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Understanding Fee Structures in the Asset Management Business

This paper considers the economic role of fees in aligning the incentives of money managers with
those of investors. We examine a simple model in which manager effort (or investment in human
and physical capital) is observed by the investor prior to her investment decision, but is not
verifiable. This setup creates a positive economic role for net asset value (NAV) as a contracting

_variable and thus provides an explanation for the widespread use of contracts based on NAV in both
the mutual and hedge fund industries. We also provide an explanation for why hedge funds use
asymmetric performance fees while mutual funds typically charge a fixed fraction of NAV (even
though “fulcrum” performance fees are available). Put simply, performance fees (asymmetric and
“fulcrum™) are better able to extract effort than a fee which is a fixed fraction of NAV. Since hedge
fund managers are typically more skilled than mutual fund managers, the extra effort that can be
extracted by a performance fee has a greater benefit for a hedge fund than a mutual fund. At the
other extreme, a fixed fraction of NAV can do almost as well as a fraction that increases with fund
return if managerial skill is low (i.e., a mutual fund). The trade-off between inducing effort and risk-
sharing is also analyzed.



Understanding Fee Structures in the Asset Management Business

In recent years, the mutual fund industry has grown explosively. However, contract choices
have been limited (since 1971) to those that pay the manager a fixed fraction of Net Asset Value (the
fixed NAV fraction) and/or a performance-based fee that is symmetric with respect to performance
relative to a benchmark and proportional to NAV (the “fulcrum” performance fee).! Despite the
availability of the “fulcrum” performance fee, the dominant contract choice in the mutual fund
industry is the fixed NAV fraction.” In contrast, the typical contract in the hedge fund industry
(which exists along-side the mutual fund industry) has a base fixed fraction fee plus an asymmetric
performance fee that is proportional to NAV (see Brown, Goetzmann and Ibbotson (1997)).2

Since co'ntract design can be used to address agency problems between the fund manager and
investor, understanding why mutual and hedge funds use contracts based on NAV is an important
topic. At the same time, government regulation restricts the set of contracts available in the mutual
fund industry. An interesting question is whether this regulation affects the attractiveness of mutual

funds to investors. Finally, understanding why the typical contract choice differs so widely across

'Mutual fund management fees are restricted by the Investment Company Act of 1940.
The Act was originally construed to prohibit all performance fees, but a 1970 amendment
exempted fees known as “fulcrum” which are symmetric in the fund’s return relative to a
benchmark. A typical “fulcrum” fee has the following form:
K(Dtﬂ) Dt+l NAV!

where NAV, is the Net Asset Value at the start of the period, D,,, is the deviation of the fund’s
return from the benchmark’s return over the period, and, k(.) is a function from R to R+ with the
property that k(D,,,) = k(-D,,,) for all D, €R+. So if x(0.1)=0.05 then k(-0.1)=0.05. A simple
“fulcrum” fee sets k(.) equal to a constant (see Golec(1987) and Starks(1987)).

2Golec (1987) identified a “fulcrum” performance fee in only 27 of 370 funds he studied;
the rest charged a fixed fraction of NAV. ,

*Hedge funds are not allowed to advertize and must have less than 99 investors who all
must be “accredited” (see Brown, Goetzmann, and Ibbotson (1997) for further details).
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the mutual and hedge fund industries is also of interest. In particular, an interesting question is why
performance fees are widely used in the hedge fund industry but “fulcrum” fees are rarely used by
mutual funds.

To address these issues, this paper develops a simple model that considers the role of the fee
structure in aligning fund manager incentives with those of investors. We allow the investor to
observe managerial effort (which is not verifiable) prior to her decision to invest, which creates an
economic role for the fixed NAV fraction contract. In particular, this contract allows the manager’s
compensation to depend on NAV, which in turn depends on effort. We compare the fixed NAV
fraction to a contract that is not currently available to the mutual fund industry, but which has a
number of interesting properties. This contract (the return-based contract) charges a fee that
depends solely on the fund’s return, and not on the NAV of the fund.” We find that the fixed NAV
fraction can do better, especially when return is a noisy signal of manager effort. We also
investigate a contract that pays a fixed fraction of NAV at the end of the period and find that it is
usually better than a contract that pays a fixed fraction of NAYV at the start.

We then use the model to assess the relative attractiveness of allowing the NAV fraction to
vary depend on the fund’s retumn (return-dependent NAV fraction). This type of contract is available
to both hedge and mutual funds. Hedge fund managers typically combine a fixed fraction of NAV

with an asymmetric performance fee to obtain an NAV fraction that is larger when fund return is

“Earlier papers addressing this issue in settings without adverse selection include Starks
(1987), Stoughton (1993), Admati and Pfleiderer (1997), and Grinblatt and Titman (1989),
among others.

* It is natural to use return-based contracts as a benchmark since return being the only
signal of manager effort is an alternative information structure. With this information structure,
the optimal return-based contract is the optimal contract (see, for example, Holmstrom (1979)).
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high.® Mutual funds can use a “fulcrum” performance fee in conjunction with a fixed NAV fraction
to also obtain a return-dependent NAYV fraction; however, they rarely do. While the extent to which
the NAV fraction can vary with return is more limited than for hedge funds, call-like payoffs are still
possible using “fulcrum” fees.”

We will show that, when managerial ability is high, a contract with an NAV fraction that is
increasing in the fund’s return is much mofe attractive than a fixed fraction. The greater effort that
the former contract induces (relative to a fixed NAV fraction) is more beneficial when that effort
is more productive. Since hedge fund managers are typically regarded as the best fund managers,
the ability of a return-dependent NAV fraction to better extract effort may explain its prevalence in
that industry. At the other end of the spectrum, the optimal return-dependent fraction of NAV
performs negligibly better than a fixed fraction when managerial ability is low: the benefit from
inducing extra effort relative to the fixed fraction contract is small. Thus, any return-dependent
fraction of NAV that can be obtained via a “fulcrum” performance fee must also perform only
slightly better than a fixed fraction of NAV. So the reluctance of mutual funds to adopt a return-
dependent fraction via “fulcrum” fees may be due to the low ability levels of mutual fund managers.
Further, the unavailability of asymmetric performance fees in the mutual fund industry (which would

allow even more flexibility in how the fraction of NAV could be varied with return) may be having

¢ According to Brown, Goetzmann and Ibbotson (1997), hedge fund managers face an
asymmetric performance contract with a base fixed fraction fee (around 1%) plus a percentage
(around 20%) of profits above some benchmark.

7 For example, assume a benchmark of 0% return. Then a 1% (of NAV at end) base fee,
together with a 5% fee for a fund return’s deviation from benchmark (multiplied by NAV at the
start), implies a 0.445% fee for a -10% fund return, but a 1.455% fee for a 10% fund return.
Allowing the “fulcrum” fraction to decline as the deviation increases can put a floor on the
fraction charged while rewarding the manager for high returns with a bigger fraction.
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only a small effect on the attractiveness of mutual funds.

Finally, we examine a more general contract, which is currently not available in the mutual
fund industry and not in use in the hedge fund industry. This contract is a fixed fraction of NAV
together with a fee, unrelated to NAV, that depends solely on fund return. It does better than even
the return-dependent NAV fraction contract and can get quite close to the first-best, even when the
opportunity set is poor. Thus, a contract that is return-based, together with a fee that is a fixed
fraction of NAV, seems to be better than the existing menu of contracts available in the mutual fund
industry and in use in the hedge fund industry. The implication is that less regulation by the SEC
of mutual fund fee structures may make that industry even more attractive. Also, a closer
investigation of the fee structures used in the hedge fund industry may be informative.

Our model has an investor with no management ability and a manager \&ith no money. Both
are risk averse (log utility), and the manager’s utility decreases at an increasing rate with effort. The
manager can eamn either a high or low return, and the probability of a high return increases with
effort. Effort is precomitted by the manger before the investor invests, and the investor can observe
the effort choice before investing. However, the investor can’t write the effort choice into a contract
because he can’t verify it in court. So he can’t pay the manager per unit of effort, but has to rely
instead on the contract to induce it. Section II describes the model more formally.

We consider the utility implications for the investor of a menu of contracts whose parameters
are chosen to ensure that the manager gets her reservation ﬁtility. While closed form solutions for
investor utility seem unattainable, we are able to numerically solve this quantity for each of the
contracts.

We also consider the risk-sharing properties of the various contracts. The effort and NAV



choice induced by a contract are taken as given and investor utility from the contract is compared
to the utility obtained with optimal risk-sharing, rather than the contract payments. These risk-
sharing properties are interesting since effort and investor utilitsf can (and do) give different rankings
across the contracts considered. The likely reason for higher effort but lower investor utility is
poorer risk-sharing.  For example, the optimal return-based contract often induces more effort than
the fixed NA'V fraction contract, but at the cost of extremely poor risk-sharing. This poorer risk-
sharing can outweigh the greater effort, leaving the investor worse off than under the fixed fraction
contract.

Risk-sharing is also an important consideration when comparing the fixed NAV fraction to
the return-dependent NAV fraction. The latter has poorer risk sharing properties. In fact, as the
fraction paid in the good state increases, the risk-sharing associated with the payments becomes
poorer, even as the effort induced increases. So when managerial ability is low, the marginal cost
of poorer risk sharing quickly outweighs the marginal benefit of greater effort, and the resulting
improvement relative to the fixed fraction contract is small. However, when ability is high, the good
state fraction must become very large relative to the bad state fraction before the marginal cost of
poor risk-sharing dominates. Consequently, the improvement in investor utility relative to the fixed
fraction contract is large, as is the increase in the effort level.

The rest of the paper is in four sections. Section I discusses the key features of our model
and relates it to the existing literature, while the model itself is formally described in section II.
Section III presents numerical solutions obtained for the different contract structures considered, and

the last section concludes.



1. Features of the Model and Related Literature

Our model has two important features that together allow a positive economic role for the
fixed NAV fraction contract. First, investors receive information which is not contractually
verifiable about the productive behavior of fund managers. While we refer to this productive
behavior by managers as effort, it is much broader than the usual notion of effort. Decisions by the
manager regarding infrastructure, trading strategies, number of analysts are all dimensions of the
variable we are calling effort. In particular, the manager invests in human and physical capital that
he hopes will allow the fund to earn superior returns in the future. The many reports and
publications about fund management contain information about these aspects of the fund. Given the
high demand for these publications, investors must believe that they contain relevant information
for their portfolio allocations. Client visits to a mutual fund are another source of information for
investors.?

Second, the investor observes the effort level of the manager, and then decides how much
money to place in the fund based on this observation. This seems a reasonable characterization of
how investors allocate money to a fund. To the extent that the manager's productive activity is
summarized in fund publications and press reports, or is observed during a client visit, investors are

adjusting their portfolios in response to the information. Since the information is not verifiable, it

$The ability of investors to observe managertial effort can not be underestimated. Entire
periodicals (e.g. Mutual Funds) are devoted to the topic, and sell alongside statistical summaries
of realized returns. For example, an article in the Wall Street Journal in 1996 talked about a
newsletter published by Eric Kobren about particular Fidelity funds. The article discussed how
money had been flowing out of Fidelity’s Export Fund (despite good performance) in response
to a sell recommendation in the Kobren newsletter. The information in this newsletter and
investors reaction to it is an example of the mechanism that we are arguing gives the fixed
fraction fee a positive economic role.



is not feasible to write a contract which ties compensation directly to this information. But since
the investor observes the information prior to deciding her level of investment in the fund, the fixed
fraction contract is a way around this problem. By making the manager's payment proportional to
NAV, it translates the investor’s positive or negative reaction to the information into more or less
wealth for the manager. Thus, a fixed fraction of NAV can be an improvement over the optimal
return-based contract, which allows compensation to depend only on a noisy signal of managerial
effort.

While this model draws heavily on the principal-agent literature, it differs from the standard
setup in one important respect: the sequencing of choices by the principal and the agent. Where the
canonical setup has the agent as the last mover making an unobservable effort choice, our mutual
fund model has the principal moving (choosing NAV) after the agent makes an observable effort
choice. This modification delivers the strategic considerations that characterize the mutual fund
industry and drive the use of the fixed fraction contract.

While we assume that the investor can observe the manager’s effort level, in reality the
investor is likely to observe only a signal of manager effort and not effort itself. Of course, the
usefulness of the fixed fraction contract will be declining in the noisiness of this effort signal.
However, since our model shows that the fixed fraction contract can dominate the optimal return-
based contract when the investor’s signal of effort contains no noise, our results indicate that the

fixed NAV fraction contract can continue to dominate when that signal is noisy: so long as the signal
is not foo noisy.

Many reasons exist for investigating the positive economic role played by NAV as a

contracting variable in the context of the fixed fraction contract. First, the reluctance of mutual



funds to use (or regulators to allow) return-based or performance contracts is a reason. Second, the
principal-agent literature would suggest that a return-based contract is optimal in settings in which
effort is unobservable and return is the only signal of effort that the investor receives (see
Holmstrom (1979)). A third reason is the presence of channels through which the fixed fraction
contract has a negative impact on aligning incentives. In particular, NAV becomes a noisy signal
of effort to the extent that the investor’s decision depends on variables unrelated to effort. In reality,
the investor’s portfolio decision is likely to depend on income shocks, taste shocks, and the returns
on his other investments, among other things. The induced noisiness of NAV as a signal of effort
reduces its value as a contract variable.’

A number of papers have considered the fee’s role in aligning the incentives of managers
with those of investors. In particular, the extant literature argues that contract choice can help
mitigate both moral hazard and adverse selection problems. For example, Bhattacharya and
Pfleiderer (1985) and Heinkel and Stoughton (1994) show that the expected benefit from screening
out bad managers affects the optimal contract design when manager candidates privately know their
skill. Huberman and Kandel (1993) and Huddart (1995) consider how signaling considerations can
lead good managers to take on excessive risk. Admati and Pfleiderer (1997) evaluate the use and
choice of a benchmark when the manager has more information about stock returns than the
investor. Grinblatt and Titman (1989) and Starks (1987) take skill as given, and show that

asymmetric incentive fees bias the manager toward higher-variance portfolios.

® Recent empirical work indicates that fund flows are related to past fund returns (see
Chevalier and Ellison (1995) and Sirri and Tufano (1992)). It could be argued that contracts
based on NAV are thus implicitly based on fund return. However, the unanswered question,
especially given the noisy relation between fund flow and past fund return, is why contracts are
not written directly on fund return. Our paper provides at least a partial answer.
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Our paper is in the tradition of Stoughton (1993) and Starks (1987), focusing on the
manager’s incentive to allocate time and resources. But where those papers analyze managerial
effort allocations that are not observable, we concentrate instead on an effort allocation which is
observable, but not contractible and which occurs prior to the investor’s allocation of money to the
fund. Also, our paper compares contracts based on investor utility, subject to the constraint that the
manager receive her reservation utility. Thus, our paper extends the earlier work by Starks (1987)
and Stoughton (1993) that focussed on how the effort choice of the manager varies across different
contracts."

Using this basis for comparison, we also find that a return-dependent fraction of NAV can
do significantly better than a fixed fraction, but only if the manager’s opportunity set is high. At the
other extreme, the difference between the two contracts can be negligible when the opportunity set
is poor. We argued above that this result may explain the different contract choices across the hedge
and mutual fund industries. However, for the argument to go through, hedge fund managers need

to be more skilled. Since hedge funds are designed to bet on manager skill by being market neutral,
it does not seem unreasonable. In fact, Brown, Goetzmann and Ibbotson (1997) find that the average
performance of a sample of off-shore hedge funds is better than that documented for mutual funds
(see for example, Gruber (1996), Elton, Gruber, Das and Hlavka (1993), Malkiel (1995) and Brown

and Goetzmann (1995) among many others). While an extensive literature exists attempting to

19%e maximize investor utility with respect to a set of contract parameters (for a given
contract type), subject to incentive compatibility conditions and the constraint that the manager
receive her reservation utility. As a result, the investor attains some utility U,". Itis worth
noting that the contract parameters we obtain would solve the problem of maximizing manager
utility subject to incentive compatibility conditions and the constraint that the investor receive at
least U, (at least for interior solutions). Thus, the ordering of contracts that we obtain is unlikely
to be driven by our assumption that the manager has a reservation utility.
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explain the contract structure in the mutual fund industry, our paper is the first to consider why

contract structures differ across these two segments of the asset management business."!

II. The Model

There are two dates, 0 and 1, and two individuals, an investor and a manager. All wealth is
consumed at date 1. At date 0, the investor has wealth /¥, and the manager has wealth 0. The
investor’s (expected) utility function is U=E[log(W})], where W, is his date 1 wealth and E is the
expectation operator, and the manager’s utility function is U,~E[log(W,)]+log(K -e), where W, is
his date 1 wealth, e is the his effort level, and X is a constant. If the manager manages money, the
return is random, either R,=n+oor R,=n-0, where n and o are constants. Effort pays off as better
management, in that the probability of earning R is z+ze, where z is a constant. If the manager
doesn’t manage money, he can earn expected utility U" at some reservation activity. The riskfree
rate of interest which is earned by money that is not managed is set equal to 0. This setup abstracts
from risk-shifting motives for managerial choices which are important (see for example, Starks
(1987), Grinblatt and Titman (1989) and Brown, Harlow and Starks (1996)) but not the focus of the

current paper.'?

"Recent work by Goetzmann, Ingersoll and Ross (1997) examines the effect of “high
water mark” provisions in hedge fund contracts, whereby previous years’ losses have to be made
up before the performance component of compensation kicks in. Also, work independent of ours
by Nanda, Narayanan and Warther (1997) considers why mutual funds are structured as open- or
closed-end and why some open-end funds charge loads.

121t is worth noting that this setup satisfies the monotone likelihood ratio property
(MLRP) and the convexity of distribution function condition (CDFC) (see Hart and Holmstrom
(1987) for definitions of these properties). In the canonical principal-agent problem, this setup
has desirable properties. In particular, MLRP ensures that the optimal payment is monotonic in
the signal (Milgrom (1981)) and MLRP and CDFC together ensure that the manager's incentive

10



The model’s investor can be regarded as the representative investor in the fund. If there is
more than one investor but they all have log utility and their starting wealths add to 7, then the total
amount those investors would place with the fund equals the amount that this representative investor
would place with the fund."” The manager is assumed to be risk- averse since canonical principal-
agent problems with risk-neutral agents obtain the first-best. The utility specification for effort has
the desirable property that the marginal disutility from effort is increasing in effort. Note that the
marginal disutility of effort at a given effort level is decreasing in X and that the marginal disutility
of effort approaches = as e approaches K. Since e < 0.5/z is required for the probability of each
state to be strictly positive, we always take K<0.5/z.

The chronology of choices goes like this. First, the investor and manager commit to the
contract. Then the manager chooses effort level e, which is observable to the investor. Next the
investor allocates a fraction a of his wealth to the fund, and does not have the option to renegotiate
the contract. The manager invests the investor’s allocation, and then date 0 finally ends. At date
1, the return is realized, the manéger gets his compensation and the investor gets what is left. As
discussed above, this chronology implies that the manager’s effdrt level e is determined before the
investor chooses how much to invest in the fund.

A number of contract structures are considered:

1) RET (return-based) contract: the manager receives H (expressed as a fraction of Wy ) if the

return is R, and L (expressed as a fraction of ;) if it is R;.

constraint can be replaced with a first order condition (Rogerson (1985)). The expectation,
which is confirmed by our numerical solutions, is that our problem is similarly well behaved.

13For this result to hold for the return-based fees, the fee has to be split between the
investors in proportion to their starting wealths.
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2)

3)

4)

5)

FOF (fixed fraction of NAV at the start) contract: the manager receives ¢ of the money
allocated to the fund at time 0.

FOE (fixed fraction of NAV at the end) contract: the manager receives ¢ of the money in
the fund at time 1.

FOP (return-dependent fraction of NAV at the end) contract: the manager receives a
fraction of the money in the fund at time 1 where the fraction depends on the state; the
manager receives fraction & if the return is R and &; if it is R;.

RFE (fixed fraction of NAV at the end plus a return-dependent fee) contract: the manager
receives &,of the money in the fund at time 1 plus Hy (expressed as a fraction of ;) if the

return is Ry, and L, (expressed as a fraction of W, ) if it is R;.

Only the FOE and FOP contracts are available in the mutual fund industry and in use by hedge

funds. By examining the other three contracts, we will gain a greater insight into why these are the

only two contracts in use. Since the RET contract is the optimal contract when managerial effort

is unobservable, it is a natural benchmark to use when assessing the value of NAV as a contracting

variable in the current setting.'

The comparison between the FOF(J) and RET(#,L) contracts illustrates the benefits of

contracting on funds invested, relative to contracting on return. The FOF( ) contract renumerates

the manager solely on the funds invested at time 0 while the RET(#], L) contract allows the payment

to the manager to depend on the return on the fund but not the amount invested with the manager.

14See Holmstrom (1979) for a discussion as to why NAV is not valuable as a contracting

variable when effort is unobservable. Put simply, this information structure implies that NAV 1s
unrelated to effort, and so NAV is of no value as a contracting variable.
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Note that the FOF() contract has undesirable risk-sharing properties 1relafive to the RET(H,L)
contract. The intuition is that both the manager and the investor are risk-averse in this model and
yet the FOF(J) contract pays the manager a fixed amount irrespective of whether R, or R, is
realized.

This feature is avoided by letting the fee be a fraction of funds under management at the end
of the period, as in the FOE() contract. Allowing the fee to be a fraction of the funds invested at
the end of the period also accords better with industry practice (see Golec (1987), Grinblatt and
Titman (1989), and Admati and Pfleiderer (1997)). However, this formulation allows compénsation
to depend both on the return and on 2, making it difficult to assess the marginal value of zas a
contracting variable. This argument provides a justification for comparing the RET(,L) contract
to the FOF(J) contract to assess this marginal value of . The benefits from contracting on a fixed
fraction of NAV at the end rather than at the start can be assessed by comparing the FOE(¢) contract
to the FOF(J) contract.

The incremental benefit from using a fraction of NAV that is return-dependent rather than
fixed can be assessed by comparing the FOP(&, &) contract to the FOE({) contract. Allowing the
fraction to be higher in the good state than the bad is likely to improve managerial incentives to
expend effort, but at the cost of poorer risk-sharing. The asymmetry that this FOP contract captures
is analogous to contracts in the hedge fund industry where the manager receives a fixed fraction plus
a fraction of any profit in excess of an appropriate benchmark. Here, the appropriate benchmark is
the riskfree rate which is 0. So the FOP(£,,£,) can be interpreted as paying the manager a base fee
of & of funds invested at time 1 and a fraction (&, - )/ py of any profits in excess of the benchmark,

where p, = R_/(1+R,) for s=H or L. This FOP contract can also be obtained using a fixed fraction
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of NAV plus a “fulcrum” fee. In particular, an FOP(£; £;) contract can be obtained using a base fee
of (py & - PL &) (Py - py) of NAV at time 1 plus a “fulcrum” fee of (£, -£,)/ (py - p) of
profits/losses relative to the riskless fate (so the “fulcrum” fee is negative when the fund return is
negative).

Finally, an interesting question is the nature of the benefits associated with having a fraction
of funds contract together with a return-based fee. One issue is the magnitude of these benefits
relative to having either a fraction of funds contract alone or a return-based fee alone. This
magnitude can be assessed by comparing the RFE(&,Hj, L) contract to the better of the FOE(¢) and
the RET(H,L) contracts. A second issue is the ability of a contract that is a return-dependent
fraction of NAV to capture the benefits of a contract that has both a NAV-based and a return-based
fee. This magnitude can be assessed by comparing the FOP(&,;, &) contract to the RFE($z,Hp Ly)
contract.

The z variable affects the opportunity set offered by the fund and the precision of fund return
as a signal of the manager’s effort e. As z increases with 77 held fixed, the opportunity set improves
since, for a given e, the probability of the high return R, increases. The precision of the return as
a signal of e is also increasing as z increases. More formally, with a uniform prior and e*>e’, the
posterior likelihood ratio prob[e*|R )/proble’|R] is increasing in z for s=H and is decreasing in z
for s=L. Thus, the FOF contract is likely to be better than RET contract for low values of z when
return is a very noisy signal of e.

When assessing a particular contract, contract parameters are chosen to maximize investor

14



utility while insuring that the manager receives her reservation utility U"."”” We also characterize
the first-best (1ST) solution for comparison purposes. Since the relative performance of the RET
contract and the fixed fraction contracts is likely to depend on z, we examine the investor’s utility
from the various contracts as z is varied (holding the other parameters of the opportunity set fixed).
As mentioned above, one drawback of this comparative static is that variation in z also affects the
opportunity set. To ensure this effect is not driving our RET-FOF comparison, we also allow the
parameter 7 to change as z is varied, so that the investor’s utility from the 1ST solution stays
constant.

Anecdotal evidence together with recent work by Brown and Goetzmann (1997) suggests
that hedge fund managers are more skilled than mutual fund managers. An interesting question is
whether the relative attractiveness of the FOP(£, &) contract to the FOE() contract varies with the
attractiveness of the opportunity set. Allowing z to vary while holding 7 fixed is one way to do vary
the opportunity set, but the concern is the confounding effects of the associated variation in signal
precision. A more direct way is to allow 7 to vary while holding z fixed and a third example is
calculated that has this feature.

The next five subsections and the appendix describes each of the five contracts. For each
contract, we derive the first-order conditions associated with the optimization problemé facing the

two agents. The algorithm for numerically obtaining the parameters of each contract so as to

15Our paper is closest in spirit to the work of Stoughton (1993) who examines the ability
of different contract structures to extract effort. In his framework, the manager must receive at
least her reservation utility which is held fixed across contracts. We adopt the same assumption.
In contrast, Starks (1987) compares a symmetric performance contract to a bonus contract,
holding the contract parameters fixed. This difference may explain why some of her results
concerning the effects of fee asymmetries on effort production differ from ours.
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maximize investor utility subject to the manager receiving her reservation utility is as follows.
Letting ¢ denote the contract parameters, we solve for the optimal ¢ for a contract in three steps: (1)
determine the @ which is optimal for the investor for a given set of contract parameters ¢ and e, (2)
calculate the e which is optimal for the manager given ¢ and the impact of e on the investor’s choice
of « ; this gives us U,(c) and U,(c), the utilities that result from a given ¢, and (3) identify the ¢
which maximizes Uyc) given that U,(c)>U".'* The last two subsections solve the first-best problem

and the optimal risk-sharing problem for a given e and a.

Contract on realized returns

With the RET contract, the contract parameters are H and L, and the utility functions are

U,(eH.L)=(:, +2¢) 10g[HW,] + (=) log[LWy] +loglK ] M
and
Ule.. HL) = (%+ze) log[W, (@R, +1-H)] + (%—ze) log[W,(eR, +1-L)] @)

With this contract, the & chosen by investor in response to the manager’s choice of e does not affect
the manager’s utility. The manager just chooses the e which maximizes U,, given H and L, which
is

R S
el = K Zlog(HIL) @)

Solving for the investor’s optimal « given H, L and e, we get

'*Various safeguards are taken to ensure that the solution obtained is feasible, and that the

incentive compatibility conditions of both the manager and investor are being satisfied by the
solution.
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1

o*-n?

a(H,Le) = [n + 20+RH - RL) z e = 0.5(R.H + R,L) ] @)

which is linearine. So now U, and U,,can be expressed in terms of A and L using (3) and (4) (see
the appendix). For a given set of parameters, we find the // and L which maximize U, (H,L) subject

to U (HL)=U".

Fixed Fraction of NAV at Time 0 Contract

With this FOF contract, the contract parameter is J, and the utility functions are

U, [e,0,8) = log[daW,] + log[K-€] (5)
and
U,(e,a,5)=(%+ze) log[W(a(R,-0)+1)] + (%—ze) log[Wy(e(R,~8)+1)] (6)

We solve for the optimal & using the three steps described above: (1) determine the « which is
optimal for the investor for given values of & and e, (2) calculate the e which is optimal for the
manager given dand taking into account the & it induces; this gives us Uy ¢) and U,(), the utilities

that result from a given &, and (3) identify the J which maximizes U;(¢) subject to Up( 0:U".

The @ which maximizes U, given & and e works out to be

2z0e-0+1
a(d,e) = 7
?—(5-1) ™
and the e which maximizes U,,given dand e(de) is
K &-n
e(0) = — +
=3 " ®)

Expressions for U,(¢) and U,(¢) are contained in the appendix.
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Fixed Fraction of NAV at Time 1 Contract

With this FOE contract, the contract parameter is £, and the utility functions are

U, fe0,f) = (-;—+ze) log[W,e(1+R)E] + (—é——ze) log[Wya(1+R)E] + log[K-e] 9)
and
UI(e,a,E)=(—;—+ze) log[Wy(aP (E)+1)] + (—;--ze) log[W, (P, (E)+1)] (10)

where P(§=R,(1-§-¢ and P,({=R,(I-£)-£& We solve for the optimal £ using the three steps
described above.

The « which maximizes U, given £ and e works out to be

_ P ®+2 01 PO-PE)
2P ()P, (®) 2P(E)P,(8)

a(E.e) z e = a(f) + b(e (11)

(so again «is linear in e). The e which maximizes U,, given {'and &, £e) in (11) satisfies a quadratic

equation given in the appendix.

Return-dependant Fraction of NAV at Time 1 Contract

With this FOP contract, the contract parameters are (£, £,), and the utility functions are

U, fe.Esrf) = (5 +76) 10gIF,al1+RyJE,) + (52e) logloe(1+R)E) + loglK—¢]  (12)

and

Ue.E) = (% +z¢) log[W(aP(E)+1)] + (%-ze) log[W,(aP,(E,)+1)] 13)
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where P,(.) and P,(.) are defined as above. We solve for the optimal (£, £,) using the three steps

described above.

The @ which maximizes U, given £ and e works out to be

a(EE,0) = PP Pl P&
i 2P ENPE)  2PyEP,E)
which is similar to the solution for the FOE problem. The e which maximizes U, given ({3 ¢,) and

e = a(EH,EL)+b(EH,EL)e (14)

a (&, &,e) in (14) satisfies a quadratic equation given in the appendix.

Fixed Fraction of NAV at Time I plus Return-based Fee Contract
With this RFE contract, the contract parameters are the triplet (&, HyLg), and the utility

functions are

Upde.0lpHpLp)

_ (%+ze) log[, {o(1+R,)Ex+Hy}] + (—;——ze) log[W,{e(1 4R JEg+Ly}] + loglK-e] (1)

and

U,(e,a,aR,HR,LR>=(%+ze> log[¥, (0P (E) +1-H,}] + (% _ze) log[W,{aP,E)+1-L}]  (16)

where P,(.) and P,(.) are defined as above. We solve for the optimal triplet ({, HpLp) using the
three steps described above.

The @ which maximizes U, given (&, HpLg) and e works out to be

w(E H Le) = P& -Lp) P G -Hp] PG -Lp-PER(L-Hp
R4 R R 2P (EJP (ED 2P (EJP, (&R an
= a(ER,HR,LR) + b(gR"HR’LR)e

(so again s linear in ). The e which maximizes U,, given &, Hp Ly and @ (& HpLge) in (17)

satisfies an equation given in the appendix.
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First Best Problem
The first best solution pretends that the investor and manager can contract on the manager’s

effort, so the investor’s problem is to choose the H; L, @ and e which maximize

(—;—+ze) log[W,(R,+1-H,)] + (—;——ze) log[W,(R, +1-L,)] 18)
subject to
(—;-+ze) log[W H|] + (-;-—ze) log[W,L,]+log[K-e] > U~ (19)

The numerical solution technique for this problem is outlined in the appendix.

Optimal Risk-sharing

The risk-sharing properties of a given contract can be assessed by comparing the payments
to the manager under the contract to the optimal risk-sharing payments given the « and e generated
by the contract. This problem, which has a closed form solution, can be stated as follows. Given

2 and e, choose Hy, and L, to maximize

(%+ze) log[W (eR,+1-H))] + (%—ze) log[W(aR, +1-L))] (20)
subject to
(%+ze) log[W,H,] + (%-ze) log[W,L ] +log[K-¢] > U" @1

The solution to this optimization is given by:

HE  1+oR,

LRS ) 1+aR, (22)
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and

(0.5+ze)
prs - explU7] [1+°‘RH (23)
w(K-e) [1+aRL

For the first best problem, Hyg and Lys equal H), and ;. Forall other problems, the actual
payments to the manager in each state are likely to deviate from the optimal risk-sharing payments.
Comparing the two is of interest since it allows us to assess the utility cost of suboptimal
risk-sharing induced by a given contract. In fact, investor utility from a contract can be decomposed
into the attainable utility given the choice of @ and e induced by the contract less the cost of any

suboptimal risk-sharing associated with the actual payments needed to induce those choices.

I11. Results
The optimal contracts depend on the choice of parameter vector p=(W, K, 0 nzU).

Although it has six parameters, the model is invariant to scale. In particular, {W,, z, g, n, K, U’} and
(cW,, z/c, 0, 1, cK, U'+ 2 log(c)} give rise to equivalent problems for all six contracts. 17 This
invariance follows from using log utility. Thus, without loss of generality, K is fixed at 0.95
throughout. Two scenarios are considered, whose parameters are chosen to capture, as much as
possible, features of the U.S. mutual fund industry. In particular, (W,, K, g U’) is set equal to
(10000, 0.95, 0.25, 5). The value of 0.25 for the volatility parameter was chosen to match the annual
volatility of the U.S. stock market (see, for example, Fama and French (1989)). Scenario 2
increases the scale of the investor relative to that in Scenario 1 by increasing W, to 20000.

The parameters of Scenario 1 imply that the manager would need to receive a certain dollar

'"The proof is available from the authors on request.
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income of $156 to obtain her reservation utility and not exert any effort. While this amount seems
too low, we can scale the problem so that this certainty equivalent is a more plausible quantity. For
example, if we scale by 50, this quantity becomes $7800 which seems more reasonable. With this
scaling, the wealth of the representative investor becomes $500000 in Scenario 1 and $1 million in
Scenario 2, a range which also seems plausible.

Three numerical exercises are performed for each scenario. The first fixes 77 at -0.01 and
allows z to vary from 0.4 to 0.5125. Since z affects the noisiness of return as a signal of effort, this
experiment assess the relative performance of the different contracts as return noisiness changes.
However, the opportunity improves as z increases. To assess whether this increasing attractiveness
is driving results obtained in the first exercise, a second exercise is performed that allows z to vary
from 0.4 to 0.5125, but also allows 7 to vary in such a way that the first-best investor utility stays
constant (when z=0.4, 7= 0). We are also interested in how an improved opportunity set impacts
comparisons across the different contracts. To assess this, the third exercise fixes z at 0.4 and allows
n to vary from -0.01 to 0.05.

Each figure reports results for a given scenario and numerical exercise, across one of two sets
of four contracts: either 1ST, RET, FOF and FOE or 1ST, FOE, FOP and RFE. Results in each
figure are organized into 9 panels. Panel A examines certainty equivalent dollar utilities associated
with each contract, expressed as a fraction of W,. Panel B also plots certainty equivalent dollar
utilities for each contract, but assuming optimal risk-sharing given the & and e that the contract
induces. Panel C reports the difference between the dollar utilities from the first two panels, which
can be interpreted as the cost of suboptimal risk-sharing under each contract. Panel D and E present

« and e respectively for each contract while the expected payment to the manager as a fraction of
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W, is plotted in Panel F. Panel G shows the ratio of the manager’s payment in the L state to her
payment in the high state while Panel H reports the same ratio but for the optimal risk-sharing
payments. Panel I plots the difference between the previous two panels and provides a criteria for

assessing the direction as well as the magnitude of deviations from optimal risk shifting.

A. Establishing a Role for NAV as a Contracting Variable.

Figure 1 reports results for Scenario 1 with z allowed to vary and 7 fixed, and focuses on
four contracts: 1ST, RET, FOF and FOE. A key result of Figure 1's Panel A is that the RET
contract is dominated by the FOF contract, especially for low values of z. Since return becomes a
noisier signal of effort as z decreases, Figure 1 illustrates that a fee based on NAV can add value
when return is a noisy signal of effort. In fact, for the parameter values of Scenario 1, the RET
contract fails to deliver sufficient utility when z is low for the investor to prefer investing in the fund
over keeping W,."®

Notice that the difference between the two contracts declines as z increases. This result is
consistent with the intuition that the FOF contract is less attractive relative to the RET contract
when retum is a precise signal of effort. However, it is not a clean test of this intuition since the
opportunity set also increases with z. The results in Figure 2 address this concern by examining
Scenario 1 with z varying but 7 also varying to keep first-best U, constant. Panel A of Figure 2 tells
the same story as Figure 1 with the improvement of the FOF contract over the RET contract

declining as z increases. However, the FOF contract always does better than the RET contract in

'* When the investor prefers to keep ,, the manager would realize this and so would
decide not to manage money. Instead, she would undertake her next best activity and receive her
reservation level of utility.
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Figure 2 irrespective of z.

Focusing on the case with a constant opportunity set (Figure 2), Panel E shows that the level
of e induced by the FOF is lower than for the RET contract, for high values of z.  So, for these
values of z, the FOF contract induces less effort than the RET contract but gives the investor higher
utility. Thus, it can be dangerous to evaluate contracts solely on the basis of the level of e induced.
The likely reason for e giving a different ranking is differential risk sharing across the two contracts,
which is confirmed by Panels B and C. Panel C shows that the utility cost of suboptimal risk-
sharing is more than 5% for the RET contract, irrespective of the value of z, while this cost is less
than 0.3% for the FOF contract. In fact, Panel B shows that optimal risk-sharing would result in
the (a, e) pair induced by the RET contract giving the investor higher utility than the pair induced
by the FOF contract, for high values of z.

So the RET contract needs to offer payments with poor risk-sharing properties to induce
managerial effort. An interesting question is whether the investor or the manager is being forced
to bear excessive risk. Panels G to I show that the ratio of actual payments in the L and H states
under the RET contract is much lower than for the optimal payments. In particular, Panel I shows
that the actual payment ratio is always less than the optimal payment ratio by more than 0.2. Thus,
the manager is being forced to bear excessive risk, which is part of the reason why her expected
payment is so high under the RET contract (see Panel F). In contrast, the actual payments ratio is
too high for the FOF contract, and the magnitude of the difference is always more than 0.5, more
than the difference for the RET contract (see Panel I). Despite this larger difference for the FOF
contract, we have already noted that suboptimal risk-sharing induces a much smaller utility cost than

the RET contract. The excessive risk-bearing by the manager under the RET contract has such a
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Jarge utility cost effect because of the severe disutility that she gets from the low payoff in the bad
state.
Finally, the RET contract induces a larger « than the FOF contract especially at high values

of z (see Panel D). However, the RET level of «is still lower than the 1ST level.

B. Benefits of using NAV at the End rather than at the Star.

The second question is the potential for better risk sharing by using the FOE contract (based
on NAV at the end) rather than the FOF contract. Panel A of Figures 1 and 2 confirm this
conjecture by showing that there is a gain from using the FOE contract. However, the gain is quite
modest in magnitude, typically less than 1% of W

In fact, Panel B of those figures show that the (&, e) pair from the FOE contract continues
to give higher utility than the FOF pair ,when optimal risk-sharing payments are made under both
contracts. Further, while the utility cost of suboptimal risk-sharing is higher for FOE than FOF
(see Panel C), both are less than 0.3%. Thus, the FOE contract does better in part because it induces
greater e and greater @, which is confirmed by Panels D and E of the two figures. So our results
suggest that fees in the mutual fund industry are a fixed fraction of NAV at the end of the period

rather than the start for risk-sharing reasons, and to induce more effort by the manager.

C. Why Performance Fees are Used in the Hedge Fund Industry but not the Mutual Fund Industry?
An interesting comparison is between the FOE and FOP contracts. Since the FOE contract

is an FOP contract with the same fraction in each return state, we know that the FOP contract does

better. The questions of interest are the magnitude of the improvement, and whether the
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improvement varies with the quality of the opportunity set. An assessment can be made by looking
at what happens as 7 varies, holding z fixed.  As 7 increases, so does the opportunity set, but
without any direct impact on the precision of return as a signal of effort. Figure 3 reports results for
Scenario 1 as 7 is varied for the four contracts, 1ST, FOE, FOP and RFE. Panel A shows that the
" investor’s utility from the two contracts ( FOE and FOP) is similar when z is low. However, as 7
increases, the relative improvement of the FOP contract also increases.  In fact, a roughly 1%
improvement in certainty equivalent investor wealth (as a fraction of ) for 7=-0.01 becomes an
improvement of approximately 9% of W, when 7 increases to 0.05. Thus, the benefits from using
a return-dependent fraction of NAV rather than a fixed fraction seem to be increasing in 77.

Now differences in the opportunity set available to the manager is another way of saying
differences in managerial skill. Thus, performance contracts (which allow return-dependent
fractions of NAV) are likely to be more prevalent when managers are more skilled. Since hedge
fund managers are typically more skilled than mutual fund managers, our model is consistent with
both the widespread use of asymmetric performance contracts in the hedge fund industry, and the
minimal use of “fulcrum” performance fees in the mutual fund industry.

So the next question is to understand why allowing the NAV fraction to be return-dependent
is more valuable when the opportunity set is good. The key is in Panel E of Figure 3 which graphs
the effort choice of the manager under the two different contracts. Put simply, the FOP contract is
relatively better than the FOE contract at extracting effort from the manager. This is true
irrespective of the quality of the opportunity set, since the effort choice is always higher under the
FOP contract (Panel E of Figure 3). At the same time, the FOP contract has poorer risk-sharing

properties than the FOE contract (see Panel C of Figure 3), with the manager being forced to bear
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excessive risk (see Panel I). As the fraction paid in the good state increases, the risk-sharing
associated with the payments becomes poorer, even as the effort induced increases.

Extracting effort is more valuable when the opportunity set is of high quality. So when
managerial ability is low, the marginal cost of poorer risk sharing quickly outweighs the marginal
benefit of greater effort, and the resulting improvement relative to the FOE contract is small.
However, when ability is high, the good state fraction must become very large relative to the bad
state fraction before the marginal cost of poor risk-sharing dominates. Consequently, the
improvement in investor utility relative to the FOE contract is large, as is the increase in the effort
level. So the greatest improvement in investor utility going from the FOE to the FOP contract
‘occurs when the opportunity is high, because that is when effort is most productive.

Consistent with this argument, Panel C shows that the utility cost of suboptimal risk-sharing
under the FOP contract is increasing in the quality of the opportunity set (7). Further, Panel G
shows that the extent of the asymmetry in the actual payments under the FOP contract is also
increasing in 7. While it is difficult to make statements about nonlinear payment schedules based
on a two state model, the large difference in the FOP fraction that we observe for high 7 is likely

to translate into the asymmetric (rather than “fulcrum”) performance fees that we observe in the

hedge fund industry.

D. More Complicated Contracts.
Finally, it is interesting to consider whether a more complicated contract can do substantially
better than the return-dependent fraction of NAV (the FOP contract). The contract that we consider

pays a fee that is a fixed fraction of NAV at the end of the period, together with a payment that
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depends solely on the fund’s return (the RFE contract). Panel A of Figure 3 considers the certainty
equivalents for the two contracts in Scenario 1 as 77 is varied. The RFE contract always does
substantially better, especially when 7 is high. This irnproverﬁent seems to be driven by the ability
of the RFE contract to extract an effort leizel closer to the first-best effort level (see Panel E of
Figure 3).

Panel C shows that RFE’s risk-sharing properties in utility cost terms are comparable to the
FOP contract. However, as 7 increases, the cost of suboptimal risk-sharing is increasingly higher
for the FOP contract than the RFE contract. So another reason for the RFE contract being more

attractive for high 7 is better risk-sharing.

E. Robustness Checks and Comparative Statics.

Figures 4 and 5 assess whether the results described above are robust to increasing the scale
of the investor. In particular, Figure 4 is analogous to Figure 2 (i.e., z increasing but 7 also changing
to keep U, fixed) but for Scenario 2 which has W, increased to 20000. Similarly, Figure 5 is the
Scenario 2 analog to Figure 3 with 7 varying but z fixed. The results in Figures 4 and 5 are
qualitatively similar to those in Figures 1 to 3 and the broadbrush conclusions of the previous
subsections continue to hold. The only change of note is that the relative attractiveness of the RET
contract increases. While still giving lower investor utility for low values of z, the RET contract
is actually better than the FOF and FOE contracts fér high z (see Panel A of Figure 4, and contrast
Panel A of Figure 2). Panels C of Figures 2 and 4 reveal that the utility cost of sub-optimal risk-
sharing is similar across the two Scenarios for the RET contract. However, Panels E of those two

figures reveals that the RET contract is much better at extracting effort in Scenario 2 than 1.
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Another question is the impact of changing the volatility of the risky asset return available
to the manager. We increased o from 0.25 to 0.5 (unreported) and found very little change in the
nature of comparisons between the contracts. Of course, the amount invested in the fund by the
investor (@) is much smaller. But the exact impact really depends on whether 7 is varying in

proportion with o or is fixed."”

IV. Conclusion

This paper considers the economic role of fees in aligning the incentives of money managers
with those of investors. We examine a simple model in which manager effort (or investment in
human and physical capital) is observed by the investor prior to her investment decision, but is not
verifiable. This setup creates a positive economic role for net asset value (NAV) as a contracting
variable. We consider several contract structures: in particular, contracts that are a fixed fraction
of NAYV at the start and end of the period, a contract that is a return-dependent fraction of NAV, the
optimal return based contract, and a contract that is a fixed fraction of NAV with an adjustment that
depends on fund return. Only the first two contacts, which have fees that are proportional to NAYV,
are available to the mutual fund industry and in use by hedge funds.

We find that a fixed fraction of NAV does better than the optimal return-based contract,
especially when fund return is a noisy signal of effort. This establishes a role for contracts based

on NAV and thus provides an explanation for their widespread use in both the mutual and hedge

1 If nis varying in proportion with g, then the 1ST, RET, FOF and FOP contracts
provide the same investor utility but with & varying inversely with 77and o. The same is not true
of the FOE and RFE contracts since the manager receives a fixed fraction of the amount
invested with the fund, whose ratio changes with 7 and o irrespective of 2. When 7 is held
fixed, the effect on a and investor utility is likely to depend on whether 7 is positive or negative.
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fund industries. Second, a fixed ﬁaption of NAV at the end of the period does better than one based
on NAV at the start, due to better risk sharing, and better effort inducement.

Third, allowing the fraction of NAV to vary with fund return induces the greatest
improvement in investor utility when the opportunity set of the manager is good. In fact, when the
opportunity set is poor, the improvement can be negligible. This type of contract can be
implemented using a fixed fraction of NAV together with a performance fee. Since hedge fund
managers are typically the better fund managers, our model provides an explanation for why
“fulcrum” performance fees are not used in the mutual fund industry, but asymmetric performance
fees are the dominant choice in the hedge fund industry.

Finally, we find that a contract based on return, together with a fixed fraction of NAV, can
significantly improve investor utility relative to a return-dependent fraction of NAV. The implication
is that less regulation by the SEC of fee structures in the mutual fund industry may make that
industry even more attractive. At the same time, our other results suggest that the rapid growth in
the mutual fund industry, in the face of severe restrictions on fee structures, may be due to NAV’s
ability as a contracting variable to address important agency problems.

Two extensions of our work would be interesting. First, allowing for multiple return states
would allow a menu of non-linear functions of NAV to be analyzed. This exercise is particularly
interesting for high ability managers, where non-linearities are likely to have a big impact. Second,
extending the analysis to multiple periods would be of interest. Both these extensions are left to

future research.
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Appendix
Contract on realized returns
Given the expressions for the manager’s optimal e and the investor’s optimal &, (3) and (4),

we can solve for the utilities in terms of H and L:

U HL) = % (log[HLW,]) + (2K) log[H/L] - log[log[H/L]] - log[z] - 1 24)
and
1 11 1
H,L)=log[W (20+R,H-R + (=+zK — (= - +
UREL) =log[ W20+ RH-RyL] + (5 +2K=53 [H/L]) ol —RL(Z log(H/L))]
(5 2K+ —m) loBl = 1 *
2 [H/L] %1%, 2 s D)

Fraction of Funds at Time 0 Contract
From expressions (7) and (8), we can calculate the a that will be chosen given J, since we

know the e that will be chosen:

_ 2z0K-(6-1)
5) = L2270
TR =
Then we can calculate U,(0) and U/(§):

U, (5)=log[ Wb ] + 2 log[2K 8]

=10 + (0] oz+n-
l s 820 (62-(8-1)%) s N @7
and
l+é+6 -n 1,0(05+zK)., 1 _zK_8-1 1 o(os zK)

U,(ﬁ)( 5 )1 g7y ( _5-71 )] (2 5 40)1 [W)( ——)] (28)
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Fraction of Funds at Time I Contract

The e which maximizes U,, given ¢ and a(£e) in (11) satisfies the following quadratic

equation:
Ae?+ 2+(a_(£2—K)A) e+ (@—K-@.KA) =0 29
( b(E) bE)  bE) 29)
' 1+R
where A = z In] 7 RH]. We take the solution for e to this equation that maximizes U, and then
+

L
can calculate the a that will be chosen given ¢ and this e. Next we can calculate U, (4 and Uyé).

Finally, we identify with a computer the set of £ values which sets U, (£ =U", and take the one that

maximizes U,(¢).

Asymmetric Fraction of Funds at Time 1 Contract
The e which maximizes U,, given (&, ¢,) and @ (&, 4, e) in (14) satisfies the following

quadratic equation:

ot .E,) aCoE)  aC,ky)
A2+2+ H’L__A + H’L_K_ H’LKA:O
o @ N G o e )™ 30)
where A = z ln[(lLH)EH].
(1+R ),

We take the solution for e to this equation that maximizes U, , and then can calculate the &
that will be chosen given (£, ¢) and this e. Next we can calculate U, (¢, £,) and U, (£, £). Finally,
we identify with a computer the set of (&, £,) values which sets U,, (&, £)=U", and take the one that

maximizes U, (&, £).

Fraction of Funds at Time I plus Return-based Fee Contract



The e which maximizes U, given &, Hp L, and @ (& HyLge) in (17) satisfies the following

equation:
o(1+R ) +Hy [05+ze)1+Ry)  (05-ze)1+R)| 1
1 +b + -
z log[ ol +RL)ER 'L, ] (ER>HR’LR) & la(l +RH)€R +H, a(1+R)E +L, K-e (31)
=0

We take the solution for e to this equation that maximizes U, , and then can calculate the a that will
be chosen given (&, HyLjy) and this e. Next we can calculate U (& H L kand U (£ ,:H Lk )
Finally, we identify numerically the set of (£, HLg) values which sets U,, (& HpLy) = U, and

take the one that maximizes U, (&, HyLg).

First Best Problem
The first-order conditions for the first-best problem of maximizing ? subject to ? ,rearrange

into one equation with one unknown:

H
1
oR, (32)

. (%-F(a)) log[1+aR,] + (%+F(a)) log[1+aR,]

1+aR
+

W .
U*=log[-—9] + 2log[zK-F(a)] + log[log[1
z

where F(a) = (A1/-0)+n)/o. We solve numerically for a, plug the solution into the other first-
order conditions to find e, H, and L,, then calculate the U, it delivers. The equation has multiple

solutions; we choose the one with the highest U,.

35
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Figure 1. Scenario 1 with (W,, K, 0, U") set to (10000, 0.95, 0.25, 5). Numerical solution exercise that holds
7 fixed at -0.1 and varies z from 0.4 to 0.475. Comparison of 4 contracts, 1ST, RET, FOF and FOE which are
described in Section II.
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Figure 1 (cont). Scenario 1 with (W,, K, o, U") set to (10000, 0.95, 0.25, 5). Numerical solution exercise that
holds 1 fixed at -0.1 and varies z from 0.4 to 0.475. Comparison of 4 contracts, 1ST, RET, FOF and FOE which
are described in Section II.
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Figure 2. Scenariol with (W,, K, o, U") set to (10000, 0.95, 0.25, 5). Numerical solution exercise that holds
U, fixed and allows ) to vary as z varies from 0.4 to 0.5125. Comparison of 4 contracts, 1ST, RET, FOF and
FOE which are described in Section II.
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Figure 2 (cont). Scenariol with (W,, K, o, U’) set to (10000, 0.95, 0.25, 5). Numerical solution exercise that
holds U, fixed and allows 1 to vary as z varies from 0.4 to 0.5125. Comparison of 4 contracts, 1ST, RET, FOF
and FOE which are described in Section II. ,
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Figure 3. Scenariol with (W,, K, o, U") set to (10000, 0.95, 0.25, 5). Numerical solution exercise that holds
z fixed at 0.4 and allows n to vary from -0.01 to 0.05. Comparison of 4 contracts, 1ST, FOE, FOP and RFE
which are described in Section II.
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Figure 3 (cont). Scenariol with (W,, K, 0, U") set to (10000, 0.95, 0.25, 5). Numerical solution exercise that
holds z fixed at 0.4 and allows 1 to vary from -0.01 to 0.05. Comparison of 4 contracts, 1ST, FOE, FOP and
RFE which are described in Section II.
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Figure 4. Scenario 2 with (W, K, 0, U") set to (20000, 0.95, 0.25, 5). Numerical solution exercise that holds
U, fixed and allows 7 to vary as z varies from 0.4 to 0.5125. Comparison of 4 contracts, 1ST, RET, FOF and
FOE which are described in Section II.
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Figure 4 (cont). Scenario 2 with (W, K, o, U") set to (20000, 0.95, 0.25, 5). Numerical solution exercise that
holds U, fixed and allows 1) to vary as z varies from 0.4 to 0.5125. Comparison of 4 contracts, 1ST, RET, FOF
and FOE which are described in Section II.
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Figure 5. Scenario2 with (W,, K, o, U’) set to (20000, 0.95, 0.25, 5). Numerical solution exercise that holds
z fixed at 0.4 and allows 7 to vary from -0.01 to 0.05. Comparison of 4 contracts, 1ST, FOE, FOP and RFE
which are described in Section II.
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Figure 5 (cont). Scenario2 with (W, X, ¢, U") set to (20000, 0.95, 0.25, 5). Numerical solution exercise that
holds z fixed at 0.4 and allows 7 to vary from -0.01 to 0.05. Comparison of 4 contracts, 15T, FOE, FOP and
RFE which are described in Section II.



