapm, Mccapms Mp-ira, and Mapam. These results are of
interest for two reasons: First, excluding the CAPM, these models have not been estimated in
previous studies using so large a cross-section of portfolios. Second, the results allow us to put
in perspective the subsequent investigation of Mqg.iry, which is the focus of our analysis. It is
clear that neither the CAPM nor the CCAPM is supported by the data. The P-IRH is rejected
as well (which is also an evidence against the models of Epstein and Zin (1991) and Bakshi and
Chen (1996)); in the context of our model, ICI do not limit themselves solely to index-investing.
Results for Mgp,am indicate somewhat improved performance. The Wald statistics and the HS-
test are consistent with a correctly specified model, but more than 80% of the cross-sectional
variation cannot be accounted for, and the HJ-d indicates that pricing errors are significantly
different from zero.'0 Still, the overall conclusion from Table 1 is that the nested formulations

of our premise must be missing important aspects of reality.

Table 2 reports results for Mg_jrg. The main result of this section is that, by all criteria,
this model explains the cross-sectional variation quite well. The R? of 56.55% and the HJ-d of
0.6264, for monthly data, are comparable to those reported by JW for the conditional CAPM.
Our results are corroborated with quarterly data. The consumption beta enters significantly
into the pricing equation despite the presence of the market beta, contrary to the findings of
Mankiw and Shapiro (1986). We remark that estimates of b in (25) confirm that g, hy, and

ho are statistically significant components of the stochastic discount factor. Furthermore, after

thank Rob Stambaugh for the SMB and HML data (provided to him by Ken French), which I use in Section 5.4.

“The estimated a; in M A) is negative while the estimated as is positive. On the other hand, setting h = hs
in (22) yields a1; > 0, and as: < 0 if the glamour-biased portfolio has positive conditional correlation with g.
Theorem 2 states that such sign reversal for unconditional vs. conditional coefficients is plausible in a well-specified
model, and statistical significance of the betas, as a group, is the only sought for implication of (22). Similarly,
no sign restrictions are imposed by JW in their test of the conditional CAPM.
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allowing for sampling errors, we cannot reject at the conventional rate of 5% the null hypothesis
of a zero HJ-d for the discount factor implied by Mg_igru (while being able to reject the CCAPM
and other nested models). Under the alternative of misspecified proxies, the HJ-d has a low
power to distinguish between M gy and the models it nests. However, Mg has the lowest

pricing error, suggesting that this model incorporates a better descriptive realism.

The findings, so far, indicate that asset prices are consistent with our theoretical model and
with our specification of both the direct and the delegated components of equity investment
under incomplete information. This implies that although index-funds appeared in the U.S.
only after 1970, it is likely that implicit index-linking (for example, via S&P 500-like investing
in visible, large firms) was implemented by a significant group of investors (the ICI) during the
1963-1990 period that we study. As a side result, we provide an indirect confirmation that the
LSV sample characterizes well the pension-fund industry. The behavior of stock-market prices
is consistent with the joint hypothesis that the entire tax-exempt money-management industry
held a glamour-biased portfolio, and that a nonnegligible fraction of these retirement assets was

owned by a subset of U.S. workers that otherwise owned only visible stocks.

5.4 Additional Investigations

If M gy is the correct specification, then adding regressors to (24) should not add significant
explanatory ability. To explore this, we begin by considering three specification tests, where each
test adds one explanatory variable to Mg_ry. First, we let agent 2 invest in a third portfolio,
which has a non-glamour bias (constructed each t using those assets that underperformed the
S&P 500 over the past three years). The intention is to proxy for a “value,” or “contrarian,”
investing. We refer to this specification as the nonglamour model (Myopgl). Second, following
Mayers (1972), we let the IRH index include wealth due to human capital. As in JW, the return
on human capital is measured by the growth rate in labor income. Labor income is defined as
the difference between total personal income and dividend income, and although it is based on
aggregates, it is assumed to be valid for agent 2. We denote this specification by Mjpor. Third, in
the size-based specification (Mgize), we add a size regressor to control for the size characteristic.
Berk (1995) argues that one should expect (the log of) market size to be correlated with expected
returns in the cross-section. The question is whether the size regressor can explain that portion

of cross-sectional variation that is not explained by our model.

Results are given in the remainder of Table 2. Neither M, ,ng1 nor Mjapor dramatically outper-
forms M@.trir. The t-value that corresponds to each of the new regressors is never statistically

significant. The R? and HJ-d indicate only minor improvements over M_irm.'” However, results

17If growth of aggregate income is a poor proxy for the growth of the income of ICI, then failure of Miabor
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for Mgse are mixed.'® The latter finding suggests that there is a need for further work, which
will be able to characterize more accurately the direct and the delegated components within the
portfolio of ICI. Nevertheless, adding the size regressor can explain virtually no cross-sectional
variation beyond what was already explained by our model. Figure 1 confirms this conclusion,
and illustrates visually that our results are not driven simply by a few outliers. We can safely
state that the CCAPM augmented by the IRH is a more realistic model than, for example, the

CCAPM or the CAPM for explaining the variation in the cross-section of average returns.

To examine subperiods, we divide our sample of 330 months into three subsamples of 110
months. With this subdivision, the resulting subperiods roughly correspond to the calendar
periods of the “60’s,” “70’s,” and “80’s,” (and our keeping the same number of observations as
in the full-sample quarterly analysis somewhat facilitates comparisons across tables). Table 3

presents the results for Mcoapm, Ma.irg, and M The evidence in favor of Mg gy is

size-
less decisive than with the full-sample period.' However, it is interesting to note that Mq.iru
performs best in the middle subperiod, which, to a large extent, coincides with the period in

which ICI gained easy access to baskets of large firms via index funds.

The fact that a three-beta specification performs well in explaining the variation in average
returns is not surprising. Our contribution is to illustrate that a consumption-based model is
empirically viable, if we account for trading patterns of ICI. To learn more about the spanning
power of (g, hi, hg), we combine them with variables suggested by an alternative model. Analo-
gously to JW, we examine the incremental explanatory power of the betas with respect to the
size (SMB) and book-to-market-value (HML) factors of Fama and French (1993) (we denote
their model by Mgp(gs)). In Table 4, using monthly returns, the SMB and HML betas do not
perform well when combined with Ma_tryg. The GLS results still favor the Mq_ry specification,
thereby offering a further support for our formulation of the IRH. We note, without reporting

results for the sake of brevity, that quarterly analysis leads to similar conclusions.

The inferences in Tables 1-4 are asymptotic. To obtain finite-sample results, recall that (24)
implies that some combination of the portfolio unconditionally most highly correlated with

consumption growth (MCP), the S&P 500 portfolio, and the glamour-biased portfolio is mean-

may indicate our failure to identify the fraction of labor income representing ICI.

18With monthly data, the size regressor is not significant; however, it is significant using quarterly data. The
presence of the size regressor has only a marginal impact on the estimate of a1, compared to its value and statistical
significance in M_jrpg. There is also no impact on the signs of estimated a2 and a3, but their magnitude and
statistical significance are reduced.

19 According to the OLS R? and the HJ-d, Mq.1ru performs better in Panel B of Table 3 than in Panels A
and C, or in Panel B of Table 2. The HJ-d test rejects the model in the first and last subperiods at the 5%
confidence level. The other models examined in Sections 5.3 and 5.4 are rejected as well in these two subperiods,
and to save space Table 3 summarizes results of three models only. Moreover, the asymptotic inferences in Table 3
are less reliable vs. Tables 1 and 2, because in Table 3 we use monthly consumption growth coupled with a small
number of observations relative to the number of examined assets.
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variance efficient. Gibbons et al. (1989) (GRS) derive the finite-sample distribution of a likelihood-
ratio-test statistic, which is widely-used to test the efficiency of a combination of portfolios. GRS
test a given linear-pricing model (the null hypothesis, Hy) against a general alternative hypoth-
esis. Kandel and Stambaugh (1989) show, in the presence of a riskless asset, that the GRS
test can also be used to test the model against a specific alternative hypothesis (Hp), where
Hp states that the tangent portfolio is a combination of portfolios, which include the portfolios

under Hy as a proper subset. We test Mg against both a general and a specific alternative.

Testing Mq.r against Ha requires information only about the excess returns of the port-
folios specified by Ha. A test against a general alternative requires to specify the universe of
assets with respect to which the tangency is defined. The power of the GRS test is very sensi-
tive to the number of assets used; therefore, we follow the suggestion of Campbell et al. (1997)
(Chapter 5) and keep the number of assets small. The 100 size-beta portfolios are used to con-
struct a smaller universe of 15 portfolios. These include the three portfolios implied by Ma.tru
and additional 12 primary assets. The primary assets are 10 size-based value-weighted portfo-
lios, the nonglamour-biased portfolio used in Table 2, and an equally-weighted market portfolio
(EWMKT). The power of the GRS test increases with the number of observations; therefore,
we work with monthly returns (in excess of a Treasury-bill return, taken from CRSP). As in
Table 1, we are interested to examine several models nested by Ma.jrir. One way to compare
the models is to keep the primary assets fixed and to vary the portfolios under Hy. Alternatively,
one can fix the universe of assets, and examine each model with respect to that universe. To be
able to implement both methods, the MCP is constructed from the primary assets, where, to
avoid collinearity, two equally-weighted portfolios replace the EWMKT: one constructed from
the 50 low-size portfolios, and the second constructed from the remaining 50. This MCP is

denoted MCP*. A second construction, MCP**, uses the 100 original assets.?"

Results are reported in Table 5. In Panel A, when keeping the primary assets fixed, we cannot
reject Mq_iru at the 5% significance level, while the nested models are rejected. However, when
keeping the universe of assets fixed, both Mg_rrir and Mgpan cannot be rejected — the universe of

assets is not rich enough to allow the GRS test to distinguish between the two. The OLS results

2075 use the GRS finite-sample results, we must assume that: (i) the weights of the MCP are estimated without
error, (ii) an unconditionally real-riskless asset exists, and its rate is known, (4i7) excess returns are normally
distributed. Using a small number of assets to construct the MCP”* increases the precision of the estimated
weights, but the sample correlation of the MCP* with g is only 0.17. For MCP** the correlation with g increases
to 0.61. The annualized Sharpe-ratios of the MCP* and the MCP** are 0.11 and 0.53, respectively. It is apparent
that an extra source of noise is introduced by transforming (24), which uses a univariate beta with respect to g,
into a linear pricing in terms of multivariate betas with respect to portfolios. This is the reason we implemented
the CSRs using univariate betas. Although we cannot defend the assumptions in (7)-(4i7) above, and although one
can attempt to relax some or all of them, we nevertheless perform the GRS test to provide additional evidence
regarding our model, and to offer another dimension along which our results can be compared with results of
others. However, we view the likelihood-ratio tests only as an auxiliary tool of investigation.
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in Table 4 indicate that although the univariate SMB and HML betas do not add explanatory
power to Mq.iru, they do affect the significance of 3;;,, and 3;p,,. Panel B of Table 5 investigates
further the impact of SMB and HML. The likelihood-ratio test indicates that Mq.jry is rejected
in favor of the combined 6-beta model (Mq.ru plus Mpg(g3)). Mpg(g3) is rejected as well in favor
of the combined model (unless we use the MCP* and redefine Mpg(g3) to use the S&P 500 as
the market proxy). Based on the first two rows of Panel B, we conclude that each model seems
to miss important features captured by the other model. Focusing on M gy, the last two rows
reveal that the information missed out by our model may, at least to some extent, be captured
by the HML portfolio (which Fama and French (1993) interpret as related to relative earnings
distress). It may be worthwhile to attempt refining our premise, and to consider accounting for
how individual investors (or the intermediaries to whom the investment decision is delegated)
treat firms in financial distress. The overall evidence in Table 5, notwithstanding the problems
in implementing the likelihood-ratio tests, reinforces the conclusion from Tables 1-4: The model
has its shortcomings, but despite this, its theoretical implications seem to have enough empirical

support in order to justify stepping further along the IRH track.

6. Conclusion

The CCAPM has advanced our understanding of the most fundamental question in finance — the
tradeoff between risk and return. However, some argue that it may be necessary to take a step
beyond the rational-expectations revolution to better understand the workings of the capital
markets (Shiller (1989)). Others disagree, and Merton (1987), for example, adapts the rational
framework of the static CAPM to account for incomplete information. We undertake a related
task in the dynamic world of the CCAPM, and complement the theory with empirical evidence.
We introduce into the traditional general-equilibrium framework a class of agents who can im-
plement only a particular trading strategy. We provide full equilibrium characterization, and
illustrate that considerable differences arise relative to the CCAPM (due to agent heterogeneity),
and relative to Merton’s (1987) model (due to intertemporal considerations). Our model can be
extended to include several informationally constrained agents, and each agent can be allowed
to follow one or several trading strategies. The intuition behind our basic model prevails, with

the results modified to account for the correlation patterns between the various strategies.

The premise of this paper is that a trading strategy, shaped by real-world information costs,
should incorporate an investment in well-known, visible stocks, and an investment delegated to
professional money managers, in particular via pension plans. We argue that we have at hand

reasonable proxies for both components. Our argument must be put to the test, and this could
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not have been done without the model. Nevertheless, the model treats visibility, as well as
institutional investments, as exogenous. Clearly, endogenizing these variables is a challenge of

considerable interest for future work.

An advantage of our model is its empirical tractability. We test the joint hypothesis that both
the model and the chosen proxies are well specified. The test examines the ability of our premise
to explain the cross-sectional variation in average equity returns. Our model performs quite
well, but there is no room for complacency, because much is still left unexplained. Moreover,
our findings should encourage further research that will lead to detailed characterization of
portfolios and trading strategies of identifiable market participants. Knowing what agents trade

may help to understand the nature and impact of the underlying frictions.

Caveats are in order. Empirical results are specific to the examined data set and time period.
Additional tests, which focus on implications that are not tested here (such as the link between
stock volatility and short-term interest rates), and examine other markets (domestic as well as
international), may prove informative. Furthermore, at the cost of imposing more structure on
the econometric specification, one can attempt to relax some of the assumptions underlying our

unconditional formulation. This may lead to more powerful tests of the implications of the model.

Appendix A

A.1 Proofs

Proof of Proposition 1: We have cast the model with N = 2 for expositional purposes. The
proof is given for an economy where F is generated by an N-dimensional Brownian motion
w = (wy,..., wN)—r and where there are N risky assets. Hence, suppressing the dependence on

(t,w), let ¢ = (q1,...,qn—1,1)" and redefine A accordingly,
A= {(ag,02) € RN 1 0y = g6y, j=1,...,N—1}. (A1)

Treatment of the N-dimensional case lays the foundation for the empirical analysis that uses
N-assets. Agent 2 maximizes Us over consumption plans that can be financed by (a9, 62) € O,
subject to the budget constraint as(0) 4 02(0)T 1 = b, provided that (ag,f3) € A. Cvitanié¢ and

Karatzas (1992) showed that one can solve this problem via an appropriately defined minimiza-

tion problem — the dual problem associated with the constraint A. Let v = (v1,...,vy) and
vy = (v1,...,un_1). For (vo,v) € RN the support function of —A is
N—1
o(vp,v) = sup —(agrp+ HQTV) = sup  — | asrg + Oan Z qv; + vNn
(a2,02)€A (a2,02n)ER? j=1
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The effective domain of p(vp,v) is

N—-1
A= {(VO’V) € RN+1 : (P(V071/) < OO} = {(VOal/) € RN+1 =0, vyn=— Z q]l/]}v
j=1

where absence of constraints on as requires vy = 0 (hence in the fictitious unconstrained economy
only the drift must be modified to equal p + v), and the structure of A imposes the above
restriction on v. Also, ¢ = 0 on A. We obtain v by solving the dual problem. Let A/ (t,w) =
veRN: vy =— Zj-\[:_ll qj(t,w)v;}. For an agent with logarithmic utility, the dual problem

T
min E —/ e PT(1 + pt + log(yam, (t)))dt + 1ab |
(U2 )R- N < , ¢ (Lot log(eomy (1))dt + 42

where
7 (t) = B~ exp (= [ (o)™ (u(s) + v(s) — () D) Tdw(s) = & [ 1)~ (u(s) + v(s) — r()D)][2ds),
vields ¢5 = (1 —e™1)/pb, and further reduces to a pointwise minimization of a simple quadratic
form,

. —1 o V(2
min [lo(tw) () + v = (D] (A2)

Each v in NV can be represented as v(t) = M (t)v_n(t), where M(t) = [Iy_1 —q_ n(t)]" is an
N x (N —1) matrix, Iy_1 is an identity matrix of rank N — 1, and ¢_n(¢) contains the first
N —1 elements of ¢(t). Substituting into (A2) we obtain a convex program in v_y. It follows

that the unique global minimizer is given by (suppressing the dependence on w)
-1
v(t) = —M(#) ((o() " M#) To(t) " ME)  (o(t) M (#) K (1), (A3)

where x(t) as in (11). Once we obtain the solution to the dual problem, equations (9)-(10)
follow, e.g., using Proposition 1 in Cuoco (1997) with

ra(t) = o (1)~ (u(t) + v(t) —r(t)1). (Ad)
To obtain ka(t) as in (11), first substitute (A3) into (A4) to get
ra(t) = (I = o () MB)((o(t) M@)o () M) o) M E) ) k(1) (A5)

Also note that the wealth evolution equation of agent 2 under A in (Al) can be rewritten,
analogously to (8), using the bond and a fund F with o4(t) proportional to ¢(t)"o(t). Next,
let X (t) = Span(Col[o(t)~1M(t)]), Y(t) = Span(ox(t)) be two vector subspaces of RY, for a
given ¢t. Assuming that rank(o(t)) = N everywhere, it is easy to verify that dim(X(¢)) = N —1,
and dim(Y (t)) = 1. Since we also have that ox(t)o(t) ' M (t) = 0, it is straightforward to show
that X+ =Y, where X' is the subspace of RY orthogonal to X. The projection matrix on
X is given by the term in parentheses in (A5). It must then equal the projection matrix on Y,

given by Xp(t) = op(t) " (op(t)op(t) ") "top(t). Hence, rao(t) is as stated in (11). |
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Lemma 1. When Eyrg is in an equilibrium, the SPD processes of the two agents are

1 (t) = e ue(8(1), (1)) /uc(8(0), A(0)),  ma(t) = w1 (H)A(0)/A(t), (A6)

where N(t) = u}(ci(t))c5(t), and its initial value satisfies (15). The equilibrium consumption

allocations and the spot-riskless interest rate (where D(-) is the drift operator) are

ci(t) = filuc(6(t), A1), c3(t) = A(t) /uc(6(t), A(t), (A7)
r(t) = =D (e uc(8(t), A1) /e ue(6(t), A(1). (A8)

Proof of Lemma 1: First-order conditions from the portfolio optimization of agent 1 and
agent 2 (see Section 3.2), combined with clearing of the consumption-good market, yield:

ci(t)+cs(t) = filhrm (t)ePt) +(ama(t)e!t) ~t = §(t). Then, from Karatzas et al. (1990), we know
that 71 (£)e?’ = ue(8(t), A(t)), where A() = AT — ;g;gg; Using 71 (0) = m2(0) = 1, estab-
lishes (A6). Then, (A7) is a restatement of agents’ first-order conditions using (A6), and (15)

follows restating b = W (0), with ¢3(0) = A(0)/u(6(0), A(0)). Absence of arbitrage and dynamic

market completeness imply that agent 1 faces the unique SPD process

mi(t) = B exp (- / $)Tdu(s) — = / (o) fds). (A9)

We apply It6’s lemma to 71 (¢) in (A9) and in (A6). Equating the drift terms yields r(¢) in (AS8).
Equating the diffusion terms yields

tee(6(t), M(t))os(t) + uex(6(1), A(£))oa(t) + uc(6(t), A(t))(t) = 0. (A10)
O
Remark 1 (Stock Prices): To get the “present-value” expression for stock prices, note that:
d(e™ P uc(8(t), A(1))S;(t)) + e uc(6(t), A(t))6;(t)dt
= e Puc(6(t), A1) (S (#)j (1) — 6;(£)) — r(t)uc(8(t), A(1))S;(t) +

Sj(#)e(#) (tiec(8(), AM(#))os (t) + 1en(6(F), A())oa(t)) + ue(6(F), A(t))8;(t)]dt
e P uc(8(1), A(1))S;(1)aj(£) + S5 (1) (uee(8(1), A1) a6 (t) + uea(8(1), A(t))oa(t)) " dw(t)
= e Puc(6(1), A(t))S; () (o () — (1) ") duw(t),

where the first equality follows from It6’s lemma and (AS8), and the second from (A10) and

oj(t)k(t) = pj(t) — r(t). When [; e P5uc(8(s), \(s))S;(s)(a;(s) — r(s) T)dw(s) is in fact a mar-
tingale, so is e Pluc(8(t), A(1))S;(t) + Jo e Puc(6(s), A(s))8;(s)ds. Imposing S;(T) = 0, yields

_ T —p(s—t 11/0(5(8),)\(8)) . .
Sj(t)—E</t i )—“c(é(t)’)\(t))éj(s)ds|]—'t>, j=1,...,N.

27



Proof of Theorem 1: From consumption-good market clearing and (A7)

J1(ue(8(t), A1) + A(t) /uc(8(t), A(t)) = 6(2). (A11)

Differentiate (A11) with respect to 6, for a given (w,t), and use fi(x) = 1/uf(f1(x)) to get

u (f1(uc(8(), A(t)))) = uc(;(cg . 2 )/;gf» u(ci(uc(c()é( gf);( 0’ (A12)

Differentiate (A11) with respect to A, and use (A12) to get
ueA(6(1), At)) = A(). (A13)
Rearranging (A12), using (A7), yields
A= Au () 4 Ag(t) T, (Al4)
and differentiating (A12) with respect to ¢, and rearranging using (A7), yields
P(t) = Py(t)(A(t)/A1(t))* + Pa(t)(A(1)/A2(1))?, (A15)

where
Aa(t) = uc(6(), A1)/ A1), (A16)

and P(t) = 2A5(t). From (A6), the stochastic weighting process is A(t) = A(0)7wy(¢)/ma(t).
Applying It6’s lemma to A(¢) with 71(¢) as in (A9) and mo(t) as in (10) yields

At = A (ra(t) — k(1) (1) (A17)
oA(t) = A(t)(ralt) — K(8)). (A18)

Substitute (A4) and (A18) into (A10), and use (A13) and (A16) to get a restriction on v:
v(t) = Ax(t)o()os(t) — (Aa(t)/AWM) (u(t) = r(B)T). (A19)
Equating (A19) with the solution of the dual problem in (12), and using (A14), yields
A1) T+ As(t) ()] o () () = (D)) = o5(0). (A20)

Note that [A(t)] + (A1(t) — AE)IL()][A1 (1) 7T + Az ()~ Sp(t)]

= A AL() T + (1= A AL (1)) = Zp(t) + A(t) A2(t) ' Sp(t) = 1,
where the first equality uses IIz(t)Xp(t) = 0, and the second uses (Al4). Premultiply both
sides of (A20) by [A(t)] + (A1(t) — A(t))IIp(t)]o(t) to obtain (17). Given (17), equation (19)
follows immediately. Substituting (19) into (A17) and (A18), we get px(t) = 0, and ox(t) =
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—A(t)A1(t)IIp(t)os(t). This establishes (14). Note, A(0), if it exists, is unique and positive
because the right-hand side of (15) is a strictly increasing positive function of A(0) bounded by
5(0)(1 —e=T)/p. For A(0) to exist, we must have

b < 8(0)(1—ePT)/p. (A21)
It6’s lemma, using (A8), (A10), and (19) implies:
d(uc(6(t),A(#))) = uc(6(t), A(£))(p —r(t))dt
— ue(8(1), A(1)os(t) AT + (A1(t) — AM)Ip()]dw(t)  (A22)

Using (A14), (A22), and the identities: f](ci(t)) = 1/uf(f1(ci (1)) = —uc(6(t), M(t)) LAy (¢) 71,

i
T(ei®) = —ul'(flei®))ui(frlei(t)? = Pi(t)uc(8(t), A(t)) *Ax(t)?, and applying Ito’s
lemma to ¢} in (A7) yields

(1) — 2 2
a0 = (DR + RO T el + 5700 (1= 505 ) Il )
0

(w0 (1= 45 Mottt

Similarly, applying It6’s lemma to ¢4 in (A7), using (AS8), (A14), (A22), and (14) yields

r\)— [ 2 2
<—fj;> L4 3R llos(OI = 5 Palt) ) mn?) at

2(t)
)
(Fabostt) = Lo tla(00s(0) - dul).

Use the drift terms and the market clearing condition, D(c5(t)) + D(c5(t)) = D(6(t)), to get

d(c3(t))

T\t 2 2
D+ 3RO el + 50 (1 5005 ) Imettescon?
r\)— 2 2

+ L 2 n ) a0l - 5Pt )0 = )

Rearranging, using (A14) and (A15), establishes (16). Substitute () back into the drifts, and
rearrange, to complete the proof. (Note that given S; in Remark 1, 5 in (13), and x3 in (19),

the portfolio holdings of agent 1 are set so that to clear the securities markets.) a
Lemma 2. When the portfolio choice of agent 2 is perfectly correlated with the exogenous process

V(t) in (5), then TIp(t) = I — oy(t) T (ay(t)ov(t) ") Loy(t), where oy(t) = (vi(t),va(t)) is the
diffusion vector of V(t).
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Proof of Lemma 2: When N = 2, the trading strategy of agent 2 is characterized by qi1(t) as
in (6). Substituting in (8) yields

o11(t)oaa(t) — o12(t)oa (t)
v1(t)(o22(t) — o12(t)) + va(t)(o11(F) — 021(t))

Hence, HF(f) =1- O’F(t)T(O'F(t)UF(t)T)_IO'F(t) =1- Uv(t)T(Uv(t)av(t)T)_lav(t). O

O'F(t) =

Uv(t).

Proof of Corollary 1: For simplicity, (a) and (b) below are proved for N = 2. However,
Theorem 1 and hence (c) and (d) below hold for an arbitrary N.

(a) Given Lemma 2, the unconstrained results follow from Theorem 1 using the fact that
Hpt)os(t) = (I — os(t)(os(t) Tos(t)) " tos(t) T )os(t) = 0. In particular, dA(t) = 0, so that V¢,
A(t) = A(0), where (A21) guarantees the existence of a unique, strictly positive solution to (15).
To get the portfolio choice in &y, substitute ro(t) = k(t) = A(t)os(t) = o(t) " (u(t) — r(H)1)
into (13): 05(t) = (oo ) Hu+v —r1)We = (6 T) " thaWo = (a(t)o(t) 1) H(u(t) — r(t) 1) Wa(t).
(b) The trading strategy of agent 2 is characterized by qi(¢) as in (7). Then, it is easy to verify
that X p(t)os(t) = 0, and therefore I1p(t)os(t) = os(t), which we substitute in (14)-(19). To get
the portfolio choice, note that x(t) = 0, and using (13): 05(t) = (o (t) ) "Lra(t)Wa(t) = 0.

(c) From (17), using the definition of Ilz:

A(t)oj(t)os(t)+(Ar(t) — At))oj(O)ILp(t)os(t) = Ar(t)o;(t)os(t) — (Ai(t) — A(#))o; () Er(t)os(t),
where o) (1)S4(0)5(t) = (o,(oelt) 0w O)rs(0)NlorDI = prs(t)Hhr, (Doelt)

and using (A14): A1(t) — A(t) = Ai(t) — 73 = S 20 = AOE

(d) To get pup(t) —r(t), use op(t)lIp(t) =0 in (17).

The weights of 6* are given by p(t) = %, so that s (t) = p(t) o(t) = #‘t)(;,li
(and 6* is perfectly correlated with ¢ in the sense that p2.5 = 1). Then, from (17),

- os\t T L )os\t
e () = (1) = Ayorss (0)os(t) + 210 i((g)ng))?w ul

_ AWles®I1* <1+ A (t) HHF(t)Ué(t)H2>
os(t) To(t)~11 As(t)  los(OI* )7

where

o [ ) O, [ 2
e (t)os (B2 = os(t) TLr(t)os(r) = [los(r)]]2 — CrDel)

llor(B)]]?

Next, write (20) once for 6* and once for F', and solve for a1(t) and as(t) in terms of the covari-

= (1= pps())llos ()], (A23)

ances and pg« (t) —7(t) and pp(t) —r(t). Substitute the resulting expressions back into (20), and
o5 ONPss+O=Pir OPpe=®) (1) = [log 1P, 5() =P ;5% (D) Prs= (1))
[los (O[(1=P psx (£)?) E o rO(1=P pe= (£)?) ’

which are just the ordinary coefficients from a multiple regression (in the population-conditional

collect terms to get bjs-(t) =

distribution) of the rate of return of asset j on the rate of returns of 6* and the IRH index. O
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Remark 2 (Existence of Equilibrium): Proving the existence of equilibrium in the bench-
mark case amounts to an application of a fixed-point argument to A(0), and equilibrium in &y
exists when (A21) holds. To prove existence in a restricted-participation economy, we need to
prove an existence of a solution to a univariate SDE for A(t) (see Basak and Cuoco (1998) for a
proof with logarithmic preferences and geometric Brownian endowment). This is still the case
with versions of the IRH that are covered by Lemma 2 (see the example in Appendix A.2). In
the general case of Theorem 1, we are faced with a multivariate system, which includes A(¢) and
a transformation of o(t) in the SDE (14), plus the stock equations from Remark 1, where, under
appropriate regularity conditions, o;(t) is the function implied by the martingale representation
theorem applied to stock j. An existence proof in such a system may potentially be based on
the theory of forward-backward SDEs (see, e.g., Antonelli (1993)), but the currently available

tools in that relatively new field are not applicable to our setting.

Proof of Proposition 2: (a) is obtained by setting g1 = 0 in (8), so that in Theorem 1,
Hp(t) =Tla(t) = I — o9(t) " (02(t)oa(t) ") Log(t). The interest rate is restated using (A23). The
second and third terms in (21) are obtained by decomposing (A1(t) — A(t))o1(t)a(t)os(t) into
A(t)6(t)es(t a1(t)oa(t)T ow g ow

et (710 = GEF02()) T+ 1 (OT(1) (%5 = F)) - where

llo2(t

W(t
o1(t)o2(t o 10, S101+S20 O’tO’tT2 S1(t
(o1(1) — S 02(1)) 5 = (1 — o) S22 = (Jlon(n)? - ") B

Then (21) follows immediately.

(b) When u1(+) = ua(-) =log(-): u(6(t), A(t)) = log 15_(;20 + A(t) log ?(Jr)f(( )) ,

Ay =6(t)7", P(t) = 26(t)"" . W (t) = =)

Ar(t) = (1+A(1))/6() , Py(t) =2(1+ A(?))/6() , cf =6(t)/(1 + A())

Ap(t) = (L+ A[®)/(AB)6(1) ,  Palt) =21+ A1)/ (A()6(F) , <3 = A(0)6(1)/(1 + A(t)) -
Substituting in (16)-(19) yields the results for x;(t), (t), p;(t) — r(t), and ¢ (t).

The notion of “volatility of state prices” is understood here as the quadratic variation of
drm;(t)/mi(t). The diffusion term of this process is —;(t). Then,

in & s a2 = s (012 = llosl

in Enr t lk2@®)]? = [[Z2(t)osl” < [losll* < llos|” + A#)(2 + M) [H2(t)os][* = [ls1 ()]

This confirms the statement in (i), and because in &y pic; (t) = ps and oc; () = o5, analogous

comparisons confirm the statement in (ii). The proof of (iii) is identical to the proof of Corol-
lary 4 in Basak and Cuoco (1998) and is omitted. In & : 7(t) = p + us — ||os||?, and the
statement in (iv) follows from (a). Finally, (v) follows using (21). For completeness, we note
that 61(¢) and 2(¢) in this example will not be geometric Brownian motions. But we can set
61(t) = x(t)6(t) and 62(t) = (1 — x(t))6(t), where x(t) is any process satisfying z(t) € (0,1). O
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A.2 An Example: Characterization and Existence of Equilibrium

Consider the economy Eprp with ug(-) = log(-) and geometric Brownian endowment, and let
agent 2 invest in stocks only via a fund manager. Agent 2 fares better in £y, and so he wishes
to invest in a fund that perfectly tracks 6(¢). Suppose that the fund manager, he invests with,
actually tracks 6(¢) only imperfectly. The process that she tracks is given by

dV (t) = 6(t)psdt 4+ 6(t)v1(t)dwy (t) + 6(t)va(t)dwa(t), (A24)

where V(0) = 6(0), dug(t) = alosr — vi(t)]dt + bdwy(t), with vi(0) = osg, k = 1,2 (the
Ornstein-Uhlenbeck process v(t) = (v1(t),v2(t)) " is an unbiased estimator of the true constant
vector o). The constants a and b indicate how well the fund fits the objective of agent 2.

Finally, assume that o5 = 0. The comparison between £y/r and £y is summarized below.

Suppose the portfolio of agent 2 maintains perfect instantaneous correlation with V (t) in (A24).
Then, there ezists a unique equilibrium, where all the results of Proposition 2(b) in (i)-(iv)
hold when replacing pys with pys, and Ha(t) with T —v(t)(v(t)v(t) )" o(t)T. The risk premia
are p;(t) = r(t) = 051 (1)os1 + Ao By (t), where oy (t) = 5 102()[[0(#)]| 72 (va(t), 01 (#)T,
and j = 1,2, The dynamics of the interest rate are given by dr(t) = p,(t)dt+ o, (t) " dw(t), where

its stochastic drift and volatility are

_ o (s W (t) vy (t)? Wa(t)
pe(t) = ()] <201(t)0'«5,1(a— W) )+ (1~ 1,2(75)2)52) Wl(t)Han(t)“Qa
7t = [0 (G (0o + 01l ) S oo )
vi(t) =051 + b' Ot e_a(t_s)dwl(s), va(t) = b' Ot e_a(t_s)dwg(s).

Proof: The characterization results follow from Theorem 1 and Lemma 2, analogously to Propo-
sition 2(b).2! The dynamics of the interest rate are then obtained by applying It6’s lemma to
r(t) = p+ s — ||os||> — XO||(I — v(t)(v(t)v(t) ) "To(t) )os||?. Note that this example belongs
to a particular class of economies for which the projection matrix Ilp is expressed using ex-
ogenous quantities (i.e., the process v(t)). The dynamics of the weighting process A(t) in (14)

are therefore specified completely by a univariate SDE. Existence of a solution to the SDE,

21The classic CCAPM does not price the diffusion coefficient o;2(t) because the first state variable, §(t), is
independent of wz(t). However, the second state variable A(t) (whose diffusion vector is proportional to o (t))
has, in general, a nondegenerate covariation with ws(t). Consequently, the entire diffusion vector o;(t) is priced
by the modified CCAPM. The constant a represents the speed of convergence towards the desirable target. It may
indicate the fund manager’s effort or ability to perform her task, and b may represents the noisy environment that
interferes with her efforts. When she is very apt (a — c0) or lucky not to face noise (b — 0), then vi(t) — o5k
and V(t) — 6(t). Hence, perfect-tracking ability (in the sense that b = 0, or a = c0) leads to an increased interest
rate, and to eliminating the impact of the second state variable on risk premia.
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and hence existence of an equilibrium, can be verified using standard results. First, restate
the SDE as follows: dA(t) = —A(t)(1 + A(t))oy(t)dw(t) = X(t)(1 4+ A(t))dL(t), where L(t)
can be verified to be a local martingale. Since A(1 + X) has a continuous (but not bounded)
derivative, it is locally Lipschitz. It also satisfies the linear-growth condition (it is bounded
by 2(1 4+ A2?)). The search for equilibrium is reduced to finding a solution to the above SDE.
By Theorem V.38 in Protter (1990), there exists a unique (strong) solution to the SDE up
to an explosion time. Then, it follows from Karatzas and Shreve (1988), Remark 5.19, that
for this zero-drift univariate SDE, the linear-growth condition is sufficient for the solution not
to explode, for a given A(0) (which exists when (A21) holds). Stock prices are well-defined,
since by absence of arbitrage (guaranteed by non-negative wealth) and using the value of W (t):

0 < Sj(t) < Su(t) + Sy(t) = W(t) = =222 (1). O

Appendix B

B.1 Proof of Theorem 2

Additional assumptions that are required for Theorem 2 are stated in (B4)-(B6) below (and all
the used moments are assumed to exist). For j=1,2,..., N, t=1,2,...,T—1, (where T now

denotes the last date of the sample period, as opposed to the horizon of the economy), define

Vigt = Cov[rjir1, gir1|Ft)s Yiht = Cov[rji1, hev1|Fil, (B1)
Ejgt = Vgt — E[Vjgtl, Eint = Yjnt — Elvjnl; (B2)
ejtr1 = Tirp1 — Blrje|Fl, (B3)

For some constants (kig, kog, k1p, kap) € R*, assume that??

Elejgr are] = ka, Elejnt ase] = ko, (B4)
Elejg .t at gr+1] = kg, Elejnt agt gr1] = kag, (B5)
Elejg,t are hia] = Fun, Elejnt agt bii1] = kop. (B6)

First, substitute (B1) and (B2) in (22) and take unconditional expectations to get, using (B4),

Elrj+1] = Elaod] + k1 + k2 + Ela11|E[vjg.¢) + Elag]E[vjn.t]- (B7)

*2In (B4) we assume homoskedastic fluctuations of the covariances relative to ay; and ag:. In (B5) and (B6)
we assume that time-varying components of the conditional covariances, €j4,+ or €;n,¢, contain, homoskedastic
information beyond that in a1; or ag:, respectively, about the predictable component of (g¢+1,ht+1). The ho-
moskedasticity assumptions are for simplicity. The proof goes through under heteroskedasticity in (B4)-(B6),
specified by linear dependence on E[vy,,:] and E[v;s]. The resulting expressions for ag, a1, az will be modified
accordingly.
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Next, restate equation (22) using (B1)-(B3) as
rig+1 = aot + aE[vjge] + anB[vjne] + areejor + aseejne + ejeia (B8)
Equation (B8) along with (B4)-(B6) yields

Cov(rjis1,9t+1) = kg + (Cov(air, gev1) + 1)Elyjg4] + Cov(azt, 9t+1)E[7jh,t} (B9)
ky + COV(Cth, hft+1>E[’ng,t} + (COV(CLQt, hiy1) + 1)E[’yjh7t] (BIO)

COV(T’jJH_h h/H—l)

where, k‘g = ]4}19 + ]4}29 — (]4}1 + k‘g)E[gH_l] + COV(CLOt, gt+1)7 and kp, = kqp + kop, — (k‘l + kg)E[hH_l] +
Cov(agt, hit1). It is clear from (B9)-(B10) that because Cov(rjsy1,gi+1) and Cov(r) 41, hit1)
vary with j, and because {Cov(rjsy1,9:+1)}e; and {Cov(rjsi1, hey1)}i are assumed to be

linearly independent, the constant matrix

Cov(ait, gr41) + 1 Cov(agt, gt+1)
COV(Cth, h,t+1) COV(CLQt, h/t+1) +1

must be nonsingular. Therefore, we solve the linear system (B9)-(B10) for the two unknowns
(E[vjg.t], E[vjne]) in terms of Cov(7; 41, gi+1) and Cov(rj 41, het1). Substituting the solution

into (B7) and rearranging establishes equation (23), where

ao = Elao] + k1 + ka + Elar] (Cov(ase, gt )kn — (Cov(as, hus1) + Dky)/A
+ Ela](Cov(ais, hiy1)kg — (Cov(ars, gi+1) + 1)kp) /A

a1 = (Elau](Cov(as, his1) + 1) — Elas]Cov(as, hep1))Var(grsr ) /A

az = (E[ax](Cov(ait, gt+1) + 1) — Elar]Cov(azt, gr1)) Var(het1) /A

A = (Cov(ay,gie1) + 1)(Cov(ags, hrsr) + 1) — Cov(ass, gisr)Cov(ars, hst).

Note that aq; is positive, whereas the sign of a; is unrestricted. The proof of equation (24) is

similar and is therefore omitted. O

B.2 The Cross-Sectional Regressions

We follow closely Appendix B in JW and adapt it to GLS.?2 We assume that all time series are
covariance stationary, returns on the N assets are (unconditionally) distributed i.i.d. over time,

and all the limits below exist. Equations (23) and (24) are a special case of the following model:

L K
Elrjd =) cozji+ > bk, j=1,....N, t=1,...,T, (B11)
=1 k=1

#Shanken (1992) laid the foundations for the analysis, correcting the bias in the Black et al. (1972) and Fama
and MacBeth (1973) procedures, but his focus is on CSRs with multivariate betas.
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where zj, are observable characteristics of asset j (in our case, when L = 1 then z;; = 1,
when L = 2 we take zj5 to be the log of market equity), 8r = Cov(7jt, ykt)/ Var(yr:) with ye

representing economic variables (e.g., in (23) K = 2, yi; = g¢, y2r = ht). Rewrite (B11) as

p=X, (B12)
where p = E[r¢], ¢ = (r1g,...,7n¢) |, X =[Z B], Zis a N x L matrix of characteristics, B is
a N x K matrix of the univariate betas, and v = (co1,...,cor,c' )", ¢ = (c1,...,cx)". Define

e =T — [, €= %Zthl €, T = %Zthl rt. Then, & = 7 — u, and restate (B12) as ry = X v + &;.
Therefore, the estimated system is ¥ = X v + &, where Var(r;) = G, a constant N x N matrix,
and hence Var(¢) = G . To obtain a feasible GLS estimator of v (and correct standard errors

for the OLS and GLS estimators), we use two alternative estimators of G:

T

G = ﬁ ;(n—m(n—fﬂ, (B13)

Gy = wil +woG1, (B14)

~

where [ is an N x N identity matrix and (W, wg) are weights of the optimal linear-shrinkage
estimator constructed by Ledoit (1994). Under an asymptotic theory where N is allowed to
grow with T (provided that N/T is bounded), neither G4 nor Gy is a consistent estimator of G.
However, G has the lowest mean square error among the linear-shrinkage estimators of the
form wql + Wgél. Shrinkage estimators are desirable whenever matrix inversion is required, as
is the case with GLS. The reason is that in (B14), we reduce the proximity to singularity by
keeping the eigenvalues of G away from zero while allowing N to be close to (or larger than) 7.

The weight Wy increases in N/T.

We use Gy with monthly data, and G5 with quarterly data and with monthly data over
subperiods. In our quarterly and subperiod analyses (N = 100, T' = 110), we rely on Gy for
asymptotic inferences as an alternative to finite sample adjustments. We note, however, that
finite sample performance of this estimator versus conventional adjustments (when N < T) is

not yet established. Nevertheless, in our sample it provides more conservative standard errors.

We next address the error-in-variables problem of the two-step procedure. We keep N fixed
while T' can grow to infinity. In this case Go converges to G1, and both are (T'—)consistent
estimators of G: plimT_)ooél = plimT_mC;*g = (. Using OLS estimates, Bjk, for univariate
betas, we obtain an estimate B of B. Let X = [Z B]. The feasible GLS estimator of 7 is

-1
R S R R N L[
A = <XT [—Gm} X) xT

—1
?Gm} 7, (B15)

T

where m = 1 or m = 2, depending on the method used to estimate G. To derive the asymptotic
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distribution of 4, in (B15), restate 7 as
F=Xy+[e— (X —X)]=Xy+[e— (B-B)d. (B16)

Since plimg 7 = E[r;] and plim,_ B = B, it is clear from (B16) and (B15) that 4, is a

consistent estimator of v, for m =1, 2.

Let M, = (XTG,,'X)"1X TG}, and let M = plimM,,. From (B15) and (B16) we get
A = = My& — My (B — B)e.
Define ¢ and ® as the limits in distribution of /T & and VT (B — B), respectively. Then
VT (i =) 5 M (6 — Be). (B17)

To be able to account explicitly for the two sources of sampling error identified in (B17), we

need to introduce further assumptions and notation.?* Let
ejne = (Tje — B[re]) — Bjr (e — Elywe]),  eje = (ejun, - - eur) |,
_ 1 B ~
= fzyktv Y = (ykl_yka-~~7ykT_yk>T-

Let @ be an N x K matrix whose (j, k)-th element is 7Y, eji. Let S = vec(Q), where vec(-) is
an operator that stacks the columns of () to create a column vector of dimension N K. Assume:
(i) plimy_ 7Y, Vi = b >0,

(ii) Elejre|Yr] =0, Elejreeins|Yi] = Tjir, where 75, =0 if t # s,

(iif) plimp .., S =0, VT S-% N(0,2),

where

[1]
|

k1 - EKK
is an NK x NK matrix, and Zj; is an N x N matrix for k=1,...,K, [=1,..., K.

It is easy to verify that an element (i,j) of Zj;, denoted (jjii, is given by the asymptotic
covariance of %Yljeik with %YlTeﬂ, that is, Gijr = El(ykt — Uk)(Wie — T1)€ireejie). Under (i)-(iii),
one can show (following the same steps as in Jagannathan and Wang (1998)) that (B17) becomes
VT (m — ) <, N(0,V), where

V=M <Va1 Z’le :kl> . (B18)

To compute the standard errors we use consistent estimators of all the unknown parameters
n (B18). For OLS CSR, simply use the OLS estimate of ¢ and replace M, by (XTX) 1XT.

24Quppose we ignore the sampling error in m, from replacing true betas by their estimates (i.e., ignore <i))
From (B17), the asymptotic variance of /T4, becomes MVar(¢)M . We estimate Var(¢) by G,,. Then for
m = 1,2 the asymptotic variance reduces to the familiar (X TG~ X)~
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Table 1
Evaluation of Models Nested by Mg.iru
The table reports estimates of four models (Maapn, Mccaprms Mp-ira> Maram) that are nested by the

cross-sectional regression model Mgy in (24),
E[rji] = ao + a18;g + a2Bjn, + asBjn,-

In Panel A, r;; is the real monthly return on a Fama and French (1992)/Jagannathan and Wang (1996)
(FF(92)/IJW(96)) size-beta portfolio j ( = 1,2,...,100) in month ¢ (July 1963 - December 1990), and
GLS estimation uses equation (B13). In Panel B, rj; is the real quarterly return in quarter ¢ (Q3
1963 - Q4 1990), and GLS estimation uses equation (B14). The (’s are the slope coefficients in the
OLS regression of r;; on a constant and a variable stated at the column header: g, the growth rate of
consumption expenditures on nondurables and services; h; = SP500, the rate of change in the S&P 500
index; hg = GLAM, the rate of return on a glamour-biased portfolio. The t-values are corrected based
on (B18) for the sampling error in betas. The OLS R? and the p-values are reported in percentage points.
x? is the Wald statistic for zero slopes excluding the intercept (p-value is in parentheses). HS (reported
if both OLS-based and GLS-based Wald tests reject zero slopes) is the Hausman (1978) specification
test statistic (p-value is in parentheses). The Hansen and Jagannathan (1997) distance for the proxy
implied by (24) is denoted by d (the p-value is reported in parentheses, and is computed under the null
hypothesis of a correctly specified model), [the standard error of d under the alternative is reported in

square brackets].

Panel A: Monthly Returns, July 1963 - December 1990 (330 months)

aop g SP500 GLAM R? X2 HS d
Moapy  OLS: 0.87 2017 348 0.22 0.6560
t-value: 3.60 -0.46 (64.22) (0.74)
GLS: 0.83 -0.36 1.60 [0.0650]

t-value: 5.46 -1.27 (20.57)
Mocapy  OLS: 0.75  -0.16 1.66 021 0.6452
t-value: 3.80 -0.46 (64.62) (2.50)
GLS: 0.72 -0.23 6.60 [0.0666]

t-value: 545  -2.57 (1.02)
Mpirg ~ OLS: 0.87 -002 -0.16 350 022 0.6434
t-value: 3.60 -0.14 -045 (89.66) (2.92)
GLS: 0.78 022  -0.22 7.15 [0.0668]

t-value: 498 -236  -0.75 (2.80)
Maran  OLS: 0.61  -0.38 0.24 6.63  8.01 231 0.6447
fovalue: 248 -2.80 0.59 (1.82)  (31.44)  (2.08)
GLS: 0.68 -0.24 0.18 6.91 [0.0669]

t-value: 453  -2.63 0.54 (3.16)
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Table 1 (continued)

Panel B: Quarterly Returns, Q3 1963 - Q4 1990 (110 quarters)

a0 g SP500 GLAM R 2 HS d
Moapy  OLS: 1.70 0.43 248 0.10 1.0582
t-value: 1.79 0.32 (74.67) (0.26)
GLS: 1.68 -0.15 0.03 [0.1006)

t-value: 3.66 -0.17 (86.48)
Mocapy  OLS: 172 0.10 6.27  0.25 1.0329
t-value: 2.61 0.50 (61.68) (3.26)
GLS: 179 -0.18 5.75 [0.0934]

t-value: 4.30  -2.40 (1.64)
Mpirg  OLS: 234 025 -1.16 9.20 147 1.0325
t-value: 2.76 1.15  -0.86 (47.96) (2.60)
GLS: 1.66  -0.19 0.56 6.02 [0.0929]

t-value: 351 -2.44 0.56 (4.92)
Maran  OLS: 0.99 -0.28 2.52 1883 812 110 1.0231
t-value: 1.08 -2.73 1.71 (1.73)  (57.62)  (4.78)
GLS: 151 -0.22 1.89 8.00 [0.0924]

t-value: 333 -2.74 1.60 (1.83)
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Table 2
Evaluation of Mg trg and Models that Nest It

The table reports estimates of (a1, as,ag) for the cross-sectional regression model Mg_gg in (24),

E[rji] = ao + a1854 + a2Bin, + a3Bjn,,

and estimates of (a1,as,as,a4) for the cross-sectional regression models Mnonglﬂ Miabor» Mgize defined
by

Elrj¢] = ao + a18j4 + a2Bjn, + azfBin, + asv;.
In Mnongh ¥ = Bjns, and hz is the return on a non-glamour portfolio formed from underperformers

(relative to the S&P 500). In My,1,0r Vi = Bjns, and hg is the growth rate in per capita labor income.

In M = log(ME;), and ME; is the equally-weighted average of the real market value (in mil-

size> Vi
lions of constant dollars) of the stocks in portfolio j. In Panel A, rj; is the real monthly return on a
FF(92)/JW(96) portfolio j (j = 1,2,...,100) in month ¢ (July 1963 - December 1990). In Panel B, r;; is
the real quarterly return in quarter ¢ (Q3 1963 - Q4 1990). The remaining 3’s, the estimation methods,

and the reported statistics are as described in Table 1.

Panel A: Monthly Returns, July 1963 - December 1990 (330 months)

g SP500 GLAM s R2 22 s d
Mgiru OLS: -0.21  -1.81 1.69 56.55 9.00 2.28  0.6264
t-value:  -1.74  -2.31 1.95 (2.93) (51.69)  (6.38)
GLS: 023 173 1.89 12.87 [0.0723]
t-value:  -242  -2.54 2.46 (0.49)
Myongl  OLS: -0.23  -1.37 3.09 -1.91 58.09 10.29 1.06  0.6223
fovalue: <192 -1.61 232 -1.31 (358)  (90.10)  (8.56)
GLS: 024 130 289  -1.59 13.88 [0.0723]
t-value:  -2.51  -1.75 2.58 -1.30 (0.77)
Mp.bor OLS: -0.21  -1.80 1.69 0.00 56.56 9.00 0.6239
t-value:  -1.73  -2.30 1.95 0.07 (6.11) (8.12)
GLS: 024 -1.65 180  0.04 13.49 [0.0729]
t-value:  -2.48  -2.39 2.32 0.99 (0.91)
M OLS: -0.19 -0.76 0.55 -0.07 58.17

size

t-value: -1.60 -0.67 0.46 -1.38

GLS: -0.22 -0.84 0.93 -0.06
t-value: -2.38 -0.98 0.98 -1.73
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Table 2 (continued)
Panel B: Quarterly Returns, Q3 1963 - Q4 1990 (110 quarters)

g SP500 GLAM s R2 22 s d

Maru OLS: -0.21 -6.24 7.40 59.49 9.90 2.51 1.004
t-value:  -2.23  -2.11 2.23 (1.94)  (47.37)  (9.88)
GLS: -0.21  -3.77 5.78 10.36 [0.0964]
t-value:  -2.62  -1.72 2.19 (1.58)

Mygngl OLS:  -0.16 -470 1045  -5.08 60.67 1011 200  1.001
t-value:  -1.64  -1.55 2.36 -1.08 (3.86) (73.62)  (9.88)
GLS: -0.20 -2.76 7.72 -3.51 11.22 [0.0965]
t-value:  -2.43 -1.13 2.25 -0.89 (2.42)

Mo OLS: 018 613 710  -0.11 60.02 952 246  1.002
fovalue:  -1.83 <205 214 -0.74 (4.93)  (65.21)  (8.94)
GLS: -0.20  -3.84 5.76 -0.06 10.33 [0.0964]
t-value:  -2.32  -1.72 2.17 -0.51 (3.53)

Mg,e OLS: 018 -182 240  -0.31 63.21
t-value:  -1.93 -0.59 0.68 -2.37
GLS: -0.19  -0.99 2.38 -0.23
t-value:  -2.39 -0.43 0.85 -2.63

Table 3

Subperiod Evaluation of Mg_rg and Related Models

The table reports estimates of the cross-sectional regression models Mocapym (as in Table 1), Marg,
and Mg, (as in Table 2) over three subperiods: Panel A: July 1963 - August 1972, Panel B: September
1972 - October 1981, Panel C: November 1981 - December 1990, using real monthly returns of the 100
FF(92)/JW(96) size-beta portfolios. The estimation methods and the reported statistics are as described
in Table 1. In the three panels below, GLS estimation and GLS and OLS t-values are based on equa-
tion (B14). The Hansen and Jagannathan (1997) distance for the proxy implied by (24) is denoted by d
(the p-value under the null of a correctly specified model is in parentheses).

(Continued on the next page.)
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Table 3 (continued)

Panel A: July 1963 - August 1972 (110 months)

OLS GLS d
g SP500 GLAM ay R? g SP500 GLAM ay
Mocapy 021 21.19 -0.04 1.1308
t-value: 1.14 -0.84 (0.45)
Mgiogra  -0.09  -1.58 2.48 69.40 -0.07  -0.89 1.87 1.1147
t-value: -1.28  -1.50 1.83 -1.26 -1.05 1.66 (1.21)
Mgize -0.09  -0.99 1.73  -0.05 70.18 -0.07  -0.17 0.85 -0.07
t-value: -1.25 -0.82 1.09 -0.93 -1.37  -0.19 0.70  -1.96
Panel B: September 1972 - October 1981 (110 months)
OLS GLS d
g SP500 GLAM ay R? g SP500 GLAM ay
Mccapm  0.18 23.92 -0.07 0.9954
t-value: 1.07 -1.33 (2.40)
Mgarn  -0.02  -2.28 3.39 65.70 -0.09  -2.26 3.32 0.9666
t-value: -0.21  -2.05 2.00 -1.54  -1.89 2.25 (8.42)
Mgize 0.00 -1.71 1.98 -0.09 66.50 -0.08  -1.86 2.84 -0.03
t-value: 0.02 -1.10 1.07  -1.04 -1.43 -1.35 1.68 -0.54
Panel C: November 1981 - December 1990 (110 months)
OLS GLS d
g SP500 GLAM a4 R? g SP500 GLAM ay
Mcocapm  -0.44 2.43 -0.08 0.9979
t-value: -1.17 -0.37 (0.38)
Maru 0.05 1.38 -2.43 46.99 -0.03  -091 0.23 0.9884
t-value: 0.19 0.67 -1.20 -0.15  -0.57 0.15 (0.68)
Mgize 0.09 -4.31 293 020 53.29 -0.02  -3.61 2,67  0.11
t-value: 0.32 -1.57 1.14 261 -0.09 -1.63 1.28 2.12
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Table 4
The Impact of the Fama and French (1993) Factors on Mg_ru

The table reports estimates of (a1, as, as,as,as) for the cross-sectional regression model
E[rj] = ao + a18;¢ + a2Bin, + a3Bin, + asB;sMB + a50,HML:

which adds to the M 1rp specification the betas from the model of Fama and French (1993). Here, 7j; is
the real monthly (July 1963 - December 1990) return on a FF(92)/JW(96) portfolio j ( = 1,2,...,100).
The §’s are the slope coefficients in the OLS regression of rj; on a constant and a variable stated at the
column header: g, the growth rate of consumption expenditures on nondurables and services; h; = SP500;
ha = GLAM. In Mgpp(g3), SMB and HML are the factors that are designed to capture the risks related
to firm size and book-to-market-equity, respectively. The estimation methods and the reported statistics

are as described in Table 1.

g SP500 GLAM SMB HML R? X2 HS d
OLS: -0.21  -2.18 2.28 -0.13 56.62 9.77 298  0.6250
t-value:  -1.83  -1.34 0.96 -0.23 (4.45) (56.18)  (6.68)
GLS: -0.23 -2.60 3.21 -0.35 12.81 [0.0721]
fovalue:  -2.45 195  1.69  -0.78 (1.22)
OLS: -0.21 -1.33 1.41 0.19 56.92 9.27 0.6264
t-value:  -1.78  -1.37 1.50 0.70 (5.48) (6.48)
GLS: -0.23  -1.68 1.86 0.02 12.89 [0.0723]
t-value:  -2.42  -2.07 2.29 0.10 (1.18)
OLS: -0.21 -1.43 1.56 -0.03 0.18 56.92 10.01 0.6249
t-value:  -1.83  -0.75 0.61 -0.05 0.66 (7.48) (6.34)
GLS: -0.23  -2.70 3.31 -0.37 -0.03 12.77 [0.0722]
t-value:  -2.44  -1.73 1.61 -0.78 -0.12 (2.56)
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Table 5

Evaluation of Mg.ru using Likelihood-Ratio Tests

The table reports likelihood-ratio tests of Mg rg and related models using real excess monthly returns
(July 1963 - December 1990). Under the null hypothesis (Hg), the tangent portfolio is a combination
of K1 portfolios as implied by the model stated in the first column. Panel A reports tests of Hy against
a general alternative. In columns 2-4 tangency is defined with respect to K; + 12 assets (the K; compo-
nents of the tangent plus 12 primary assets, where K varies across models). The fixed 12 primary assets
are the 10 value-weighted (VW) size-based portfolios, the EWMKT portfolio, and the nonglamour-biased
portfolio created from the 100 original assets (the FF(92)/JW(96) size-beta portfolios) used in Tables 1-4.
In columns 5-7 tangency is defined with respect to a fixed universe of 15 assets (the 12 primary assets plus
the K; = 3 portfolios implied by Mg_ryg — the MCP, the S&P 500, and the glamour-biased portfolio).
Panel B reports tests of Hy against a specific alternative (Hp). Under Hp, a Ks-beta model describes
unconditional expected returns, where Ko > Kj. MFF(93) specifies the K1 = 3 portfolios to be the market
proxy, the SMB, and the HML portfolios. In the last two rows one portfolio from Mpp(g3) is added to
augment Mg gy (so that Ky = 4). Two market proxies are examined in Panel B: In columns 2-4 the
CRSP VW portfolio is used, and Hp combines the three portfolios specified by Mg rg with the three
portfolios specified by Mppgs) (so that under the alternative K> = 6). In columns 5-7 the S&P 500
proxies for the market portfolio. In this case Mg gy and MFF(93) agree on one of the three components
of the tangent portfolio and hence Hy states that Mg_rg +SMB+HML is the true model (Ko = 5). F* is
the GRS statistic when the MCP is constructed from the primary assets (as described in Section 5.4).
F** is the GRS statistic when the MCP is constructed from the 100 original assets. The p-values (in
parentheses) are in percentage points. nj; and mg are the numerator and the denominator degrees of
freedom, respectively, of the F-distribution of the GRS statistic under Hy.

(Continued on the next page.)
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Table 5 (continued)

Panel A: Tests against a general alternative

Fixed primary assets

Fixed universe of assets

Ho n1,ns F F ny,mo F* F
Mcapm 12,317 2.102 2.102 14,315 1.828 2.480
(1.65) (1.65) (3.38) (0.24)
MCCAPM 12,317 2.217 2.318 14,315 1.957 2.064
(1.09) (0.75) (2.06) (1.35)
Mp.IRH 12,316 2.102 2.083 13,315 1.963 1.954
(1.66) (1.78) (2.33) (2.41)
MGLam 12,316 1.831 1.805 13,315 1.726 1.715
(4.26) (4.64) (5.46) (5.66)
M 1rH 12,315 1.770 1.766 12,315 1.770 1.766
(5.21) (5.28) (5.21) (5.28)

Panel B: Tests against a specific alternative

CRSP VW as a market proxy

S&P 500 as a market proxy

Ho ni,ns F F ny,no F* F
M IRE 3,324 6.920 6.704 2,325 6.767 6.423
(0.02) (0.02) (0.13) (0.18)
Mpp(o3) 3,324 2.906 5.679 2,325 0.506 4.557
(3.48) (0.08) (60.31) (1.12)
M.k + SMB 2,324 9.819 9.666 1,325 12.434 12.081
(0.01) (0.01) (0.05) (0.06)
Mqiru + HML 2,324 3.493 3.555 1,325 0.010 0.080
(3.15) (2.97) (92.03)  (77.70)
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Figure 1. Fitted expected real monthly returns versus realized average real monthly
returns. Each scatter point represents a portfolio. The CCAPM graph describes fitted values
from the regression model: Efrj| = ag + a13;4. The CCAPM with Size graph describes fitted
values from the regression model: E[rj] = ag + a18j4 + aslog(ME;). The G-IRH CCAPM
graph describes fitted values from the regression model: E[rj] = ag + a18;9 + a28;n, + a38jn,-
Finally, the G-IRH CCAPM with Size graph describes fitted values from the regression model:
Elrji] = ag+a18q + a2Bjn, +a3Bjn, +aslog(ME;). All the variables arc as described in Tables 1
and 2. The models are estimated by OLS.
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