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Abstract

In this paper, we derive an equilibrium in which some investors
buy call/put options on the market portfolio while others sell them.
Since investors are assumed to have similar risk-averse preferences,
the demand for these contracts is not explained by differences in the
shape of utility functions. Rather, it is the degree to which agents
face other, non-hedgeable, background risks that determines their risk-
taking behavior in the model. We show that investors with low or no
background risk have a concave sharing rule, i.e., they sell options on
the market portfolio, whereas investors with high background risk have
a convex sharing rule and buy these options.

» Journal of Economic Literature Classification Numbers:
D52, D81, G11, G13”



1 Introduction

The spectacular growth in the use of derivatives to manage risks has been
one of the most significant recent developments in the financial markets. In
contrast to the widespread use and importance of options as well as the vast
academic and practitioner literature on option pricing, research explaining
the motivation for the use of options is quite sparse.! In this paper we
consider the demand for options on the market portfolio and provide a new
explanation for option supply and demand. Our model is based on the
assumption that agents in the economy face non-hedgeable background risks.
These background risks which could, for example, be associated with labor
income or holdings of non-marketable assets, are non- insurable. To this
extent, therefore, markets are incomplete in our model. Agents faced with
background risks respond by demanding insurance in the form of options on
the marketable risks.

We assume a pure exchange economy in which agents inherit a portfolio
of state-contingent claims on the market portfolio. There is a perfect and
complete market for state-contingent claims on this portfolio. All agents
in the economy have hyperbolic absolute risk aversion [HARA] utility for
wealth at the end of a single time-period.This assumption allows us to com-
pare optimal sharing rules in the presence of background risk with the linear
sharing rules that exist in an economy with HARA utility and no back-
ground risks. The sharing rule tends to be convex for those agents who face
high background risk and concave for those with low or no background risk.
Thus, the non-linearity in our model is attributable to differential back-
ground risks. A convex or concave sharing rule can be obtained by buying
or selling options, whereas a linear sharing rule involves only the use of spot
or forward contracts.

The analysis in this paper has primary relevance for individual investors’
option demand. However, a similar argument applies for corporations, if
conditions exist that make hedging relevant for firms. In a pure Modigliani-
Miller world, hedging actions by value-maximizing firms are irrelevant since
they can be accomplished by shareholders themselves. However, in a more
realistic setting, hedging may be relevant for value-maximizing corporations
due to non-linear taxes, bankruptcy costs or managerial risk aversion, as
discussed by Smith and Stulz [21]. Hedging is also directly relevant for
firms owned by entrepreneurs, or for those maximizing managerial utility. In
these cases, our model may explain the use of options as opposed to forward
contracts. Firms are faced with many risks some of which are hedgeable



and some of which are not. In our model, firms facing larger non- hedgeable
risks than other firms and agents purchase options from those with smaller
background risks.

The organization of the paper is as follows. In section 2, we review the
relevant literature on the impact of background risk. In section 3, we assume
that a perfect, complete (forward) market exists for state contingent claims
on the market portfolio. We define the agent’s utility maximization problem
in the presence of background risk and illustrate the properties of the pre-
cautionary premium given the assumption of HARA preferences. In section
4, we show that, in this economy, the presence of background risk mod-
ifies the well-known linear sharing rule.? In equilibrium, every agentholds
the risk-free asset, the market portfolio and a portfolio of state-contingent
claims akin to options on the market portfolio. Agents with high background
risk buy these options, whereas those with low background risk sell them.
In section 5, we summarize our main conclusions.

2 Previous Work on Background Risk

It has been increasingly recognized in the literature that an agent’s behavior
towards a marketable risk can be affected by the presence of a second, in-
dependent, background risk. Nachman [14], Kihlstrom et. al. [10] and Ross
[18] discuss the extent to which the original conclusions of Pratt [16] have to
be modified when a background risk is considered. Recent work by Kimball
[12] shows that if agents are standard risk averse, i.e., they have positive
and declining coefficients of risk aversion and prudence, then the derived
risk aversion (of Nachman [14]) of the agent will increase with background
risk.> Further work by Gollier and Pratt [9], extending results of Pratt and
Zeckhauser [17), shows the effect of the introduction of non-positive mean
background risks on risk aversion. In this paper, we concentrate on the
HARA-class of utility functions, which is a special case of standard risk
aversion. This restriction allows us to derive specific results regarding the
demand for risky claims by agents in the economy.In deriving the optimal
sharing rules in the presence of non-hedgeable risk, we draw also on the work
of Kimball [11]. In particular, we use his concept of the precautionary pre-
mium. In the special case of the HARA-class of functions considered in this
paper, specific statements can be made about the precautionary premium.
This allows us, in turn, to specify the optimal sharing rule and identify the
role of options.*



The above work on background risk has been applied to the analy-
sis of the related question of optimal insurance. Papers by Doherty and
Schlesinger [6,7] and Eeckhoudt and Kimball [8] analyzing the optimal de-
ductible and the coinsurance rate show that agents expand the coverage of
risks in the presence of background risk. Since insurance contracts can be
modeled in terms of options, our results for the demand for options can also
be interpreted in terms of the demand for insurance. Finally, there is the
related, but distinct work of Leland {13] and Brennan and Solanki [2] in
portfolio insurance. These papers investigate differences across the utility
functions of agents which cause them to buy or sell options on the market
portfolio. They show that agents will demand portfolio insurance if their
risk tolerance relative to that of the representative agent increases with the
return on the market portfolio. Our analysis is linked to this previous work
in the sense that background risk provides a rationale for utility functions
to exhibit the properties found to be necessary by Leland. In our economy,
differences in the risk-taking behavior of agents arise even though the agents
have similar utility functions.

3 The Demand for Risky Assets and the Precau-
tionary Premium

We assume a two-date, pure-exchange economy, where the dates are indexed
0 and 1. There are I agents, 1 = 1,2,...,I, in the economy. X is the
time 1 measurable payoff on the market portfolio and is assumed to be
continuous on R*. Agents have homogeneous expectations with regard to
X. We assume a perfect and complete market for claims on X, so that
“each agent can buy state-contingent claims on the market portfolio.® This
means that an agent can buy a claim paying one unit of cash if X > K,
and zero if X < K. Hence, as in Leland [13], the agent is able to choose a
payoff function, which we denote as g;(X). The function relates the agent’s
payoff from holding state-contingent claims on the market portfolio to the
aggregate payoff, X. Given the complete market for claims on X, a unique
pricing kernel denoted ¢ = ¢(X) exists, with E(¢) = 1. Initially, ¢ is
given exogenously. In addition to the investment in the marketable state-
contingent claims, the agent also faces a non-insurable background risk.
This risk has a non-positive mean and is independent of the market portfolio
payoff, X. This background risk is also a time 1 measurable random variable,
denoted e; = oj€;, where ¢; is a random variable with non-positive mean and



unit variance. o; is a constant measuring the size of the background risk.
We assume that e; is bounded from below: e; > e;. The agent’s total income
at time 1 is

yi = gi(X) + e (1)

The background risk is unavoidable and cannot be traded. The agent can
only take this risk into account in designing an optimal portfolio of claims
on X. Hence, we investigate the effect of the background risk, e;, on the
optimal payoff function, g;(X). We assume that the utility function vi(-) is
of the hyperbolic absolute risk aversion (HARA) form

vi(yi) = 1= [———Ai i yi]”"
Yi Ll1-m

where ; and A; are constants.” We restrict our analysis to cases where
—00 < 7; < 1, i.e. those exhibiting constant or decreasing absolute risk
aversion. In the case of 0 < 7; < 1, we also assume that any attainable
payoff function yields finite expected utility for the agent, and that 36; >0
such that E[¢p(~F)/R] < co, where R; = 1—+; — 6; and R; > 0. We choose
the HARA-class since it is the only class of utility functions that implies
linear sharing rules for all agents, in the absence of background risk. Also,
we assume that it is feasible, given the agent’s endowment, background risk,
and the pricing kernel, to choose g;(X) so that A;+y; > 0, for all possible
e;. Defining z; = ¢;(X), and dropping the subscript i, the agent solves the
following maximization problem:

(2)

ma B |B.[v(z + o] ®)

st. E [(z - :L'O)d)] =0

where v(-) is the utility function of the agent. In equation (3), Ee(-) is
the expectation over e, and E(-) is the expectation over X. In the budget
constraint, z0 = z%(X) is the agent’s endowment of claims on the market
portfolio payoff X. Given the HARA assumption, the agent’s optimization
problem can be written as

o[22
st. E {(x - zo)d)] =0




We first establish that the assumptions we have made are sufficient to
guarantee the differentiability of the expected utility function in the presence
of background risk. We have:

Lemma 1: Assume that

1-v[A v
Wz+e) = 77[ +z+e

] ,—oo<y<1 (5)
1—v

where e > e. Also, assume that it is possible to choose = so that A+z+e > 0,
for all e. Then, Ec[v(z + €)] is a three- times differentiable and strictly
concave function of x.

Proof: See Appendix A.
We now establish

Theorem 1: Assume that

1-y[A+z+e]”
viz+e) = ’Y’Y[ tote

—o0 <
ool —ogy<l (©)

where e > e. Also, assume that it is possible to choose z so that A+z+e > 0,
for all e. Then, the first order condition for a solution of (3) is

E [V (z +€)] = A, (7)

where X is the Lagrangian multiplier of the budget constraint. The solution
is optimal and unique.

Proof: From Lemma 1, the first derivative of E,[v(z + €)] exists and is given
by E.[V/(z + e)]. First, take the case where —oo <y < 0. In this case, the
relative risk aversion of E.[v(z + €)] is > 1, as z — co. It follows then, by
Back and Dybvig [1, Theorem 1], that a solution of (7) exists and is optimal.
In the case where 0 < v < 1, the assumption that there exists § > 0 such
that E[¢p(1~B/E] < 0o with R =1 - — 6, R > 0, and the assumption
that expected utility is finite, also imply that a solution of (7) exists and
is optimal. This follows from Back and Dybvig [1, Theorem 2]. 8 Finally,
uniqueness follows from the strict concavity of E[v(z + €)] established in
Lemma 1. Also, the first order condition holds as an equality since

A+z+e

-1
1=~ ] — 0,as = o0 (8)

7



and E [V (z+e)] 2 0as A+z+e—0. 0

In order to analyze the impact of background risk on the agent’s optimal
demand for claims on the market payoff, it is useful to introduce Kimball’s
concept of the precautionary premium. Kimball [11] defines a precautionary
premium, %, analogous to the Arrow-Pratt risk premium, except that it
applies to the marginal utility function rather than the utility function itself.
In the present context, we define

E [/ (z+e)] =V (z—¢) (9)

where ¢ = 1(z,0). The precautionary premium is a function of the market
payoff of the agent and the scale of the background risk.® It is the amount
of the deduction from z, which makes the marginal utility equal to the
conditional expected marginal utility of the agent in the presence of the
background risk.1?

From equations (7) and (2) it follows that

A+:L‘—’L/1(£B,O’) L
-7y

V(o —(z,0)) = | = (10)
Equation (10) reveals that, given the market pricing kernel, ¢ = d(X),
the payoff function z = g(X) depends directly on the precautionary pre-
mium ). We begin,therefore, by analyzing the effect of the z and ¢ on
the precautionary premium.For fairly general utility functions, a number of
properties of the precautionary premium, 1, have been established in the
literature. Most of these follow from the analogy between the risk premium,
7, defined on the utility function, and the precautionary premium, 1, de-
fined on the marginal utility function. From the analysis of Pratt-Arrow, 7
is positive and decreasing in z, if the coefficient of absolute risk aversion,
a(y) = —v"'(y)/V'(y) is positive and decreasing in y. Similarly, ¢ is positive
and decreases in z, if the coefficient of the absolute prudence, defined as
n(y) = =" (y)/V"(y) is positive and decreases in y (see Kimball [11}). The
correspondence can be taken further. For small risks with a zero-mean, the
risk premium [precautionary premium] is equal to one-half the product of
the coefficient of absolute risk aversion [absolute prudence] and the variance
of the payoff on the small risk. For larger risks, higher absolute risk aversion
[prudence] implies a higher risk premium [precautionary premium]. Since,
for the HARA-class of utility functions, the coefficient of absolute prudence
is strictly proportional to the coefficient of absolute risk aversion, v < 1



implies also positive decreasing absolute prudence and hence, standard risk
aversion as defined in Kimball [12]. We now establish the following results
regarding the shape of the ¢(z, o) function:

Lemma 2: In the presence of background risk, if v(y) is of the HARA family
with —oo < v < 1, 9 is twice differentiable and

d) > ‘0v
o

7 < 0,
0%y
5z >0

For v = —oco (ezponential utility), ¥ > 0 and 0¢/0z = 0.

Proof: See Appendix B.

The significance of Lemma 2 is that it implies that, given a level of
background risk, its effect, measured by the precautionary prernium, declines
at a decreasing rate in the income from the marketable assets. In other
words, the precautionary premium is a positive, decreasing, convex function
of the marketable income. The first two statements are implied by positive,
decreasing absolute prudence.!! The exception is the case of the exponential
utility function, for which the precautionary premium is independent of the
marketable income. We are interested also in the effect of the scale of the
non-hedgeable background risk, which is indexed by o. Hence, we now
establish

Lemma 3: In the presence of background risk, if v(y) is of the HARA family
with oo < v < 1,

oY
% >
2
829 0
fodz
3
oY 0.
0o 0z?

For v = —0c0 (ezponential utility), 8¢ /0c > 0, but independent of z.

Proof: See Appendix B.



In other words, the increase in the precautionary premium due to an
increase in background risk is smaller, the higher the income z; moreover,
the convexity of the premium increases as the background risk increases. The
first statement in Lemma 3 is implied by positive prudence. The significance
of Lemma 3 is that it allows us to compare the effect of background risk on
the optimal sharing rules of different agents. Other things being equal, an
agent with a higher background risk (larger o;) will have a more convex
precautionary premium function than one with a lower background risk
(0; small). These statements are correct as long as the agent has non-
exponential HARA utility.

4 Optimal Demand for Marketable Risks: An Equi-
librium Analysis

We now analyse the optimal demand of agents ¢ = 1,2,...,] with differ-
ent levels of background risk and derive equilibrium prices of state- contin-
gent claims in this economy. As above, we assume a complete market for
state-contingent claims on the market portfolio payoff, X. Individual agents
choose z; = g;(X) claims on X. Agents have HARA utility functions with
declining absolute risk aversion —oo < 7; < 1 and homogeneous expecta-
tions regarding the market portfolio payoff.1? In equilibrium, we require that
individual demands, z;, sum to X, the market portfolio payoff. Agents face
different levels of background risks. The differing levels of background risk
affect the agents’ demands for shares of the market portfolio payoff.
Solving equation (10) for z;, aggregating over all agents in the economy
and imposing the equilibrium market clearing condition Y, z; = X, we have

X=Z [¢i($i70i)+[x\i¢]#‘—l(1—7i)-—A,~ , VX (11)

In principle, (11) can be solved to endogenously determine the market
pricing kernel, ¢ = ¢(X), and then, by substituting back in the individual
demand condition, equation (10), to determine the equilibrium optimal de-
mand function, z; = g;(X), for agent i. However, in general, the resulting
expressions for ¢ and z; are complex functions of the parameters ~;, A;,
and the variables, A;, 1;, for all the agents in the economy. Further insight
into the portfolio behavior of agents can be gained by assuming that all the
agents have the same risk aversion coefficient, <y, but face different levels of
background risk, o;. This allows us to isolate the effect of the background

10



risk in the portfolio behavior of the agent.!® If all the agents have the same
v, we can derive a simpler equation for z;. In this case, we have:

Theorem 2: Suppose that agents in the economy have homogeneous ezpec-
tations and have HARA wutility functions with —oo < 7; < 1 and with the
same . Then the optimal sharing rule of agent i is

z; = A} + X + a9 (1) — (X)) (12)

wherea) A} = a;A — A; is the agent’s risk free income at time 1, where

A=YTA; and

- 7

AT

X =7 L > =1,
Eh:] Ah.’r_1 1=1

b) ;X is the agent’s linear share of the market portfolio payoff,c) a;[¥} (z;)—

(X)) is the agent’s payoff from contingent claims, wherey} = % and

1
P(X) = > i(zi).
1=1

Proof: Solving (11) for ¢(X) in the special case where v; = +,Vz, and
substituting in (10) yields (12). O

Theorem 2 does not provide an explicit solution for z;, since ¥} = 9;/;
and the 1; themselves depend on the z;. However, it permits us to separate
the demand of the agent for claims on X into three elements. The first
two provide a linear share of the market portfolio payoff. If there were
no background risk for all agents in the economy, the third element would
be zero and the individual agent would have a linear sharing rule (as in
Rubinstein [20]). Note that the linear share represented by the first two
elements can be achieved by arranging forward contracts on the market
portfolio, or, equivalently, by aggregate borrowing/lending and investment
in shares of the market portfolio. The non-linear element is provided by the
third term in equation (12). This is non-linear because we know that the
precautionary premium ); is a convex function of z; (Lemma 2). However,
in equilibrium, it is the relative convexity of ¢ = 1;/a; compared to the
aggregate ¢ of all agents in the market that determines the convexity (or

11



concavity) of the sharing rule. Since the third element in the sharing rule
is non-linear, it must be achieved by the agent buying or selling option-like
contingent claims on the market portfolio. However, whether an individual
agent buys or sells such claims depends upon ¥ = 1;/a; compared to the
aggregate ¥(X).14

In order to evaluate the sharing rule for a particular agent and to ask
whether that agent is, for example, a buyer or seller of options, we need
to investigate the convexity of the pricing function ¢ = ¢(X). For that

purpose, we investigate the shape of dﬁ'}l , as a function of X.1% First we
have to establish the differentiability of the sharing rule z; = ¢;(X) and of
the pricing function ¢ = ¢(X). We have:

Lemma 4: In equilibrium, the sharing rule defined by the function z; =
9i(X), and the pricing function ¢ = ¢(X) are twice differentiable.

Proof: see Appendix C.

Differentiating equation (10) with respect to X yields

9z =1~ )[ il 1]& [1—61{]~l (13)

X 0xX oz;

Aggregating over all the agents in the market, we find!®

-1
O¢pr-1 -1
R

Since v < 1 and 8v;/8z; < 0, Vi, it follows that 2 __4,__‘%1’_ > 0, and hence
that 0¢/0X < 0. This result confirms our intuition tha.t contmgent claims
on states where X is low are relatively expensive. This is also true in the
presence of the non-hedgeable risks. Differentiating (14) with respect to X
and taking the sign, we have

¢ _ S [ 0] 72 9% Oa;
" {—ax_?J‘Sg”[ 2N [l‘az} aazox| Y

Since 824;/8z? > 0 from Lemma 2, and 0z;/0X > 0, it follows that the sign
in equation (15) is negative. Therefore ¢>7£_1 is an increasing, strictly concave

12



function. Now, from the aggregate equation (11), it follows immediately that
P(X) = X; ¥i(X) is strictly convex.

Background risk changes ¢!/(7"1)] from a linear function of X to a con-
cave function. An agent without background risk reacts to this concavity
by selling claims in states where X is low or X is high and by buying claims
in the other states. This implies a concave sharing rule:

Theorem 3: Suppose that there is an agent who has no background risk in
an economy where other agents face background risk. The sharing rule of

this agent is strictly concave.

Proof: Since the agent has no background risk, this follows by placing ¢7 = 0
in equation (12). Since ¥(X) is convex, as has been shown above, —a;9(X)
is concave and the optimal sharing rule for this agent is concave. O

In order to obtain a concave sharing rule, the agent has to sell call and put
options at different strike prices. Strictly speaking, options with infinitely
many strike prices would be required to exactly construct the desired sharing
rule. The essential point is that although the agent may take positions in
linear claims such as forward contracts, options are also required to produce
the desired sharing rule. This is also true of agents with positive background
risk who have a non-linear demand for claims on the market portfolio. This
non-linear element is the difference between two functions, ¥} (X) and ¥(X).
It is difficult to be precise, therefore, about an agent’s sharing rule except
to say that it will tend to be convex if the agent’s precautionary premium
(caused by relatively high ;) is more convex than that of the average agent
in the market. Those agents with relatively high o; tend to buy claims with
convex payoffs and those with relatively low o; tend to sell those claims. This
is parallel to Leland’s conclusion that agents whose risk tolerance increases
rapidly with income buy convex claims from agents whose risk tolerance
increases less rapidly. These agents achieve this by purchasing put and/or
call options. It follows that background risk could explain why some agents
buy and others sell portfolio insurance.

Next, we can relate our result in Theorem 2 directly to the literature on
sharing rules where a two-fund separation is established. Two-fund separa-
tion refers to the agent buying a portfolio of riskless securities and a share of
a portfolio of risky assets.!” Theorem 2 indicates that the existence of back-
ground risk destroys the two-fund separation property. It is not possible to
generalize the result to three-fund separation since the third “fund” varies

13



across agents. To see this, note that agents’ holdings in the third “fund”
net out to zero and hence have the nature of “side-bets”. These side bets
are similar, however, for those agents with “similar” precautionary premia

;.

14



5 Concluding Comments

We derive an equilibrium in which some agents supply and others demand
convex claims such as options, even though their risk preferences are similar.
Background risk, which is assumed to be non-insurable, has the effect of
changing the risk aversion of the agent. Given HARA preferences, agents
with relatively high background risk become more averse to marketable risk,
i.e., the risk involved in holding marketable claims. However, they not only
become more risk averse, but also become relatively more risk averse in
the states with low marketable income. Across investors, the effect is that
investors with high background risk have a convex demand for contingent
claims and purchase options from investors with low background risk.

15



Appendix A

Proof of Lemma 1

The assumptions that e > e and A + z + e > 0 imply that

A+z+e

v-1
T ] <V(zx+e) < oo,Ve. (16)

V(z+e)= [

Hence, '(z + €) is uniformly integrable and it follows that

0

%Ee[u(a: +e)] = Ee[V (z + €))] (17)
and therefore, E¢[v(z + e)] is differentiable. By a similar argument, the
second and the third derivative of E.[v(z + e)] exist and equal E.[v"(z + ¢€)]
and E.[V""(z + €)] respectively. Also, since —oco < V"(z +¢€) < 0, E[V"(z +
e)] < 0. Hence, E[v(z + €)] is strictly concave in z. O

16



Appendix B

Properties of the Precautionary Premium for the HARA Class of
Preferences with v < 1

Note that in this appendix we write E(.) for E.(.), since all expectations are
taken with respect to the background risk e = ge. First, the differentiability
of ¢ follows from the differentiability of the HARA utility. For the HARA

class of preferences, with v < 1,

1oy [Aty)”
v(y) = ” [1_7] (18)
It follows that
Aty]7l
o) = |72 > (19)
A+y]"?
o) = -7 <o (20)
" 7"2 A+y 73
v'(y) = 7:‘1'[’1—:7] >0 (21)
-1
aly) = ‘f%’ﬂ >0 (22)
- 1=2[A+y”
) = 15 52 >0 (23)

We can now prove the various statements of Lemmas 2 and 3.

1) Proof that 9 > 0.

For the HARA utility function, the marginal utility function v/ is a
strictly convex function since v/ > 0. As a result, we have from Jensen’s
inequality

Vi —y(z,0)] = E[V(z+e)
> V[E(z+e)] =V (z+0 E(e)) (24)

17



Hence,
P> —0 E(€) >0 (25)

since the risk € has a non-positive mean and v/ is a strictly decreasing func-
tion of z. O

2) Proof that 8v/8z < [=] 0. We have for a HARA utility function

na) = =25 = La(e) (26)

where a(z) is the Arrow-Pratt measure of risk aversion. Hence,

sgn n(z) = sgn a(z), sgn _6_%(?:_:1 = sgn 8‘;—(;) (27)

It follows from arguments of Pratt (1964) about a(z) that

oy
5, <=0 (28)

where the inequality holds for decreasing absolute risk aversion and the
equality holds for exponential utility (y = —oo) for which a(z) is constant.
D

3) Proof that dy/8c > 0.
By analogy with the arguments of Pratt [16] and Rothschild and Stiglitz

[19] , since
V>0 V' <0 = 0n/00 >0

we can write that

V"' <0,V >0 = 0¢/0c>0 O

4) Proof that8?/8zd0 < 0.

Differentiate the definitional equation

V'z — ] = E[V(z + e)] (29)

18



with respect to o and obtain

o _ BlY'(+o
o —v"z — 4]

(30)

E[V'(z +e)e] E[-i"(z+e)]
E[-v"(z+e)] —V"[z—1]

(31)

The second term on the right hand side of equation (31) is positive, given
the assumption of risk aversion. Since the left hand side is positive, both
fractions on the right hand side of (31) are positive. We now show that both
fractions decline in .

Differentiate the first fraction with respect to z. The differential is neg-
ative if and only if

E[/ (z + e)]ElV" (z + €)e] > E[V" (z + e)el E[v" (z + €))] (32)
which is the same as

E[V"(z +e)e) _ E[-V'(z + e)e]

E["(z + e)] E[-V"(z +¢€)]
sinc e E["(z + €)] < 0 and E[v"'(z + e)] > 0.Consider an agent facing the
choice between a riskless and a risky asset, where the excess return on the
risky asset is equal to fi+¢, and i+ E(¢) is the expected excess return of the
risky asset over the riskless rate. Let o denote the optimal dollar investment
in the risky asset, given another utility function with marginal utility being
equal to —v"(-). Then, the optimality condition is that the right hand side
of inequality (33) equals —fi, with z being the riskfree income plus of.
For a utility function with higher absolute risk aversion the same fraction
would be smaller than —f, since the optimal investment in the risky asset
would be smaller. As for the HARA class with v < 1, —""(:)/v"'(:) >
—u™"(-)/v"(-) > 0, inequality (33) holds. This proves that the first fraction
on the right hand side of (31) declines in z.

In order to show the same for the second fraction, define

(33)

V'[z — ] = EV"(z + )] (34)

where ¢ = ¢(z,0) is the premium defined by the second derivative of the
utility function. [r is the premium defined by the utility function (risk pre-
mium) and ¢ is the premium defined by the first derivative (precautionary
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premium)]. Then, the second fraction in (31) can be rewritten as
El-v"(z+0)] _ V'[z -]
-9 V)

For the HARA class of preferences, the right hand side of (35) can be written

as

Ve —¢] (A+z~(p>7_2 (36)
V-] \A+z—9

Differentiate the right hand side of (36) with respect to z. The differential

is negative (since v < 1), if

(35)

(Atz—p)! (1—%-‘5) S Atz (1—9-”'3) (37)

T -

L

We substitute for %f and %f by differentiating (29) and (34) to obtain

| _ Bt

[1 6:1:] Tz — ) (38)
dpl _ E[V"(z + €)]

[1 - 6:1;] T Wz - ) (39)

We substitute (38) and (39) in (37) to yield

E[(A+z+ ] E [(A+z+ e)’?]
Ato—o2  [Ato-9] L

(40)

Substitute for the denominators in the two sides of the inequality from (29)
and (34) and obtain

ElA+z+e | E[A+z+e] > [B{A+2+ o) @

Since
(A+z+e) P (A+z+e) ' = [(A +z+ 3)7—2]2 (42)

it follows from Cauchy’s inequality that (41) holds. Hence §1/8z80 < 0.
O

5) Proof that 6%y/8z? > 0.
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From equation (38), it follows that

0%y

—2S0 43

0z? > (43)
if and only if the right-hand side in equation (38) decreases as z increases.
We have already shown this to be true in equations (35) through (42). D

6) Proof that 8°y/80dz* > 0.

First, note that convexity of ¢ approaches 0 as 0 — 0. Since % is convex
for any positive value of o, it follows that convexity increases with o for
small changes from ¢ = 0. We now use a monotonicity result to show that
convexity increases with o for any value of 0. We rewrite equation (29) for
the HARA class and multiply throughout by (1/0)7~! to obtain

y-1 71
T [
Multiply and divide equation (44) throughout by g, where g > 0, to yield
v—1 v-1
[——q[A td_ 2T g (———Q[A o) (45)
qo qo qo

Define z; such that
g[A +zo) = A+ 7.

Then, using subscript 0 for z in equation (45) yields

[[A +z) qw(xo,d)]7_1 - E [(M + 5)7_1] (46)

go qo qo

In words, if o changes from o to go and z changes from zg to z, then the
new precautionary premium % = ¥(z1,90) = q(z0,0). In order to show
that the convexity of i increases with o, suppose that o is raised from a
level arbitrarily close to 0. Then, the convexity of ¥ = 4(zg,0) increases.
Hence, the convexity of ¢ = t(z;, go) increases by the factor g. As g can
be arbitrarily large, the convexity of ¢ = ¥(z1,90) increases monotonically
with go. O
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Appendix C

Proof of Lemma 4

The first step is to prove that the function z = f(4) is twice differ-
entiable. From Theorem 1 a unique, optimal solution of the first order
condition (7) exists and can be written as

F(z,¢) = B[V (z + €)] - A¢ = 0. (47)
From Lemma 1, the partial derivative F, exists and is continuous. Also,
F, # 0 for z < co. Since F} also exists, it follows from the implicit function
theorem that z = f(¢) is defined and is differentiable with

£(4) = 22,

Since Fy = X is differentiable and, given the three- times differentiability of
E.[v(z + e)] from lemma 1, F; is differentiable, then f"(¢) exists.
The second step is to establish the differentiability of the function ¢ =
#(X) and of the sharing rule z; = g;(X). For investor i,
L Y S
08¢  Eev!(zi+e)]
and since \; > 0, and v}’ < 0, %Tp < 0,Vi. In equilibrium X = ¥;z; and
0:1:,

—E

Since X = h(¢) is stnctly decreasing, h is one-to-one and ¢ = h~1(X) is a
function. Also, since ¢ exists and is non zero, then —¢— exists. Hence, by

(48)

(49)

(50)

the ch ul
" chain e Oz _ 09 Oz 51)
80X ~ 80X 0¢ (
exists. \
Since %ff exists ,
62X o2 8z
6(}52 84% (52)

exists. Also, —672’- > 0 and hence ¢)§ > 0 Since 24X a ¢ is strictly decreasing,
it is a one-to-one function. Hence, since a X £, then 2 3 X exists. Finally,
it follows from differentiating (51), that % also exists. O
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Footnotes

1.

10.

Exceptions are the papers by Leland [13} and Brennan and Solanki
[2], who also examine the demand for options on the market portfo-
lio assuming that agents have utility functions with different rates of
declining relative risk aversion.

. See Cass and Stiglitz [5] and Rubinstein [20].

The coefficient of risk aversion is defined as the negative of the ratio of
the second to the first derivative of the utility function. The coefficient
of prudence is defined as the negative of the ratio of the third to the
second derivative of the utility function.

It should be noted that Briys, Crouhy and Schlesinger [4] and Briys
and Schlesinger [3] have also previously employed the precautionary
premium in the context of hedging.

We are concerned, in this paper, with the effect of non-marketable
background risk on the agents’ portfolio behavior. Standard results
from portfolio theory would apply to the choice between various mar-
ketable assets, and hence, this simplification does not affect the results
here.

. See Nachman [15].

Most commonly-used utility functions such as the quadratic, constant
absolute risk aversion and constant proportional risk aversion cases
can be obtained as special cases of the HARA family, by choosing
particular values of y; and A;. In the case of constant absolute risk
aversion, 7; = —oo and v;(y;) = — exp(A;y;). With 4; = 0, we obtain
the generalized logarithmic utility function, v;(y;) = In(4; + ys).

. For HARA utility functions, relative risk aversion of E.[v(z + €)] ex-

ceeds R for high levels of z, as required by Back and Dybvig (1, The-
orem 2].

Note that ¢ is differentiable since, from lemma 1, the expected marginal
utility function is differentiable.

The precautionary premium is not constrained to the case of zero-
mean background risk as noted by Kimball [11, p 56].
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11.

12.

13.

14.

The statements of Lemma 2 regarding % and %;%’— hold also if the
background risk has a positive mean, since the mean has the same
effect as adding a constant to z. This is also true for the results in
section 4.

Hence we exclude the trivial case of constant absolute risk aversion,
v = —o0, where the precautionary premium is not a function of z.

Leland [13] focuses on the other case, where there is no background
risk, but agents differ in terms of their risk aversion coefficients. He
shows that the sharing rule of agent 7 is convex if and only if +; is less
than the -y of the representative agent, assuming HARA preferences.

One might conjecture that under appropriate conditions there exists
an agent with a linear sharing rule. This is very doubtful, however.
The following example shows a situation in which such an agent cannot
exist. Suppose there exist three agents. Agent 1 has no background
risk. The other two agents have small background risks so that

i(mi, 01) = 1/2mi(=:) ot i=2,3.
Now suppose that agent 2 has a linear sharing rule. Then
P2(z2,02) = ao(2(z2, 02) + ¥3(z3,03))

follows from his sharing rule, or

Ya(z2,09)(1 ~ ) = 93(z3,03)).
For small risks it follows

n2(22)02(1 — ap) = n3(z3)0%.

In the HARA-case, this yields
oi(l—a) i

As + z9 - Az + 13

so that z3 is linear in z5. Hence linearity of zo = go(X) implies
linearity of z3 = g¢3(X). But then agent 1 must also have a linear
sharing rule in equilibrium which contradicts Theorem 3. Therefore,
in this example, a representative agent, i.e. an agent with a linear
sharing rule, cannot exist.
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15.

16.
17.

¢71—’T is a linear function of X — ¢(X), the aggregate wealth reduced
by the aggregate precautionary premium. As %(X) is non-linear in X,

¢7-1 is not linear in X, given the background risk.
Note that >; 0z;/0X = 1.

See, for example, Cass and Stiglitz [5] and Rubinstein [20].
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