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Credit Risk Analysis and Security Design

We consider the security design problem of a lender who can assess the borrower’s project

prior to making an accept or reject decision. The lender’s subjective assessment is represented

by a private signal. Unless the lender extracts the full suplus from the project, her cutoff

signal above which she is willing to accept the project is inefficiently high, i.e., the lender is too

conservative. The unique optimal security is standard debt. Debt maximizes the lender’s payoff

from financing bad–i.e., low-signal–projects, thus implementing a lower cutoff signal than other

securities. While the lender could, in principle, make the loan terms indirectly contingent on

the signal by choosing a security from a prespecified menu, such ex-post fine-tuning is generally

not optimal. Rather, it is optimal to either grant credit at standardized terms or not at all. Our

model suggests a natural segmentation among lenders, whereby inside (i.e., local or relationship)

lenders attract low-NPV borrowers while arm’s-length lenders attract high-NPV borrowers.
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1 Introduction

Technological progress notwithstanding, human judgement remains a key factor in credit deci-

sions: “[T]he credit decision is left to the local or branch lending officer or relationship manager.

Implicitly, this person’s expertise, subjective judgement, and his weighting of certain key fac-

tors are the most important determinants in the decision to grant credit” (Saunders and Allen

(2002)). In this paper, we consider the security design problem of a lender who evaluates the

borrower’s project prior to granting credit. In line we the above quote, we assume that the

lender’s assessment is subjective, which implies the credit decision is fully discretionary. Hence,

it is the lender, and only the lender, who decides whether credit is granted.1

The structure of our model is simple. The lender and borrower initially agree on a security.

The lender then scrutinizes the borrower’s project, which generates a subjective–and therefore

private–signal about the project’s cash-flow distribution. High signals are good news in the

sense of the Monotone Likelihood Ratio Property (MLRP). Based on the signal, the lender

either accepts or rejects the borrower. The lender’s incentives to accept the project depend on

the value of her claims, and hence on the security in place. The optimal accept or reject decision

follows a cutoff rule: accept if and only if the signal is above a certain cutoff signal. As we show,

the lender is generally too conservative: unless she extracts the full surplus from the project,

her privately optimal cutoff signal is strictly above the first-best cutoff signal. There thus exists

a range of signals at which positive-NPV projects are rejected.

The unique optimal security in our model is standard debt. To satisfy the borrower’s par-

ticipation constraint, the lender must leave the borrower a positive expected payoff. Debt shifts

all of the borrower’s payoffs into high cash-flow states, thus maximizing the lender’s payoffs in

low cash-flow states. Given the positive relation between cash flows and signals due to MRLP,

debt consequently maximizes the lender’s expected payoffs at low signals. Accordingly, debt

minimizes the lender’s cutoff signal, and hence her excessive conservativism.

In principle, the lender could make the loan terms (indirectly) contingent on her signal by

selecting a security from a prespecified menu. We show that the unique optimal menu consists

of a single security, namely, debt.2 If the lender offers a nontrivial menu, she will always select

1This is in contrast to models in which borrowers have private information. In such models, the lender typically

offers a menu of contracts from which the borrower chooses. The final decision is thus made by the borrower.

2This is true in our base model with fixed investment size. In an extension of our model with signal-dependent
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the security that is ex-post optimal for her. This “self-dealing” problem undermines the lender’s

commitment to leave the borrower a high expected payoff at high signals, which is necessary to

satisfy the borrower’s participation constraint while maximizing her own expected payoff at low

signals. In other words, it is not optimal to fine-tune the loan terms after observing the signal.

Instead, it is optimal to specify the loan terms ex ante and then accept or reject the borrower

on the basis of these terms. This might help explain the use of quantity rationing in conjunction

with standardized loan terms found in retail lending: “[L]oan decisions made for many types

of retail loans are reject or accept decisions. All borrowers who are accepted are often charged

the same rate of interest and by implication the same risk premium. [...] In the terminology of

finance, retail customers are more likely to be sorted or rationed by loan quantity restrictions

rather than by price or interest rate differences” (Saunders and Thomas (2001)).

While our argument suggests that loan terms might be insensitive with respect to interim

information, it is different from intertemporal credit smoothing arguments. In our model, the

loan terms do not depend on subjective or private information. They do, however, incorporate

all publicly available information. By contrast, in the credit smoothing literature loan terms are

insensitive with respect to both private and public information.

Our model offers a new argument for the optimality of debt based on the notion that debt

minimizes lenders’ excessive conservativism. This argument is evidently different from costly

state verification models (Townsend (1979), Gale and Hellwig (1985)) and models with non-

verifiable cash flow (Bolton and Scharfstein (1990), Hart and Moore (1998), DeMarzo and Fish-

man (2000)). Also, unlike in Allen and Gale (1988), risk-sharing considerations play no role

in our model. Finally, in Innes’ (1990) model the borrower must be incentivized to work hard.

By contrast, in our model the incentive problem resides with the lender, and it is a problem of

(interim) private information, not moral hazard.

In Nachman and Noe (1994), DeMarzo and Duffie (1999), and Biais and Mariotti (2003),

the borrower is privately informed either before or after the security design. By contrast, in

our model it is the lender who has private information. And yet, in both cases the lender

receives debt. Moreover, in both cases the optimality of debt derives from the same property:

it maximizes the lender’s return from financing low-type projects. What is different is why this

property implies optimality. In models of borrower private information, debt minimizes the

optimal investment sizes, the optimal menu is a (nontrivial) menu of debt contracts.
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sensitivity of the lender’s return with respect to the borrower’s type–and thus the underpricing

of high types (Myers and Majluf (1984)). In our model, by contrast, debt maximizes the set of

borrower types for which the lender breaks even.

Axelson (2002), Boot and Thakor (1993), and Fulghieri and Lukin (2001) also consider

incentive problems on the part of investors. Axelson examines an auction model in which a seller

auctions off asset-backed securities to privately informed investors.3 The optimal security trades

off the expected underpricing against the liquidity costs of retaining cash flow. Boot and Thakor

and Fulghieri and Lukin both consider costly information acquisition. To make information

acquisition attractive for investors, firms issue information-sensitive claims like equity.

An important element of our model is the borrower’s participation constraint. To endogenize

this constraint, we embed our model in a competitive credit market where an “inside” (i.e.,

relationship or local) lender with superior but soft information competes with a less well-informed

credit market.4 If the project’s NPV based on public information is small or negative, the

insider lender can successfully compete with the market as her informational advantage allows

her to weed out bad projects. If the NPV based on public information is large, however, the

inside lender cannot compete: as the lender’s information is soft, she inevitably captures an

informational rent that prevents her from undercutting the market offer. In the end, there is

a natural market segmentation among lenders, whereby inside and arm’s-length lenders coexist

by catering to different borrower clienteles.

The rest of this paper is organized as follows. Section 2 lays out the model. Section 3

contains all our main results: (i) the lender is too conservative, (ii) the optimal security is

debt, and (iii) a menu of contracts is generally not optimal. Section 4 embeds our model in a

competitive credit market. Section 5 discusses robusteness issues, such as ex-ante negotiations,

interim renegotiations, the introduction of an additional interim constraint, and a more general

investment technology. Section 6 concludes. All proofs are in the Appendix.

3See Garmaise (2001) for a related setting.

4See Sharpe (1990), Rajan (1992), von Thadden (2001), and Hauswald and Marquez (2003) for related settings.

In Boot and Thakor (2000), lenders can choose between relationship and transaction lending.
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2 The Model

2.1 Project Technology and Credit Analysis

A penniless entrepreneur (“the borrower”) has a project that requires an investment outlay k.

The project’s cash flow x is stochastic with support X := [x, x], where 0 ≤ x < k, and where x

is either finite or infinite. In our base model, we assume that there is a single lender. In Section

4, we embed our model in a competitive credit market.

Prior to financing the investment, the lender performs a credit analysis. Based on the credit

analysis, the lender forms subjective beliefs about the project’s profitability. These beliefs can be

represented by a signal s ∈ [0, 1]. As the lender’s beliefs are subjective, we assume that the signal

is private information.5 The signal is drawn from the absolutely continuous distribution function

F (s) with F (0) = 0, which is common knowledge. We assume that F (s) has positive density

f(s) everywhere in (0, 1). Each signal is associated with a conditional distribution function over

cash flows Gs(x). We assume that Gs(x) is absolutely continuous in x with Gs(x) = 0 and

density gs(x) > 0 for all x ∈ X. Moreover, gs(x) is continuous in s for all x ∈ X. The expected

project cash flow given signal s is µs :=
R
X xgs(x)dx.

Observing a high signal is good news. Precisely, high signals put more probability mass on

high cash flows in the sense of the Monotone Likelihood Ratio Property (MLRP).6

Assumption 1. For any pair (s, s0) ∈ [0, 1] with s0 > s, the ratio gs0(x)/gs(x) is strictly

increasing in x for all x ∈ X.

MLRP is a common assumption in contracting models and satisfied by many standard dis-

tributions (Milgrom (1981)). To rule out trivial situations where the project’s NPV is either

always positive or negative, we assume that µ0 < k and µ1 > k.

We can think of at least two inefficiencies associated with the credit analysis: (i) the lender

misclassifies bad projects as good ones and vice versa, and (ii) she devotes too little effort to

the analysis. The second inefficiency has been studied previously (e.g., Manove, Padilla, and

5A canonical example is a relationship lender with soft information about a borrower.

6The fact that the signal is informative suggests that the lender has expertise in evaluating projects, e.g.,

from having granted similar loans before (Boot and Thakor (2000)). “As a result, banks are likely to be more

knowledgeable about some aspects of project quality than many of the entrepreneurs they lend to ... This is why

banks are, and should be, in the project-evaluation business” (Manove, Padilla, and Pagano (2001)).
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Pagano (2001), Fulghieri and Lukin (2001)). To focus on the first inefficiency, we assume that

the informativeness of the signal is fixed.

2.2 Lending Process

The sequence of events is as follows. At τ = 0 the lender offers a menu of contracts T := {ti}i∈I ,

where I is some index set.7 A contract ti = ti(x) in the menu specifies a repayment out of the

project’s cash flow. As the lender’s signal is private, contracts cannot directly condition on the

signal. However, the lender can make them indirectly contingent on the signal by offering a

menu under which she (optimally) selects different contracts at different signals.

In practice, do lenders tell loan applicants “this is what you can expect if your loan gets

approved”? At least for certain types of loans this appears to be the case. At Chase Manhattan,

for instance, a major small business lender in the United States, applicants for small business

loans are shown a pricing chart explaining–depending on verifiable loan characteristics such as

size and maturity–what interest rate they will get if their loan is approved.8

While convenient, we do not need to assume that the lender makes a take-it-or-leave-it offer,

however. Given that we solve for contracts (or menus) that are Pareto optimal, we would expect

that the borrower and lender also choose such a contract if they bargain ex ante, in particular

as there is no asymmetric information at τ = 0. Also, we may allow that the borrower and

lender renegotiate the initial offer after the lender has observed the signal, possibly replacing it

with an entirely different contract or menu.9 Ex-ante bargaining and interim renegotiations are

considered in Sections 4.3 and 5.1, respectively.

At τ = 1 the lender performs the credit analysis. Based on the resulting signal, the lender

either accepts or rejects the borrower. If the lender accepts, she selects a contract from the

prespecified menu and finances the investment. Cash flows are then realized at τ = 2. If the

7This setting follows Maskin and Tirole (1992).

8A copy of such a pricing chart is available from the authors. The interest rate is defined in terms of spread

over prime, which implies it changes on a daily basis. Like any (contract) offer, the extent to which the offer is

credible depends on the offeror’s reputation and the ability to enforce it. The loan officer we spoke to said that,

in case the loan is rejected, the original offer will not be adjusted. His argument was that the profit margin on

such loans is so small that it does not pay to haggle with rejected applicants.

9Renegotiation implies a mutually beneficial change of loan terms. It does not imply that the lender can

unilaterally renege on her original offer.
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lender rejects, the project is not financed. This latter assumption is endogenized in Section 4.

We make the standard assumption that the repayment ti(x) be nondecreasing in x. See see

Innes (1990) and DeMarzo and Duffie (1999) for a motivation and further details.

Assumption 2. The contract ti(x) is nondecreasing.

The constraint that ti(x) be nondecreasing is binding at the optimum. Section 3.3 provides a

brief discussion of what the optimal contract might be in the absence of this constraint.

We assume that the menu must provide the borrower with an expected payoff of V ≥ 0. For

the most part of our analysis, we take V as given and solve the model for all (feasible) values

of V , hence tracing out the entire Pareto frontier of optimal contracts (or menus, respectively).

In Section 4, we show how V might arise naturally from competition in the credit market.

We finally assume that only accepted borrowers can receive a payment from the lender. In

particular, this rules out the possibility that the lender “buys the project” before performing

the credit analysis. If upfront payments were possible, the first best could be attained without

any implications for the security design: as the purchase price is sunk, the lender has first-best

incentives to make a socially efficient credit decision. The standard argument for ruling out up-

front payments is that they might attract “fly-by-night operators” (Rajan (1992), von Thadden

(1995), Hellmann (2002)).10 Rather than formally introducing such fly-by-night operators, we

assume that only accepted borrowers can receive a payment from the lender.

3 Optimal Credit Decision and Security Design

3.1 The Lender’s Problem

Instead of solving the lender’s original problem, it is convenient to solve a restricted problem

and show that its solution uniquely solves the lender’s original problem.

The lender’s original problem is to choose a menu of contracts T := {ti}i∈I while taking into

account the effect of this menu on the subsequent credit decision. The lender’s optimal credit

10Fly-by-night operators are crooks who have no real project. While indistinguishable from true entrepreneurs

ex ante, their identity is revealed during the credit analysis. This can be formalized as follows: crooks generate

a signal s = 0 with certainty while true entrepreneurs generate a signal according to the distribution F (s). Since

crooks are singled out for sure at τ = 1, their (potential) presence does not affect the lender’s credit decision or the

optimal security design. A positive upfront payment, however, would attract all crooks. If there is a potentially

large pool of crooks, the lender’s expected payoff would become negative.
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decision is to accept the borrower if and only if the lender’s payoff at the observed signal s is

positive for some contract in the menu.11 If the lender accepts, she selects the contract from

the menu that yields her the highest expected payoff. The lender’s expected gross payoff under

the contract ti and signal s is denoted by us (ti) :=
R
X ti(x)gs(x)dx.

The lender’s expected gross payoff under the menu T and signal s is Us(T ) := maxti∈T us (ti) ,

while her net payoff is Us(T )− k. To simplify the notation, we denote by Ω (T ) ⊆ [0, 1] the set

of signals for which the lender accepts under the menu T . We refer to Ω (T ) as the lender’s

acceptance set.

The lender’s original problem is as follows. At time τ = 0 the lender chooses a menu T to

maximize her expected payoff

U(T ) :=

Z
Ω(T )

[Us(T )− k]f(s)ds,

where Ω (T ) := {s ∈ [0, 1]|Us(T )− k > 0} , subject to the constraint that the borrower receives

at least V in expectation,

V (T ) :=

Z
Ω(T )

[µs − Us(T )]f(s)ds ≥ V , (1)

and the requirement from Assumption 2 that ti(x) be nondecreasing.

The lender’s restricted problem is identical to her original problem, except that the menu

T is replaced with a single contract. For convenience, we use the notation t = t(x) instead of

ti(x) when considering the lender’s restricted problem. The optimization problem is the same

as above, except that T = {t} . Hence, the lender chooses a contract t = t(x) to maximize

U(t) =

Z
Ω(t)
[us(t)− k]f(s)ds,

where Ω (t) := {s ∈ [0, 1]|us(t)− k > 0} , subject to

V (t) =

Z
Ω(t)
[µs − us (t)]f(s)ds ≥ V ,

and the constraint that t(x) be nondecreasing.

The lender’s restricted problem is solved in Sections 3.2-3.3. Section 3.4 shows that the

solution to this problem uniquely solves the lender’s original problem.

11 If the lender is indifferent, we assume she rejects. Since this is a zero-probability even, the assumption is

without loss of generality.
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3.2 Optimal Credit Decision

We first consider the lender’s optimal credit decision at τ = 1 given some contract t in place.

The result is a characterization of the lender’s acceptance set Ω (t) . Section 3.3 then considers

the lender’s optimal contract choice at τ = 0, while taking into account the effect of t on the

lender’s credit decision.

As a benchmark, let us characterize the socially optimal–or first-best–credit decision. The

first-best decision is to accept the project if and only if the NPV conditional on s, µs − k, is

positive. Given MLRP (Assumption 1) and continuity of gs(x) in s, the conditional expected

cash flow µs is continuous and strictly increasing in s. Since µ0 < k and µ1 > k, the first-best

credit decision is characterized by a simple cutoff rule:

Lemma 1. The first-best credit decision is to accept if s > sFB and to reject if s ≤ sFB. The

first-best cutoff signal sFB is unique, satisfies sFB ∈ (0, 1) , and is given by µsFB = k.

At the optimal cutoff signal sFB the expected project cash flow conditional on s, µs, equals

the investment cost k. If s < sFB the expected project cash flow is less than k; if s > sFB it

exceeds k. Hence, the first-best credit decision is the NPV rule, which prescribes to accept the

project if and only if the project’s NPV conditional on the signal is positive.12

We next consider the lender’s privately optimal credit decision. The lender accepts the

project if and only if her expected payoff at the given signal, us (t) − k, is positive. Like the

first-best decision, the lender’s privately optimal decision is given by a cutoff rule: accept the

project if and only if s > s∗, where s∗ = s∗(t) is the lender’s optimal cutoff signal.

Lemma 2. The lender’s optimal credit decision is to accept if s > s∗ and to reject if s ≤ s∗.

If u1(t) ≤ k the lender’s cutoff signal is s∗ = 1, while if u1(t) > k the lender’s cutoff signal is

unique, satisfies s∗ ∈ (0, 1) , and is given by us∗(t) = k.

Proof. See Appendix.

If s > s∗ the lender makes a profit, while if s < s∗ she makes a loss, which implies she

optimally rejects. Hence, the lender’s acceptance set Ω (t) is an interval: Ω (t) = (s∗, 1] . By

Lemma 1, the first-best acceptance set is also an interval, namely, ΩFB = (sFB, 1].

12 If the NPV is exactly zero, we specify that the project be rejected. Since s = sFB is a zero-probability event,

this assumption is without loss of generality.
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We next establish whether the lender’s privately optimal cutoff signal s∗ lies above or below

the first-best cutoff signal sFB. If u1(t) ≤ k the lender’s cutoff signal is s∗ = 1, which is evidently

above the first-best cutoff signal. If u1(t) > k, on the other hand, the lender’s cutoff signal is

given by us∗(t) = k. Since t(x) ≤ x, we have that

usFB (t) =

Z
X
t(x)gsFB (x)dx ≤

Z
X
xgsFB(x)dx = µsFB = k,

with strict inequality if and only if t(x) < x on sets of positive measure. Accordingly, if t(x) = x

the lender (just) breaks even at s = sFB, implying that s∗ = sFB. On the other hand, if t(x) < x

the lender does not break even at s = sFB. As–by Assumptions 1 and 2 and continuity of

gs(x)–the lender’s conditional expected payoff us(t)− k is strictly increasing in s, her optimal

cutoff signal s∗ must consequently lie strictly above sFB, i.e., s∗ > sFB. We thus have

Proposition 1. Unless the lender can extract the full surplus, her credit decision is too conser-

vative, i.e., her cutoff signal s∗ lies strictly above the first-best cutoff signal sFB.

At marginal signals s ∈ [sFB, s∗), the lender’s conditional expected payoff is negative. To

implement the social optimum, one would have to force the lender to occasionally finance a

project under which she does not break even.

The argument that the lender is too conservative is fairly general and does not hinge on

Assumptions 1 and 2. In particular, it does not hinge on the assumption that t(x) be nonde-

creasing. This follows from the fact that us(t) < µs for all s ≤ 1 if t(x) < x on sets of positive

measure. Hence, if at some signal s = ŝ it holds that uŝ(t) > k, it must also hold that µŝ > k,

but not vice versa. In words: if the lender’s optimal credit decision prescribes to accept the

project, the first-best credit decision also prescribes to accept. The reverse is not true, however.

Hence, even without Assumptions 1 and 2, the lender is too conservative in the sense that her

acceptance set Ω (t) is strictly smaller than the first-best acceptance set ΩFB. Assumptions 1

and 2 merely ensure that the acceptance sets are connected, in which case both the first-best

credit decision and the lender’s privately optimal credit decision are characterized by simple

cutoff rules.13 “Being too conservative” then has the intuitive interpretation that the lender

uses too high a cutoff signal.

13While the result that the lender is too conservative holds independently of Assumptions 1 and 2, these

assumptions are crucial for the optimal security design in Section 3.3, however.
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3.3 Optimal Security Design

We now solve the lender’s optimal security design problem at τ = 0. Given Lemma 2, the

lender’s restricted problem reduces to maximizing

U(t) =

Z 1

s∗(t)
[us (t)− k]f(s)ds, (2)

subject to

V (t) =

Z 1

s∗(t)
[µs − us (t)]f(s)ds ≥ V , (3)

and the constraint that t(x) be nondecreasing.

By standard arguments, (3) must bind at the optimum. Substituting the binding constraint

into the lender’s objective function (2), the latter becomes

U(t) =

Z 1

s∗(t)
[µs − k]f(s)ds− V . (4)

By inspection, the lender is the residual claimant to any surplus in excess of V . Moreover, the

only way in which t(x) affects the lender’s expected payoff is via its impact on the optimal cutoff

signal s∗(t). By implication, the lender will therefore design a contract that implements as low

as possible a cutoff signal, and thus as efficient as possible a credit decision.

There are two cases. If V = 0, the lender obtains the full surplus. The optimal contract then

trivially has t(x) = x, and the credit decision is first-best efficient. If V > 0, on the other hand,

it holds that t(x) < x on sets of positive measure. By Proposition 1, the credit decision is then

inefficient. As a claimant to the residual surplus, the lender chooses t = t(x) to minimize this

inefficiency. Accordingly, she chooses the contract that implements the lowest feasible cutoff

signal s∗(t).

Clearly, if V is too large the lender cannot break even. In all other cases, a nontrivial

contract under which the borrower is accepted with positive probability exists. In the following,

we assume that V is sufficiently small in the above sense. (We consider the case where V is “too

large” in our competition model in Section 4.) We obtain the following result.

Proposition 2. The unique optimal security is standard debt. Precisely, there exists a unique

repayment R∗ = R∗(V ) > k such that the unique optimal security is t∗(x) = min {x,R∗} .

If V = 0 the optimal repayment is R∗ = x, which implies the lender’s credit decision is

first-best optimal. Conversely, if V > 0 the optimal repayment satisfies R∗ < x, which implies

the lender’s cutoff signal s∗ lies strictly above the first-best cutoff signal sFB.
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Proof. See Appendix.

If V = 0, the optimal contract can be either interpreted as 100 percent equity or debt with

face value R = x. If V > 0, on the other hand, the uniquely optimal security is debt. The

intuition is simple. To satisfy the borrower’s ex-ante participation constraint (3), the lender

must leave him a positive expected payoff.14 Debt shifts all of the borrower’s payoff into high

cash-flow states, thus maximizing the lender’s payoff in low cash-flow states. Given the positive

relation between cash flows and signals (by MRLP), debt maximizes the lender’s expected payoff

at low signals. Debt consequently implements a lower cutoff signal s∗(t) than any other security,

thus minimizing the lender’s excessive conservativism.

The proof of Proposition 2 points to an easy-to-make mistake when thinking about possible

alternative solution candidates. It is easy to find a contract that–holding the cutoff signal s∗

fixed–yields both the lender and the borrower the same expected payoff as the optimal debt

contract. The (incorrect) conclusion is that debt is not uniquely optimal. What is incorrect

about this conclusion is that any such contract will actually implement a higher cutoff signal

than debt. Hence, the thought exercise of holding s∗ fixed is illegitimate.

Let us finally comment on what the optimal contract might look like in the absence of

Assumption 2. In the absence of a monotonicity constraint, a “live-or-die” (LD) contract

tLD(x) = x if x ≤ ex and tLD(x) = 0 if x > ex provides the lender with a higher expected
payoff than debt at low signals. The flip side is that it provides the lender with a lower expected

payoff at high signals. If the lender’s expected payoff us(tLD)− k remains positive at high sig-

nals, standard arguments can be used to show that LD is uniquely optimal. On the other hand,

if us(tLD)− k turns negative at high signals, LD–while maximizing the acceptance probability

at low signals–makes the lender reject the project at high signals. The optimal nonmonotonic

contract then depends on the underlying probability distributions.

3.4 Menu of Contracts

We finally show that it is suboptimal to offer a menu of contracts, which implies the solution to

the lender’s restricted problem constitutes the unique solution to her original problem.

Offering a menu creates a “self-dealing” problem: if the lender offered a menu, she would

14This highlights the importance of the ex-ante participation constraint (3), which is critical for our debt result.

See Section 4 for an endogenization of this constraint and Section 5.2 for a further discussion of this issue.
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always pick the contract that is ex-post optimal for her. In particular, at high signals she would

not pick the optimal debt contract t∗ but some other contract that offers her a greater fraction

of high cash flows, e.g., a contract that is more “equity-like”. To ensure that the borrower

obtains V in expectation, the menu must consequently also include contracts that provide the

lender with a relatively low payoff at low signals (and that are actually chosen by the lender at

these signals). But this implies that the menu must implement a higher cutoff signal than the

(single) optimal debt contract t∗. By restricting her choice to a single contract–namely, the

optimal debt contract–the lender can thus commit to a lower cutoff signal. This maximizes the

acceptance probability, which is the most efficient way to satisfy the borrower’s participation

constraint (3).

Proposition 3. The unique optimal menu consists of a single contract : the optimal debt con-

tract from Proposition 2. Any other menu either violates the borrower’s participation constraint

or implements a higher cutoff signal.

Proof. See Appendix.

Proposition 3 shows that it is not optimal to ex-post fine tune the loan terms by selecting

different contracts at different signals. Rather, it is optimal to offer a single contract and

either accept or reject the borrower on the basis of this contract. While this implies that

loan terms are insensitive with respect to interim information, it does not imply that they

are insensitive with respect to project risk in general. Precisely, borrowers with different prior

distributions F (s)–and hence different ex-ante expected cash flows–naturally obtain different

loan terms. Similarly, the optimal contract varies with respect to investment size and other

ex-ante characteristics. Moreover, such ex-ante characteristics affect the optimal contract both

directly as well as indirectly via their impact on the borrower’s reservation utility V . In Section

4, for instance, we show that in a competitive credit market V depends on the project’s ex-ante

expected cash flow.

Proposition 3 suggests that, once borrowers are grouped into different categories, any further

discrimination based on interim information (here: the signal s) is crude and comes in the

form of an accept or reject decision. This is consistent with the notion that in retail lending

accepted borrowers are commonly either granted credit at prespecified terms or not at all (see

Introduction). It is also consistent with Petersen and Rajan’s (1994) finding that the rate charged

on small-business loans is generally insensitive with respect to measures of interim information
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about a borrower, while the availability of credit is sensitive with respect to such measures.

Let us conclude by pointing out that the optimality of a single contract depends on a number

of (restrictive) assumptions, most notably the assumption that the investment size k is fixed. If

the optimal investment size varies with the lender’s signal, for instance, a single contract might

not be optimal. For a formal analysis of this case, see Section 5.3.

4 Credit Market Competition

4.1 Relationship vs. Arm’s-Length Lending

To endogenize the borrower’s reservation utility V–and thus his ex-ante participation constraint

(3)–we now embed our model in a competitive credit market environment. There are two

types of lenders. There is an “inside lender” (“the lender”) who observes a private signal s in

addition to publicly available information. Additionally, there is a competitive credit market

(“the market”) without access to the private signal. While stylized, we believe this setting

captures some key aspects of real-world lending situations, especially small business lending.15

The literature offers two arguments as to what makes up an inside lender: existing lending

relationships and proximity to the borrower.16 Lending relationships might give lenders better

access to soft information, e.g., through personal contacts with management and employees.

Relationship lenders also interact with borrowers through other channels, e.g., borrowers often

maintain checking and savings accounts with their lender, or the lender factors the borrower’s

accounts receivables. Such additional channels “increase the precision of the lender’s information

about the borrower” (Petersen and Rajan (1994)). In this spirit, Sharpe (1990), Rajan (1992),

and von Thadden (2001)–like this paper–all consider a single relationship lender with a private

signal about the borrower’s quality who competes with an uninformed credit market.17 As for

supporting evidence, Petersen and Rajan (1994) find that 95 percent of the smallest firms in

their (small business loan) sample borrow from a single bank. Across their entire sample, only

18 percent borrow from more than one bank.

15Besides, having a single informed lender greatly simplifies our analysis. If there are multiple informed lenders,

each with a private, imperfectly correlated signal, the analysis becomes significantly more complex. (See also

Section 4.3.) We cannot, and do not want to, speculate what the optimal security might be in this case.

16For a survey of the relationship lending literature, see Boot (2000).

17For a similar setup, see also Dell’Ariccia and Marquez (2004) and Hauswald and Marquez (2003).
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As for geographical proximity, a lender in close proximity to a borrower might have better

knowledge of local conditions, which puts her in a better position to evaluate the borrower’s

project. With regard to small business lending, Petersen and Rajan (2002) (for the United

States) and Degryse and Ongena (2003) (for Belgium) find that the median distance between

banks and borrowers is four and 1.4 miles, respectively, suggesting that small business lending

might be locally segmented. Relatedly, Guiso, Sapienza, and Zingales (2004) argue that there

is “direct evidence of the informational disadvantage of distant lenders in Italy”. In this spirit,

and similar to our paper, Hauswald and Marquez (2002) assume that the lender that is closest

to a borrower has a more informative signal than more distant lenders.

The timing is as follows. The lender and the market make offers at τ = 0.18 If the borrower

goes to the lender, the lender performs a credit analysis and accepts or rejects the borrower

based on her signal. At τ = 1 an accepted borrower can either stay with the lender or visit the

credit market. If the borrower was rejected, his only option is to visit the market. Cash flows

are realized at τ = 2.

For technical reasons, we assume that the market can distinguish between “fresh” borrowers

and borrowers who have been previously screened. Without this assumption, there exists no

pure-strategy equilibrium (e.g., von Thadden (2001), Hauswald and Marquez (2003)). Hence,

the borrower may solicit offers from both the lender and the market at τ = 0. If he visits the

market after he has been screened, however, the market might make him a different offer. In

practice, potential lenders would usually check a borrower’s credit history before making a loan.

In most countries, including the United States, credit bureaus provide this information in the

form of credit reports. Such credit reports commonly also show whether other lenders have made

similar inquiries in the past, including the date of the inquiry and the identity of the inquirer

(Jappelli and Pagano (2002)).19 To the extent that lenders have access to this information, they

can see whether a borrower has recently sought credit, and whether he sought credit from a

18To ensure that the market does not fall prey to “fly-by-night operators” (see Section 2.2), we could assume

that the market does not offer any upfront payments. Since fly-by-night operators generate a cash flow of x = 0 for

sure, their expected payoff is then zero. Alternatively, we might assume that both the lender and the market can

filter out crooks, but the lender has a more precise signal about “real” borrowers. Suppose all investors observe

two signals. The (informed) lender observes a public signal at τ = 0 and a private signal s at τ = 1, where s = 0

if the borrower is a crook. The market observes a public signal at τ = 0 and a second signal σ at τ = 1. If the

borrower is a crook, the second signal is σ = 0, otherwise it is identical to the first (i.e., public) signal.

19Jappelli and Pagano provide a copy of an actual credit report containing this (and other) information.
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local or a distant lender.

4.2 Equilibrium Analysis

The project’s ex-ante NPV–i.e., the NPV based on publicly available information alone–is

µ :=

Z 1

0
(µs − k)f (s) ds. (5)

At τ = 0 the market can offer the borrower an expected payoff of max{0, µ}. On the other hand,

the maximum expected payoff that the informed lender can offer the borrower is

Vmax := max
t

Z 1

s∗
[µs − us(t)]f(s)ds, (6)

subject to us∗(t) = k (Lemma 2), where t is a debt contract. The restriction to debt contracts

follows from Proposition 2.

The competition model has a unique equilibrium: at τ = 0 the borrower either visits the

lender or the market, depending on the relative magnitudes of µ and Vmax. At τ = 1 an accepted

borrower stays with the lender, while a rejected borrower cannot obtain financing elsewhere.

Proposition 4. The competition model has a unique equilibrium. There are two cases :

i) Case 1: Vmax > µ. The inside lender offers the optimal debt contract from Proposition 2,

whereby V = max{0, µ}. The borrower goes to the inside lender, which provides him with an

expected payoff of V . The lender finances the borrower if s ≥ s∗ and rejects him if s < s∗. A

rejected borrower cannot obtain financing elsewhere.

ii) Case 2: Vmax < µ. The borrower goes to the credit market, which provides him with an

expected payoff of µ.

Proof. See Appendix.20

Consider first Case 1. At τ = 0 the lender’s ability to make an informed decision allows her

to undercut the market. By standard arguments, the unique equilibrium is to exactly match

the market offer max{0, µ}. At τ = 1 the market cannot offer more than max{0, µ}.21 As the

expected payoff of an accepted borrower exceeds max{0, µ}, he optimally stays with the lender.

But if all accepted borrowers stay with the lender, rejected borrowers cannot obtain financing

20 If Vmax = µ there are two equilibrium outcomes: the borrower either visits the lender or the market.

21A market offer of max{0, µ} is sustainable only under the “most optimistic beliefs” that–in addition to all

rejected borrowers–also all accepted borrowers visit the market at τ = 1.
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from the market as their conditional NPV
R s∗
0 (µs−k)f(s)/F (s∗)ds is negative. This endogenizes

an assumption made in Section 2.2 that a rejected project will not be financed.

Proposition 4 also endogenizes the borrower’s reservation utility as V = max{0, µ}. If µ ≤ 0

the borrower cannot obtain financing from the market, which implies the lender can extract the

full surplus. In contrast, if µ > 0 there is true competition. As the project is already viable

on the basis of public information alone, the lender must give the borrower the full ex-ante

NPV µ to match the market offer. Note that, even if projects are viable on the basis of public

information, the lender performs a valuable task by filtering out bad projects. The easiest way

to see this is by looking at the lender’s and borrower’s combined profits µ+ U(t) : as U(t) > 0,

the lender’s screening activity has generated surplus in addition to the ex-ante NPV µ.22

In Case 2, the ex-ante NPV is so high that the lender cannot compete. The borrower conse-

quently visits the credit market, where he extracts the full ex-ante NPV µ.23 As an illustration,

consider the limit case where sFB = 0. To offer the borrower the full ex-ante NPV, the lender

would have to accept the project for all signals s > 0. But this is impossible: the lender sets

s∗ = sFB = 0 only if she extracts the full surplus; but then she cannot promise the borrower

anything. Conversely, if the borrower gets just a tiny fraction of the surplus, the lender optimally

sets s∗ > sFB = 0. Intuitively, if sFB = 0 there are no bad projects. Absent any value added,

the only way the lender can offer the borrower the full ex-ante NPV is by making zero profits

herself. But this is impossible, as the lender earns an information rent of U(t) > 0 due to the

discretionary nature of her accept or reject decision.

Clearly, it is desirable to express the choice between Case 1 and Case 2 in terms of model

primitives, e.g., in terms of the investment cost k. Suppose k can vary between k = µ0 and

k = µ1. Everything else equal, borrowers with a low k have a high ex-ante NPV and are likely to

break even, while borrowers with a high k are less likely to break even. It is easy to show that if k

is sufficiently large Case 1 applies, while if k is sufficiently small Case 2 applies. For intermediate

k−values further assumptions are needed, however, since µ− Vmax may have multiple points of

zero. It is relatively easy, however, to construct numerical examples in which all borrowers above

a certain cutoff-NPV visit the credit market while all borrowers below the cutoff visit the lender.

Consider the following example.

22Precisely, it is not the lender’s screening activity per se that generates surplus, but the fact that rejected

projects disappear from the market.

23This is the case where V is “too large” that we have ruled out in Section 3.3.
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Example. Suppose the project cash flow is exponentially distributed over x ≥ 0 with CDF

Gs(x) = 1− e−(S−s)x and density gs(x) = (S−s)e−(S−s)x, where S > 1. The expected cash flow

conditional on s is then µs = 1/(S − s). To ensure that sFB lies in the interior of s, we assume

that 1/S < k < 1/(S − 1), which implies that sFB = S − 1/k. The signal distribution F (s) is

uniform over S := [0, 1].

Appendix B shows the derivation of all the main formulas in this section for the above

specifications of Gs(x) and F (s). The ex-ante project NPV is µ = ln
³

S
S−1

´
−k, which implies it

is fully characterized by two parameters: the investment cost k and the distributional parameter

S. Holding S constant, a lower value of k implies a higher ex-ante NPV. Conversely, holding

k constant, a lower value of S implies a “better” conditional cash-flow distribution Gs(x) in

the sense of MLRP, and therefore a higher ex-ante NPV. Consequently, the ex-ante NPV µ is

strictly decreasing in both k and S. Likewise, the maximum utility that the lender can offer the

borrower, Vmax, is strictly decreasing in both k and S.

Figure 1 here

Figure 1a plots µ and Vmax for different values of k, while Figure 1b plots µ and Vmax for

different values of S. In both cases, µ and Vmax cross exactly once such that Case 1 in Proposition

4 applies if and only if k or S is sufficiently large. End.

With the usual degree of caution, we might summarize our results as follows: informed (i.e.,

relationship or local) lenders tend to be segmented towards borrowers who–if evaluated solely

on the basis of hard, public information–are less likely to break even, and where additional, dis-

cretionary information is particularly valuable (Proposition 4, Case 1). Conversely, uninformed,

arm’s-length lenders tend to be segmented towards “safe” borrowers who are likely to break

even in the first place, e.g., big firms with a good credit rating (Case 2).

Petersen and Rajan (2002) find that more transparent firms and firms with a good credit

quality are indeed more likely to borrow at arm’s length. Similarly, Denis and Mihov (2003) find

that profitable firms with a high credit quality are more likely to tap public debt markets, while

less profitable firms tend to borrow more from banks. Relatedly, Cole, Goldberg, and White

(1999) document that big banks tend to approve loans primarily on the basis of hard infor-

mation such as financial statements, while small banks are more likely to use soft information.

Accordingly, big banks tend to act more as arm’s-length lenders while small banks tend to act
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more as relationship lenders. Consistent with our stylized picture, Berger et. al (2004) find that

big banks are more apt to lend at a distance and to firms that are financially more transparent,

while Haynes, Ou, and Berney (1999) find that big banks tend to lend more to financially secure

firms.

4.3 Discussion

Ex-ante Negotiations

Our qualitative results remain the same if–instead of the lender making a take-it-or-leave-it

offer–the borrower and lender bargain over a menu of contracts. The only difference is that

instead of merely matching the competitive market offer, the lender must offer the borrower the

competitive market offer plus a bargaining premium.

As ex-ante negotiations take place under symmetric information, it is reasonable to assume

that the borrower and lender select a point on the Pareto frontier. We have already derived

the Pareto frontier by maximizing the lender’s expected payoff subject to fixing the borrower’s

expected utility at V ∈ [0, Vmax]. For each such V , denote the optimal debt contract and the

lender’s expected payoff by t∗(V ) and U(V ) := u(t∗(V )), respectively. Following a standard

convention in bargaining theory, we assume that the Pareto frontier is smooth and concave.24

We use the Nash bargaining solution. Accordingly, the borrower and lender choose a pair

(V ,U(V )) maximizing the Nash product (V − V̂ )b(U(V )− Û)1−b, where 0 < b < 1 reflects the

borrower’s bargaining power, V̂ = max{0, µ} denotes the borrower’s outside option, and Û = 0

denotes the lender’s outside option. The solution is given by the first-order condition

b

1− b = −U
0(V )

V −max{0, µ}
U(V )

. (7)

Equation (7) presumes the existence of a point (V ,U(V )) on the Pareto frontier with the property

that V > max{0, µ} and U(V ) > 0. Such a point exists if and only if Case 1 in Proposition 4

applies. Moreover, if b→ 0 the solution to (7) converges to our previous solution V = max{0, µ}.

The following result is obvious.

Proposition 5. Suppose the inside lender and the borrower bargain over a menu of contracts

ex ante, where the outcome is determined by the Nash bargaining solution.

24Concavity of the Pareto frontier can be ensured by introducing lotteries over contracts.
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i) If Vmax > µ Case 1 in Proposition 4 applies. The only difference is that the borrower’s

expected payoff V lies above the competitive market offer max{0, µ}, where the “bargaining

premium” V −max{0, µ} is increasing in the borrower’s bargaining power b.

ii) If Vmax < µ, the lender and borrower cannot reach an agreement, and Case 2 applies.

Informed Lending as a Monopoly?

Like Sharpe (1990), Rajan (1992), Dell’Ariccia and Marquez (2004), and others, we have

assumed that there is a single informed lender competing with an uninformed credit market.

In models of relationship lending, this information monopoly derives from the assumption that

at the beginning of a firm’s history, the firm finances its first-period project through a single

lender.25 Due to the soft information acquired in this period, the initial lender obtains (and

retains) an informational advantage in all following periods.26 The empirical findings by Petersen

and Rajan (1994) that 82 percent of the firms in their sample borrow from a single bank (95

percent if they consider only the smallest firms in their sample) suggests that the notion of a

single inside lender is not unreasonable.

Alternatively, the inside lender’s advantage might derive from geographical proximity to the

borrower. In this case, a local monopoly might arise from a fixed cost of establishing a local

presence. As an illustration, consider the case of two local lenders with perfectly correlated,

yet nonverifiable signals. This case is analyzed in, e.g., von Thadden (1994) and Hauswald and

Marquez (2003). As each lender knows the other lender’s signal, Bertrand competition at τ = 1

drives profits to zero. Given the fixed cost, there exist pure-strategy equilibria where only one

of the two lenders enters. If the two signals are not perfectly correlated, the analysis becomes

significantly more difficult as competition at τ = 1 takes place under asymmetric information.27

25Rajan (1992, Section IV.B) briefly discusses the case where the firm can initially borrow from multiple banks.

26“In the process of this monitoring, the lender learns more about the success of the firm’s operation than

do outside banks. As a result, the original lender should be in a better position to evaluate the firm’s future

performance” (Sharpe, 1990)).

27 In Thakor (1996) signals are uncorrelated across lenders. As there are only two signals, all lenders who accept

the borrower have the same (namely, high) signal, however. Given that all lenders know how many other lenders

have accepted the borrower, competition takes place under symmetric information. Just like in the case where

signals are perfectly correlated, competing banks thus make zero profits. In our model, there is a continuum of

signals and signals are private. Hence, even if a lender knew how many other lenders have accepted, she would

not know their signals–and hence their valuations–unless signals were perfectly correlated.
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Even in a setting with two cash flows, two signals, and no security design, pure-strategy equilibria

may not exist (Broecker (1990)). While it may still be true that a high fixed cost can create a

monopoly, a formal analysis of this case is beyond the scope of this paper.

5 Robustness

5.1 Renegotiations

Under the optimal contract, the borrower is rejected at marginal signals s ∈ (sFB, s∗) even

though the project has a positive NPV. This potentially provides scope for renegotiations: to

make the project more attractive for the lender, the borrower might accept less favorable loan

terms, e.g., a higher repayment R. This is what would happen if s were jointly observable by

the borrower and lender. As s is private information, however, the borrower does not know if

the true signal is s ∈ (sFB, s∗), in which case he might accept new loan terms, or if s > s∗, in

which case changing the loan terms would merely constitute a wealth transfer to the lender. A

necessary condition for the borrower to accept a new contract t is therefore that t implements a

lower cutoff signal, i.e., s∗(t) < s∗(t∗). However, such a contract would make the lender not only

better off at marginal signals s ∈ (s∗(t), s∗(t∗)] but also at higher signals s ≥ s∗(t∗).28 Hence,

the lender has every incentive to claim that s ∈ (sFB, s∗) even if the true signal is s ≥ s∗(t∗).

As Proposition 6 shows, this conflict of objectives implies that the optimal contract t∗ will not

be renegotiated in equilibrium.

We consider the following model of renegotiation. After the signal has been realized either the

borrower or the lender can offer a new contract t.29 The offer must be accepted by the respective

counterparty; otherwise the optimal contract t∗ remains in effect. We have the following result.

Proposition 6. In any (perfect Bayesian) equilibrium of the renegotiation game, the unique

optimal debt contract from Proposition 2 is not renegotiated. This holds irrespective of whether

the borrower or the lender can offer a new contract at the interim stage.

Proof. See Appendix.

28Since t∗ is standard debt, any nondecreasing contract t 6= t∗ that is preferred by the lender must award the

lender a greater fraction of high cash flows. The rest of the argument follows then immediately from MLRP.

29The argument trivially extends to the case where the borrower and lender can offer menus of contracts.
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5.2 Interim Constraint

The optimality of debt derives from the fact that the lender must satisfy the borrower’s ex-

ante participation constraint (3). If there was no ex-ante constraint but, say, only an interim

constraint, our arguments would generally not apply.30 Section 4 shows how the ex-ante partic-

ipation constraint might arise naturally from competition in the credit market: to attract the

borrower in the first place, the lender must offer him V = max{0, µ}.

In the following, we examine to what extent our results are preserved if we additionally

introduce an interim constraint. We consider two possible sources for an interim constraint: a

wage from outside employment and an agency rent due to ex-post moral hazard.

Outside Employment Opportunity

Suppose the borrower has an outside employment opportunity, both at τ = 0 and τ = 1,

offering him a wage w > 0. His ex-ante participation constraint (3) is thenZ 1

s∗(t)
[µs − us (t)]f(s)ds+ F (s∗)w ≥ V + w, (8)

where V is the borrower’s rent on top of w.

The possibility of an outside wage creates an interim participation constraintZ 1

s∗(t)
[µs − us (t)]

f(s)

1− F (s∗)ds ≥ w, (9)

where f(s)/[1 − F (s∗)] is the posterior probability of s given that s ≥ s∗. By inspection, (8)

implies (9). In fact, if V > 0 (9) is slack.

Even though (9) never binds, introducing an outside wage has a nontrivial effect as it also

enters into the first best. Precisely, the first-best cutoff signal is now given by µsFB = w + k.

The lender’s optimal cutoff signal, on the other hand, is (still) given by us∗(t) = k, since part of

the “real opportunity cost”, w, is borne by the borrower.

On the one hand, the lender must leave the borrower a rent V , which tends to make her

too conservative. This is our previously studied effect. On the other hand, the lender does not

bear the full opportunity cost, which makes her too lenient. This second effect may (partly)

offset the first. In fact, if w is sufficiently large, the first best can be attained. If w increases

beyond this point, the lender’s cutoff signal under the optimal debt contract would drop below

30This is true for our base model. In our extension with moral hazard, debt is optimal regardless of whether

the ex-ante or interim constraint binds. See the end of Section 5.2 for a brief discussion.
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sFB. To remain at the first best, the lender must consequently adjust the optimal contract.

One way–but not the only way–of doing this is to offer a debt contract and pay the borrower

a fixum of W if the project is financed. One interpretation of this contract is that the lender

provides funds of k +W but only k is invested in the project. When the project cash flow is

realized the borrower can pay himself a wage W, while the lender holds a debt contract on the

cash flow. The proof of the following proposition is immediate given our previous results.

Proposition 7. Suppose the borrower has an alternative employment opportunity offering him

a wage of w > 0. If w is sufficiently small compared to V , our previous results continue to hold,

i.e., s∗ > sFB and the unique optimal security is debt. Otherwise, the first best can be attained,

e.g., with t(x) = −W +max{x,R} with W ≤ w, in which case the lender holds a debt contract

and the borrower receives an additional wage W if the project is undertaken.

Hence, it is crucial for our debt result that the borrower extracts a rent V on top of w.

Merely requiring that he be compensated for his forgone wage w is–absent any rent extraction–

insufficient. In our basic competition model (Sections 4.1 - 4.2), for instance, we have V =

max {0, µ− w} , which implies we need µ > w for our debt result to hold. If the borrower has

additionally some bargaining power (Section 4.3), we have V > max {0, µ− w}. In this case,

our debt result may hold even if µ < w.

Ex-post Borrower Moral Hazard

Suppose after the project is financed but before cash flows are realized, the borrower can

exert a noncontractible effort e ∈ {el, eh}. Low effort is costless while high effort involves a

private cost c > 0. By assumption, it is always efficient to implement the high effort. The

conditional cash-flow distribution is G(x | s, e), which is assumed to be additively separable of

the form G(x | s, e) = H1(x | s) +H2(x | e) with corresponding densities g, h1, and h2. Hence,

the marginal productivity of e is independent of s.31 The conditional expected cash flow and the

lender’s conditional expected payoff are µ(s, e) and u(t | s, e), respectively.

31Given the assumptions in this section, we can restrict ourselves to single contracts. Absent any productive

interaction between e and s, the only implication of a menu (where each contract in the menu implements high

effort) would be that the lender always picks the contract that minimizes the borrower’s agency rent (see Section

3.4 for a related argument). But for any such menu, the lender can implement the same expected agency rent

with a single contract. This logic extends to more than two effort levels provided the lender wants to implement

the same effort for all signals. Otherwise a menu of incentive contracts might be optimal.

24



We assume that high effort generates a “better” cash-flow distribution in the sense of MLRP.

Assumption 1 is thus replaced by

Assumption 1a. For any pair (s, s0) ∈ [0, 1] with s0 > s and any e ∈ {el, eh), the ratio g(x |

s0, e)/g(x | s0, e) is strictly increasing in x, while for any s ∈ [0, 1] the ratio g(x | s, eh)/g(x | s, el)

is strictly increasing in x.

The first-best cutoff signal is unique and given by µ(sFB, eh) = k + c. Similarly, if we rule

out the trivial case where the lender always rejects, the lender’s unique optimal cutoff signal is

given by u(t | s∗, eh) = k.

The lender’s problem is as follows. The lender chooses a contract t to maximize

U(t) :=

Z 1

s∗
[u(t | s, eh)− k]f(s)ds (10)

subject to the borrower’s ex-ante participation constraintZ 1

s∗
[µ(s, eh)− u(t | s, eh)− c] f(s)ds ≥ V , (11)

and his (interim) incentive-compatibility constraintZ 1

s∗
[µ(s, eh)− u(t | s, eh)]

f(s)

1− F (s∗)ds− c ≥
Z 1

s∗
[µ(s, el)− u(t | s, el)]

f(s)

1− F (s∗)ds, (12)

where f(s)/[1−F (s∗)] is the posterior probability of s given that s ≥ s∗. Recall that the borrower

does not know the true signal–and thus his actual agency rent–but only that s ≥ s∗.

Consider the borrower’s moral hazard problem in isolation. Given that G(x | s, e) = H1(x |

s) +H2(x | e), we can rewrite (12) asZ
X
[x− t(x)]h2(x | eh)dx− c ≥

Z
X
[x− t(x)]h2(x | el)dx. (13)

Accordingly, the borrower’s incentive-compatibility constraint–and thus the optimal incentive

contract–is independent of s or s∗. Given Assumptions 1a and 2, the unique optimal incentive

contract is a call option, which implies t(x) is standard debt. Intuitively, a call option maximizes

the borrower’s payoff in high cash-flow states (subject to Assumption 2), and thus precisely in

those states where the likelihood ratio is highest, i.e., states that are most informative about

high effort.32

32This line of argument follows Innes (1990).

25



Consider now the lender’s overall problem (10)-(12). Given that t(x) is debt, there exists a

unique repayment R1 defined by the binding interim constraint (13). This is the repayment the

lender would require if there was no ex-ante constraint. Inserting R1 in (12), the borrower then

obtains an expected (from a τ = 0 perspective) agency rent ofZ 1

s∗(R1)
[µ(s, el)− u(R1 | s, el)] f(s)ds. (14)

If (14) exceeds V , the solution to the lender’s overall problem is to offer a debt contract

with repayment R1. In this case, the interim constraint (12) binds while the ex-ante constraint

(11) is slack. Conversely, if V exceeds (14), the expected agency rent is insufficient to satisfy

the borrower’s ex-ante participation constraint. The lender must consequently lower R, which

renders the interim constraint (12) slack. By Proposition 1, the unique optimal solution in this

case is a debt contract with repayment R∗ such that (11) is satisfied with equality. Overall,

the borrower’s expected rent is the maximum of (14) and V . Hence, irrespective of whether the

interim or ex-ante constraint binds, it holds that s∗ > sFB.

Proposition 8. The unique optimal solution to the lender’s problem with ex-post borrower

moral hazard is to offer a standard debt contract. The optimal repayment is determined either

by (11) or (12), depending on which constraint binds. In either case, it holds that s∗ > sFB.

Proof. See Appendix.

The fact that debt is optimal even when the ex-ante participation constraint (11) is slack

depends on the specific structure of the moral hazard problem, especially Assumption 1a and

the fact that G(x | s, e) is additively separable. If s and e interact in a more complex fashion,

debt–or even a single contract–might no longer be optimal. While interesting, an analysis of

this case is beyond the scope of this paper.

5.3 Signal-Dependent Optimal Investment Levels

In Section 3.4 we pointed out that the optimality of a single contract depends on a number of

assumptions, most notably the assumption that the investment size k is fixed. One can easily

think of situations where a fixed investment is not a good assumption. For instance, the optimal

investment size might depend on the productivity of the project, and hence on the lender’s

signal. In what follows, we analyze this case in more detail.

26



Our main finding is that, while a single debt contract is generally no longer optimal, the

optimal menu consists exclusively of debt contracts. The intuition is similar to Section 3, except

that there are now two distortions: s∗ > sFB and/or k(s) 6= kFB(s) for some s ≥ sFB.33 Consider

two incentive-compatible menus that implement the same investment schedule k(s) and cutoff

signal s∗. One of them, menu D, consists exclusively of debt contracts while the other, menu

ND, does not. For the same reason as in Section 3 where a single debt contract minimized the

lender’s information rent Us(t)− Us∗(t) for all s > s∗, the lender’s expected information rent is

lower under the menu of debt contracts, D. Since s∗ and k(s) are the same under both menus,

the borrower’s expected payoff is higher under D. If the borrower’s participation constraint binds

under ND, it must therefore be slack under D. This slack can be used to improve efficiency–

i.e., to either lower the cutoff signal s∗ by increasing the repayment R in the “cutoff contract”

and/or implement a more efficient investment schedule k(s)–until the borrower’s participation

constraint binds.34 Call this adjusted menu of debt contracts D0. In the end, the borrower

is equally well of under ND and D0. The latter, however, is more efficient, which implies the

lender’s expected payoff is higher under D0.

To verify this intuition formally, let us modify our setup as follows. Given some signal s

and investment size k > 0, let Gs(x | k) and µs(k) denote the project’s conditional cash-flow

distribution and conditional expected cash flow, respectively. We assume that the corresponding

density gs(x | k) > 0 is continuously differentiable in s and k over x ∈ [x, x]. For k = 0 we

specify µs(k) = 0. Moreover, we assume that µs(k) is strictly quasiconcave in k given s, which

implies µs(k) − k is also strictly quasiconcave. We finally assume that µs(k) − k has a unique

finite maximum kFB(s) for all s.

Given that Gs(x | k) satisfies MLRP, µs(k) is strictly increasing in s for given k > 0, which

immediately implies that µs(kFB(s)) − kFB(s) is strictly increasing in s if kFB(s) > 0 and

nondecreasing otherwise. Similar to our basic model in Section 3, we assume that µs(kFB(s))−

kFB(s) is positive for sufficiently high s and negative for sufficiently low s, implying that there

33This is true provided V > 0. If V = 0 the first best can be attained, i.e., s∗ = sFB and k(s) = kFB(s) for all

s ≥ sFB . See the Appendix for details.
34When adjusting the repayment associated with the cutoff debt contract t(x, s∗) one must at the same time

also adjust the repayments at higher signals s > s∗ to preserve incentive compatibility.
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exists a unique first-best cutoff signal 0 < sFB < 1 satisfying35

µsFB (kFB(sFB))− kFB(sFB) = 0. (15)

A menu of contracts consists of pairs {k(s), t(x, s)} prescribing an investment level k(s) and a

repayment t(x, s) for each (reported) signal s. Let Us(t(x, s), k(s)) :=
R
X t(x, s)gs(x | k)dx−k(s).

As t(x, s) is nondecreasing in x by Assumption 2 and Gs(x | k) satisfies MLRP, it follows

immediately from previous arguments that the lender’s optimal accept or reject decision is

characterized by a cutoff rule.36 If we (again) rule out the trivial case where the lender always

rejects, there then exists a unique cutoff signal 0 < s∗ < 1 satisfying

Us∗(t(x, s
∗), k(s∗))− k(s∗) = 0. (16)

Given that the optimal accept or reject decision is characterized by a cutoff rule, we can write

the lender’s problem as follows. At time τ = 0 the lender chooses a menu T := {t(x, s), k(s)} to

maximize her expected payoff

U(T ) :=

Z 1

s∗(T )
[Us(t(x, s), k(s))− k(s)]f(s)ds, (17)

subject to her incentive-compatibility constraint

Us(t(x, s), k(s))− k(s) ≥ Us(t(x, s0), k(s0))− k(s0) for all s, s0 ≥ s∗, (18)

the borrower’s ex-ante participation constraint

V (T ) :=

Z 1

s∗(T )
[µs(k(s))− Us(t(x, s), k(s))]f(s)ds ≥ V , (19)

the optimality condition (16), and the requirement that t(x, s) be nondecreasing.37

35Existence of sFB follows from continuity of µs(kFB(s))− kFB(s), which follows from continuity of Gs(x | k)

and the maximum theorem.

36 If the lender’s expected payoff under the contract (k(s), t(x, s)) is positive at some signal s, it remains positive

under the same contract at all higher signals by Assumption 2. If the lender optimally selects a different contract

at higher signals, her expected payoff may be higher (by optimality), but never lower.

37 In Section 3.1 incentive compatibility is ensured by Us(T ) := maxti∈T us (ti) . As a menu now consists of

two instruments, t and k, it is simpler to write the incentive-compatibility constraint as in (18). Note that the

restriction to s ≥ s∗ is without loss of generality. Alternatively, we could extend the notation to all s by specifying

that k(s) = 0 for s < s∗.
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To characterize the optimal repayment schedule t∗(x, s), it is not necessary to fully solve (16)-

(19). (In particular: it is not necessary to derive the optimal investment schedule k∗(s).) As

the following result shows, in any optimal menu T ∗ the associated optimal repayment schedule

t∗(x, s) must consist exclusively of debt contracts.38

Proposition 9. The optimal menu consists exclusively of debt contracts.

Proof. See Appendix.

6 Conclusion

With few exceptions, credit decisions are subjective and hence discretionary.39 Discretion, in

turn, implies that the lender’s incentives to accept or reject depends on the value of her claims,

and thus on the security in place. We show that the lender is generally too conservative in the

sense that she rejects too often. The optimal contract minimizes this ex-post inefficiency. The

unique optimal contract is debt. Debt minimizes the lender’s losses from bad projects, thus

minimizing her excessive conservativism and inclination to reject.

We also show that the fine-tuning of loan terms after interim information might not be

optimal. In principle, the lender could offer a menu from which she selects a contract after

obtaining information about the project. Since the lender has discretion, she would always

pick the contract that is ex-post optimal for her, however. This “self-dealing” undermines the

lender’s commitment to leave the borrower as much payoff as possible in good states, which is

necessary to maximize her own payoff in bad states. Hence, the same feature that makes debt

optimal–namely, maximization of the lender’s return in bad states–makes a menu not optimal.

Instead, it is optimal to offer a single contract and either reject or accept the borrower on the

basis of this contract. (As we show in Section 5.3, this might not true if the investment size is

state-dependent, however.) Our results might help explain the use of standardized loan terms

in conjunction with quantity rationing found in certain lending situations

38The problem (16)-(19) is not amenable to standard solution techniques. In a standard mechanism design

problem (e.g., Fudenberg and Tirole (1992, Chapter 7)) monetary transfers are separable from allocative decisions.

In our model, this would imply that t is a lump-sum transfer that depends on s but not on k. From our previous

analysis, however, we know that t optimally depends on x, which in turn depends on Gs(x | k) and thus on k.
39One exception is automated credit scoring as used, e.g., by credit card companies.
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What makes our lender special is her ability to weed out lemons. In other investment situa-

tions, the characteristic ability of investors may be a different one. For instance, it is frequently

argued that what distinguishes a venture capitalist from a bank is the venture capitalist’s exper-

tise to coach projects. The optimal contract in this case is to give the venture capitalist equity

or equity-linked securities, like convertibles. In practice, ex-ante and ex-post incentives often

cannot be separated, however. Banks, for instance, typically engage in ex-post monitoring while

venture capitalists also engage in ex-ante screening. Exploring this tension between screening

(which tends to favor debt) and ex-post incentives (which tends to favor equity) in a unified

framework appears to be an interesting avenue for future research.

In the United States, banks are generally forbidden to hold significant equity stakes in nonfi-

nancial firms. In this regard, Berlin (2000) asks: “Are U.S. banks’ borrowers at a disadvantage

because their lenders are too cautious when evaluating project risks and too harsh when a bor-

rower experiences financial difficulties?” In our model, lenders are indeed too cautious. But

this is not because they hold debt, but because they cannot extract the full surplus from their

borrowers. On the contrary, it is debt, not equity, that makes lenders the least cautious. Given

that our setting is based on specific, and possibly restrictive, assumptions, one must be cautious

in drawing policy implications, however.

7 Appendix A: Proofs

Proof of Lemma 2. If t(x) is a constant, we have that t(x) ≤ x < k. But this implies that

us(t) < k for all s ≤ 1, which implies that the lender rejects for all s. Conversely, if t(x) is

increasing over sets of positive measure, Assumptions 1 and 2 together with continuity of gs(x)

in s imply that us (t) is continuous and strictly increasing in s. There are two cases: if u1(t) ≤ k

the lender rejects for all s, while if u1(t) > k she accepts if and only if s > s∗ ∈ (0, 1) , where

s∗ > 0 follows from u0 (t) ≤ µ0 < k. Q.E.D.

Proof of Proposition 2. The case where V = 0 is trivial. If the lender extracts the full

surplus, the unique optimal security is t(x) = x for all x (or debt with repayment R = x). The

rest follows from Proposition 1.

Suppose V > 0. The statement regarding s∗ follows from Proposition 1. In the following, we

show that for any (nondecreasing) non-debt contract t = t(x) we can construct a debt contract
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t̃ = t̃(x) that satisfies the borrower’s participation constraint (3) and is strictly preferred by the

lender. Holding the cutoff signal fixed at s∗(t), choose t̃ such that it generates the same expected

payoff for the lender as t. Accordingly, t̃ is uniquely defined byZ 1

s∗(t)

∙Z
X
z(x)gs(x)dx

¸
f(s)ds = 0, (20)

where z(x) := t̃(x) − t(x). As the cutoff signal is fixed and the lender’s expected payoff is the

same under t and t̃, the borrower’s expected payoff is consequently also the same under t and t̃.

As t̃ 6= t and the lender’s conditional expected payoff is continuous in s under both t and

t̃, (20) implies that there exists at least one signal s0 satisfying s∗(t) < s0 < 1 such thatR
X z(x)gs0(x)dx = 0. Moreover, as t is nondecreasing and t̃ is a debt contract, this further-

more implies that there exists a cash flow x̂ ∈ (x, x) such that z(x) ≥ 0 for all x < x̂ and

z(x) ≤ 0 for all x > x̂, where both inequalities are strict over sets of positive measure. As

Gs(x) satisfies MLRP and s∗(t) < s0, it follows that gs∗(t)(x)/gs0(x) is strictly decreasing in x.

Consequently, Z
X
z(x)gs∗(t)(x)dx

=

Z x̂

x
z(x)gs0(x)

gs∗(t)(x)

gs0(x)
dx+

Z x

x̂
z(x)gs0(x)

gs∗(t)(x)

gs0(x)
dx (21)

>
gs∗(t)(x̂)

gs0(x̂)

∙Z
X
z(x)gs0(x)dx

¸
= 0,

where the last equality follows from the definition of s0.

Since
R
X z(x)gs∗(t)(x)dx > 0, we have thatZ

X
t̃(x)gs∗(t)(x)dx >

Z
X
t(x)gs∗(t)(x)dx = k,

where the equality follows from the definition of s∗(t). In words: The lender’s conditional ex-

pected payoff at s = s∗(t) is positive under the debt contract t̃ but zero under the non-debt

contract t (by the definition of s∗(t)). As
R
X t̃(x)gs(x)dx is strictly increasing in s, this implies

that
R
X t̃(x)gs∗(t̃)(x)dx = k for some s∗(t̃) < s∗(t), i.e., the cutoff signal implemented by t̃ is

strictly lower than the cutoff signal implemented by t.

To wrap up, given some arbitrary non-debt contract t, we have constructed a debt contract t̃

such that, if the cutoff signal was fixed at s∗(t), the lender and borrower have the same expected

payoff under both contracts. However, under t̃ the borrower is additionally accepted at signals
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s ∈ (s∗(t̃), s∗(t)], which implies both the lender and borrower benefit from switching to t̃. This

proves that any optimal contract must be debt.

Uniqueness is straightforward. As the borrower’s expected payoff is continuous in R, there

exists for each V a compact set of R−values at which the borrower’s participation constraint

binds. As the lender’s expected payoff is increasing in R, the largest value in this set uniquely

defines the optimal debt contract t∗. Q.E.D.

Proof of Proposition 3. As Us(T ) is the maximum over a set of continuous and nonincreasing

functions, it is continuous and nonincreasing in s. Lemma 2 thus carries over to the case with

a menu, i.e., the optimal credit decision is characterized by a unique cutoff signal s∗(T ). The

case where V = 0 is trivial. If V > 0 the menu cannot contain t(x) = x, for then the lender

would always choose this contract, thus violating V > 0. But if t(x) = x is not in the menu,

Proposition 1 holds, which implies there exists a unique cutoff signal s∗(T ) > sFB.

We now have two cases. In one case the menu T is not feasible (Case 1 ). In the other

case we can lower the cutoff signal by replacing T with the unique optimal debt contract t∗

from Proposition 2. Since the borrower’s participation constraint is satisfed under t∗ (Proof of

Proposition 2, last paragraph), the lender is consequently better off (Case 2 ).

Case 1. Suppose t∗ ∈ T and s∗(T ) = s∗(t∗). In words: The menu contains the optimal debt

contract, and this contract determines the cutoff signal s∗(T ). We now show that if t∗ is not

chosen for almost all s > s∗, then T must violate the borrower’s participation constraint (1).

If t∗ is not chosen for almost all s > s∗, there exists some t 6= t∗ in T and some ŝ satisfying

s∗(T ) ≤ ŝ < 1 such that uŝ(t) ≥ uŝ(t
∗), i.e., t is weakly preferred to t∗ after observing the

signal ŝ. But this implies that t must be strictly preferred to t∗ for all s > ŝ. The argument is

analogous to that in the Proof of Proposition 2. Define z(x) := t∗(x) − t(x). Since t∗(x) is a

debt contract and t(x) is nondecreasing, there exists some x̂ ∈ (x, x) such that z(x) ≥ 0 for all

x < x̂ and z(x) ≤ 0 for all x > x̂, where the inequalities are strict over sets of positive measure.

By MLRP of Gs(x), we then obtain for s > ŝ thatZ
X
z(x)gs(x)dx <

gs(x̂)

gŝ(x̂)

∙Z
X
z(x)gŝ(x)dx

¸
= 0,

which completes the argument. Since us(t) > us(t
∗) for all s > ŝ, and s∗(T ) = s∗(t∗), the

lender’s expected payoff from offering the menu is strictly greater than from offering only t∗,

i.e., U(T ) > U (t∗) . But since the cutoff signal is the same, i.e., s∗(T ) = s∗(t∗), the borrower’s
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expected payoff must be lower, i.e., V (T ) < V (t∗) . However, by the construction of t∗ (Proof

of Proposition 2, last paragraph), we have that V (t∗) = V , implying that V (T ) < V .

Case 2. Suppose s∗(T ) 6= s∗(t∗), which covers all cases not covered in Case 1. In this case,

we can straightforwardly apply the logic in the Proof of Proposition 2 and show that replacing

T with a single contract t∗ makes the lender strictly better off. Consider the “cutoff contract”

t̂ ∈ T defined by s∗(T ) = s∗(t̂). (If there are several such contracts in the menu, take one of

them.) Next, delete all contracts t 6= t̂ from the menu. By construction, the cutoff signal s∗(t̂)

remains unchanged. Moreover, as the lender (weakly) prefers the deleted contracts over t̂ for

some s ≥ s∗(t̂), but the cutoff signal remains unchanged, the borrower is not made worse off.

That is, his participation constraint (1) remains satisfied after the deletion. We can then use the

argument in the Proof of Proposition 2 and replace the remaining contract t̂ with the optimal

debt contract t∗. This lowers the cutoff signal while the borrower’s participation constraint binds

under t∗. The lender is consequently better off by replacing T with t∗. Q.E.D.

Proof of Proposition 4. In the following, we use the term “positive offer” to denote an offer

by the market at τ = 1 under which attracted borrowers receive a positive payoff. To simplify

the exposition, we make use of an observation in the Proof of Proposition 3 that for any menu

T the optimal credit decision follows a simple cutoff rule. The acceptance set Ω(T ) is thus some

interval [s∗, 1] , where s∗ = s∗(T ).

The case where µ ≤ 0 is straightforward. Since any positive market offer which attracts

accepted borrowers also attracts all rejected borrowers, the expected NPV from financing a

borrower visiting the market at τ = 1 can be at most µ.40 Given that the market must break

even, it therefore cannot make a positive offer. The same holds at τ = 0. Accepted borrowers

thus optimally stay with the lender, which implies we are back to our basic setup with V = 0.

At τ = 0 the lender optimally offers t∗(x) = x, which provides the borrower with an expected

payoff of zero.

In the remainder of this proof, we consider the case where µ > 0. We first consider Case 1

where Vmax > µ. The proof proceeds in several steps. We first prove an auxiliary result stating

that if the market can make a positive offer (under which it breaks even) at τ = 1, then the

40Since µ ≤ 0 rejected borrowers must have a negative expected NPV. This implies that there cannot exist a

market offer that is separating and generates zero profit, since rejected borrowers would inevitably be attracted

by the offer.
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lender’s expected payoff at τ = 0 cannot be positive (Step 1 ). We subsequently show that the

constellation described in the proposition is an equilibrium (Steps 2a-c). We finally show that

the equilibrium is unique (Step 3 ).

Step 1. Suppose at τ = 1 an accepted borrower stays with the lender’s with probability 1−ξ,

while with probability ξ ∈ [0, 1] he takes the market offer. Evidently, a rejected borrower always

takes a positive market offer. Accordingly, the expected NPV of financing a borrower visiting

the market at τ = 1 is

V̂ :=
ξ [1− F (s∗)]

ξ [1− F (s∗)] + F (s∗)

Z 1

s∗
[µs − k]

f(s)

1− F (s∗)ds (22)

+
ξF (s∗)

ξ [1− F (s∗)] + F (s∗)

Z s∗

0
[µs − k]

f(s)

F (s∗)
ds,

where
R 1
s∗ [µs−k]

f(s)
1−F (s∗)ds is the expected NPV of an accepted borrower, while

R s∗
0 [µs−k]

f(s)
F (s∗)ds

is the expected NPV of a rejected borrower. Given that the market makes zero profit, V̂ is also

what borrowers visiting the market at τ = 1 will get on average.

Since µ > 0 projects are viable on an ex-ante basis. Consequently, at τ = 0 the lender must

offer the borrower an expected payoff of at least µ > 0. Given the borrower’s decision at τ = 1,

his ex-ante participation constraint is

(1− ξ)

Z 1

s∗
[µs − Us(T )] f(s)ds+ [ξ [1− F (s∗)] + F (s∗)] V̂ ≥ µ. (23)

Inserting (22) in (23), the latter transforms to

(1− ξ)

Z 1

s∗
[Us(T )− k] f(s)ds ≤ 0,

which implies that, regardless of ξ, the lender’s expected payoff at τ = 0 is nonpositive. (If (23)

binds, the lender’s expected payoff is zero.) Intuitively, if the market makes a positive offer at

τ = 1, the project gets always financed–either by the lender or by the market. But this implies

that the total surplus just equals the ex-ante NPV µ. Since µ is also what the lender must leave

the borrower to satisfy his participation constraint, the lender makes no profit. Put differently,

if projects always get financed the lender provides no value added. But if the lender provides

no value added, her profit in a competitive credit market must be zero.

Step 2a. We next show that if the market does not make a positive offer at τ = 1, the lender’s

maximization program coincides with that in Section 3.1, which implies that the unique optimal

offer is t∗. (The remaining statements in Proposition 4 are then immediate.) The argument is
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straightforward. If the market does not make a positive offer at τ = 1, an accepted borrower

always stays with the lender, while a rejected borrower obtains a payoff of zero. Moreover, since

projects are viable ex ante, the lender must offer the borrower at least µ > 0. The borrower’s

ex-ante participation constraint is thenZ 1

s∗
[µs − Us(T )] f(s)ds ≥ µ,

which coincides with (1) for V = µ and Ω(T ) = [s∗, 1] (on the latter, see above). The rest follows

from the analysis in Section 3.

To prove that the constellation described in the proposition is an equilibrium, we must also

show that the converse is true, i.e., if the lender offers t∗, the market cannot make a positive offer

at τ = 1. Specifically, we will show that (i) even under the “most optimistic beliefs” the market

cannot make an offer which attracts accepted borrowers (Step 2b), and (ii) rejected borrowers

have a negative NPV (Step 2c). Together, Steps 2b-c imply that if the lender offers t∗, the

market cannot make a positive offer at τ = 1.

Step 2b. Since any market offer attracting accepted borrowers also attracts all rejected

borrowers, the “most optimistic beliefs” are those where–besides all rejected borrowers–all

accepted borrowers visit the market at τ = 1. By definition, these are the prior beliefs F (s).

Given these beliefs, the expected NPV of a borrower visiting the market at τ = 1 is µ. Let tm

denote the contract offered by the market.41 For the market to break even, tm must satisfyZ 1

s∗
[µs − us(tm)] f(s)ds+

Z s∗

0
[µs − us(tm)] f(s)ds = µ, (24)

i.e., borrowers visiting the market at τ = 1 must receive on average µ. Consider next the optimal

debt contract t∗. By construction (see Section 3.1), t∗ satisfiesZ 1

s∗
[µs − us(t∗)] f(s)ds = µ. (25)

Since
R s∗
0 [µs − us(tm)] f(s)ds > 0, (24) and (25) together (after dividing through by 1−F (s∗))

imply that Z 1

s∗
[µs − us(t∗)]

f(s)

1− F (s∗)ds >
Z 1

s∗
[µs − us(tm)]

f(s)

1− F (s∗)ds. (26)

41Below we show that if the lender offers t∗, rejected borrowers have a negative NPV. Again, this then implies

that there cannot exist a market offer that is separating and generates zero profit.
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The left-hand side is the expected payoff of an accepted borrower under t∗, while the right-hand

side is the expected payoff of an accepted borrower under tm.42 Hence an accepted borrower

prefers t∗ over tm even though tm is the highest possible market offer, i.e., the offer under which

the market breaks even if and only if it attracts–in addition to attracting rejected borrowers–

also attracts all accepted borrowers.

Step 2c. The lender’s expected payoff under t∗ isZ 1

s∗
[us(t

∗)− k] f(s)ds > 0,

where the sign follows from us∗(t∗) = k and the fact that us(t∗) is increasing in s by Assumptions

1 and 2. In conjunction with (25), this implies thatZ 1

s∗
[µs − k] f(s)ds > µ.

Since µ :=
R 1
s∗ [µs − k] f(s)ds+

R s∗
0 [µs − k] f(s)ds, this implies that

R s∗
0 [µs − k] f(s)ds < 0, and

therefore that Z s∗

0
[µs − k]

f(s)

F (s∗)
ds < 0, (27)

i.e., the expected NPV of financing a rejected borrower is negative.43 In a certain sense, Step

2c is the mirror image of Step 1. Starting out from the fact that the lender makes a positive

profit, it shows that a rejected borrower cannot obtain financing by the market. Step 1 shows

the converse, i.e., if a (rejected) borrower can obtain financing by the market, the lender cannot

make a positive profit.

Step 3. It remains to establish uniqueness. Evidently, there cannot exist an equilibrium in

which the lender offers T 6= t∗ and the market makes a positive offer at τ = 1. As was shown

in Step 1, the lender would then make zero profit, whereby by offering t∗ she makes a positive

profit (Steps 2b-c.) There also cannot exist an equilibrium in which the lender offers T 6= t∗

and the market does not make a positive offer at τ = 1. As was shown in Step 2a, if the market

does not make a positive offer at τ = 1, the unique optimal offer is t∗. This completes the proof

of Case 1 in Proposition 4 (Vmax > µ).

42Since an accepted borrower knows he was accepted, his beliefs regarding his own type (signal) have the density

f(s)/[1− F (s∗)] for s > s∗ and zero otherwise.
43 If the lender offers t∗, the market knows from Step 2b that a borrower visiting the market must have been

rejected. The expression in (27) is the NPV of financing a borrower conditional on knowing that he was rejected.
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As for Case 2 (Vmax < µ), if the lender approves a loan with positive probability, strict

monotonicity of Us(T ) implies that she realizes a strictly positive expected payoff. We know

from Step 1 that in this case the market cannot make a positive offer at τ = 1. Consequently,

if the lender makes an offer under which the borrower is approved with positive probability, the

borrower’s expected payoff from approaching the lender is strictly less than Vmax. The borrower

can, however, realize µ > Vmax by immediately turning to the market. Q.E.D.

Proof of Proposition 6. The proof makes use of the following auxiliary result.

Claim 1. Take a debt contract t(x) and some other contract et(x) 6= t(x) such that Uŝ(et) ≥ Uŝ(t)
holds for some ŝ < 1. Then it must hold that Us(et) > Us(t) for all s > ŝ.
Proof. The argument follows the logic of Proposition 2. We argue to a contradiction and

suppose that at some s > ŝ we have Us(et) ≤ Us(t). By continuity of Us(t) and Us(et), this–
together with Uŝ(et) ≥ Uŝ(t)–implies the existence of some es where ŝ < es < s and Ues(et) = Ues(t).
Next, Ues(eT ) = Ues(T ), together with Assumption 2 and the fact that t(x) is debt implies the
existence of some value 0 < ex < x such that t(x) ≥ et(x) for all x < ex while t(x) ≤ et(x) for all
x > ex, where the inequalities are strict on sets of positive measures. By Assumption 1 we thus
have–in analogy to the proof of Proposition 2–that

Uŝ(et)− Uŝ(t) < g
ŝ
(ex)

ges(ex) £Ues(et)− Ues(t)¤ = 0,
which yields a contradiction. Q.E.D.

Consider first the case where the borrower offers some contract et(x) to replace the optimal
(debt) contract t∗(x). If the lender prefers et(x) over t∗(x) for some ŝ, then she strictly preferset(x) for all s > ŝ by Claim 1. Consequently, the borrower can only be better off under et(x)
if it lowers the cutoff signal, i.e., if s∗(et) < s∗(t∗). In this case, the loan is approved under

the new contract for all s ≥ s∗(et), implying that the offer is profitable for the borrower only if
V (et) ≥ V (t∗). Existence of some contract et(x) where V (et) ≥ V (t∗) and s∗(et) < s∗(t∗) would

contradict the optimality of t∗ in the lender’s original problem, however.

If the lender makes the offer we have a signaling game. For the sake of brevity, we restrict

attention to equilibria where in case of indifference, the borrower accepts the lender’s offer. We

argue to a contradiction and suppose that in a given equilibrium there is a nonempty set of

accepted new contracts denoted by T . Denote by eT the union of T and the optimal (debt)
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contract t∗(x). In this equilibrium, the loan is approved for all s ≥ s∗( eT ). Denote by et(x)
one possible contract that is chosen at s = s∗(eT ). By our previous arguments, we know that
unless s∗(eT ) < s∗(t) we cannot have an equilbrium where the borrower accepts the lender’s

offer. By Claim 1, it then follows that all lenders with signals s > s∗(eT ) strictly prefer to
offer a new contract. Moreover, in equilibrium they will offer their most preferred contract

from the set T , which implies the upper boundary for the borrower’s payoff in the equilibrium

under consideration is given by T = et(x). By our previous arguments, however, the borrower’s
expected payoff will then be strictly less than V (t), which implies he rejects. Q.E.D.

Proof of Proposition 8. In the following, we prove the optimality of debt for the borrower’s

(interim) moral hazard problem. The rest follows from the argument in the main text.

Suppose, to the contrary, that some non-debt contract t(x) was optimal. We can then find

a unique debt contract t̃(x) such thatZ x

x
[t̃(x)− t(x)]g(x | s, eh)dx = 0. (28)

By Assumption 2, there exists a value x̂ ∈ (x, x) such that t̃(x) − t(x) ≥ 0 for all x < x̂ and

t̃(x)− t(x) ≤ 0 for all x > x̂, where both inequalities are strict over sets of positive measure. We

then have thatZ x

x
[t̃(x)− t(x)]g(x | s, el)dx =

Z x

x
[t̃(x)− t(x)]g(x | s, eh)

g(x | s, el)
g(x | s, eh)

dx (29)

>
g(x̂ | s, el)
g(x̂ | s, eh)

Z x

x
[t̃(x)− t(x)]g(x | s, eh)dx

= 0,

where the last two lines follow from Assumption 1a and (28), respectively. From this it follows

that the expected agency rent (14) is strictly lower under t̃(x). It remains to show that the

borrower’s incentive-compatibility constraint (13) is satisfied under t̃(x). Using (28) together

with (29), we have thatZ x

x
[t̃(x)− t(x)] [g(x | s, eh)− g(x | s, el)] dx < 0,

implying that (13) is satisfied. Q.E.D.

Proof of Proposition 9. For a given schedule of investment levels k(s), define µ̂s := µ(s, k(s))−

k(s), Ûs := Us(t(x, s), k(s)) − k(s), and V̂s := Vs(t(x, s), k(s)). By standard arguments, the
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menu is incentive compatibile if Ûs is strictly increasing, continuous, and a.e. differentiable

for all s ≥ s∗. The corresponding local condition requires that dÛs/ds = ∂Ûs/∂s at points of

differentiability. We begin with two auxiliary results.

Claim 1. If V > 0 the first-best outcome cannot be attained.

Proof. Suppose to the contrary that V > 0, s∗ = sFB and k(s) = kFB(s) for all s ≥ s∗. Next,

observe that if t(x, s) = x for some s ≥ s∗, it must hold that dV̂s/ds = 0. To see this, note

that incentive compatibility in conjunction with t(x, s) = x implies dÛs/ds = ∂Ûs/∂s = ∂µ̂s/∂s.

Since k(s) = kFB(s), we have (by the envelope theorem) dµ̂s/ds = ∂µ̂s/∂s, which implies

dÛs/ds = dµ̂s/ds and therefore dV̂s/ds = 0. Moreover, s∗ = sFB implies t(x, s∗) = x and

therefore V̂s∗ = 0. Together with the first observation, this implies that V̂s = 0 for all s ≥ s∗,

contradicting V > 0. Q.E.D.

Claim 2. For any k > 0, ŝ < 1, debt contract t̃(x), and non-debt contract t(x) satisfying

Uŝ(t, k) ≥ Uŝ(t̃, k), it holds that

dUs(t, k)

ds

¯̄̄̄
s=ŝ

>
dUs(t̃, k)

ds

¯̄̄̄
s=ŝ

. (30)

Proof. Differentiability of Us follows from differentiability of gs(x | k). If Uŝ(t, k) = Uŝ(t̃, k) the

claim follows immediately from Claim 1 in Proposition 6. As for the case Uŝ(t, k) > Uŝ(t̃, k),

consider the uniquely defined debt contract t̂(x) given by Uŝ(t, k) = Uŝ(t̂, k) (which implies that

Uŝ(t̂, k) > Uŝ(t̃, k)). Since

dUs(t, k)

ds

¯̄̄̄
s=ŝ

>
dUs(t̂, k)

ds

¯̄̄̄
s=ŝ

by Claim 1 in Proposition 6, it remains to show that

dUs(t̂, k)

ds

¯̄̄̄
s=ŝ

≥ dUs(t̃, k)

ds

¯̄̄̄
s=ŝ

. (31)

Partial integration yields Us(t̃, k) = eR−R eRx Gs(x | k)dx. As R̂ > eR, (31) holds if dGs(x | k)/ds <
0 for all k > 0, x ∈ (x, x), and s, which holds by Assumption 1. Q.E.D.

We are now in the position to show that any optimal menu must contain only debt contracts.

We argue to a contradiction. Suppose some menu T = {t(x, s), k(s)} with corresponding cutoff

s∗ is optimal but some contracts in the menu are non-debt contracts.

Claim 3. Consider two incentive-compatible menus with the same cutoff s∗ and investment

schedule k(s). One of them, eT = {t̃(x, s), k(s)}, consists exclusively of debt contracts while
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the other, T = {t(x, s), k(s)}, does not (on a set of positive measure). It then holds that

Us(t(x, s), k(s)) ≥ Us(t̃(x, s), k(s)) for all s ≥ s∗, with strict inequality for all s > ŝ ≥ s∗.

Proof. The proof follows almost immediately from Claim 2. Let ŝ ∈ [s∗, 1) denote the first

signal s ≥ s∗ for which T prescribes a non-debt contract, t(x, ŝ). We can replace t(x, ŝ) with the

uniquely defined debt contract t̃(x, ŝ) given by Uŝ(t(x, ŝ), k(ŝ)) = Uŝ(t̃(x, ŝ), k(ŝ)). By Claim 2

and local incentive compatibility, we then have that

∂Us(t̃, k(ŝ))

∂s

¯̄̄̄
s=ŝ

<
∂Us(t, k(ŝ))

∂s

¯̄̄̄
s=ŝ

.

We continue this procedure for all other s > ŝ for which T prescribes non-debt contracts. For

signals s > s∗ for which T prescribes debt contracts we simply take those. In the end, we obtain

an incentive-comaptible menu of debt contracts eT with the same cutoff signal and investment
schedule as T satisfying

∂Us(t̃, k(s))

∂s
≤ ∂Us(t, k(s))

∂s

for all s ≥ s∗, with strict inequality for some s ≥ ŝ on sets of positive measure. As dUs/ds =

∂Us/∂s by local incentive compatibility and Us∗(t(x, s∗), k(s∗)) = Us∗(t̃(x, s
∗), k(s∗)) by con-

struction, integrating yields Us(t(x, s), k(s)) ≥ Us(t̃(x, s), k(s)) for all s ≥ s∗, with strict in-

equality for s > ŝ ≥ s∗. Q.E.D.

In words: starting from an arbitrary, incentive-compatible menu T we have constructed an

incentive-compatible menu eT of debt contracts such that s∗ and k(s) are the same under both
menus but the borrower’s participation constraint (19) is relaxed. In analogy to the Proof of

Proposition 2, we can now fine-tune eT–either by improving s∗ and/or k(s)–until (19) binds.
Call this adjusted, final menu of debt contracts T̂ . As the borrower is no better off under T̂

compared to T (if (19) binds under T he is equally well off, otherwise he is worse off), but T̂

has a lower cutoff signal and/or a more efficient investment schedule than T , the lender must

be strictly better off under T̂ .

The argument proceeds in two steps. First, we change the investment schedule from k(s)

to k̂(s) := (1 − γ)k(s) + γkFB(s) by increasing γ. For each increase in γ, we must adjust the

corresponding repayments in the menu to preserve incentive compatibility and to ensure that

Us∗(t̂(x, s
∗), k̂(s∗)) = k̂(s∗) holds. Note that, by strict quasi-concavity of µs(k), µs(k̂(s))− k̂(s)

is nondecreasing in γ and strictly increasing in γ for all s with k(s) 6= kFB(s). Moreover, all

expected payoffs change continuously in γ.
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We now have two cases. In Case 1 the borrower’ participation constraint (19) becomes

binding at some γ ≤ 1, which concludes the proof. Conversely, if (19) remains slack at γ = 1 (in

which case we have the first-best investment schedule kFB(s)), we are in Case 2. By Claim 1,

it must then hold that s∗ > sFB. We can consequently increase the repayment associated with

the cutoff debt contract–thereby lowering the cutoff signal–until (19) becomes binding. (To

preserve incentive compatibility, we must also increase all remaining repayments in the menu,

and to remain at the first-best investment level we must specify k(s) = kFB(s) for all “newly

added signals”.) By Claim 1, (19) must eventually bind at some signal s∗ > sFB. Irrespective

of whether Case 1 or 2 obtains, we have constructed an incentive-compatible menu of debt

contracts T̂ at which the borrower’s participation constraint (19) binds and that implements a

more efficient investment schedule and/or a lower cutoff signal than the original menu T. Q.E.D.

8 Appendix B: Numerical Example in Section 4.3

The ex-ante project NPV µ is

µ =

Z 1

0
µsf(s)ds− k = ln

µ
S

S − 1

¶
− k,

where µs = 1/(S − s) and f(s) = 1 from the uniform distribution. The lender’s expected payoff

conditional on the signal s is then (using partial integration)

us(t) =

Z R

0
xgs(x)dx =

1

S − s [1− e
−(S−s)R].

It follows that the lender’s privately optimal cutoff signal s∗ is given by

1− e−(S−s∗)R
S − s∗ = k,

which implies that

R =
− ln[1− (S − s∗)k]

S − s∗ . (32)

Note that s∗ is strictly decreasing in R with s∗ → sFB = S − 1/k as R → ∞. Finally, the

borrower’s expected payoff from going to the inside lender is

V (t) =

Z 1

s∗
[µs − us(t)]f(s)ds =

Z 1

s∗

1

S − se
−(S−s)Rds, (33)

where R and s∗ satisfy (32).
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To obtain Vmax we must maximize (33) with respect to R subject to (32). Since R enters in

(33) both directly and indirectly via s∗, and hence via (32), we cannot express Vmax in closed

form. Instead, we must solve for Vmax numerically; the results are shown in Figure 1.
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