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Value-at-Risk Based Risk Management:

Optimal Policies and Asset Prices

Abstract

This paper analyzes optimal, dynamic portfolio and wealth/consumption policies of utility
maximizing investors who must also manage market-risk exposure using a given risk-management
model. We focus on the industry standard, the Value-at-Risk (VaR) based risk management, and
find that VaR risk managers often optimally choose a larger exposure to risky assets than non
risk managers, and consequently incur larger losses, when losses occur. We suggest an alternative
risk management model, based on the expectation of a loss, to remedy the shortcomings of VaR.
A general-equilibrium analysis reveals that the presence of VaR risk managers in a pure-exchange
economy amplifies the stock-market volatility at times of down markets (and low output) and

attenuates the volatility at times of up markets.

JEL Classifications: G11, G12, C61, D51.
Keywords: Risk Management, VaR, Portfolio Choice, Asset Pricing, Volatility.



1. Introduction

In recent years, we have witnessed an unprecedented surge in the usage of risk management
practices, with the Value-at-Risk (VaR)-based risk management emerging as the industry standard
by choice or by regulation (Dowd (1998), Jorion (1997), Saunders (1999)). VaR describes the
loss that can occur over a given period, at a given confidence level, due to exposure to market
risk. The wide usage of the VaR-based risk management (VaR-RM) by financial, as well as non-
financial firms (Bodnar, Hayt, and Marston (1998)), stems from the fact that VaR is an ecasily
interpretable summary measure of risk,! which has also an appealing rationale, as it allows its
users to focus attention on “normal market conditions” in their routine operations. However,
evidence abounds that, in practice, VaR estimates serve not as mere summary statistics for
decision makers, but are also used as a tool to manage and control risk — where economic agents
struggle to maintain the VaR of their market exposure at a prespecified level.? Surprisingly, the
academic literature has largely overlooked this fact; at the present, we lack rigorous understanding
of its economic implications, and, in particular, little is known about optimal behavior consistent

with the VaR-RM.

Our goal is to undertake a comprehensive analysis of the VaR-RM while retaining the standard
financial-economics paradigms of rational expectations, utility maximization, and market clearing.
In particular, we study the implications of the VaR-RM for optimal portfolio policies, (horizon)
wealth choice, and equilibrium prices. To the best of our knowledge, ours is the first attempt
to directly embed risk management objectives into a utility-maximizing framework. Recognizing
that risk management is typically not an economic agent’s primary objective, we focus on portfolio
choice within the familiar (continuous time) complete-markets setting, where the novel feature
of our analysis is the assumption that agents may limit their risks while maximizing expected
utility. In particular, we assume that a risk-managing agent is constrained to maintain the
VaR of his horizon wealth at a prespecified level; in other words, he is constrained to maintain,
below some prespecified level «, the probability of his wealth falling below some “floor.” Our
setting has the convenient property that it nests (o = 1) the benchmark agent (who does not
limit losses; Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987)) and (o = 0) the
portfolio insurer (who maintains his horizon wealth above the floor in all states; Basak (1995),
Grossman and Vila (1989), Grossman and Zhou (1996)).

'Regulators also view VaR as a useful summary measure; since 1997, the SEC has required banks and other
large-capitalization registrants to quantify and report their market-risk exposure (Regulation S-K, Item 305), with
VaR disclosure being one way to comply.

2See, e.g., the lead article of the Economist (October 17, 1998), Jorion (1999), and Smith, Smithson, and Wilford
(1995). The risk-monitoring facet of VaR is encouraged by regulators, and to that end, the Basle Committee on
Banking Supervision (and the Federal Reserve, in particular) decided, effective January 1998, to allow large banks
the option to use a VaR measure to set the capital reserves necessary to cover their market-risk exposure. Regulators
expect social benefits, assuming the VaR-RM to reduce the likelihood of large-scale financial failures.



Our main results are as follows: First, under general security-price uncertainty and general
state-independent preferences, we show that an agent, with his VaR capped, optimally chooses to
insure against intermediate-loss states, while to incur losses in the worst states of the world. The
somewhat surprising feature of the solution is that the uninsured states are chosen independently
of preferences and endowments; they are simply the worst states up to a probability of exactly .
The intuition is that the VaR risk manager is willing to incur losses, in compliance with the
VaR constraint, and it is optimal for him to incur losses in those states against which it is most
expensive to insure. We exhibit a problematic feature of the derived optimal behavior, in that
although the probability of a loss is fixed, when a large loss occurs, it is larger than when not

engaging in the VaR-RM.

Second, under Constant Relative Risk Aversion (CRRA) preferences and lognormal state
prices, we show the VaR risk manager’s dynamic portfolio choice to deviate considerably from that
of a portfolio insurer and a benchmark agent. The deviation is most pronounced in “transitional”
states, where there is the highest uncertainty regarding whether losses will occur. Then, the risk
manager takes on large equity positions to finance a high wealth level should economic conditions

turn favorable at the horizon, while allowing for large losses in unfavorable conditions.

Third, recognizing the shortcomings of the VaR-RM to stem from its focus on the probability
of a loss, regardless of the magnitude, we propose and evaluate an alternative form of risk man-
agement, which maintains limited expected losses (LEL) when losses occur. In contrast to the
VaR-RM, under the LEL-based risk management (LEL-RM), when losses occur, they are lower
than those when not engaging in the LEL-RM. Our model abstracts away imperfections and ex-
ternalities that lead regulators to encourage risk management practices. However, our analysis
predicts that if regulators, and hence risk managers, would be concerned with disclosing and
monitoring ezpected losses (instead of VaR), then agents’ optimal behavior should be consistent

with reducing losses in any of the most adverse states of the world.

Finally, to investigate the impact of extensive usage of the VaR-RM, we move from the partial
equilibrium analysis to a general equilibrium setting. We allow agents to consume continuously,
while keeping the VaR, of their horizon wealth at a prespecified level. For tractability and realism,
we do not require the VaR horizon to coincide with the investment horizon. We work in a familiar
Lucas (1978)-type pure-exchange economy populated by a representative VaR risk manager and
a representative non risk manager, both long-lived beyond the VaR horizon. Our focus is on the
implications for stock-market price dynamics. We find that when the economy contains VaR risk
managers, the stock-market volatility (and risk premium) increases relative to the benchmark case
in down markets and decreases in up markets. The highest departure from the benchmark occurs

as a response to VaR risk managers’ aggressive bidding for stocks in the “transitional” states.



Our results may shed some light on the controversy surrounding the large losses incurred
by some banks and hedge funds during the recent (August 1998) stock-market downturn. If
indeed, as it appears, the use of VaR-based models of risk management was prevalent by these
institutions (the Economist, October 17, 1998), then, assuming deteriorating fundamentals, our
model does offer a rational explanation for their large losses. It is also interesting to note that
the recent downturn was associated with high stock-market volatility, consistent with our general-
equilibrium results. According to our model, when the fundamentals are deteriorating, it is then,
in the transition from the good-states of the world to the bad states, that the presence of VaR risk

managers in the economy should cause the stock volatility to increase relative to the benchmark.

The extant VaR-related academic literature focuses mainly on measuring VaR (see, e.g., Duffie
and Pan (1997), Engle and Manganelli (1999), Linsmeier and Pearson (1996)) or on theoretically
evaluating properties of VaR and other risk measures (Artzner, Delbaen, Eber, and Heath (1999),
Cvitani¢ and Karatzas (1998), Wang (1999)). Closer to our work is the line of research that
analyzes what may be broadly referred to as mean-VaR optimization. This analysis was initiated
by the early studies on shortfall constraints (see the safety-first approach of, e.g., Kataoka (1963),
Roy (1952), Telser (1956)), and is extended in the recent studies that explicitly address the VaR-
RM (see, e.g., Alexander and Baptista (1999), Embrechts, McNeil, and Straumann (1999), Kast,
Luciano, and Peccati (1999), Kliippelberg and Korn (1998)). However, these mean-VaR studies
do not actually embed the VaR-RM into a mean-variance preference-based optimization, but
instead compare the two approaches and, in particular, link between mean-variance and mean-
VaR efficient frontiers.®> We study a more general preference structure and, most importantly,
do not treat expected utility maximization and risk management as mutually exclusive activities,

but merge the two into one optimization problem.

A different approach is presented by Luciano (1998) who, as we do, focuses on optimal portfo-
lio policies of a utility-maximizing agent, and also maps the VaR regulatory requirements into a
constraint similar to ours. However, rather than explicitly applying the constraint to the agent’s
optimization problem, she analyzes deviations from the constraint having solved the unconstrained
optimization (with and without bid-ask spreads). Such an analysis can be viewed as complemen-
tary to ours, as it allows one to examine whether an optimizing agent would automatically comply
with the VaR regulation (or with what probability he would do so). In contrast, we apply the VaR

constraint directly to the utility-maximization problem, which allows us to analyze the impact of

3 Ahn, Boudoukh, Richardson, and Whitelaw (1999) also explicitly acknowledge economic agents’ wish to limit
the VaR of their market exposure, and they address the question of how to design a put option to minimize the
VaR of a position in a stock and options, given a cost constraint on hedging. In the context of developing a model
of international portfolio choice, Das and Uppal (1999) constrain the distribution of an agent’s portfolio return,
imposing an upper bound on the portfolio’s excess kurtosis. The authors interpret this constraint as an implicit
limit the agent imposes on the portfolio’s VaR.



the VaR-RM on endogenously-determined economic quantities. Moreover, ours is the only work

to address VaR-related issues in a dynamic general-equilibrium setting.

The remainder of the paper is organized as follows. Section 2 describes the economy. Section 3
solves the individual’s optimization problem under the VaR-RM, and Section 4 analyzes the
optimization under the LEL-RM. Section 5 provides the equilibrium analysis. Section 6 concludes

the paper. The appendix contains the proofs.

2. The Economic Setting

2.1. The Economy

We consider a finite-horizon, [0,T], economy with a single consumption good (the numeraire).
Uncertainty is represented by a filtered probability space (2, F, {F:}, P), on which is defined an
N-dimensional Brownian motion w(t) = (w1 (t),...,wx(t))", t € [0,T]. All stochastic processes
are assumed adapted to {Fy;t € [0,T]}, the augmented filtration generated by w. All stated
(in)equalities involving random variables hold P-almost surely. In what follows, given our focus is
on characterization, we assume all stated processes to be well-defined, without explicitly stating
the regularity conditions ensuring this.*

Investment opportunities are represented by IV + 1 securities; an instantancously riskless bond
in zero net supply, and N risky stocks, each in constant net supply of 1 and paying dividends at

rate 65, j = 1,..., N. The bond-price, B, and stock prices, S, are assumed to follow

dB(t) = B(t)r(t)dt, (1)
AS;(0) +8,(0dt = SOy (Bt +oy(Hdw(®], j=1,....N, )
where the interest rate r, the drift coefficients p = (u1,...,un) ", and the volatility matrix

oc={ojk, j=1,...,N; k=1,...,N} are possibly path-dependent.
Dynamic market completeness (under no-arbitrage) implies the existence of a unique state

price density process, £, given by

de(t) = —€(D)[r(t)dt + k(1) " dw(t)] (3)

where k() = o(t)71(u(t)) — 7(#)1) is the market price of risk (or the Sharpe ratio) process,
and 1 = (1,...,1)". The quantity &(T,w) is interpreted as the Arrow-Debreu price per unit

probability P of one unit of consumption good in state w € 2 at time T'.

4 Anticipating the quantities to be introduced in this section and in Section 5, see, for example, Karatzas and
Shreve (1998) for the required integrability conditions on consumption policies, prices, and portfolio holdings, as
well as the associated Novikov’s condition. In the equilibrium constructed in Section 5, these conditions (which, in
particular, guarantee nonsingularity of o in (2)) can be shown to be satisfied.



Each agent ¢ in the economy is endowed at time 0 with e;; shares of the risky security j,
providing him with an initial wealth of W;(0) = ¢, S(0). (Since our focus until Section 5 is on
the optimal behavior of a single risk-managing agent, we drop, for now, the subscript i.) Each
agent chooses a nonnegative, terminal-horizon wealth W (T) and a portfolio process 6, where
O(t) = (A1(t),...,0n(t))" denotes the vector of fractions of wealth invested in each stock. The

agent’s pre-horizon wealth process W then follows
AW (t) = W) [r(t) + 0(t) T (u(t) = r(0)D)] dt + W()O(1) o (t)duw(t) . (4)

Each agent is assumed to derive state-independent utility «(W (T')) over terminal wealth. The
function u(-) is assumed twice continuously differentiable, strictly increasing, strictly concave, and

to satisfy limg, o4/ (z) = oo and limy_ v/(2) = 0.

2.2. Modeling the VaR-RM

The financial industry has standardized on the following definition of VaR(«) (see, e.g., Duffie
and Pan (1997), Jorion (1997)): It is the loss, which is exceeded with some given probability, c,
over a given horizon. Assuming the VaR horizon to coincide with the investment horizon, this

definition translates into our setting as
PW(O0)—W(T)<VaR(a)) =1-«, a€l0,1]. (5)

Note that VaR can be interpreted as the worst loss over a given time interval, under “normal

market conditions.”

Our objective is to embed the VaR-RM strategy into a utility maximizing framework. This
could be interpreted either as an agent himself managing risk, or as an intermediary managing risk,
using the VaR approach, on an agent’s behalf. The most convenient and natural way to embed
the VaR-RM is to assume that an additional constraint is imposed on the agent’s optimization

problem, requiring the VaR(«) to be maintained below some prespecified level, i.e.,
VaR(e) < W(0) - W, (6)

where the “floor” W is specified exogenously. Equations (5)-(6) can be combined to yield the
“VaR constraint:”

PW(T)>W)>1-a. (7)

Constraint (7) requires of an agent that only with probability «, or less, will he lose more than
W(0) — W. Clearly, if P(WB(T) > W) > 1 — a for the wealth in the benchmark (B) case of no
constraints, then the VaR constraint never binds, VaR(a) < W(0) — W; otherwise, VaR(a) =
W) - W.



Note that the formulation in (7) nests the B-case; specifically, when o = 1 the VaR constraint
is never binding. More interestingly, when a = 0, our formulation reduces to the case of portfolio
insurance (PI), which constrains the horizon wealth to be above the floor W in all states (see,
e.g., Basak (1995), Grossman and Vila (1989), Grossman and Zhou (1996)). One can thus view
the VaR constraint as a “softer” portfolio-insurance constraint, permitting the portfolio value to

deteriorate below the floor of W with a prespecified probability.

3. Optimization under the VaR-RM

In this section, we solve the optimization problem of a VaR risk manager, and then analyze the

properties of the solution.

3.1. Agent’s Optimization

We solve the dynamic optimization problem of the VaR agent using the martingale representation
approach (Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987)), which allows the

problem to be restated as the following static variational problem:

)]

(T
(T)] < £(O)W(0) (8)
PW(T) =z W) >1

max E[u(W

w(T)
subject to  E[E(T)W

We note that the VaR constraint complicates the maximization by introducing nonconcavity into

the problem. Proposition 1 characterizes the optimal solution, assuming it exists.®

Proposition 1. The time-T optimal wealth of the VaR agent is

I(yg(T)) if &T)<g,
WYeR(T) = W if £<E(T) < (9)
)

I(y&(T)) if €<&(T

where I(-) is the inverse function of u/(+), £ = w'(W)/y, € is such that P({(T) > &) = a, and
y > 0 solves E[¢(T)WVE(T;y)] = £(0)W(0). The VaR constraint in (7) is binding if, and only
if, £ < &. Moreover, the Lagrange multiplier y is decreasing in «, so that y € [y, y*1].

5We prove that if a terminal wealth satisfies (9) then it is the optimal policy for the VaR agent. As we note
in the proof, to keep our focus, we do not provide general conditions for existence. However, we will provide
explicit numerical solutions for a variety of parameters’ values. From (9), a feasibility bound on W for a solution

is W < W(0)£(0)/EIE(T) ¢ ryg))



Figure 1 depicts the optimal terminal wealth of a VaR agent (a € (0,1)), a benchmark agent
(a = 1) and a portfolio insurer (o = 0). Here, W is defined by

I(ye) if <&,

- W otherwise.

-

=

Figure 1: The time-T optimal wealth for the VaR-RM case (solid plot), the PI case (dotted
plot), and the B case (dashed plot).

In “good states” (low &(T')), the portfolio insurer behaves like a B-agent, but then he must
insure against all unfavorable (high £(T')) states. In contrast, Figure 1 reveals the VaR agent to
endogenously classify unfavorable states into two subsets: the “bad states” (£(T) > &), which
he leaves fully uninsured, and the “intermediate states” (§ < &(T) < &), which he fully insures
against.% Since he is only concerned with the probability (and not the magnitude) of a loss, the
VaR agent chooses to leave the worst states uninsured because they are the most expensive ones
to insure against. The measure of these bad states is chosen to exactly comply with the VaR
constraint. Consequently, € depends solely on a and the distribution of £(T), and is independent
of the agent’s preferences and endowment. The agent can be thought of as “ignoring” losses in

this upper tail of the &(T") distribution, where consumption is the most costly.

Inspection of Figure 1 allows us to summarize the dependence of the solution on the para-
meters W and «. As the floor is increased, more states need to be insured against, and the
intermediate region grows at the expense of the good-states region. Accordingly, the wealth in
the good and bad regions must be decreased to be able to meet the higher floor in the intermediate

region. As « increases, i.e., the agent is allowed to make a loss with higher probability, the interme-

5In the equilibrium analyzed in Section 5, we will verify that “good states,” low price of consumption &(7T"), are
associated with a high equity-market value, and vice versa for “bad states,” high £(7T).



diate, insured region can shrink, while the good and bad regions both grow. The agent’s horizon
wealth can increase in both the good and bad states since he is not required to insure against as
large a state space. Consequently, in the bad-states region WVa(T) < WH(T) < WPI(T). This
may be a source of concern for regulators and real-world risk managers. The VaR-RM is viewed
by many as a tool to shield economic agents from large losses, which, when they occur, could
cause credit and solvency problems. But our solution reveals that when a large loss occurs, it is
a yet larger loss under the VaR-RM and hence more likely to lead to credit problems, defeating

the very purpose of using the VaR-RM. Proposition 2 later amplifies upon this point.

Figure 2 depicts the shape of the probability density function of terminal wealth in the B, PI,

and VaR solutions:
density

Figure 2: The probability density function of the time-T optimal wealth for the VaR-RM
case (solid plot), the PI case (dotted plot), and the B case (dashed plot).

There is a probability mass build up in the VaR agent’s horizon wealth, at the floor W, as for
the portfolio insurer. The VaR agent then has a discontinuity, with no states having wealth
between W and W, while states with wealth below W have probability «. Note that relative to
the benchmark, the distribution in these bad states is shifted to the left, meaning more loss with
higher probability.

It has been commonly observed (e.g., Basak (1995), Grossman and Zhou (1996)) that the
optimal PI horizon wealth can be expressed as the B wealth plus a put option thereon, i.e.,
WPHT; 4Py = WB(T; yP!) + max[W — WB(T;y*1),0]. Analogously, the VaR optimal-wealth

plan in (9) can be expressed as

WYH(T;y(W(0)) = WIT; 9P (W) — (W - WH(T:y% (W)
= WHT;yP (W) + (W - WH(T5 5 (Wa)))

Lz<eery
Lecery<zy



where W, is set so that y?(W.) = y(W(0)). In other words, adjusting for the initial endowment,
WVel is equivalent to a Pl-solution plus a short position in “binary” options, or to a B-solution

plus an appropriate position in “corridor” options.” More precisely, since

W. = W(0)-E i@ max(QL - (T3P (17.)),0)] +E {%w WP W)))

WH(T;yB(W.))) is the optimal policy of an unconstrained agent, whose initial endowment is

Lzceery |

simply W(0) decreased by the price of a put (needed to implement the PI component) and

increased by the proceeds of short selling the binary options.

3.2. Properties of the VaR-RM Strategy

To perform a detailed analysis of the optimal behavior under the VaR-RM strategy, we specialize

the setting to CRRA preferences, u(W) = m;:;) ~v > 0, and to log-normal state prices with
constant interest rate and market price of risk. Figures 1 and 2 appear to indicate higher losses in
the bad-states region under the VaR-RM than without risk management. However, since the bad-
states region itself shifts, the figures do not directly imply lower expected losses. Proposition 2
shows explicitly that under the VaR-RM the expected extreme losses are indeed higher than those
incurred by an agent who does not concern himself with (7).

Proposition 2. Assume u(W) = W{%?, v >0, and r and k are constant. For a given terminal-
wealth plan W (T), define the following two measures of loss:

Li(W) = E[(W = W(T)Liwr)<wy] and Ly(W) = E[%(ﬁ — WD) Liwr)<wyl- Then,

(1) Ly(WVel)y > Ly(WP), and (ii) Lo(WVE) > Loy(WB).

In Proposition 2, we focus on the bad states, that is on the states where large losses occur.
L1 (W) measures the expected future value of a loss, when there is a large loss, while Lo(W)
measures its present value. Proposition 2 highlights further the undesirable features of VaR-RM,
when viewed from a regulator’s perspective. A regulatory requirement to manage risk using the
VaR approach is designed to prevent large, frequent losses that may drive economic agents out of
business. True, under the VaR-RM losses are not frequent. But the largest losses are more severe

than without the VaR-RM.

Proposition 3 presents explicit expressions for (and properties of) the VaR agent’s optimal

wealth and portfolio strategies before the horizon.

"For details on binary and corridor options see, for example, Briys, Bellalah, Mai, and Varenne (1998). Browne
(1999) provides an example where buying a binary option is the optimal policy to maximize the probability of
reaching a given value of wealth by a fixed terminal time.



Proposition 3. Assume u(W) = Wl/i_j,

(i) The time-t optimal wealth is given by

v >0, and r and k are constant. Then:

- L) RG] .
WYVt = ——  — | ———N(=di(§)) - We "IN (~da(€))
(y&(t))~ [ (y&(t)~ |
_ el® z T—t z _
+ | ——N(=di(©) - We "IN (=ds(9)) | , (10)
[ (y&(t)~ |
where N(+) is the standard-normal cumulative distribution function, y is as in Proposition 1, and
1
$ T
1—vy 1] (1_7>2||,<,||2
It = 5 <r+ 5 (T —t)+ 5 5 (T —1t),
In 7+ (r — ey — ¢
dg(’r) = HO) ( 2 )( ) :
|sl[VT -t

1
dl(l) = dg(l) + ;HK/H\/T —t.
(ii) The fraction of wealth invested in stocks is

OV () = g (1) (1)

where the benchmark value, 87, and the exposure to risky assets relative to the benchmark, ¢V %,
are
1
051 = 2"k,
Y
oy = 1 W TOWC©) - NEb@) | 0 - e T @)

WYaR(1) T WYaR VT ¢

respectively, and ¢(-) is the standard-normal probability distribution function.

(iii) The exposure to risky assets relative to the benchmark is bounded below: ¢¥*(t) > 0, and

lim ¢VE(#) = lim ¢"*%¢) = 1.
e q () com_q (t)

(iv) When the VaR constraint is binding (£ < &), then ¢ *B(t) > 1 if, and only if, £(t) > £*(t),

where £*(t) is deterministic and bounded:

\/g’ge(r—\\n\\Q/Q)(T—t) < E(t) < Eelr=lInP/D@=0) Isl*/N(T=1)

The option-based interpretation in Section 3.1 clarifies the expression of the time-t optimal

wealth in (10). The first term takes the form of the optimal wealth of a non risk manager, while

10



the remaining terms represent the “insurance package” for keeping the time-T wealth at W in
the intermediate states. The second and third terms represent the cost of a Black and Scholes
(1973)-type put option on the B-wealth with strike price W; the fourth and fifth terms are the
proceeds from shorting a portfolio of binary options. Consequently, when the fraction invested
in risky assets is expressed as a multiple of the B-policy, the second and third terms in (11)

correspond, respectively, to the positions in the long put and the short binary options.

Figure 3 compares graphically the optimal time-t wealth and the relative stock exposure in

the B, PI, and VaR cases:

q" (1), " (#)

2.5

¢ € £(t) ¢ € £(1)
(a) Wealth for PI, VaR-RM, B (b) q(¢) for PI and VaR-RM, vs B

Figure 3: The (a) time-t wealth and (b) time-t exposure to risky assets relative to the
benchmark, for the VaR (solid plot), PI (dotted plot), and B (dashed plot) agents. The
parameters used are: v =1, a =0.01, W(0) =1, W =0.9, r =0.05, ||x|]| =04, T =1,
t=0.5, £(0) = 1. Then, £ = 0.99, € = 2.23.

Figure 3(a) reveals that the pre-horizon wealth of the VaR agent behaves similarly to that of a
portfolio insurer in the good states, while in the upper tail of the £(¢) distribution he behaves
similarly to the B-case. In the intermediate region, the VaR agent’s wealth exhibits concavity
in £(t) and it is easy to visualize how this concavity will increase as time approaches the horizon,
and tend to the discontinuous shape in Figure 1. In these intermediate states, the VaR agent is
beginning to insure himself.

Figure 3(b) illustrates the typical shape of the VaR agent’s optimal asset allocation, exhibiting
some surprising features. We may characterize 5 segments in the () space. In the two extremes,
the benchmark behavior prevails. But in between, there are three distinct patterns: First, in

the relatively cheap states, the VaR agent acts similarly to a portfolio insurer investing a higher

11



fraction of his wealth in the bond. Second, as £(t) rises, instead of moving further out of the
equity market the VaR agent begins to increase his equity exposure, tending back towards his
B-policy, then surpassing it considerably so that in the relatively expensive consumption states
he invests a higher fraction of his wealth in stocks compared to the B-case.® The third segment
occurs when £(t) is high enough to deter the agent from further risk taking, and he converges to
his benchmark policy. Formally, this nonmonotonic behavior across the state-space is linked to
the replication of a portfolio of binary options. Intuitively, the asset allocation is driven by the
agent’s desire to insure the intermediate-states region. When () is already very high, then it is
very likely that the agent will end-up in the bad-states region and it is too costly for him to bet
on a favorable realization of a large equity investment. Hence, the VaR agent behaves similarly
to the B-case. On the other hand, when £(t) is in the proximity of £, not all hope is lost, and the
agent attempts, via a relatively large exposure to equity, to reach the W level of wealth, under
favorable time-T" economic conditions.

VaR(t)

Figure 4 displays a sensitivity analysis of ¢ to a, W, and time:

8For the parameters used in Figure 3, using the bounds in item (iv) of Proposition 3, ¢*'*#(¢), as a function of
&(t), must rise above 1 while £(¢) takes values in the (1.46, 2.38) interval. The bounds in (iv) identify, analytically, a
transition from an underexposure to overexposure, relative to the B-case, for all parameters’ values, and Figure 3(b)
confirms this for the chosen parameters. In addition, Figure 3(b) illustrates that the VaR agent deviates considerably
from the B and the PI cases when £(t) takes values within these bounds.
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Ao () aveR()

(¢) the effect of ¢

Figure 4: The effect of exogenous parameters (o, W) that define the VaR constraint, and the
effect of time, on the exposure to risky assets relative to the benchmark case. The solid line in
all four charts represents the following case: v = 1, o« = 0.01, W(0) = 1, W = 0.9, » = 0.05,
||£]| = 0.4, T =1, £0) = 1. Then £ = 0.99, £ = 2.23. (a) The dotted plot is for o = 0.001, the
dashed for & = 0.1. (b) The dotted plot is for W = 0.8, the dashed for W = 1. (¢) The dotted
plot is for ¢ = 0.1, the dashed for £ = 0.9.

In general terms, (a) decreasing «, (b) increasing W, or (¢) decreasing the time-to-horizon all cause
the agent to deviate more from the B-behavior, as the VaR constraint exerts more influence. As «
decreases, the deviation from the benchmark also spreads to a larger region of £(t), while as the

time-to-horizon decreases, the deviation shrinks to a smaller region of £().
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Figure 5 displays the sensitivity, to v and x of the risky asset holdings of the VaR agent, for

a market with one risky stock:

0(t) 0(t)

8 ::: .‘E 8

(a) the effect of v (b) the effect of &

Figure 5: The effect of (a) risk aversion () and (b) market price of risk (k) on the fraction
of wealth that the VaR agent allocates to a stock investment. The solid line in both charts
represents the following case: v =1, a« = 0.01, W(0) = 1, W = 0.9, » = 0.05, x = 0.4, 0 = 0.25,
T =1, £0) = 1. Then #5(¢) = 1.6. (a) The dotted plot is for v = 0.5, for which §5(t) = 3.2.
The dashed plot is for v = 2, for which #Z(¢) = 0.8. (b) The dotted plot is for x = 0.1, for
which 08 (t) = 0.4. The dashed plot is for x = 0.7, for which 05 (t) = 2.8.

The deviation from the benchmark holdings becomes more pronounced for both lower 7 (less
risk averse agent) and higher s (higher market price of risk). This behavior is fairly intuitive;
as an agent becomes less risk averse, or as the stock’s Sharpe ratio increases, he responds more
aggressively to changes in the state variable ¢ that affect his likelihood to end-up with WVa%(T) >
W, as opposed to WVeE(T) < W. Note that, contrary to the B-case (but similarly to the PI-
case), the more risk averse agent takes on more risk than the less risk averse in the “better”
intermediate states; the more risk averse agent invests more in the stock, preparing to end-up
with WVeR(T) > W, as opposed to WVR(T) = W. Somewhat more surprising is that, contrary
to the B-case (and the PI case), in the “worse” intermediate states a higher Sharpe ratio does not
necessarily cause the VaR agent to allocate more wealth to the stock. To understand why, note
that a change in & affects the dynamics of £(¢); in particular, the boundary into the bad-states
region, &, is increasing in . Hence, at some given £(t), such as 2 (in this example), the lower
the k, the closer the agent is to the transition into the bad states region so the more heavily he

invests in the stock, targeting to finance WV%(T) = W should the bad states not occur.
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4. Optimization under the LEL-RM

In this section, we introduce the LEL-RM (limited-expected-losses-based risk management) strat-
egy as an alternative to the VaR-RM strategy. We then solve the optimization problem of a LEL

risk manager, and analyze the properties of the solution.

4.1. The LEL-RM

The shortcomings of the VaR-RM, highlighted in the previous section, stem from the fact that the
VaR agent is concerned with controlling the probability of a loss, rather than its magnitude. It
turns out that the expected losses, in the states where there are large losses, are higher than those
the agent would have incurred if he had not engaged in the VaR-RM in the first place. Ideally,
to control the magnitude of losses, one ought to control all moments of the loss distribution. As
a first step, in this section, we focus on controlling the first moment, and examine how one can
remedy the shortcomings of the VaR-RM. We leave the analysis of higher moments for future

work.

We define a LEL-RM strategy as one under which the present value of the agent’s losses, as

measured by the Lso(+) measure, are constrained:

EE(T)W - W(T)Lywry<wyl <€ (12)

where € > 0 is a constant. Observe that, since E[§(T)(W. — W(T))Lqw(ry<wy) = EE(T) (W —
W(T)HIW(T) < WIP(W(T) < W), this constraint penalizes both a high probability of a loss,
and a high expected loss given there is a loss. The constrained quantity in (12) can be interpreted
as a risk measure of time-T" losses. We may note that this measure satisfies the subadditivity,
positive homogeneity, and monotonicity axioms (but not the translation-invariance axiom) defined
by Artzner, Delbaen, Eber, and Heath (1999) (ADEH), and hence avoids their criticism of the
VaR measure of risk. In contrast to our endogenous-losses-based criticism, their objection is that
VaR fails to display subadditivity when combining the risk of two or more portfolios (the VaR of

the whole may be greater than the sum of the VaRs of the individual parts).’?

Analogously to the treatment of (7), we impose (12) as a constraint on the agent’s optimization

9ADEH call a risk measure “coherent” if it satisfies the aforementioned four axioms, and hence our measure is
not classified as coherent. However, since we model an agent as limiting the risk of his total position, we abstract
from the idea of adding extra funds or adjusting margin levels (cases where translation invariance is applicable),
and consequently in our setting monotonicity is in fact the only critical property of a risk measure, so that risks
can be ranked. ADEH discuss a leading example of a coherent measure, the “tail conditional expectation” (TCE),
which measures expected losses (not deflated by state prices) conditional on the losses falling below a quantile of
probability «. Unlike our LEL measure, the TCE does not then fully disentangle the notions of quantiles and
expectations, and we therefore chose LEL to more clearly illustrate the differences between the quantiles-based and
the expectations-based approaches.
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problem, thereby incorporating the LEL-RM directly into the optimization. The formulation again
nests the B-case (e = 0o) and the Pl-case (e = 0). As we show next, when 0 < € < oo, the LEL
strategy has the appealing property that it indeed yields results, which are consistent with the
stated goal of “managing risk” in the following sense: The LEL risk manager optimally chooses

a wealth level, which in the low-wealth states is above the benchmark wealth.

4.2. Agent’s Optimization

Using the martingale representation approach, the dynamic optimization problem of the LEL risk

manager (henceforth, the LEL agent) is restated as the following variational problem:

max Elu(W(T))] st. EIESD)W(T)] < €OW(0) . BED)W - W) Lpwmaw] e (13)

Proposition 4 characterizes the optimal solution, assuming it exists.!?

Proposition 4. The time-T optimal wealth of the LEL agent is

I(:&(T)) if £(T)<§g,,
WHER(T) =S W if £ <&(T)<E,, (14)

I((z1 — 2)&(T)) if & <&(T),

u' (W)
(21—22)’

where § = “lilm), I3 and (z1 >0, zo > 0) solve the following system:

BlE(T)WEFE(T; 21, 29)] = £(0)W(0)
E[E(T)(W. — WEEL(T; 2, 22)) LgwLBL (s, 2o)<wy] = € or 22 =0.

The LEL constraint in (12) is binding if, and only if, § < &.. Moreover, the Lagrange multiplier 2

is decreasing in €, so that z1 € [2F,2F1]. Also, 21 — 20 < 2P.

Figure 6 depicts the optimal terminal wealth of a LEL agent (e € (0,00)), a benchmark agent

(e = 00) and a portfolio insurer (e = 0):

From (14), the feasibility bound on W for a solution is W < (W(0)¢(0) + €)/E[¢(T)]. Note that if an agent
wishes instead to limit expected future losses, E[(W — W(T))1iwr<w}] < €, his optimal wealth will have a
structure similar to (14). The only changes are that &,, = (u/(W) 4 22)/z1 and that in the &, < &(T) region his
wealth is set to I(z1£(T") — z2). The nature of the implications discussed in this section are robust to this modeling
change.
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Figure 6: The time-T optimal wealth for the LEL-RM case (solid plot), the PI case (dotted
plot), and the B case (dashed plot).

Figure 6 reveals that in contrast to the findings in the VaR case, now in the bad-states region
WB(T) < WLEL(T) < WPI(T). This highlights the most surprising, but also encouraging,
feature of the optimal behavior of the LEL agent; although in some states he is willing to settle
for a wealth lower than W, he does so while endogenously choosing a higher WEXEL(T) than
WH(T). The LEL agent endogenously decides to classify unfavorable states into two subsets: the
bad states, against which he partially insures, and the intermediate states, against which he fully
insures. Again, he chooses the worst states in which to maintain a loss, because these are the
most expensive states to insure against, but maintains some level of insurance. Insuring a terminal
wealth at the W level is too costly, so he settles for less, but enough to comply with the LEL
constraint. Note that, the LEL agent not only chooses &, endogenously, but also endogenously
determines the value of €_; unlike &, €, does depend on the agent’s preferences and endowment.
A further distinction with the VaR-RM is that the terminal wealth policy under the LEL-RM is

continuous across the states of the world.

Figure 7 depicts the shape of the probability density function of terminal wealth in the B, PI,
and LEL solutions:
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Figure 7: The probability density function of the time-T" optimal wealth for the LEL-RM
case (solid plot), the PI case (dotted plot), and the B case (dashed plot).

Similarly to Figure 2, there is a probability mass build up in the LEL agent’s horizon wealth,
at the floor W. However, the LEL has no discontinuities across states. Also, relative to the
benchmark, the distribution in the bad states is shifted to the right, meaning less loss with higher

probability.

The optimal-wealth plan in (14) can be expressed as

WEEL(T; 20 (W(0)), 22(W(0))) = min[W (55" (W), WE(T; y (We) — 22(W(0)))]
= max[W5(T;y" (W), min[W, W (T; y"(We) — 22(W(0))],

where we set W, so that y? (W) = 21(W(0)). Hence, adjusting for the initial endowment, WL
is equivalent to an option on a minimum of two “securities” (one being riskless), where the
nonstandard feature of the option is that the strike price is stochastic.!! The wealth adjustment,
which equates the strike price to the wealth of a fictitious unconstrained agent, is obtained by
valuing this non-standard option at the initial date:

We=W(0)—-FE {% max {min[w, WB(T; yB(We) — 29(W(0))] — WB(T; yB(WE)), OH

4.3. Properties of the LEL-RM Strategy

We now specialize the setting to CRRA preferences, u(W) = W{IT?, v > 0, and to log-normal

state prices with constant interest rate and market price of risk, analogous to the VaR analysis

See Stulz (1982) for the analysis and applications of an option on a minimum of two assets (both risky), where
the strike price is fixed.
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in Section 3. Using the notation defined in Proposition 3, Proposition 5 summarizes the wealth
dynamics and the portfolio choice of the LEL agent.
1—v

Proposition 5. Assume u(W) = m{?, v >0, and r and k are constant. Then:

(i) The time-t optimal wealth is given by

T) L)
WL () = ——— - | ——FN(=d1(€)) — We TN (—da(€))
(z1&(1))™ | (z1€(t))
B0 B _
+ ——N(=di(&) — WeT TN (=dy(E,))| . (15)
| (21 — 22)7&(1)7

where T'(t), di(x), do(x) are as given in Proposition 3, (z1,z2) are as given in Proposition 4,

1
(21 — z9) W7~

(ii) The fraction of wealth invested in stocks is
0L (1) = gL ()95 1),

where the exposure to risky assets relative to the benchmark, ¢*FL(t) is

We=D(N(—d — N(=da(€
qLEL(t) —1_= ( (Wzé%gj) ( 2(66)))'

(iii) The exposure to risky assets relative to the benchmark is bounded below and above: 0 <
GHEL() <1, and
lim ¢"PF(t) = lim ¢"FL(t) =1.
£(t)—0 () £(t)—oo )
Figure 8 compares graphically the optimal wealth and the stock exposure in the B, PI, and
LEL cases:
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q“PE(t), g1 (t)

1 2 3 4 5 6 1 2 3 4 5 6
£ & &(t) £ & &(t)
(a) Wealth for PI, LEL-RM, B (b) ¢(t) for PT and LEL-RM, vs B

Figure 8: The (a) time-t wealth and (b) time-t exposure to risky assets relative to the
benchmark, for the LEL (solid plot), PI (dotted plot), and B (dashed plot) agents. The
parameters used are: v =1, e = 0.01, W(0) =1, W = 0.9, r = 0.05, ||x|]| = 0.4, T =1,
t=10.5,£(0) = 1. Then £ = 0.98, & = 1.83.

Figure 8(a) illustrates that, as in the VaR case, for low and intermediate values of £(t) the agent’s
pre-horizon wealth behaves more similarly to a portfolio insurer’s wealth than to the benchmark
one. In the intermediate range, the LEL agent attempts to insure as many states as he can
afford, but in the higher tail of the £(¢) distribution, he reverts to a behavior similar to the B-
behavior. However, unlike in the VaR case, in this upper tail of the distribution the LEL agent
maintains a higher wealth than in the B-case. Again, one can easily visualize how the wealth in
the intermediate states approaches the shape in Figure 6, as the time approaches the horizon.

LEL(#) stated in item (iii) of Proposition 5.

In Figure 8(b), we clearly see the properties of ¢
The LEL agent manoeuvres between his behavior in the B and the PI cases, never investing a
higher fraction of his wealth in stocks compared to the B-case. The agent’s asset allocation has
four distinct patterns over the £(t) space. In the two extremes, the benchmark behavior prevails.
But in between, there are now only two distinct patterns: First, the LEL agent acts as a portfolio
insurer, and then, as £(¢) rises, instead of moving further into the riskless asset the agent increases
his equity exposure, tending back towards his B-policy, but never surpassing it in terms of the
exposure to equity. Intuitively, the asset allocation of the LEL agent differs from that of the
VaR agent because WL is continuous across states. In the VaR case, if £(t) is close to € as

he approaches the horizon, the VaR agent must allow for the need to finance highly distinct

wealths: W or W. For the LEL agent, however, a slight change in £(t) as t approaches T' does
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not necessitate the financing of a very different level of wealth. Therefore, the LEL-RM never
leads risk managers to take extreme leveraged positions compared to the positions they would

have taken as non risk managers.'?

5. Equilibrium Implications of the VaR-RM

Given that the VaR-RM is becoming an industry standard, it is of interest to evaluate the impact
of the presence of VaR risk managers on market prices. In this section, to examine price effects
of the VaR-RM, we develop a pure-exchange general equilibrium model of an economy containing
VaR risk managers. Since much attention has been directed towards understanding the impact
of portfolio insurance on equilibrium prices (Basak (1995, 1998), Brennan and Schwartz (1989),
Donaldson and Uhlig (1993), Grossman and Zhou (1996)), given the relationship between VaR

risk managers and portfolio insurers, a comparison of equilibrium effects is warranted.

5.1. The Equilibrium Setting

A problem with extending the economic setting in Section 2 to a standard pure-exchange general
equilibrium model is that the VaR constraint is imposed directly on the agent’s terminal wealth,
and hence on his terminal consumption. In equilibrium, this imposes restrictions on the exogenous
source that supplies the goods for the terminal consumption. Specifically, Proposition 1 (and
Figure 1) revealed the VaR agent’s wealth to be discontinuous, never taking values between W
and W. Therefore, good-market clearing would require a discontinuity in the exogenous terminal
consumption source, which seems too contrived a primitive. To circumvent this problem, we
instead assume that the VaR horizon, T, is shorter than the agent’s lifetime, T, so that the VaR-
horizon wealth, W (T'), (rather than equating to a lump-sum consumption) represents the value
of future consumption. As a result, the VaR constraint is imposed on a quantity, which need not
be directly provided by an exogenous consumption supply. A side benefit of this assumption is
that it probably renders our model a more realistic description of the VaR-RM, because in reality
the VaR horizon would rarely coincide with the consumption horizon. To distinguish the setting
here from that of Section 2, we refer to the VaR risk manager as the long-lived VaR agent. We

will see that the basic optimal (partial equilibrium) behavior presented in Sections 3-4, survives

12 A5 an aside, we may calculate the probability, a(W), of making a loss larger than T (0) — W for the benchmark-
and the LEL-agents. We have

oMWy =P <€(T) > m) <P <€(T) > zf;m) =’ (W) .

Hence, the probability of a loss is also lowered by the LEL-RM strategy; to some extent, the LEL agent also manages
his VaR.
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under this modified setting.

We assume that the economy is populated by two types of agents, the normal agent (n) and the
long-lived VaR agent (v), who derive utility from intertemporal (continuous) consumption over
their lifetime [0,77].'3 As opposed to the normal agent, the long-lived VaR agent is subject to the
additional VaR constraint (7) over time-T wealth, where T < T”. For simplicity, we specialize

to both agents having logarithmic utility of consumption, and assume the (exogenously) given

aggregate consumption process 6(t) = ;-V:l b; (t) to follow a geometric Brownian motion process:
N
ds(t) = 6(t) |pedt + Y os,dw;(t)| ., t€[0,T],
j=1

with ps, o5, constants, and 6(0) > 0.

We can anticipate (in light of Basak (1995)) that the constraint applied at the VaR horizon T'
may result in jumps in the equilibrium security and state prices. Hence, we need to modify
accordingly our posited price dynamics in (1)-(2). We posit that the price dynamics in [0,7)
and (T,T'] are still given by (1)-(2), but at time T" we allow for an additional jump component,
ndA(t), in the changes of security prices. Here, A(t) is a (right-continuous) step function defined
by A(t) = lg>7y, so that dA(t) is a measure assigning unit mass to time 7', and the jump

coefficient, 7, is an Fpr-measurable random variable related to the price jumps by

n=W(B(T)/B(T-)) = n(S;(T)/S;(T-)) = n(&(T-)/&(T)), j=1...,N,  (16)

where S;(T—) is the left limit of S;(-) at 7. Notice that, since Fr_ = Fr, to prevent arbitrage
on these jumps, the jump coefficient 7 in all security prices must be the same so that the deflated

prices and wealth, £(t)B(t), £()S;(t), and &(¢)W;(t), remain continuous at all times.

5.2. Optimization of a Long-Lived VaR Agent

The long-lived VaR risk manager solves the following problem:

(co,W(T—))

max FE l./OT/ ln(cv(t))dtl

subject to E [ /0 et eal)dt + E(T—Wo(T—)| < £O)W(0) | (17)

E [ :/ﬁ(t)cv(ﬂdtl Fr| <ET=)Wy(T-) , (18)

13We find this formulation more appealing than letting the agents consume only at T”. A setting with intertem-
poral consumption is widely accepted as the more realistic one for dynamic-general-equilibrium modeling, and has
the advantage of having a main “work-horse” asset-pricing model, Lucas (1978), as a benchmark. Moreover, un-
der standard preferences and endowment structure, this formulation offers added tractability since it results in a
constant r and k, as in the benchmark.
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PWy(T-)z2W)>1-o. (19)

The static budget constraint is broken into two components, (17) and (18), to facilitate un-
derstanding of the impact of the VaR constraint (19) on the optimization problem. The VaR
constraint is imposed on the left limit of time-T" wealth to maintain the standard convention of
right continuity of wealth processes. The optimal solutions, if they exist, for the long-lived VaR

agent and the normal agent are summarized in Proposition 6.

Proposition 6. The optimal consumption policies and time-T optimal wealth of the two agents

are
) ! te[0,T] (20)
Cn\l = T 2 s 5
yn§(t)
1
clt) = { mew (€0, (21)
1 !
w0 LT
T —-T
Wpll—) = ——, 22
( ) yn£<T_) ( )
yu?él'a”T*) if §(T-) < Z:;ET ’
Wo(T-) = ( W if I5F <¢(T-)<¢, (23)
T Eeg(T)
where the constants yn, Yp1, and the Fpr-measurable random variable y,o satisfy
T/
b= £(0)W,,(0) , (24)
T T -T
B | (AT - = ) L g = SO0 (25)
T —T T -T T —-T
Yul * <§(T_)E a Yul ) 1{51:17§§§(T7)<E} - Yv2 ’ (26)

and & is defined by P(&(T—) > €) = a.

The solution for the VaR-horizon wealth of the long-lived VaR agent, (23), is analogous to (9),
and the intuition for the solution, discussed in Section 3.1, prevails. The only new aspect in which
the long-lived VaR agent differs from the normal agent is that he is given differing “weighting”
before (y,1) and after (y,2) the VaR horizon. When the VaR constraint is binding, y,1 > 2
in states where the agent is insuring himself. This resembles the result in Basak (1995) for the
portfolio insurer, the idea being that post-horizon consumption not only provides the VaR risk

manager with utility but also contributes towards meeting his VaR constraint.
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5.3. Equilibrium State Prices
We now define and then characterize the equilibrium in our setting.

Definition 1. An equilibrium is a collection of (r, p, o, n) and optimal (¢, ¢y, On, 6,), such

that the good, stock, and bond markets clear, i.e., ¥t € [0,T"],

Cn(t) + Cv<t) = 6“) 5 (27)

Onj(t) +0u5(t) = S;(t) , j=1,....N, (28)
N

Wa(t) + W (t) =Y S;(t) . (29)
j=1

Proposition 7 solves for the equilibrium state price density and its dynamics.

Proposition 7. The equilibrium state price density is given by

) = { (it + )61, te[0.T)

(gt +y )6t~ te [T, T, (30

where Yn, Yo1, Yoo satisfy (24)-(26), with (30) substituted in. Moreover, the equilibrium interest
rate and market price of risk are constants, at allt € [0,T"], given by r = us—||os||?, and k; = o5,

j=1,...,N, and the jump-size parameter is n = In((y;" + yi)/(ya* + ypm)) < 0.

Proposition 7 reveals the anticipated (upward) jump in £ at time T; the price of consumption,
&, jumps up to counteract the upward jump in aggregate consumption demand at time 7', where
the jump in demand is due to the VaR risk manager no longer postponing consumption to meet

the VaR constraint.

5.4. Equilibrium Market Price, Volatility, and Risk Premium

The price of the equity market portfolio, Wep,, is defined as the aggregate optimally-invested
wealth in the risky securities. In equilibrium, We,, is also equal to both the aggregate optimally
invested wealth and the sum of the risky asset prices:

N N
Wem(t) = Z(enj(t)wn(t) + ij(t)Wv(t)) = Wn(f) + Wy (f) = Z Sj (f) .

j=1 j=1
The equilibrium market dynamics can be represented by

N
AWern () + 6()dt = Wemn(t) | ptem(t)dt + " Gem j(t)dw;(t) + ndA(t)|
j=1
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2
em,j

where fien, 18 the equity market drift and ||oen ()| = ;-V:l oz (t) is the equity-market volatil-
ity. Proposition 8 presents these quantities in equilibrium and contrasts them with the bench-

mark (B) economy with all normal agents.

Proposition 8. The equilibrium market price, volatility, and risk premium in a logarithmic-

utility normal-agent benchmark economy are given, ¥Vt € [0,T'], by
Wan(®) = (T"=0)6(t) . Nloou Il = llosll » s (t) =7 = |losl|* -

Before the VaR horizon, the corresponding quantities in the economy with one logarithmic-utility

long-lived VaR agent and one logarithmic-utility normal agent are

WhYel) = (T" —t)6(t) — {T;/;Té(t)/\[(_(fl(g))_we(ué|06||2)(Tt)/\[(_(j2(3))}
- [T;/_IT(?@)N(—(L(@)—me—wé—|06H2><T—tw<_(12<é>>}7 (31)
oo @I = a@®)llos|l
pen () —r = a®)llosl|*
where
< _ wyvl
R
6 = 1/¢,
i) = DI = sllosl (T )
T \|os||[VT —t ’
dy(w) = di(x) = |los||VT — 1,
a) = 1o WGPV (—da®) = N(—da(6)))

WEa(h)
(W — yv%(T/ — T)§)e~(ks=llosl)T=1) g, (8))
WEaR (1) ool /T — 7

After the VaR horizon, market prices, volatility, and risk premia in both economies are identical.

_|_

Consequently, before the VaR horizon,
(i) WerdT(t) > W, (1),
(ii) kel > B, (O] and p¥af(t) > uB,(¢) if, and only if, 8(t) < 6%(), where §7(¢) is

deterministic and bounded:

g alloslP/DT=0) < g2y < [ (s=llos| /T~ llos] 2r=)

14 Although not the focus of our discussion, we note that, under appropriate restrictions on exogenous parameters,
existence of equilibrium (demonstrated via existence of the y’s in (24)-(26)) can be straightforwardly verified.
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Item (i) reveals the pre-horizon market price in the VaR economy to be higher than in the
benchmark economy. This result is as in the PI economy, and comes about because the long-lived
VaR agent values post-horizon dividends more than the pre-horizon consumption, since these
dividends help him to meet his constraint. The pre-horizon value of the equity market is then

pushed up, because equities are claims against the post-horizon dividends.

When the VaR agent behaves like a portfolio insurer (a = 0), it is immediate to verify that
4(t) € 10,1}, and equity-market volatility is never higher than in the B-case, as indeed was shown
by Basak (1995). Otherwise, as long as the VaR constraint is binding (6 > §), item (ii) reveals
that there are always states of the world in which the VaR economy stock volatility is higher
than in the benchmark. This is a consequence of the risky asset demands of the VaR agent,
discussed in Section 3.2. Since the interest rate and the market price of risk are pinned down as
constants in equilibrium, favorability of the risky equity market relative to the bond is controlled
by its volatility. Whenever the presence of the VaR agent elevates the demand for risky assets,
the market volatility will increase to compensate (so to clear markets), and conversely when
the VaR agent depresses the demand for risky assets. When the market volatility is increased
(decreased), for the market price of risk to remain unchanged, the market risk premium must also
increase (decrease) accordingly. Furthermore, item (ii) implies that the increased volatility arises
in states of low output, or down stock markets, or more specifically, in the transition from the
intermediate states of the world to the bad states. Indeed, the market volatility behavior (as a
function of 1/6(t)) inherits the S-shaped form of the demand for risky assets (as a function of £(t))

seen in Figure 3(b).

Note that the equilibrium analysis provides a justification for our identification of low (high) &(¢)
with good (bad) states of the world. (30) reveals £(t), the price of consumption, to be decreasing
in the consumption supply 6(¢), while (31) reveals the equity market value to be increasing in 6(t).
Hence, what we call “good (bad)” states are those associated with high (low) aggregate output

and with high (low) equity prices.

6. Conclusion

We analyze the effects of risk management on optimal wealth and consumption choices and on
optimal portfolio policies. We first focus on modeling risk managers as expected utility maximiz-
ers, who derive utility from wealth at some horizon, and who must comply with a VaR constraint
imposed at that horizon, requiring that the wealth may decrease below a given floor only with
a prespecified probability. Having embedded VaR into an optimizing framework, we reveal sev-

eral surprising effects, some of which may be viewed as undesirable by regulators. In particular,
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VaR risk managers incur larger losses than non risk managers in the most adverse states of the
world. To address that, we next propose an alternative model of risk management, a LEL-RM,
where expected losses, rather than the probability of losses, are limited. We demonstrate how

this alternative model remedies the shortcomings of the VaR-RM.

Both the partial-equilibrium and the general-equilibrium analyses of the economy with VaR
risk managers yield profoundly different implications compared to the extensively-studied case of
portfolio insurance: VaR risk managers differ from portfolio insurers both in their endogenously
chosen quantities and in their impact on equilibrium prices. In particular, in the worse states of the
world, the VaR agents may take on more risk than non risk managers and consequently increase
the stock-market volatility, which is exactly the opposite behavior and impact on volatility as

compared with portfolio insurers.

While we demonstrate how to embed two particular forms of risk management into an opti-
mizing framework, our analysis may also pave the way towards evaluation of further alternative
risk management practices of interest to regulators. In particular, there is room to consider risk
management models that require agents to focus on the higher moments of the distribution of a
loss. For example, from an econometric perspective, volatilities can be estimated more efficiently
than means, and it is therefore of interest to compare the LEL-RM framework with one that binds

the second moment of a loss, which may be an easier framework to implement in practice.

Appendix: Proofs

A

Proof of Proposition 1: Let W(T) = WVeE(T). If P(W(T) < W) < «, then by their
definition, £ < &, and WVE(T) = I(y&(T)) = WP(T), which is optimal following the standard
arguments as in the benchmark case. Otherwise, P (W(T) <W)=a, and £ > §. The remainder
of the proof is for the latter case. We adapt the common convex-duality approach (see, e.g.,
Karatzas and Shreve (1998)) to incorporate the VaR constraint. The expression in Lemma 1 is

the convex conjugate of u with an additional term capturing the VaR constraint.

Lemma 1. Ezpression (9) solves the following pointwise problem VE(T):
u(W(T)) = y&(TW(T) + g2l i (ryswy = max{u(W) —y&(T)W +y2liwwy }

where yo = u(I1(y€)) — y€I(y€) — u(W) + yEW >0 .

Proof: The function on which max{-} operates is not concave in W, but can only exhibit local

maxima at W = I(y&(T)) and/or W = W. To find the global maximum, we need to compare the
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value of these two local maxima. When §(T') < &, we have I(y&(T')) > W and

u(I(y€(T))) — y&(T)I(YE(T)) + y2 > u(W) — y&(T)W + ya,

so I(y&(T)) is the global maximum. When £ < ¢(T) < &, we have I(y¢(T)) < W and

wl) = y&(MW +y2 = u(I(y€)) — y€l(y€) +yW (€ — &(T))
> u(I(y€(T))) — y&(T)I(y&(T)) (A1)
where the inequality follows from &(T') < € and %{u([(yﬁ))—yﬁ](yﬁ)—i—yﬂ{} = —yl(y&)+yW >0

whenever £ > £. So W is the global maximum. When £(T") > &, the inequality in (A1) is reversed
and so I(y&(T)) is the global maximum. Finally, to show y2 > 0, note that

y2 = [u(I(y€)) — yEI(yE) + yWeE] — [u(I(yE)) — y&l (y€) + yWe] > 0,

again from %{/{t([(yf)) —y&l(y&) +yWel >0 and € > g "

Now, let W(T') be any candidate optimal solution, which satisfies the VaR constraint (7) and
the static budget constraint (8). We have

A

E[u(W(T))] = E[u(W(T))]
= Elu(W(T))] = Elu(W(T))] = y€(0)W(0) + y&(0)W (0) + y2(1 — ) — yo(1 — a)
i — E[u(W(T))] = E[y&(T)W(T)] + Ely&(T)W (T)]

Y]

Elu(W(T))]

+EYol i yzwy| — Elv2liw@y>wy] = 0,

where the former inequality follows from the static budget constraint and the VaR constraint
holding with equality for W(T), while holding with inequality for W(T'). The latter inequality
follows from Lemma 1. Hence W(T) is optimal.’® Finally, since the VaR constraint must hold
with equality, we deduce the definition of €. From (9) it is clear that WY E(T;y)/dal, < 0,
and in particular WFPI(T;y) > WVR(T;y). Furthermore, except when equal to W, all wealth
policies are decreasing in y. Hence, to allow the static budget constraint hold with equality, we

must have y decreasing in o and y € [y?, y*7]. [

15The optimization problem is not standard since it is non concave, and to gain insight into its structure, we
found it satisfactory to provide a general proof of sufficiency for optimality. To prove existence, one has to follow
the standard path of stating and verifying conditions for integrability of wealth, prices, and portfolio holdings (as
noted in footnote 4). In addition, one has to present the appropriate growth conditions on u and moment conditions
on ¢, followed by an elaborate analysis to verify that the expectations in the objective function and in the budget
constraint are well defined (e.g., as in Cox and Huang (1991)). To prevent diverting the focus with a series of
technical conditions, and in order not to unnecessarily lengthen the paper, we chose to solve explicit examples of
interest, instead of proving existence in general.
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Proof of Proposition 2:
(i) It is straightforward to verify that Li(WPB) = G1(ag,y?), Li(WV) = G1(ay, y), where

Gila,r) = zma)—m—%e(%*#)ma—%,
m = E[-In&(T)), s = Var[—In&(T)),
(InWyP — m) (InW7y — m)
ap = — S ) ay = — s 5

and y solves E[§(T)I(y&(T))] = £(0)W(0). Next, it is also straightforward to show that, for x > 0,
%Gl(a,x) > 0 if, and only if, a < ay. Hence, since ap < ay, Gi(ap,y) < Gi(ay,y). Also, since
£G1(a,2) 2 0and y > ¢y, Gi(a,y®) < Gi(a,y). Then,

Li(WVeRy — Ly WPy = Gilay,y) — Gi(ap, y®)
Z G1<0/V,y) _G1<a‘va) Z 0.

(ii) Tt is straightforward to verify that Lo(W?P) = Ga(ap,y?), Lo(WVE) = Go(ay,y), where

2 1 1—
Gafar) = (We ™ TN (a+s) —r e N~ —5)/€(0)
_ _ 2 2
ro— =70 (1_v> s

gl gl 2
92 Gy(a,z) > 0 if, and only if, a < ay, and since

' Oa
%Gg(a,l’) >0, Ga(a,y?) < Ga(a,y). Therefore,

ap, ay, as in part (i). Also, for z > 0

Lo(WV) — Ly(WP) = Galay,y) — Galap,y”)
> Galay,y) — Ga(ap,y) 2 0.

[
Proof of Proposition 3:
(i) From (3) and (4), Ito’s lemma implies that £(+)W Ve (¢) is a martingale:
T
wVeli(ty = B 4T )WV“R(T)\]-} : (A2)
&(t)
When r and & are constant, conditional on F, In £(T") is normally distributed with mean In&(¢) —
(r+ W)(T — t) and variance ||«||?(T —t). Substituting (9) into (A2), using I(x) = Jf%, and

evaluating the conditional expectations over each of the three regions of £(T') yields (10).

(ii) Applying Ito’s lemma to (10), using k = o(t) "1 (u(t) — r1), we get

1 &® — (W= W)e " T=-T® g (dy (€))
oyrven(t) = 11 N(—di(€)) + N(—di(8)) + 2
v T (gt [ o 1 (we(t) 2|6l VT —F
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From (4), oyvar(t) must equal o(t)T0VeE(#)WVeE(t). Using the well-known value of 2, we

obtain

L) _ (W — W)e"T=D-TMg(dy(9))
VaR(y) P |1 = N(=da(©) + N~ (§) + T—=—
! WVaR(r) (ye (1)) e 1 (e () S IlIVT —7

(A3)
Rearranging (A3) yields (11).
(iii) Inspection of (A3) clearly reveals that it is nonnegative. The limits are immediate to verify.
(iv) For a given t, to save notation, we suppress the dependence of &, ¢"*%, and WV on ¢. The
proof first establishes the existence of £*, for a given ¢, by explicitly computing a region (in the

Val yiges, as a function of &, from below to above 1. Then, uniqueness of &*

&-space) within which ¢
is established. As stated in the proposition, the above region is defined in terms of two sufficient
conditions: the first is that ¢"* < 1 if € < \/Z—ée(T_H”HQ/Q)(T_t), the second is that ¢¥%f > 1 if
&> Ee(T"|"‘|‘2/2)(T’t)e(|"“”2/7)(T’t). For brevity, we only present the proof of the former, as the

proof of the latter follows similar steps. For X € [, W], let

LB XN =X 5) = M=)

Note that dao(X~7/y) and da(€) are functions of ¢, and that ¢V = 1 + F(W, &)/WVeE, Hence,
for a given t and &, ¢V < 1 if, and only if, F(IW,€) < 0. For analytical tractability, we only
derive a sufficient condition for F(IW,§) < 0. Noting that F(W,&) = 0, a sufficient condition
for F(W,€&) < 0 is that %F(X, §) < 0,VX e W, W]. It is straightforward to verify that a

sufficient condition for %F(X, §) <0,VX e [W,W], is that § < 1/%6(“”“”2/2)@4). But,

F(X,§) =

because £ = yl/%” < yX%, VX € [W, W], the latter inequality holds when § < \/Z—ée(T_HKHQ/Q)(T_t).

To swmmarize: € < |G g <\ [E 0D yx e ww] =
%F(X,{) <0,VX € W.W] = FW,¢ <0 = ¢"® < 1. This, combined with the
condition for ¢V > 1, using the limits in (iii), and the fact that F(W, ¢) is differentiable with
respect to € imply that there exists a £ for which F(W,£*) = 0, and there exist &, g satis-
fying &, < & < &y for which F(W, &) < 0 < F(W, &) and a%F(m, £) = (%F(E, £y) = 0.
To complete the proof, we need to show that £* is unique. To prove this, it is enough, in our
setting, to verify that %F(E, €) = 0 has at most two distinct roots. To verify the latter, note
that (%F(w, €) = 0 if, and only if, f(W,d2(€)) = 0, where f(W,h) = arh — age®™h + W,

2

_ y(W-W) . _%3 _ yIhn(W/W) . e S
and a1 = TRV @2 = We =2, az = TRV are all positive and independent of £. But
2
i; W.h) = —asa2e®h < 0, for all h, and hence f(W,h) = 0 has no more than two distinct
oh - 3 ) ) LA Aw)

roots: hi, ha. Assume, without loss of generality, hy > hs. Since there is a one-to-one mapping
s

K 2 —_ K
between dg(€) and &, &p = Ze(T*H 3 NI =MllklVT=t and ¢ = 56(7’*” 2 )(T—t)=ha|lkl[VT—t 410

the unique, global minimizer and maximizer, respectively, of F'. |
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Proof of Proposition 4: This is the direct analog of Proposition 1. Let W(T) = WLEL(T).
If B[(T)(W — W(T))l{W(T)gw}} < € then zp = 0 and €, = &, and WEEL(T) = I(x£(T)) =
WHB(T), which is optimal following the standard arguments.

Otherwise, E[¢(T)(W — W (T))1

the latter case.

{W(T)<W}] =¢ and & > &, The remainder of the proof is for

Lemma 2. Ezxpression (14) solves the following pointwise problem VE(T):

w(W(T)) = 216(TYW(T) = 26(T) W = W(T)) gy oy ey
= nll/‘z}x{u(W) — 21{(T)W — 28(T)(W — W) liw<wy} -

Proof: The function on which max{-} operates is not concave in W, but can only exhibit local
maxima at W = I(1&(T)) if I(z1§(T")) > W, or W = I((z1 — 22)&(T)) if I((z1 — 22)&(T)) < W,
or W=W. When {(T) <&, I(21§(T)) > W, I((21 — 22)§(T)) > W, and

W(I(26(T))) — 2EDY(2E(T)) > u(W) — 2&(T)W
so I(z1&(T)) is the global maximum. When &(T) > €., I((21 — 20)&(T)) < W, I(z1£(T)) < W and
u(I((z1 = 22)8(T))) = (21 = 22)E(T) (21 — 22)&(T)) = w(W) — (21 — 22)E(T)W,

so I((21 — 22)€(T)) is the global maximum. When { < ¢(T) < &, I(21€(T)) <
I((z1 — 22)&(T)) > W, so W = W is the only local maximum and hence the solution. [

Now, let W(T') be any candidate optimal solution, which satisfies the static budget constraint

and the LEL constraint in (12). We have

E[u(W (T))] — E[u(W (T))
—  B[u(W(T))] = E[u(W(T))] — 24£(0)W(0) + 5£(0)W(0) — 206 + 206
> Blu(W(T)] — E[u(W(T))] = E[2£(@)W(D)] + El1&(1)W (1))
—E[2s&(T) (W~ WD)y gy cqpy) + Elea€ (D)W~ WD) Ly ryary] > 0.

where the former inequality follows from the static budget constraint and the LEL constraint
holding with equality for W(T), while holding with inequality for W(T'). The latter inequality
follows from Lemma 1. Hence W (T') is optimal. Suppose z; > 2P, Then WP(T) > WEEL(T) in
all states, contradicting the budget constraint holding with equality for both. Hence, by contra-
diction, 21 < 21, Suppose 21 — 2 < 21 < 28, Then WEEL(T) > WB(T) in all states. Similarly,
if 2P < 21 — 29 < 21, then WEFE(T) < WB(T) in all states. Either case contradicts the budget
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constraint holding with equality for both, so we must have z; — 29 < 2P < 2. ]

Proof of Proposition 5: The proof is as of Proposition 3, except with  and ¢ replaced appro-

priately by £ _and g.. |

Proof of Proposition 6: (20), (22), and (24) are well-known to solve the unconstrained opti-
mization. To show that (21), (23), (25), and (26) are the optimal solution to the optimization
problem of the long-lived VaR agent is a straightforward extension of the proof of Proposition 1,

and is therefore omitted. ]

Proof of Proposition 7: (30) follows from the clearing of the consumption good market. Then,
r and k are determined by applying It6’s lemma to (30) and equating terms with (3), and 7 follows

by substituting (30) into (16). ]

Proof of Proposition 8: In equations (24)-(26), the y’s are only determined up to a multi-
plicative constant, and we therefore, without loss of generality, set y, 1 + yqjll = 1.16 The expres-
sion for WY af(t) follows by substituting (T" — T)6(t)/yu1, ||osl|, s — ||os||?, for 1/y&(t), |||,
r, respectively, in the time-t wealth equation (10) of Proposition 3, and adding the (7" — ¢)6(t)
term to account for intermediate consumption. Applying Itd’s lemma to WY af(t) yields the
expressions for ||o¥af(t)||, uYef(t). To show property (i), use (22)-(23) and (30) to note that
when W, (T—) # W then W, (T—) + W,(T—) = (T" — T)§(T—), and when W,(T—) = W, then
W (T—=) + Wo(T—) > (T" — T)6(T—). Hence, WYaR(T—) > W5 (T—), which implies (i). Prop-
erty (ii) follows by substituting the appropriate equilibrium quantities in part (iv) of Proposition 3.

16This normalization is purely for expositional convenience; we could alternatively have adopted the normalization
vyt 4yt = 6(0)7, so that £(0) = 1, without affecting any of our conclusions.
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