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1 Introduction

Substantial effort has been produced to identify macroeconomic and financial variables which
explain the time-series and cross-sectional variation of asset returns. One common approach
assumes a linear multivariate proxy for the stochastic discount factor, and leads to beta-
pricing models: expected returns are explained by the sensitivities to given risk factors
(betas), and by the risk premia associated with the factors. [See, for example, Ferson and
Harvey (1991), and Fama and French (1993)]. A second approach assumes asset returns to
be described by a multiple-factor linear model, and leads to pricing implication analogous
to those of the multiple-beta models. [See, for example, Chen, Roll, and Ross (1986), and
Burmeister and Mc Elroy (1988); and Connor and Korajczyk (1988), and Lehmann and

Modest (1988), where risk factors are constructed from asset returns].

While these two approaches have improved our understanding of equilibrium asset pricing,
they are subject to some limitations. First, both multiple-beta and multiple-factor models
require the identification of all the relevant risk factors, and maintain linearity assumptions
which need not be supported by the data.! Secondly, both betas and risk premia may be
varying over time, and accounting for such time variation is crucial to obtaining meaningful
results.? Moreover, empirical implementations of multiple-factor models, which rely on factor
analysis, assume that the relevant risk factors can be mimicked by the asset returns under
consideration.

- Recently, several papers have investigated the implications of security-market data for
the admissible stochastic discount factors, or pricing kernels, making the only assumption of
the law of one price.®> Hansen and Jagannathan (1991), for example, identify a minimum-
variance bound for any admissible pricing kernel, for a given mean of the pricing kernel.

The present paper takes this last approach to make inference on the cross moments
between an admissible pricing kernel and arbitrary sources of risk. We show that in the
context of multiple-beta and multiple-factor models the cross moments of an admissible
pricing kernel immediately translate into risk premia on the corresponding factors. We then
identify a lower bound on the variance of an admissible (normalized) pricing kernel, for a
given mean risk premium associated with a factor. This lower bound exceeds the variance of
the projection of the pricing kernel onto the span of asset returns (augmented of a constant):
the “Hansen and Jagannathan” variance bound. The lower bound that we derive increases
with the covariability between the components of the pricing kernel and of the factor which
are not explained by asset returns, and decreases with the distance between the factor and
the (augmented) asset-return space. In other words, if a pricing kernel correlates with risk
factors which are not mimicked by asset returns, then its variance must exceed the variance
that is implied by asset returns alone.

!Exceptions are Ferson (1990) and Brown and Otsuki (1992), which allow one risk variable to be excluded
from a multiple-factor model of asset returns. Mei (1994) extends the approach to the case where more than
one risk factor could be omitted. Also, Bansal and Vishwanathan (1993) extend the multiple-beta model to
the case where the stochastic discount factor is a nonlinear function of a set of observable asset returns.

2Both Ferson and Harvey (1991) and Mei (1994) address the issue of time variation, in the context of
multiple-beta and multiple-factor models, respectively.

3See Cochrane (1994) for a useful review of many issues in empirical asset pricing from this perspective.



Conversely, for a given variance of the pricing kernel, we identify an upper and lower
bound for the mean risk premium associated with an arbitrary risk factor. This interval
increases in size with the variance of the pricing kernel in excess of the Hansen and Jagan-
nathan bound, and with the variance of the component of the risk factor which cannot be
mimicked by asset returns. When a risk factor can be mimicked by portfolio returns, the
bounds on the cross moment reduce to a single value.

The risk premium-variance bounds can be compared with the risk premium-variance pairs
generated by an explicit asset pricing model, and can be used as diagnostics of the model.
A candidate pricing kernel may in fact have mean and variance which are consistent with
the Hansen and Jagannathan variance bound, but the risk premia it generates may place it
outside of the more restrictive bounds that we derive. Moreover, in situations where we do
not observe directly a pricing kernel, but we have apriori information on its variability, we
can still place bounds on the risk premia it generates.

As stated above, our bounds have special economic meaning when either the pricing
kernel or the return-generating process are linear in the risk factors: cross moments of a
pricing kernel immediately translate into risk premia. Still, their validity does not depend
on the appropriate specification of a pricing model and of a stochastic process for asset
returns; and the risk factors that we consider need not lie in the payoff space of traded
assets. Also, while we allow for time variation of the cross moments of the pricing kernel,
calculating the bounds does not require to explicitly model such time variation. Moreover,
conditioning information can be easily introduced along the lines of Hansen and Richard
(1987) to effectively ezpand the set of assets under scrutiny, and sharpen the bounds.*

As an application, we specialize the analysis to a situation where the candidate normalized
pricing kernel is a linear function of consumption growth, and the assets under consideration
are those of the “three-factor model” of stock returns of Fama and French (1993). We
calculate the risk premium-variance bounds for four variables, which proxy for corporate-
default risk, term-structure risk, inflation risk, and business-cycle risk. We find that the
risk premium associated with the inflation-risk proxy implies a standard deviation of the
normalized kernel which is up to 15% higher than the Hansen and Jagannathan bound.
When we introduce returns on large and small stocks, and on high and low book-to-market
value stocks, we obtain bounds which are sharper than those obtained using the rate of
return on the market and on the riskless asset only. Also, we show how the introduction of
conditioning information makes the bounds even sharper.

The approach we take here is related to other recent papers which derive implications
for the underlying pricing kernel following the approach of Hansen and Jagannathan (1991).
Snow (1991), for example, shows how security-market data contain information on moments
of the pricing kernel other than mean and variance, namely its higher-order norms. Our paper
is similar in spirit, since we also derive implications for moments of the pricing kernel other
than its variance, its cross moments; but, differently from his paper, we use information in
addition to asset returns, and this information is contemporaneous to the realization of asset
returns. Also, Cochrane (1992) looks at the implications of observed price-dividend-ratio

4Gee also Gallant, Hansen, and Tauchen (1990), Cochrane and Hansen (1992), and, more recently, Downs
and Snow (1994).



behavior for the variance of the unobserved discount factor. Unlike the bounds he derives,
though, ours are at least as sharp as the Hansen and Jagannathan variance bound. More
recently, Hansen and Jagannathan (1994) have shown how the misspecification of a candidate
pricing kernel can be measured by looking at the minimum distance between the candidate
kernel and an admissible pricing kernel; while Hansen, Heaton, and Luttmer (1995) pursue
these ideas further, to allow for market frictions and short-sales constraints.

The paper is organized as follows: Section 2 illustrates how the cross moments of a pricing
kernel correspond to factor risk premia when either the pricing kernel or asset returns are
linear in the risk factors. Section 3 derives the risk premium-variance bounds, and Section
4 shows how the bounds can be made sharper by including conditioning information. In
Section 5 we illustrate possible extensions of the analysis, which consider the implications
of the nonnegativity of an admissible pricing kernel, and highlight formal tests of the risk-
premia restrictions. Section 6 derives the risk premium-variance implications of a normalized
pricing kernel linear in consumption growth. In section 7, we provide an empirical application
of our analysis, while section 8 concludes.

2 Cross moments and risk premia

Consider an N x 1 vector of (gross) security returns r. By the law of one price, we have
Et(mt+17‘t+1) =1, (1)

for some admissible pricing kernel m, where 1 is an N X 1 vector of ones.® Note that r can be
measured either in units of the consumption basket or in units of the currency; accordingly,
m has the interpretation of a real or a nominal pricing kernel, respectively.

In the following, we shall assume that r includes the possibly time-varying rate of return
on a risk-free asset, ry;. We have

Et(mt+1rft) =1.

For convenience of notation, we define the normalized pricing kernel m; 175 = g441, where

Et(Qt+1) =1

Thus, we obtain the familiar orthogonality condition

Et[‘]t+1 (T't+1 - 17'ft)] = 0. (2)

Rearranging, we obtain

Et(qt+1)[Et(Tt+1) - lrft] = Et(’”t+1) —1rp = —Covi(ges1, Te1)- (3)

See Harrison and Kreps (1979). The set of pricing kernels can be interpreted as the set of intertemporal
marginal rates of substitution compatible with the distribution of returns.



Consider now a vector of K risk factors
Ykpr1, E=1,..., K.

Without loss of generality, we assume E,(yi+1) = Ei(yre+1¥je41) = 0, and Ey(yi 4,) = 1,
for any k,7=1,..., K.

In the following, we consider situations where the normalized pricing kernel and/or asset
returns are linear functions of the K factors.

2.1 Multiple-beta models

The assumption that the pricing kernel is linear in one or more factors features prominently
in the asset pricing literature. It is, for example, the assumption of the standard CAPM of
Sharpe (1964), Lintner (1965), and Mossin (1968), where the factor is the rate of return on
a claim to aggregate wealth, the “market” portfolio.

Let the admissible normalized pricing kernel ¢ be a linear function of the K factors:
1 =1— )‘ltyl,t+1 - )‘Zty2,t+1 ... )‘KtyK,t+la (4)
where Mg, k= 1,..., K are possibly time-varying coeflicients.
Using (3) and (4), we have .
Ey(ripr) = 1rpe = MeBy(yr,em1mee1) + AeeBo(ya,earesn) + - oo+ Akt Be(yr eeareg). (5)
Let Byt = Ey(ri41Yk41). We can rewrite (5) as
Ei(ri1) — 1rp = Burie + Batdae + - + BriAke (6)
The quantity
Aot = —Ei(@r41Ynt+1)

is the risk premium on the corresponding state variable. Assuming stationarity, we define
M = —FE(qyx) and, by the law of iterated expectations, we have

Ap = —E(Qt+1yk,z+1) = E(/\kt)a

which is the mean risk premium on y;. Hence, the cross moment between the normalized
pricing kernel g and the risk factor y; equals, with the opposite sign, the mean risk premium
on the factor.

Note that the mean risk premia E()\y), for k= 1,..., K, enter the unconditional version
of (6). In fact, assuming stationarity, we have

E(”‘t+1) - lE(Tft) = E(ﬁlt)\u) + E(ﬁzt)\zt) + ...+ E(/BKt)‘Kt)v
where E(ﬂkt)\kt) = E(/Bkt)E()‘kt) + Cov(ﬁkt, )‘kt)-
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2.2 Multiple-factor models

The linearity of asset returns in a set of risk factors is also a common assumption, see, for

example, the APT of Ross (1976) and Connor (1984).

Let r be a linear function of one or more risk factors

rie1 = Bot + Breyier T Bayaerr + oot BriYK 1415 (7)
where By, k=1,..., K, are possibly time-varying coeflicient vectors. Using (3) and (7), we
have

Et(rt+l) - 17"ft = —ﬁltEt(Qt+1y1,t+1) - 52tEt((Zt+1y2,t+1) — .. ﬂKtEt(Qt+1yK,t+1)
= Brd + Bacdat + ...+ BriAky,
where Akt = —E¢(ge41Yk41) is the risk premium on yg. Under stationarity, A\x = —FE(qyx) is

the mean risk premium on y;. Again, the mean risk premia enter an unconditional version
of the pricing relation above.

Note that we can combine the factor-model assumption for the return generating process
with the linearity of the normalized pricing kernel. This is the case, for example, of the
continuous-time model of Cox, Ingersoll, and Ross (1985), where asset returns are linear in a
set of state variables, and marginal utility is locally linear in wealth and the state variables.
We may assume, for example, ¢ = 1 — Agt¥g,e41, where y, ;41 is a factor which drives the
pricing kernel and may correlate with the factors driving asset returns. We have

Ei(riy1) = 1rp = PredgEe(ygprynesr) + BatAgt Ee(yq+1¥2,041) + -+ Brcidgt Et(Ygt41VK t41)
= BidgiPart + BatAgtPe2,t + - - - + BEtAqteK b5

where pgr: = Ei(ygt+1Ykt41) is the conditional correlation coefficient between y, and y;.
In this case, Ay is the risk premium on y,, while Ag¢pgrs is the risk premium on the fac-
tor yz. Under stationarity, A, = —FE(qy,) = E(Ay) and A = —E(qyx) = EQgtpers) =
E(X 1) E(pg,) + Cov(Age, pgr,:) are the corresponding mean risk premia.

3 TFactor risk premia and variance bounds

In the following, we implicitly assume linearity of the pricing kernel and/or of the return-
generating process. Hence, Ay = —E(gy) has the interpretation of a mean risk premium.
Still, our analysis is valid even when the linearity assumptions mentioned above do not hold.

Using the definition of ¢ we can rearrange the pricing equation (1) to obtain
Ei(gr417141) = 1rge. (8)

Equation (8) above states that all expected asset returns, after a risk adjustment, should
equal the risk-free rate. Assuming stationarity of the risk-free rate ry, we can multiply both



sides of the moment condition Ey(g:41) = 1 by E(ry) to obtain
Eig41E(rsi)] = E(rp)- (9)

We define the augmented vectors r, = [, E(ry)]’ and 1, = [1,1]". Assuming stationarity,
we can apply the law of iterated expectations to equations (8) and (9) to obtain

E(qrs.) = 1,E(ry). (10)

The unconditional moment restriction (10) corresponds to Restriction 1 of Hansen and Ja-

gannathan (1991).

Following Hansen and Jagannathan (1991), we can construct a random variable ¢* = /¢,
where a is an (N + 1) x 1 coefficient vector, such that

E(r,ria) = 1,E(ry).

Assuming E(r,r’) to be nonsingular, we have a = E(r,rt) '1,E(rs). Note that E(¢*) =
E(q) = 1. Also, we have E[r,(¢ — ¢*)] = 0, since both ¢ and ¢* satisfy (10). Hence,
q — ¢*) is orthogonal to r,, and ¢* is the least-squares projection of ¢ onto r,. We have

Var(q) = Var(g*) + Var(q — ¢*), and hence
Var(q) > Var(¢*), E(q) = E(7) = 1. ' (11)
The relations above correspond to equation (6) of Hansen and Jagannathan (1991).
Consider the least-squares projection of yj onto r,. Assuming stationarity, we have
vi = o[ E(rary)] T E(yrra) °

Also, let A} = —E(qy}) = —E(q*y;) denote the mean risk premium on y;. Using the
definitions of ¢* and y}, we have

A = E(E(r) 1L E(rart)]  rart[E(rar)] T E(yera)
= E(rf)liz[E(ra"";)]—lE(ykra)'

We turn now to the mean risk premium A;. We have

A = —E(qyx)
—E([q" + (g — ¢")lyk + (v — y)])
—E(q*v;) — Elg*(yx — yp)] — El(a — ¢")vi] — El(g — ") (wx — vi)]-

Since both yx — y; and ¢ — ¢~ are orthogonal to ra, Elg*(yx — yi)] = El(q — ¢")yx] = 0, and
we obtain Ay = A\f — E[(¢ — ¢")(yx — yi)]- Rearranging, we have

El(g—q")(yx — )] = Ak — A (12)

SSince Efrq(yr — u3)] = 0, we also have E[E(rs)(yx — y;)] = 0 and E(yx) — E(y;) = 0. Hence, E(y;) =
E(yr) = 0.



By the Cauchy-Schwarz inequality, we have

E[(q — ¢) (e — vl < VEl(@ — ¢ El(ye — %7)7]. (13)

Since E(q) = E(q") = 1, we have E(q— ¢")* = E(¢*) - E[(¢*)?] = Var(q) — Var(g*). Taking

the square of both sides of (13), using (12), and rearranging, we have

(g~ )= )P _ gy i MP
El(ye — i)?] El(yr — yi)]

The right-hand side of (14) describes a parabola in the risk premium-variance space, with a

minimum of Var(g*) at A\ = A%.

Var(q) = Var(¢") + (¢") + (14)

Hence, to the extent that the components of ¢ and yx, which are not explained by r,,
exhibit covariability, the variance of ¢ must exceed the variance of the projection ¢*. This
“excess” variance, Var(q)— Var(g*), increases with (Ay— A )2, and decreases with the distance
between a risk factor and the span of asset returns as measured by E[(yx — y%)?], where
0 < El(yx —0)?) < E(yp) = 1.

The bounds (14) may find an application as diagnostics of an explicit pricing model.
When “diagnosing” a pricing kernel, we should not limit ourselves to the first and second
moments. Snow (1991) extends the analysis of Hansen and Jagannathan (1991) to the
higher-order norms of a pricing kernel. This paper considers the cross moments of a pricing
kernel which are of special economic interest: under linearity of the kernel and/or of the
return-generating process, they correspond to the mean risk premia on the corresponding
risk factors.

Note that when g is spanned by 74, the bound reduces to Var(q) = Var(g*). For example,
if the candidate pricing kernel g were a linear function of some asset returns and ¢ = ¢*, we
would have A\, = Af, for k =1,..., K. Also, when r, does not capture any variability of y,
we have y; = A} = 0 and the bound (14) simplifies to Var(g) = Var(g*) + A2.

Also, note that

— it = Ei(me1T el e41) = PriT st

where py is the price of an asset with payoff yx: pre = E;(mi11Yk41)- Assuming stationarity
and using the law of iterated expectations, we have

"')‘k = E(pk’f'f). (15)

Equation (15) highlights the close relation between the bound (14) and the regions derived
in Hansen and Jagannathan (1991). In deriving the mean-standard deviation frontiers,
Hansen and Jagannathan (1991) assume the risk-free rate to be unobservable. Hence, they
assign average prices to a unit payoff and obtain the corresponding minimum variance of
an admissible pricing kernel. In our derivation, it is the mean factor risk premium which
is unobservable. Hence, we assign mean factor risk premia, and derive the corresponding
minimum variance of an admissible (normalized) pricing kernel.



Alternatively, the risk premium-variance bounds can be used to place restrictions on the
a risk premium for a given variance of a normalized pricing kernel. In general, we would
expect the bounds around a risk premium to increase as the variance of a pricing kernel
increases, and thus the kernel is “allowed” to exhibit a stronger covariability with the risk
factor. This intuition is made more precise when we reconsider the inequality (13). From
(12) we have E[(g—q*)(yx — ;)] = Ax — A. Moreover, we have E(g—g¢*)* = Var(q) — Var(¢").
Substituting in (13), we obtain

A; — /[Var(q) — Var(q") El(ye — 1) < A < Ap + /[Var(g) = Var(g")| El(ye — v¢)?]- (16)

The size of the interval for )\, increases with the variance of the normalized pricing kernel in
excess of Var(g*), and with the distance between a risk factor and r,. In situations where we
do not observe directly a pricing kernel, but we have apriori information as to its variability,
we can still place bounds on the risk premia it generates. Such bounds are tighter, the closer
are the risk factors to r,, and thus the more “traded” are the factors. Note that, again, if

y; = 0 the bound (16) simplifies to |A;| < \/Var(q) — Var(g*).”

In some situations a risk factor may be identified with the return on a portfolio of assets:
a “mimicking” portfolio. When a factor les in r,, the bound (16) reduces to A\ = Aj.
Hence, rather than an admissible interval we obtain a point estimate of the mean factor risk
premium.

4 Conditioning information

While the moment restriction (10) is unconditional, there is a simple way to incorporate
conditional information. Consider again the conditions (8) and (9), and assume we multiply
r and gy41 by a vector of instrument z; observed at time t. We have

Eilg1(ria ®z)] = (1®z)rsn (17)
EqmE(ry)z] = zE(rs). (18)

Let 72,1 = Tag41 @ z and ¢ = [(1 ® 2,)'r},, 2, E(r54)]'. Assuming stationarity, we can apply
the law of iterated expectations to (17) and (18) to obtain

E(qry) = E(v)-

* The risk premium-variance bounds (14) and (16) still hold, but the projections ¢* and y; are
defined as

¢ = (r)(EF(rI))TE(Q)
Yi

—~
=3
1\
S’
~
~—~~
=
=
2 &
—~
=3
2 N
p—
—3
"
|
-
~—~
<
B
-
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N

"Remember that E(yZ) = 1 by assumption, while A} = —E(q*y};) = 0.



The scaled returns rZ,,, have the interpretation of cash flows generated by managed port-

folios: investors who observe z can invest in an asset according to the value of 2.5 The
projections ¢* and y; above are likely to capture more of the variability of g and yk, and to
make the risk premium-variance bounds more stringent.’

5 Extensions

This Section extends the analysis of Section 3. We consider the implications of the require-
ment of nonnegativity of an admissible pricing kernel, and we highlight how the restrictions
implied by mean risk premia can be formally tested.

5.1 Nonnegativity

While the projection ¢* satisfies condition (10), in general it will not satisfy the no-arbitrage
condition ¢* >0, Restriction 2 of Hansen and Jagannathan (1991). Here, we limit ourselves
to the weaker requirement of nonnegativity of an admissible pricing kernel: ¢ > 0.

Let & denote an (N +1) x 1 coefficient vector. Following Hansen and Jagannathan (1991),
we define § = (r &)t = max{r,&,0}. Assume

E(qra) = 1.E(ry). (19)

The random variable §, if it exists, has the smallest variance among all nonnegative random
variables ¢ satisfying restriction (19). In fact, we have E(qr,) = E(qr.) = 1,E(ry). Since g
is nonnegative, we have

E(dq) 2 & E(raq) = & E(rag) = E(§")- (20)

By the Cauchy-Schwarz inequality we have E(¢?) > [E(gq)]*/E(§®). This, combined with
the inequality (20), leads to

Var(q) 2 Var(q), E(q) = E(9) = 1. (21)
The relations above correspond to equation (22) of Hansen and Jagannathan (1991).

When we turn to the mean risk premium A, we can write

M = —E(qyx)
= —E([q+ (¢ = D]lvi + (v — y2)])
= —E(gyi) — Elg(yx —yi)] — Ellg — Dye) — Ella — ") we — wi)]- (22)

8See Hansen and Richard (1987).

9The extent to which the projection ¢* is altered by introducing conditioning information can be explicitly
tested, as shown in Downs and Snow (1994).



Since E(gr,) = E(qra), we have E[(q — §)ro] = 0 and ¢ — G is orthogonal to r,. Hence,
El(g - §)y;] = 0, but, in general, E[¢(yx — y;)] # 0. Let Ax = —E(qyi) — Elq(yx — yi)] =
A; — ElG(yx — y5)]. Hence, we can write (22) as Ax = Az — E[(¢ — ¢")(yx — yi)]. Rearranging,
we have

El(g — ¢)(yr — y0)] = Ak — Ak

Following the analysis of Section (3), we obtain bounds analogous to (14) and (16). We
have

(M = Mi)?

[E(q — @) (yx — y3))? = Var Tl — 2]
El(yr —y1)?)

El(yx — vi)¥ (23)

Var(q) > Var(q) + (¢") +

and
M = /[Var(q) — Var(@) E[(ye — v7)?] < M < Ae+ V[Var(q) — Var(9IE[(y — v7)?].  (24)

Following Hansen and Jagannathan (1991), it is possible to show that Var(g) > Var(¢*). In
general, whether (23) is more stringent than (14) depends on the sign of E[§(yx — yi)] and
on the magnitude of A\;.1° On the other hand, Var(g) — Var(g) < Var(q) — Var(¢*), and (24)
is at least as stringent as its counterpart (16), for any value of E[§(yx — yf)]-

5.2 Tests

So far, we limited ourselves to the analysis of the risk premium-variance regions. In the
following, we highlight how formal tests of the restrictions implied by factor risk premia
could be performed.

Assume the mean risk premium on the factor y; to be known apriori, and to equal k.
An admissible pricing kernel ¢ must satisfy the set of restrictions
E(gr.) = la_E(rf)
E(qyr) = —A
We can test whether the minimum-variance kernel ¢* that satisfies the moment condition
(10), also prices correctly (on average) the risk factor y;. This amounts to a test of A} = A,.

Such test can be performed using the generalized method of moments, GMM [see Hansen
(1982)], along the same lines of Snow (1991) and Downs and Snow (1994).

The approach above can be easily generalized to the case where we consider several risk
premia at the same time. In this case, we have

E(q'r‘a) = laE(Tf)

10We have (A2 - A2) > (A2 = \}), and hence (23) is more stringent than (14), i) for Ay > (A + A)/2 when
E[g(yx — y3)] > 0, and ii) for A\x < (Ax + Ax)/2 when E[§(ye — y;)] < 0.

10



E(qy) = —X

where X is a K x 1 vector. In this case, we want to test whether the minimum-variance
kernel ¢* that satisfies the moment condition (10), also prices correctly (on average) all the
risk factor yy, for k = 1,..., K. This amounts to a test of \j = A, fork=1,..., K. Equally
straightforward (at least from a conceptual standpoint) is imposing nonnegativity [see, again

Snow (1991) and Downs and Snow (1994)].

Alternatively, we may consider an explicit asset pricing model and a random variable z
which is a candidate normalized kernel. Hence, z does not necessarily price correctly neither
asset returns nor risk factors. Following Hansen and Jagannathan (1994), we may want to
assess the misspecification of z by measuring the minimum distance between any admissible

kernel ¢, and z:

= mqin El(z — 9)%. (25)

Let f = [r.,y']. Also, let s = [1/E(r;),—N]. Hansen and Jagannathan (1994) show that
the distance § is equal to the distance between the least-squares projections of ¢ and z onto
f. If we also impose positivity of the admissible pricing kernel ¢, we have

§ = inf Bz - o)) = min El(e ~ 9] (26)

Hansen and Jagannathan (1994) show the problem (26) to be equivalent to the conjugate
maximization problem

(8)* = max E(z*) — E({(z = [')*]") — 21 E(s),

where 7 is an (N 41+ K) x 1 coefficient vector. The asymptotic distribution of the empirical
counterparts of § and & is derived in Hansen, Heaton, and Luttmer (1995). Hansen, Heaton,
and Luttmer (1995) also generalize the analysis to the case where E(gr) > 1E(ry) because
of market frictions, and where some of the elements of 7 are restricted to be nonnegative
because of short-sale constraints. It is worth noting that the requirement that some cross
moment E(qyi) ezceeds the value —X; could be handled in the same way as market frictions,
and we would have E(qy) > —A.

6 A consumption-based model

Here we apply the analysis of Section 3 to a specific pricing kernel.

Let ¢ denote gross real per-capita consumption growth and let yei41 = -cﬁﬂ_—E‘i(ﬁi—l% We
ale(ces

consider the following candidate pricing kernel

Ti41 = 1- )‘cyc,H-l’ (27)

11



which can be seen as a linearization of ¢y /Ei(c(h)."t Note that A. > 0 because of the
diminishing marginal utility of consumption.

According to the candidate kernel z, expected excess returns are given by
Ey(rig1) — 1rp = BetAe
where B, = Ey(ri41Yess1), and A, is the risk premium on consumption risk.
The assumed specification for z implies
Var(z) = A2, (28)

and ), coincides with the standard deviation of z. Hence, the value of \. which would make
the candidate consumption-based pricing kernel consistent with the Hansen and Jagannathan
variance bound is

AHT) = | [Var(g*).

Consider now a risk factor yx, where F;(yx+1) = 0 and Vary(yks+1) = 1. Also, assuming
stationarity, let pex = E(Yetyrt) = E(pekt), where per: = Ei(yct+1Yke+1).- The candidate
kernel x implies the mean risk premium

Ak = —E(zyx) = AE(Yeyx) = AcPk- (29)

We can combine equations (28) and (29) above to obtain the following relation between
the variance of z and mean risk premium on yx:
)2
Var(z) = = (30)
Pek
Note that the risk premium A; must have the opposite sign of p. for it to be consistent
with the restriction A. > 0. Equation (30) describes a parabola in the risk premium-variance
space, with a minimum of zero at A; = 0.

1The coefficient A, can be translated into a measure of relative-risk-aversion measure as follows. Assume
¢ to be distributed itd. We have

e (Ee)y~" (Ec)=7-1
—_— — Y-
Ee Ec™ Ec—7
If we ignore Jensen’s inequality, and we replace (Ec)~" with Ec™", we obtain

=7

Ec—7

Oc
~ 1-— 7-E—cyc.

Hence, A = yo./Eec.

12



For the consumption-based pricing kernel to satisfy the bounds (14) we need
Ak (Ve = M)
—= > Var(q") + ———=3-
[ (@) E(yr — y)?

Let A = 1/E(yx—yi)*=1/(pet)?, B = —2)i/ E(ye—yi)?, and C = Var(¢")+(A;)?/ E(ye—yi)*.
The minimum value, if any, of /\;c which satisfies the 1nequahty above is given by

—B £ +vB?*—4AC
2A ’

where the only relevant root is the one with the opposite sign of pt. Correspondingly, the
minimum value of A, satisfying the risk premium-variance bound is

2Apck

While A7) is always well defined, we may have B*> —4AC < 0, and the consumption-based
pricing kernel may not be able to satisfy the risk premium-variance bound for any value of

Ac.

7 An Application

In this application, we consider the candidate pricing kernel introduced in the previous Sec-
tion, and we compare the risk premium-variance pairs that it generates with the implications
of actual asset returns, along the lines of Section 3.

We look at monthly-returns data on five stock portfolios and one bond portfolio, which
are borrowed from the study of Fama and French (1993).'? The five stock portfolios are: a
market portfolio proxy, a portfolio of small stocks, a portfolio of big stocks, a portfolio of
high book-to-market-value stocks, and a portfolio of low book-to-market-value stocks. The
bond portfolio is the one-month Treasury bill.

In the following, we briefly describe the portfolio-returns data with reference to the series
of Fama and French (1993). (Further details on the construction of the stock portfolios can be
found in Fama and French (1993), pp.8-10.) The market portfolio returns, ras, correspond
to the RM series of Fama and French (1993). The small-firm portfolio returns, rg, are
the simple average of the returns on the three small-firm portfolios S/L, S/M, and S/H.
Similarly, the big-firm portfolio returns, rg, are the simple average of the returns on the three
big-firm portfolios B/L, B/M, and B/H. The high book-to-market-value portfolio returns,
ry, are the average of the returns on the two high book-to-market-value portfolios S/H and
B/H. The low book-to-market-value portfolio returns, rr, are the average of the returns on
the two low book-to-market-value portfolios S/L and B/L. The bond-portfolio return, ry, is
the one-month Treasury bill rate, series T'B, which we use as a proxy for the risk-free rate.

12We thank Eugene Fama for kindly providing us these data.
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All returns are deflated using a CPI inflation series, which we constructed from the series

PZUNEW from CITIBASE.

Table 1 reports mean real rates of return of the stock and bond portfolios and their
standard deviations, for the period 1963:7-1991:12.

[ Table 1 about here|

This particular choice of assets allows us to investigate the information contained in the
returns on small and large stocks, and in the returns on high and low book-to-market-value
stocks, on the variance and risk premia of an admissible pricing kernel.

We also consider the four risk factors

DEF: the change in the yield on Baa corporate bonds minus the change in the yield
on long-term Treasury bonds (annualized yields, percentage points);

TS: the change in the difference between the mean monthly yield of a ten-year Treasury
note and a three-month Treasury bill (annualized yields, percentage points);

INF: the monthly rate of inflation (percentage points per month);

IP: the monthly growth of the industrial production index (percentage points per
month).

The yields on Baa corporate bonds, long-term Treasury bonds, ten-year Treasury notes, and

three-month Treasury bills are from the CITIBASE tape, series FYBAAC, FYGL, FYGT10,
and FYGM3.

These variables have been chosen on the basis of earlier studies which found them to
command non-zero risk premia in the context of empirical investigations of multiple-beta
and of multiple-factor models (similar variable have been used, for example, in Chen, Roll,
and Ross (1986), McElroy and Burmeister (1988), and Ferson and Harvey (1991)). Of
course, we do not claim that these variables are a unique and exhaustive representation of
the relevant economic risks driving asset returns.

We also construct a series of the monthly growth rate of per-capita real consumption of
nondurables and services, CG (percentage points per month). The series used to construct
consumption data are from the CITIBASE tape. Monthly real consumption of nondurable
goods and services are the GMCN and GMCS series deflated by the corresponding defla-
tor series GMDN and GMDS. Per-capita quantities are obtained using data on resident
population, series POPRES.

Our analysis has assumed the risk factors driving the pricing kernel and/or asset returns
to have (conditionally) mean zero and unit variance, and to be (conditionally) orthogonal
to each other. In order to generate a set variables which satisfy this requirement, we regress
the four risk factors and consumption growth on one lag of the risk factors, where the
covariance matrix of the residuals is assumed to be constant over time. The residuals from
the first four equations (DEF, T'S, INF, and IP) are made orthogonal by means of a
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Choleski decomposition of the residual covariance matrix, and normalized by their standard

deviations.!® The transformed residuals are denoted ypgr, ¥7s, YinF, and y;p. The residual
from the consumption equation is also normalized by its standard deviation, and proxies for

the variable y. in the consumption-based pricing kernel (28).

Table 2 reports means and standard deviations of the four state variables, and of con-
sumption growth. It also reports the correlation coefficients between y. and the risk factors.

The period is 1963:7-1991:12.

| Table 2 about here |

As we would expect, the two interest-rate factors, ypgr and yrg, correlate with y. (in absolute
value) less than the two macroeconomic factors, yrnr and yrp.

Using the approach outlined in Section 3, we now turn to calculate the projections of ¢
and y; onto the (augmented) space of returns. Based on these projections, we then calculate
the risk premium-variance bounds. Figures 1-4 illustrate the risk premium-variance bounds
(the “B-K bounds”), which are contrasted with the Hansen and Jagannathan variance bound
(the “H-J bound”), and the risk premium-variance pairs generated by the consumption-based
pricing kernel (the “C-CAPM”).

Figures 1-4 about here

In calculating projections, bounds, and the risk premium-variance pairs, theoretical moments
are replaced by their sample counterparts, using data for the 1963:7-1991:12 period.

Figure 1 is obtained using the returns on the market and the bond portfolio only; Fig-
ure 2 includes the returns on big and small stocks; while Figure 3 uses returns on all
six portfolios. In Figure 4, the six asset returns are scaled by the realizations of con-
ditioning variables, as illustrated in Section 4. The conditioning vector z; is given by
[1, DEF,, TS,, INF,, IP,, CG,]. Again, while these variables are commonly used [Downs
and Snow (1994), for example, use a similar conditioning set], they are not meant to represent
all the relevant conditioning information.

Table 3 reports the minimum values of )\, consistent with the Hansen and Jagannathan
bounds, A#7) | the distances of the four factors from the (augmented) span of asset returns,
E{(yx — y})?], the risk premia A}, and the minimum values of A, consistent with the risk
premium-variance bounds, A(P¥).

| Table 3 about here|

The four figures and Table 3 clearly show that the inflation risk premium implies the highest
variance of the kernel. Specifically, for the inflation-risk factor, the ratio [A(BK) — \(H7]/X(H)
goes from a minimum of 5.01% (asset returns: rpy, rs, rs, and rg) to a maximum of 15.73%
(asset returns: all portfolios, scaled returns).

13The order of the decomposition is DEF, TS, INF, and IP.
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This result has the following “geometrical” interpretation. The right-hand side of the
inequality (14) is a parabola with a minimum of Var(¢*) for Ay = A;. Hence, if the cross
moment-variance parabola [the right-hand-side of (14)] is “flat,” while the relevant branch of
the consumption-based-kernel locus (30) is “steep,” the intersection between the two curves
takes place for a value of A close to A;. This, in turn, implies a value of Var(q) close to
the Hansen and Jagannathan variance bound, Var(¢*). By contrast, if the cross moment-
variance parabola is steep and the branch of the consumption-based-kernel locus is flat, the
intersection between the two curves takes place for a value A, different from A%; which implies
a value of Var(q) larger than Var(¢*).

In fact, the absolute value of the slope of the cross moment-variance parabola is given by

I S
E{(ye —y1)?

which is high when E[(yx — y)?] (which measures the distance of the risk factor from r,) is
low (remember that 0 < E[(yx —y%)?] < 1). Table 3 shows how the three factors ypgr, yrs,
and y;p are more distant from r, than the factor y;nr.

Ae — A%l

The absolute value of the slope of the consumption-based-kernel locus is given by

Ak
Pck

2

bl

which is high when |p.t| is low. Hence, the risk factors ypgr, yrs, and yrp, which exhibit
less correlation (in absolute value) with the consumption-based kernel than y;vr, generate
steeper consumption-based-kernel loci, and imply a smaller increase of the variance of the
kernel.

One additional result from our analysis is that the introduction of returns on small and
large stocks (Figure 2), and of returns on high and low book-to-market-value stocks (Figure
3) shifts all bounds upward, relative to the case where only the market and the risk-free
asset proxies are considered. The figures of Table 3 show that the inclusion of returns on
small and large stocks increases A7) by roughly 98%; and the inclusion of returns on high
and low book-to-market-value stocks further increases A7) by about 22%. In other words,
returns on small and large stocks, and returns on high and low book-to-market-value stocks
do carry information on admissible pricing kernels beyond that of the returns on the market
and the risk-free asset.

When the set of asset returns is expanded by introducing conditional information, the
bounds are made even sharper (Figure 4). Table 3 shows that the increase in M) when
going from “all portfolios” to “all portfolios, scaled returns” is about 61%.

8 Conclusions

This paper shows how information in addition to asset returns, and contemporaneous to
the realization of asset returns, can be used to learn about the properties of an admissi-
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ble pricing kernel. Namely, we derived restrictions on the risk premium-variance pairs of
a candidate pricing kernel. For given risk premia, these restrictions translate into a lower
bound on the variance of a normalized pricing kernel which is at least as high as the Hansen
and Jagannathan variance bound. Specifically, we have shown that the inflation risk pre-
mium generated by a consumption-based pricing kernel implies a standard deviation of the
normalized kernel which is up to 15% higher than the Hansen and Jagannathan bound.
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Table 1: asset returns, summary statistics

We report summary statistics for the real rates of return on the stock and bond portfolios,
for the 1963:7-1991:12 period (percentage points per month).

| Return | Mean | Standard Deviation |

Tt 0.5055 1521
rs 0.8478 5.959
rs 0.5760 4.385
ry 0.9368 4.961
rr 0.5069 5.654
r; 0.0984 0.312
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Table 2: risk factors, summary statistics

We report summary statistics for the four risk factors and consumption growth (percent-
age points per month). We also report estimates of the correlation coefficients between y.

and the factors yz. The period is 1963:7-1991:12.

rVaria,ble | Mean | Standard Deviatitm

DEF 0.0032 0.1733
TS 0.0010 0.4504
INF 0.4426 0.3457
IP 0.2815 0.8562
CG 0.1714 0.4019

[ Factor [ pe_|

yper | 0.05
yrs —008
yine | -0.25
yip 0.14
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Table 3: risk premium-variance bounds

We report estimates of A9 E(yx — yi)?, A; and AEBK) for the 1963:7-1991:12 period.

Asset returns: rp, and ry

/\gHJ)

0.0984
[Factor | Byx —y0)° | x| PP |
YDEF 0.8 ~0.0087 | 0.0985
YyTs 1.00 20.0020 | 0.0989
YINF 0.44 0.0044 | 0.1036
Yrp 0.99 ~0.0037 | 0.0989

Asset returns: ry, ry, rs, and rp

3HT)
0.1957
[ Factor I E(ye — yp)? | ¥ | )\&BA’) J
YDEF 0.95 -0.0141 | 0.1958
yrs 0.98 -0.0225 | 0.1996
YINF 0.44 0.0099 | 0.2056
yip 0.99 -0.0059 | 0.1969

Asset returns: all portfolios

AT
0.2394
[Factor [ By —yp)* [ At [ APV ]
YDEF 0.95 -0.0071 | 0.2395
yrs 0.96 -0.0413 | 0.2474
YINF 0.43 -0.0011 | 0.2597
yip 0.98 -0.0076 | 0.2408

Asset returns: all portfolios, scaled returns

AH)
0.3872
[Factor [ E(u —gp)* [ X [ AP |
YDEF 0.81 -0.0457 | 0.3881
Yrs 0.73 -0.0380 | 0.3957
YINF 0.34 -0.0191 | 0.4481
yip 0.88 0.0029 | 0.3919
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