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Abstract

This paper assumes that the underlying asset prices are lognormally distributed,
and derives necessary and sufficient conditions for the valuation of options using
a Black-Scholes type methodology. It is shown that the price of a futures-style,
marked-to-market option is given by Black’s formula if the pricing kernel is
lognormally distributed. Assuming that this condition is fulfilled, it is then
shown that the Black-Scholes formula prices a spot-settled contingent claim,
if the interest-rate accumulation factor is lognormally distributed. Otherwise,
the Black-Scholes formula holds if the product of the pricing kernel and the
interest-rate accumulation factor is lognormally distributed.
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1 Introduction

This paper establishes necessary and sufficient conditions under which futures-
style options, traded on a marked-to-market basis, can be valued using the
Black(1976) model. It contrasts these with the conditions under which the
Black-Scholes model can be used to obtain the spot price of an option. Assuming
that these conditions obtain, the prices of the two types of contingent claim are
compared.

Interest rate options, index options, and individual stock options on the Sydney
Futures Exchange (SFE) are traded on a daily marked-to-market basis. In
other words, they are futures-style contingent claims. This form of contract
is not unique to the SFE, for example on the London International Financial
Futures Exchange (LIFFE), options on futures are also traded in this manner.
However, most options on other exchanges, options on the spot and options on
futures are paid for on a spot cash basis. The pricing of options that are paid
for on a spot basis is similar, from a theoretical point of view, to settlement on
a forward basis.! In this paper we analyse the difference between the pricing of
a futures-style claim, i.e. the price of a daily marked-to-market claim, and the
forward price of a claim. The contingent claims analyzed are European-style
put and call options.?

The difference between the marked-to-market futures price and the forward price
of a contingent claim is due to the effect of stochastic interest rates on the price
of the claim. In the case of the futures and forward prices of the underlying
asset itself, the size of this difference depends on the covariance of the asset
price and the interest rate accumulation factor.® In the case of many assets
this effect is probably fairly small, and is often ignored in practice. However, in
the case of long term futures and forward contracts on assets, such as bonds,
which have high covariances with interest rates, the size of the difference may
be substantial. Also, in the case of options, the difference may be far more
significant, since in this case, the differnce between the futures and forward
prices of the underlying asset is leveraged. As well as the difference of the
futures and forward prices being more significant in the case of options, there
is a more fundamental consideration. We show here that the conditions for the
Black(1976) model are less stringent for futures-style options than for forward-
style options. It turns out that the Black model holds for forward-style options
if the pricing kernel and the interest rate accumulation factor are lognormally

1The spot price of a European-style claim, paying no dividends, is its forward price, dis-
counted at the zero-bond price for the maturity of the option. Hence, any factors that affect
the forward price of the claim also affect the spot price.

2The general approach used here could be modified for the case of American-style options.
In this context, see, for example Ho, Stapleton and Subrahmanyam(1996).

3see for example Cox, Ingersoll, and Ross (1981)
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distributed.* However, in the case of futures-style options, the condition for
the Black model is far less stringent, it is sufficient that the pricing kernel is
lognormal.

Futures-style contingent claims have been studied by Lieu (1990) and by Duffie
and Stanton (1992). Lieu values marked-to-market, European-style, call and put
options, assuming that the futures price evolves as a Gauss-Weiner process. He
establishes that the Black(1976) model holds under this assumption. Lieu also
establishes a put-call-parity relationship for these options. Duffie and Stanton
provide a somewhat more general no-arbitrage condition for the pricing of both
futures and forward-style claims, again in a continuous time setting.> However,
their expression for the value of the continuously re-settled call option, is de-
rived under the assumption of constant interest rates.® It is, therefore, in their
special case, simply the non-discounted Black-Scholes price, and is identical to
the forward price of the claim. Lieu, on the other hand, does provide sufficient
conditions for the Black model to hold for futures-style options.In comparison,
we establish here, by concentrating on the pricing kernel, both necessary and
sufficient conditions for the model to hold. We also compare the pricing of fu-
tures and forward style claims and show that Lieu’s put-call parity relation for
futures-style options holds in similar form for forward-style options. Compared
to this previous work on the pricing of contingent claims, we start with a more
general framework, based directly on the original contribution of Cox, Ingersoll
and Ross(1981). This leads us to an analysis of the pricing kernel, and a com-
parison of the conditions under which the Black model can be used to price the
futures-style and forward-style options.

In section 2, we derive no-arbitrage pricing relationships for futures-style op-
tions, extending the results of Cox, Ingersoll and Ross (1981). We derive the
effect of the marking-to-market interval on the price of the contingent claims,
and the implications for put-call parity. In section 3, we assume that the spot
price of the asset is lognormally distributed and establish necessary and sufficient
conditions for the Black model to price marked-to-market and non-marked-to-
market claims respectively. In section 4, we assume that the conditions for
the Black model to hold are satisfied and examine the difference between the
prices of the futures-style and forward-style claims. Conclusions are presented
in section 5.

4The pricing kernel is a utility dependent variable, which prices the option, capturing the
effect of risk aversion on the value of the claim. The interest rate accumulation factor is
defined precisely interms of the product of the short term bond prices, in equation (3) of this
paper.

5see Duffie and Stanton (1992) corollary 2 and 3, p.568.

6see Duffie and Stanton (1992) equation (34), p.571
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2 Forward and Futures Contracts

In the financial markets, a fulures contract normally refers to an agreement to
buy or sell an asset at a fixed price, at a future date, where the contract is
‘marked-to-market’ and settled at a series of specified points in time. Typically,
the marking to market is on a trading day basis. On the other hand, a forward
contract can be thought of as a special type of futures contract, one that is
marked-to-market only once, at the maturity of the contract. Since many au-
thors work with continuous time models in the finance literature, it is usually
assumed for modelling simplicity that a futures contract is marked-to-market
continuously.” In this section, we will use the term futures contract as a generic
term which includes the typical market forward contract and typical market
futures contract as special cases.

Consider a point in time 7" and a contract maturity date s. Then the futures
price Fr 4 is the fixed price agreed at time T for delivery of the asset at time s.
Suppose that the contract is initially made at time ¢ and is a long contract, i.e.,
a contract to buy the asset. If the contract is to be marked to market k times
at times t + ny, t + ny + na,..., t + 01 + ng + ... + ng then the holder will, in
effect, receive a series of cash flows (or ‘dividends’)

[Ft+n1,.s - Ft,s; Ft+n1+n2,s - Ft+n1,sa ceey Fs,s - Fs—nk,s]

The first ‘dividend’ in the series, received at the end of the first mark to mar-
ket interval, n, is equal to the change in the futures price over that interval.
Subsequent ‘dividends’ are equal to the futures price change over each time
interval.

Given this general definition of a futures contract, we can characterise two
important special cases. First, if ny = s —t, the contract will be marked to
market only once, at time s. In this case, there is only one cash flow (Fs,s—Fts).
Also, since by definition F; ; = V;, where V; is the spot price of the asset at
time s, this cash flow is (V; — F ). This contract is normally referred to as a
forward contract. In this special case, we will denote the forward price at time ¢
as Gy, = Fi 5(n1), since it is the price of a futures contract, marked-to-market
only at time ¢t 4+ n,. The second special case is where the futures contract 1s
marked-to-market every trading day, i.e., if trading takes place at time ¢, { + 1,
t+2,..,5—1 sthenn; =1, ny=1,...,n = 1l and k = s —t, where s — ¢
is measured in days. This is typically the case for futures contracts traded on
organised market futures exchanges. In this special case, we will denote the

7This is the case, for example, in Cox, Ingersoll and Ross (1985), and in Duffie and Stanton
(1992)



The futures prices of contingent claims 4

futures price as Hi, = Fy (1) since the distance between marking to market
dates is one trading day.

In the case of other contingent claims such as call or put options, exactly the
same principles apply. A futures-style call option is an agreement, made at time
t, to buy a call option at time s, which is marked-to-market at intervals between
t and s. If it is marked-to-market daily, it is a regular futures-style contract,
similar to those traded on the SFE. If it is marked-to-market just once, at time
s, it is a forward-style contract.

The Pricing of Futures Contracts

One distinguishing feature of a futures contract is that (normally) no money
changes hands on the contract date, t. It is an agreement to pay or receive
payment in the future. It follows then that the value of the contract, at time
¢, must be zero, if arbitrage is to be avoided. In other words, the market must
determine the futures price Fy, so as to ensure that the futures contract has
zero value at time ¢. This observation allows us to state the futures price of an
asset in the following proposition.

Proposition 1 (The Price of a Futures Contract)

a) Suppose that the futures contract is to be marked-to-markel every trading
day. Then

Ht,s = Et(Vs¢t,s) (1)

where ¢s 5 is the pricing kernel at time t, for claims at time s.

b) Suppose that the futures contract is to be marked to market only once at
time s. Then

Gis = E:(Vite,s) (2)

where

wt,s = ¢t,sgt,s
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where ¢ 5 is the ’adjusted’ pricing kernel and gy, 1s the interest rate ac-
cumulation factor, t.e.

s—1
gts = H B'r,-r-}-l/Bt,.n (3)

T=t

where By, is the value at t of a dollar paid at s.

Proof The proof of Proposition 1 follows directly from Cox, Ingersoll and Ross
(1981) using the principle of no-arbitrage. For a detailed proof see Satchell,
Stapleton, and Subrahmanyam (1989). Also, for a proof in a continuous-time
setting, see Duffie and Stanton (1992) 0O

Note that the futures price for the contract which is marked to market daily,
given in equation (1), is the risk adjusted expectation of the value of the firm.
Hence, under risk neutrality, where ¢;, = 1 in all states, the futures price is
just the expected value of the future value of the firm: E(V;). Part b) of the
proposition shows that G ,: the forward price of the asset, is a more complex
variable. Even in the case of risk neutrality we find Gy; = E¢(V,g:,s). Hence
the forward price is affected by the period by period stochastic discounting at
the prevailing rates of interest, reflected by the term g1,5.2 We can now apply
Proposition 1 to the valuation of assets whose payoff is contingent on the price of
an underlying asset. We restrict attention to European-style contingent claims
that pay off at a terminal date s. These derivative assets pay no dividends from
time ¢ (the valuation date) to time s. We consider the futures price, for delivery
at s, of such a contingent claim.

As we have seen above, forward prices of assets are more complex, in general,
than futures prices. While the day-to-day marked-to-market futures price of an
asset is the “risk-adjusted” expectation of the spot price at time s, the forward
price includes an interest rate term. The European-style contingent claim has
a payoff denoted ¢(V;) at time s which is a function of Vj, the price of the
underlying asset. In the particular case of a European call option with a strike
price K, for example, we can write

¢(Vs) = max(V, — K, 0)

8Since E¢(¢¢,s) = 1, it follows that there exists an equivalent probability measure * under
which H; . = E¥(V:), i.e. under which the futures price follows a martingale. This measure is
often termed the ‘risk neutral’ equivalent martingale measure. It is less often recognised that
since E¢(¢¢,s) = 1, also, there must exist a second equivalent martingale measure ** under
which the forward price follows a martingale. In the special case of non-stochastic interest
rates these measures are of course the same. [The existence of the equivalent measures * and
** follows from the proof given by Duffie (1992}, p 82-3.]
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We shall denote the spot price at ¢ of the general contingent claim as V;[c(V;)].
Similarly, its futures price at ¢ for delivery at time s will be denoted in general
by F;slc(Vs)]. In the case of the usual market futures contract, where the
contract is marked-to-market every trading day we denote the futures price of
the contingent claim as Hy ,[¢(V;)]. The forward price of the contingent claim
at t, also for delivery at time s, is denoted by G s[c(V;)].

The Futures Price of a Contingent Claim

Applying Proposition 1 to the evaluation of the futures price of a contingent
claim we have the following:

Proposition 2 (The futures price of a contingent claim)

a) Suppose that the futures contract to buy a European-style contingent
claim with payoff function c(V;) is marked-to-market every trading day.
Then

Hyo[e(Va)] = Ed[c(Vs)$1,6] (4)

b) Suppose that the futures contract on the contingent claim is marked-to-
market only once at time s. Then

Gi,s[e(Va)] = Elc(Vi)vs,6]

where
1/)t,.s = ¢t,sgt,s

Proposition 2 is quite general, resulting solely from the assumption of a no-
arbitrage economy. In fact, the results shown in Proposition 2 are too general
to be implementable in practice. In the case of options, for example, we nor-
mally try to derive, following Black and Scholes (1973), pricing relationships
which are preference free. Proposition 2 is not sufficient to derive such a val-
uation result, since the ¢;, and ., variables are preference-dependent, and
hence potentially unobservable. In the next section, therefore, we specify a
scenario where we can establish preference-free pricing relationships for contin-
gent claims. However, the proposition does allow us to establish the following
put-call parity relationship:-
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Corollary 1 (Put-call parity for futures options (Lieu) Suppose that the
futures contract to buy a European-style contingent claim with payoff function
¢(Vs) is marked-to-market every trading day. Then, if the claim is a call option
with strike price K, and has a futures price H;[C] then the price of a put option
is

Ht[P] = Hz[C] - Ht,s + K
Alternatively, if the claim is marked-to-market just once at time s, and the call
has a forward price of G4[C] then the forward price of the put oplion 1s

Gt[P] = Gt[C] - Gt,s + K
The proof of the corollary follows directly from substituting the payoff function
of the put and the call option in Proposition 2. Note that the second part of the

corollary is actually a generalisation of Lieu’s result and itself follows directly
also from the usual put-call-spot parity.
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3 Contingent Claims Pricing Given Lognormally
Distributed Asset Prices

Proposition 2 highlights the importance of the pricing kernel ¢; s for the pric-
ing of contingent claims and of the compound pricing function P15 = D1,50,s
In this section, we assume that the asset price V; is lognormally distributed
and investigate the conditions under which the preference-dependent variables,
Y15 and ¢ 5, can be eliminated from the valuation equations. Essentially, this
amounts to looking for conditions under which the Black (1976) model holds
for the forward and the futures prices of contingent claims®, since in the Black
model, no preference-dependent variables occur in the valuation formula.

We adopt the following notation. Since V; is lognormally distributed, we denote
the logarithmic mean and variance as follows:-

V] _
o [ ()] =
var; {In E = o0
t I/t - vy
1/2

Also o, = o>, Note that, in these definitions, the mean and the standard
deviation: o, are not annualized. Thus, they are likely to be functions of the
time to maturity s — ¢. Similarly, we denote

Et [ln(¢t,s )]

He

E:[In(4,5)]

Hy

and the variances 044, 0yy, and the covariances o4y, 0y, and gy are defined
analogously.

We now define precisely what we mean by the Black (1976) model for the futures
price of a contingent claim.

9Note that we are concerned here with the futures price of an option, not an option on
a futures contract which is valued in Brenner, Courtadon and Subrahmanyam (1985) and in
Ramaswamy and Sundaresan (1985).
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Definition (The Black model)

Suppose that the price of the underlying asset, V;, is lognormally distributed with
logarithmic standard deviation o,. Then, the Black model holds for the futures
price of a European-style contingent claim on the assel, if the futures price of
the claim can be computed using the ‘risk-neutral’ distribution of the underlying
asset. In this context, the risk-neutral distribution of the asset is a probability
distribution which is lognormal, with a mean equal to the futures price of the
asset, Fy 5, and a logarithmic standard deviation equal to o,,.

In other words, if the Black model holds, the futures price of the claim is given
by

Ralevl = [ Vi, (5)

where f (V;) is lognormal with a mean equal to the futures price of the underlying
asset and a logarithmic standard deviation o,.

The definition of the Black model given here represents a slight generalization
of the model introduced by Black (1976) for the purpose of valuing options on
futures for two reasons. First, it applies to general European-style contingent
claims rather than just to put and call options. Second, our definition applies,
in special cases, to the forward price of a claim and to the daily marked-to-
market futures price of the claim. Since the distribution f(V3) is lognormal, we
find that the Black-Scholes formula, with an interest rate of zero, holds for the
futures price of an option, if the Black model holds. Hence, for the case of a call
option on a stock, with exercise price K, we can write

Ft,s[c(vs)] = BS[Fi,S) K,0,,0,s— t]
where the function
BSV;,K,o,,7,5 —{]

denotes the Black-Scholes formula for the value of a call option on a stock, given
the current stock price V;, an exercise price K, a volatility o, (non-annualized),
a continuously compounded interest rate r, at time ¢, for loans with maturity
s, and a time to maturity s —¢.

The Black model is a preference-free valuation relationship for the contingent
claim. Hence, the implications of the Black model holding for a contingent
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claim are quite strong. For example, if the Black model holds, the forward price
of a contingent claim, Gy s[e(V;)], can be computed knowing only the forward
price of the underlying asset, Gy s, the volatility o,, and the form of the payoff
function ¢(V;). Similarly, computation of the daily marked-to-market futures
price of the contingent claim, H; s[c(V;)], requires only the futures price of the
underlying asset, H; , the volatility o,, and the payoff function c(V4). In the
special case where c(V;) is the payoff function for a call option with strike price
K, the computations require either Gt , or Hy 5, 0y and K. The forward price
of the call option, if the Black model holds, is

Gt s[e(Vy)] = BS[Gy,s, K,0,,0,5 — 1]
and the daily marked-to-market futures price, if the Black model holds, is

Ht,,[c(Vs)] = BS[Ht",, I(, 0',,,0,5 ot t]

It also follows that, if the Black model holds for the forward price of the claim,
then the Black-Scholes model holds for the spot price of the option in the
stochastic interest rate economy. The condition specified in the definition is
thus a strong one.

The following proposition establishes necessary and sufficient conditions for the
Black model to hold. It involves the lognormality of the pricing kernel, ¢; ;, and
of the compound variable ¢; s = ¢ 5915

Proposition 3 (Conditions for the Black Model to hold)

a) Suppose that the futures contract to buy a FEuropean-style contingent
claim with payoff function c(V,) is marked-to-market every trading day
and that V, is lognormally distributed. The Black model holds for the
futures price of the claim if ¢4 s is joint lognormally distributed with V;.
The Black model also holds for the futures price only if Ei(dy s|Vs) is
lognormally distributed.

b) Suppose that the futures contract on the above claim is marked-to-market
only once, at time s, and that V; is lognormally distributed. The Black
model holds for the forward price of the claim if ¥, s = ¢4 51,5 15 joint log-
normally distributed with V,. The Black model also holds for the forward
price only if E¢(¢y ,|V;) is lognormally distributed.
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Proof See Appendix. O

We now discuss the significance of proposition 3 in theory and practice, and
the parts of the proposition that are already estabished in the literature. Most
of the literature on options pricing, until recently, has been in the context of
non-stochastic interest rates. In this case, parts a) and b) of Proposition 3 are
the same. Rubinstein (1976) shows in this context the sufficiency part of the
proposition. Brennan (1979) establishes the necessary condition, in the context
of a representative investor economy. When interest rates are stochastic, parts a)
and b) of the proposition have to be distinguished. Merton (1973) shows in this
case that lognormal zero-bond prices (together with a lognormal pricing function
¢ s) is sufficient for the Black-Scholes model to hold. Part b) extends Merton’s
sufficient conditions and establishes a necessary condition on the compound
pricing kernel t; ;.

The significance of Proposition 3 stems from the widespread use of the Black
model in practice. The Black model, and its close relative, the Black-Scholes
model, are used extensively to price options, including interest rate and bond
options, when interest rates are stochastic. The necessary and sufficient condi-
tions established in Proposition 3b, especially, give some idea of the validity of
their use when interest rates are stochastic and, in particular, correlated with
the underlying asset price.

Much of the proof of Proposition 3 concerns the details of the lognormal distri-
bution. The proof in the appendix shows the main steps in the argument and
relies heavily on the method of proof used by Brennan (1979), page 60. The
difference here is that our condition is a restriction on the pricing kernel, ¢,
rather than on the utility function of the representative investor. Otherwise,
our proof for the futures price of the contingent claim follows the same steps as
Brennan’s for the spot price of the claim.

In Proposition 3a, the necessary condition is somewhat weaker than the sufficient
condition . The relevant pricing function is the conditional expectation Ei(¢s,s |
V,) rather than ¢, itself. However, in order to relate our results to those of
Brennan (1979) and Rubinstein (1976), note that if we were to assume, as
they did, that V; is joint lognormally distributed with aggregate wealth and
that there exists a representative investor, then Proposition 3a would imply
that the representative investor had constant proportional risk aversion (CPRA)
preferences.

Proposition 3b shows that joint lognormality of ¥; s = ¢19:s with V; 1S a
sufficient condition for the Black model to hold for the forward price of the
contingent claim. Hence, if ¢; s is joint lognormal with V;, a further sufficient
condition in this case is that the stochastic bond price factor g; . is also joint-
lognormally distributed. It is significant that many of the analytical models, in
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the literature, which capture the effect of stochastic interest rates on contingent
claims prices, do assume Gaussian interest rates.!® The necessary condition in
this case is that E¢(ts, | Vs) is lognormal. If ¢;, is itself lognormal, this is
close to stating that a necessary condition for the Black model to hold for the
forward price of the claim is that the bond price factor g;,s is lognormal.

Finally, we should observe that Proposition 3 holds for any no-arbitrage econ-
omy in which V, is lognormally distributed. In particular, the conditions hold
regardless of the trading environment that exists between dates ¢ and s. In or-
der to establish propositions 1 and 2, we need only assume that trading takes
place at points in time £, + 1,t + 2, ..., s where the number of trading dates is
arbitrary. Thus, Proposition 3 is not dependent on the number of trading dates
between ¢ and s. The number of dates could be any element in the set [0,00].
The two cases that have been emphasized in the literature are:

1. continuous trading (number of dates — c0),

2. discrete trading at ¢ and s (number of intermediate dates = 0).

In the latter instance, where no intermediate trading is possible, we have the
world assumed by Brennan (1979) and Rubinstein(1976). These two cases,
(0, 00), constitute special cases of Proposition 3. The results hold in these two
cases, but also apply to economies with an arbitrary number of trading dates.
To this extent, the theorems in this section represent an extension of previous
applications of the Black model to be found in the literature. In addition of
course, the results here apply to an economy with stochastic interest rates.

Another important implication of Proposition 3 relates to continuous-time economies.
Proposition 3 shows that the assumption of joint lognormality of V; and ¢,

is an alternative sufficient condition for the Black model to hold. More sig-
nificantly, despite the fact that no explicit assumption is made regarding risk
preferences and the pricing function ¢y ,, in deriving the Black model in a con-
tinuous time economy, Proposition 3 establishes that lognormality of E(¢; s | V5)

is an implicit assumption. Furthermore, if there exists a representative investor,

and if V, and aggregate wealth are joint lognormally distributed, the implicit
assumption is that the representative investor has CPRA preferences.

We now state some of these implications of Proposition 3 in the form of corol-
laries. We have:

Corollary 2 (The Spot Price of a Contingent Claim in the Black
Model)

19Usually, as in Jamshidian (1989) or Turnbull and Milne (1991), a one-factor Gaussian
model of the term structure is assumed.
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If Y15 = b1,s91,5 is joint lognormal with V;

a)

Vile(Va)] = Bus / ATUAA

with E¥ (V,) = Gy

b) and if further, V, is uncorrelated with g:
o0

Vile(Vi)] = Bes / (V) F(V2)dVs,

—oo
with B,(V,) = Hy 5.
¢) also, if the contingent claim is a European-style call option with
¢(Vs) = max[V, — K,0]

where K is the ezercise price of the option, the effect of stochastic discount-
ing on the price of the option is < (=)(>)0 if and only if cov(Vs,gr,5) <

(=)>)o.

Proof Statements 2a and 2b follow from the spot-forward relationship that
holds for zero-dividend paying assets. To prove 2c) note that, for a call option

OVale(V2)]

>0
OF; s

If cov(V;, g¢,s) < (=)(>)0, G5 < (=)(>)Hz,s and hence

Gile(Va)] < (=)(>) Hile(Vs)]
0

Proposition 3 and Corollary 2 establish the conditions for the preference-free
Black model to hold for the futures prices of a contingent claim. We now
explore some economic scenarios under which these conditions will hold.
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Corollary 3 (Sufficient conditions for the Black Model)

a) In a representative agent economy, if the representative agent has CPRA
preferences and aggregate wealth is lognormally distributed, then the Black
Model holds for the futures price of a contingent claim on V,.

b) In a representative agent economy, if the representative agent has CPRA
preferences and gy s is lognormal then the Black Model holds for the for-
ward price of a contingent clatm on V.

¢) If ¢+ = 1 (risk neutrality) and g; s is lognormal, then the Black Model
holds for the forward price of a contingent claim on V.

d) If the futures price of the stock evolves as a lognormal diffusion process,
then the Black Model holds for the futures price of the contingent claim.

e) If the price of a bond follows a mean reverting lognormal diffusion pro-
cess as in Vasicek (1977) then if the futures price of the bond evolves as
a lognormal diffusion process then the Black Model holds for the forward
price of a conlingent claim on the bond.

Proof In a representative agent economy, it can be shown that é;, is the
relative marginal utility of the agent. If aggregate wealth is lognormal and if
the agent’s utility for wealth exhibits constant proportional risk aversion, then
#1,5 and V; are joint lognormal and the sufficient conditions of Proposition 3a are
satisfied.!! If, in addition, g; s is lognormal then ¢; sg: s is also joint lognormal
with V,. Corollary 3b) is important in the context of interest rate options. A
sufficient set of conditions for the use of the Black model in the pricing of options
on bonds is risk neutrality and lognormal bond prices (i.e., normally distributed
interest rates). Corollary 3c) is simply a special case of 3b). Corollary 3d)
provides a link with the traditional analysis of options in diffusion models. If the
futures price of an asset follows a multiplicative binomial process, the variable
¢ s must also evolve as a multiplicative binomial process. Hence in the limit, as
the trading interval tends to zero, the distribution of v; ; limits to the lognormal
distribution. Finally, in the context of bond options, 3e) applies the theorem to
the mean-reverting Vasicek model. Note, howeve, that Proposition 3 requires
only that the variables are joint lognormal at time s and does not specify the
degree of mean reversion. ]

11See Rubinstein (1976) or Brennan (1979).
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Finally, we present a corollary that highlights the economic significance of the
necessary condition in Proposition 3.

Corollary 4 (Necessary conditions for the Black Model)

a) In a representative agent economy, if the Black Model holds for the fu-
tures price of all contingent claims in the economy, then the representative
agenl has CPRA preferences.

b) If part a) of this corollary holds and the Black Model holds for the for-
ward price of all contingeni claims in the economy, then the interest rate
accumulation factor g; s has a conditional expectation which is lognormally
distributed.

Proof

Corollary 4a) follows from the proof of Brennan (1979). Corollary 4b) is signif-
icant in that it restricts the range of possible assumptions which allows the use
of the Black model in the context of interest rate options. O
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4 The effect of marking-to-market on the val-
uation of contingent claims

In Sections 2 and 3, we have applied general results on futures pricing to deter-
mine the futures prices of contingent claims. We assumed in section 3 that the
spot price at time s is lognormally distributed, and derived necessary and suffi-
cient conditions for the Black Model to hold for the futures price of a contingent
claim. In the special case of a forward contract, this establishes the necessary
and sufficient conditions for the Black and Scholes option pricing formula to
hold in stochastic-interest-rate economies.

Further implications can now be drawn, from these relationships, to calculate the
effect of the daily marking-to-market convention on the valuation of European-
style options. We will assume here that the conditions of Proposition 3a) and
b) are fulfilled, i.e. that the spot price of the asset is lognormally distributed,
and that the Black model holds for the daily marked-to-market futures price of
the contingent claim and for its forward price. Given these relationships, it is
straightforward to compute the effect of the marking-to-market convention on
the pricing of contingent claims. The forward price of the contingent claim is

GualeVl = [ Vv, (6)

— 00

where
E?(Vs) - Gt,s

We now take the special case of a European-style call option on V, with a strike
price K. In this example equation (6) becomes

GualetV] = | e - K)FF (VA (1)

which, given the lognormality of V;, is simply the Black equation. The futures
price of the claim is also given by the Black equation, but with the futures price
of the asset substituted for the forward price. For a general contingent claim,
we would have in this case

o0

Hedle(Vy)] = / (Vo) F(V)dV, (8)

—0C

and for the call option, in particular, we have



The futures prices of contingent claims 17

mAd%H=LjOG—KVOQM4 (9)

Equation (9) reduces to a Black equation with the futures price substituted for
the forward price. The difference between equation (7) and equation (9)

/ﬂu—KﬁHmmm—/?u—KVMmm (10)
K

K

measures the precise effect of the marking-to market convention on the call
option price, given stochastic interest rates .

Two important points should be noted. First, simply because the Black equation
(8) holds, it does not mean that stochastic interest rates do not have an impact
on the prices of forward-style contingent claims. Contingent claim prices are,
in general, affected; but, the impact is captured precisely by the effect that
stochastic interest rates have on the asset forward price. The effect of stochastic
interest rates is reflected in call option prices in a manner similar to the way
in which risk aversion is reflected through the spot price of the asset on which
the option is written. The second point is that although the difference between
the forward and the futures price of an asset may be small, the effect on option
prices may be much larger. The size of the expression in equation (10) depends,
not only on the difference in the means of the f and f# distributions (the futures
and forward price of the asset), but also upon the strike price of the option. For
instance, if the strike price K is relatively large (i.e. the call option is an out-
of-the-money option), a small difference between the means of f and f# will
have a large percentage effect on the option price. The difference is also likely
to be particularly significant in the case of options on interest rates and bonds,
where the covariance between interest rates and the underlying asset price is
relatively large, in absolute magnitude, and the resulting difference between the
asset forward and futures prices is significant.
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5 Conclusions

The martingale property of asset prices in a no-arbitrage economy is a fun-
damental result in financial economies. However, the valuation models for
contingent claims that follow from this property are often too gemeral to be
directly implementable. Many option valuation models in the literature, there-
fore, have restricted the stochastic process followed by the underlying asset
prices and assumed a lognormal diffusion or a square-root process, in order to
obtain more specific results, that are useful in practice. Examples of such mod-
els for European-style options are the Black and Scholes (1973) model for the
lognormal diffusion case and the Cox Ingersoll and Ross (1985) model for the
square-root case.

In this paper (in particular in Proposition 3), we have presented necessary and
sufficient conditions for the valuation of contingent claims using a commonly
used, preference-free valuation relationship, referred to as the Black model. A
sufficient condition for the Black model to hold in the case of a daily marked-
to-market futures contract on the contingent claim is that the pricing kernel is
joint lognormally distributed with the asset price. On the other hand, a set of
sufficient conditions for the Black model to hold for the forward price of the
claim are that discount factors as well as the pricing kernel are joint-lognormal
distributed. Necessary conditions derived suggest that for these pricing rela-
tionships to hold in a representative agent, stochastic-interest-rate economy,
the agent must have constant-proportional-risk-averse preferences and the con-
ditionally expected zero-bond price must be lognormal.

Supposing that the Black model holds for both the futures price and the forward
price of an option, we provide a precise formula for the effect of the mark-to
market convention on an option price. If the forward price of the asset is less
than the futures price then the effect of stochastic interest rates on the forward
price of a call option is unambiguously negative. The effect is captured by
replacing the futures price of the asset by its forward price in the Black formula.
While the difference between the forward and the futures price of the underlying
asset is generally small, the effect on the option price is levered up.'? The more
out of the money is the option, the greater is the relative effect of stochastic
interest rates on its value.

Proposition 3 has a direct application when options are traded on a forward or
a futures basis. In this regard, it is worth noting that many over-the-counter
options on foreign exchange are traded on a forward basis. Also, the Sydney
Futures Exchange and the London International Financial Futures Exchange

12For empirical estimates of the difference between forwards and futures prices see French
(1983) and Hodrick and Strivastava (1987).
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trade futures-style options that are settled on a daily marked-to-market basis.

A number of questions remain to be answered. First, to what extent do our
results extend to the valuation of American-style and other path-dependent
options? Second, is it possible in some cases to derive preference-free valuation
models, different from the Black model, when the conditions of Proposition 3 are
not met? Finally, exactly how restrictive are the necessary conditions derived
in this paper for the zero-bond prices? Do they invalidate use of the Black
model in practice? We leave the answers to these questions to await subsequent
research.
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Appendix: Proof of proposition 3

3a) Sufficiency

First, we use the assumption of joint lognormality of V; and ¢;, to find an
explicit expression for the futures price of the asset. Using Proposition 1 this
futures price is

Hys = E(Vidu,s)
Given the lognormality of V, and ¢; , this can be specified as
Ht s = ‘/teuu+%auu+a¢v

using the fact that E;(¢: ) = 1. This asset pricing model relates the mean and
the covariance of the asset, as follows:

1
B+ 0oy = ln[Ht,.s/Vt] - '2'0'1/1/

Second, we evaluate the conditional pricing kernel. Again using the properties
of lognormality

E(dis | Vi) = e—uu%v/vw—%(”iu/ﬂw)(vs/Vt)%u/vw (11)

Now we can find the futures price of the contingent claim. From Proposition 2a
this is, in general

Hyo[e(Ve)] = Ei[e(Va)de.s]

Using the law of iterated expectations, this can be written

Hys[e(V5)] = Eo[c(V5)Ee(de,5 | Vs)]

Defining z = In(V;/V;) this can be written as

oo

eVl = [ VB, | V)V Bre =Pz, (12

- 00
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Substituting from equation (11) into (12) and completing the square, we find

[ee]

HmM%H:/ e(Vy)(1 /o, V2m)e™ T b= toel gz, (13)

— 00

Now, taking the logarithm of the asset futures price we have

Hy[e(Vy)] = / o(V,)(1/o,V/2m)e o o= (nHesVimgon )l g (14)

—00
Finally, note that (14) can be written as

o

HeleVl = [ avfvav, (15)

where the mean of V; under the " distribution is
E(V.)=H t,s

and its logarithmic variance is ¢2. Hence the Black model holds for the price of
the contingent claim. O

3a) Necessity

The necessity part of Proposition 3a follows directly from Brennan (1979) The-
orem I. We simply apply that theorem to the futures price rather than the spot
price. We can rewrite equation (4) in the form

[oe)

[e(Va)Ei(¢1,s | Va)IF(V2)dVs (16)

Heafov)l = [

and we know that if the Black Model holds, it implies that

o

wamnzj (V) (V,)dV, (17)

— 00

Since equation (16) and equation(17) must be equivalent for all contingent
claims, ¢(V;), it follows that
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Ei(¢es | V) F(V2) = F(Va). (18)

Since V, is lognormally distributed, we can write

E:(¢1,s | ‘/3)(1/0'11‘\/—éw)e—'ﬁl;;[ln(‘/'/v’)_”vlg
' (19)
= (1/‘70\/iﬂ’)e_ﬁ['“(V./V,)_,‘:]z

and

Ee(u,s | Ve) = exp{—(u — 3. )/200,} (Vi /Va) (30w (20)

which is lognormal. 0O
3b) Sufficiency

Part b) of Proposition 3 concerns the special case of the forward price of the
contingent claim. Since, from Proposition 2, this forward price is

Gi,s[e(Ve)] = Ee(Vath,s)

where the stochastic interest rate adjusted pricing function ¥, , = ¢; .4¢,s again
has the property E;(¢:,) = 1, a similar argument can be used to establish
Proposition 3b. Note that the explicit expression for the asset forward price is

ths - ‘/te/-‘u‘*'%auu‘*'a\bv

The forward price of the contingent claim in this case is

o0

wamn:/ (V) F# (V,)ds

—o0
where the mean of V; under the # distribution is
EF(V,) = Gis

and its logarithmic variance is again o2. ]
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3b) Necessity

The necessary condition for the forward price of the contingent claim to be given
by the Black model in Proposition 3b follows by the same argument as that used
in Proposition 3a in the case of the futures price. O
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