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1.  Motivation

Difference stationary and trend stationary models of the same time series may imply very

different predictions (e.g., Diebold and Senhadji, 1996).  Deciding which model to use is therefore

tremendously important for applied forecasters.  Rather than employing one or the other model by

default, one may use a unit root test as a diagnostic tool to guide the decision.  In fact, one of the

early motivations for unit root tests was precisely to help determine whether to use forecasting

models in differences or levels in particular applications (e.g., Dickey, Bell, and Miller, 1986).

Much of the recent econometric unit root literature has focused on the inability of unit

root tests to distinguish in finite samples the unit root null from nearby stationary alternatives

(e.g., Christiano and Eichenbaum, 1990; Rudebusch, 1993).  But low power against nearby

alternatives, which are typically the relevant alternatives in econometrics, is not necessarily a

concern for forecasting.  It has long been asserted, for example, that the accuracy of forecasts

may be improved by employing a model in differences rather than a model in levels, if the root of

the process is close to but less than unity (e.g., Box and Jenkins, 1976, p. 192).  Ultimately, the

question of interest for forecasting is not whether unit root pretests select the “true” model, but

rather whether they select models that produce superior forecasts.  Surprisingly little is known

about the efficacy of unit root tests for this purpose.

The comparative merits of strategies such as “always difference,” “never difference,” or

“sometimes difference, according to the results of a unit root pretest” will in general depend on

the degree of persistence of the true process, the forecast horizon of interest, the sample size, and

the properties of the pretest.  Hence the purpose of this paper is to explore systematically the

extent to which pre-testing for unit roots affects forecast accuracy for a variety of degrees of
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persistence, forecast horizons and sample sizes.

We focus on the univariate trending autoregressive case with high persistence, which is of

particular interest in economics and finance.  Because exact finite-sample analytics appear out of

the question for the trending dynamic model of interest, we proceed by Monte Carlo simulation as

described in section 2.  The results are sharp and intuitive, and are powerfully summarized by

compact response surfaces in section 3.  In section 4, we meld the results into practical

prescriptions for applied work.  Finally, we offer concluding remarks and directions for future

research in section 5.

2.  Experimental Design

Here, as always, there is inescapable tension in experimental design.  On the one hand, we

want to examine a wide enough range of data-generating processes (DGPs) such that the results

shed light on the behavior of alternative methods and on a range of empirically-relevant situations. 

Clearly, we will want to examine a range of forecast horizons, degrees of persistence, and sample

sizes.  On the other hand, it is crucial that the DGPs examined be simple and their range small

enough to promote manageable and interpretable Monte Carlo analysis.

Use of a first-order autoregressive DGP, with differing degrees of persistence

corresponding to different autoregressive parameter values, represents an appealing compromise. 

If, however, the analysis is to provide meaningful recommendations for applied work, we view the

inclusion of a time trend as crucial.  Trending behavior is routinely present in economic and

financial series and increases the amount of bias in the least squares estimator of autoregressive

parameters, which has important implications for the performance of the alternative strategies of 

“always differencing,” “never differencing,” or “pretesting”.
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(yt&a&bt) ' D(yt&1&a&b(t&1)) % gt

gt

iid
- N(0, F2),

yt ' k1 % k2 t % Dyt&1 % gt,

k1 ' a(1&D) % Db

k2 ' b(1&D).

yt ' Tt % xt,

Tt ' a % bt

Hence we examine a trending AR(1) process of the form

t = 1, 2, ..., T.  We can rewrite the process as 

where 

and

Perhaps more intuitively, we can express the process in components form as the sum of a linear

trend and an AR(1) process,

where
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xt ' Dxt&1 % gt.

and

When D = 1 the process is a random walk with drift b, and when  the process is covarianceD<1

stationary AR(1) deviations from a linear trend with slope b.

We parameterize the process to be consistent with U.S. postwar quarterly real GNP data

by setting a = 7.3707, b = 0.0065, and F = 0.0099.  This parameterization is likely to be

representative for many other trending macroeconomic time series as well.  We examine

and , which includesD,{0.5,0.9,0.97,0.99,1} T0{25,30:10:80, 100:20:180, 200:40:1000}

relevant degrees of persistence  and sample sizes for annual, quarterly, monthly, weekly, and daily

data. 

We compare the performance of three forecasting models:  AR(1) in levels with linear

deterministic trend (L, for “levels”), random walk with drift (D, for “differences”), and the model

suggested by Dickey-Fuller unit root pre-tests using 5 percent finite-sample critical values (P, for

“pretest”).  For all models, the estimation method is ordinary least squares (OLS).  The common

objective is to forecast the level of the series at horizons, h, ranging from 1 to 100 periods ahead. 

Using common random numbers across models, we evaluate the performance of each model by its

unconditional prediction mean squared error (PMSE) in 20,000 Monte Carlo trials.  For each

value of D, we calculate the ratios PMSE(D)/PMSE(L), PMSE(D)/PMSE(P), and

PMSE(P)/PMSE(L) for all combinations of h and T.

3.  Results

In Figures 1-3 we show, for various values of D, response surfaces for
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PMSE(D)/PMSE(L), PMSE(D)/PMSE(P), and PMSE(P)/PMSE(L), for all combinations of

forecast horizon (h) and sample size (T).  In particular, for each value of D, we show the relative

PMSE as a function of h and T.  We present unsmoothed response surfaces, because they are

quite smooth already and readily interpretable without additional smoothing.  

D vs. L

Figure 1 makes clear that neither D nor L dominates always; the relative forecast accuracy

in general depends on , h and T.  Not surprisingly, for  the D model is uniformly moreD D'1

accurate than the L model, because in that case D is the true model.  The ratio

PMSE(D)/PMSE(L) drops toward 0 as the forecast horizon h grows (for fixed sample size, T). 

This happens because the distortions resulting from the Dickey-Fuller small-sample bias, which

plague the L model, are magnified as h grows.  This effect, of course, is most pronounced for

smaller sample sizes, for which the Dickey-Fuller bias is greatest.  As a result, for fixed forecast

horizon h, the ratio PMSE(D)/PMSE(L) drops toward 0 as T declines.

In contrast, for roots smaller than unity, D is false and would not be expected to dominate

L always.  That expectation is confirmed.  For , for example, for sample sizes in excess ofD'0.99

600, forecasts from L are marginally more accurate than those from D.  The D model forecast is

least accurate for large h.  This is to be expected, as the error resulting from the false imposition

of a unit root is compounded with rising h.  In contrast, small-sample bias is of little concern for

such large samples, and L is quite accurate.  Nevertheless, for smaller sample sizes, forecasts from

D continue to be more accurate than forecasts on the basis of the biased estimator associated with

L, especially for long forecast horizons.

The tradeoffs between the use of D and L become more pronounced as the persistence of



1 The problem is that for processes with large roots there is a non-negligible probability in
small samples of drawing an explosive estimate.  As a result, using L, we occasionally encounter
predictions based on “outlier” explosive models, which have extremely large prediction errors and
dominate the PMSE.  Typically in such cases the forecast dives toward minus infinity, due to a
slightly negative estimated trend coefficient and an estimated root in excess of unity.  As a result,
the PMSE does not improve at long horizons as the process reverts back to its mean, as one
might have expected, because the effect of explosive forecasts on the PMSE obviously worsens
for longer horizons.  The problem does not arise in D because of the imposition of a unit root. 
While the PMSE of D worsens for longer forecast horizons, as one would expect, the extent to
which its PMSE deteriorates is dwarfed by the PMSE of L, which is inflated by the occasional
explosive outliers.  The net result is a ratio of PMSE(D)/PMSE(L) that approaches zero.  In light
of these phenomena, we also experimented with a mixed strategy (M), in which we used the L
forecast unless the L forecast was explosive, in which case we replaced the L forecast with the D
forecast.  As expected, the small-sample forecast accuracy of M was much better than that of L,
but, interestingly, the modification did not affect our qualitative results.
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the process declines.  For  the ratio PMSE(D)/PMSE(L) exceeds 1 over much of theD'0.97,

parameter space and is highest when both T and h are large.  For small T and large h, however,

the ratio still tends to approach zero.  The poor relative performance of the L model for small T

and large h is not only due to small-sample bias.  In addition, the PMSE of L is inflated by

occasional explosive estimates, resulting in absurd forecasts, especially at long forecast horizons.1 

In contrast, the constraint implicit in D renders its forecasts more consistently reasonable, even

when D is incorrect.

We also find that for small T, the ratio PMSE(D)/PMSE(L) decreases in h, whereas for

large T it increases in h.  This reversal makes sense.  For small T, the loss in forecast accuracy

from poor estimates of L is much greater than the loss from inappropriately using the model in

differences, and the tradeoff worsens as h increases.  In contrast, for large T, the forecast from L

is increasingly more accurate (because the least squares estimator is consistent), whereas using the

model in differences (and thereby imposing a unit root) introduces a systematic distortion in

forecasting, the effects of which are amplified with h.
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The results for  are similar, but even more pronounced.  Differencing continues toD'0.9

improve forecast accuracy for small and moderate sample sizes, but as the persistence of the

process declines, the gains are limited to increasingly smaller sample sizes.  At the same time, for

larger sample sizes, L becomes increasingly more accurate than the model in differences,

especially as the forecast horizon increases.

It is interesting to note that in the case of , as well as several cases discussed later,D'0.9

for large T the ratio PMSE(D)/PMSE(L) (and later PMSE(D)/PMSE(P)) approaches 2 as h

grows.  This phenomenon occurs when T is large enough so that the parameters of the L model

are estimated precisely (or, equivalently, for T large enough so that the unit root null hypothesis

tends to be rejected correctly, and the resulting trend stationary model is estimated precisely). 

The explanation is simple:  in population, when D<1, the long-horizon forecast error from L is

approximately the unconditional variance of the process, , whereas the long-horizonvar(yt)

forecast error from the model in differences is approximately , which approximatelyvar(yt%h&yt)

equals twice the unconditional variance of the process.  Appearance of these population results in

the finite-sample Monte Carlo results requires a sample large enough to facilitate precise

estimation and powerful unit root testing.

Finally, for , the L model uniformly dominates the D model.  What makes this caseD'0.5

interesting is the emergence of a “ridge” in the response surface for small T.  The height of the

ridge steadily increases in h.  We do not yet have an explanation for the ridge.

Taken as a whole, the D vs. L results appear driven by the fact that differencing provides

insurance against problems due to Dickey-Fuller bias and explosive root problems, at a cost. 

Those problems are most severe for small T and large h, so the insurance is more than worth its
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cost.  Elsewhere in the parameter space, however, the situation is reversed.  As a rule of thumb,

the results suggest that one is better off differencing if the sample size is small or moderate and

the process appears highly persistent, and conversely.  Note in particular that the “we don’t know

and we don’t care” view is explicitly refuted:  although the trend-stationary vs. difference

stationary distinction is not important in some contexts; it most definitely makes a difference for

forecasting.  Moreover, the best forecasting model is not necessarily the true model; the ability of

a unit root pretest to select a good forecasting model is distinct from its ability to select the true

model.  The fact that neither D nor L dominates uniformly suggests that unit root pretests may

help to improve forecast accuracy.  We now explore this possibility in detail.

D vs. P

Figure 2 makes clear that the pre-testing strategy dominates that of routinely differencing

the data for almost all sample sizes and forecast horizons.  The reason is that our pretest takes the

unit root hypothesis as its null.  For alternatives close to the unit root null, the power of the pre-

test is low, so the pre-test model reduces to the model in differences.  Hence, P performs much

like D did in Figure 1, when that model is a good approximation.  On the other hand, for

processes with roots far from the unit root null, the Dickey-Fuller test is bound to find strong

evidence against the null, in which case the pre-test model reduces to L, which we know to be

much more accurate than D when persistence is low.

In particular, we find that for , when D is the true model, the pre-test is unlikely toD'1

reject the model in differences, resulting in a PMSE(D)/ PMSE(P) ratio very close to 1.  Similar

results hold for  For , P begins to exhibit important advantages over D.  ForD'0.99. D'0.97

small T, the test lacks power and rarely rejects, so P and D coincide, and PMSE(D)/PMSE(P) is
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effectively 1 regardless of h.  As T grows, the test rejects the unit root null more often, yet the

ratio PMSE(D)/PMSE(P) remains close to 1.  The reason is that, at least for small h, the PMSE

for a highly persistent process in levels tends to be close to that of the equivalent model in

differences.  Because for large T the L model will be estimated rather precisely, the resulting

forecast is about as accurate as that for the D model.  In contrast, for both T and h large, the P

forecast is considerably more accurate than the D forecast.  This outcome is reflected in

PMSE(D)/ PMSE(P) ratios in excess of 1.  The reason is that for long horizons the false

imposition of a unit root (which is of little consequence for short horizons) becomes a liability.

This tendency becomes even more apparent for  Only for very small T, the relativeD'0.9.

accuracy of D and P remains similar.  In general, the P model is much more accurate than the D

model.  Finally, consider the process with   In Figure 1 we showed that the loss in forecastD'0.5.

accuracy from falsely adopting the model in differences is very high for   However, theD'0.5.

Dickey-Fuller pre-test has considerable power against this distant alternative and almost always

rejects the model in differences.  Hence, P and L tend to coincide, and the PMSE(D)/PMSE(P)

results in Figure 2 are almost identical to those in the corresponding panel of Figure 1 for

PMSE(D)/PMSE(L).

P vs. L

In Figure 3 we directly compare P and L.  For , pre-testing gives similar results toD'1

differencing.  Not surprisingly, pre-testing uniformly dominates the levels model.  Similar results

hold, at least for small and moderate sample sizes, for   Figure 3 indicates that pre-testD'0.99.

based forecasts are about as accurate as the level forecasts when  The most interestingD'0.5.
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results are for the intermediate region of and  For small and moderate T and largeD'0.97 D'0.9.

h, Figure 3 shows evidence of a “ridge” on the response surface for  That ridge flattensD'0.9.

and widens for  as the accuracy of the pre-test model improves.  Evidently those areD'0.97,

cases for which we would like to have rejected the unit root null hypothesis, but did not. 

Although the root is far enough from the unit circle, and the sample size (albeit small) is large

enough for the levels models to be reasonably accurate, the Dickey-Fuller test is not powerful

enough to detect the absence of a unit root.  This observation suggests that more powerful unit

root tests such as the DF-GLS test of Elliott et al. (1996) could be used to flatten the ridge and to

improve forecast accuracy.  However, it is not obvious that more powerful tests would be

beneficial in all regions of the parameter space.  As we showed earlier, in some cases using

incorrectly the model in differences rather than the correct model in levels will actually improve

forecast accuracy, so more powerful unit root pre-tests may actually worsen forecast accuracy in

those regions.  More research is needed to quantify these tradeoffs.

A Summary Assessment

Taken as a whole, the results cast the pretesting strategy in a favorable light.  P dominates

D uniformly, which makes clear that the Box-Jenkins strategy of routinely differencing to achieve

stationarity is not to be recommended for constructing forecasting models.  P does not dominate

L uniformly, but it nevertheless dominates over much of the design space, which similarly casts

doubt on a strategy relying on asymptotics by routinely specifying forecasting models in levels.

4.  Some Practical Advice

Given the wide range of sample sizes and forecast horizons, it is difficult to translate the

results in Figures 1-3 into concrete practical advice.  Moreover, the DGP based on quarterly real
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GNP may not be representative for other frequencies.  We therefore repeated the simulation

exercise for selected sample sizes and forecast horizons for DGPs specifically chosen to be

representative for each frequency.  As  the pre-testing strategy clearly dominates differencing, we

focus on the choice between pre-testing and routinely forecasting on the basis of the level model. 

Table 1 summarizes the simulation design for each frequency.  The quarterly DGP based

on U.S. real GNP is identical to the DGP defined in section 2.  The annual DGP is based on 125

observations for U.S. per capita real GNP as defined in Diebold and Senhadji (1996).  The daily

DGP is based on the Dow Jones stock price index for 1/1/74-4/2/98, and the monthly DGP is

based on U.S. industrial production index (DRI code: IP) for the post-war period.

For annual data (say, T = 40-160 and h = 1-100), we find that pre-testing unambiguously

improves forecast accuracy for all forecast horizons and sample sizes if the root of the DGP is

0.97 or higher. For  pre-testing still improves forecast accuracy for sample sizes as high asD'0.9,

70, but does not perform as well as the L model in larger samples.  For  the two modelsD'0.5,

are tied.  In practice, this result suggests using pre-tests for data sets of up to 70 annual

observations, and for all larger sample sizes, provided the process is likely to be  highly persistent. 

In the remaining cases, the L model is preferred.

For quarterly data (say, T = 80-200 and h = 1-16), the P model is more accurate for all

forecast horizons and sample sizes, provided the root of the process is 0.97 or higher.  For

the level model is uniformly more accurate, and for the models are tied.  WeD'0.9, D'0.5

conclude that pre-testing should be used for all processes with roots of 0.97 or higher, and the L

model for processes with smaller roots.

For monthly data (say, T = 240-480 and h = 1-48), pre-testing improves forecast accuracy



2 These differences in dominant roots across sampling frequencies make sense when
viewed in terms of the implied half-life of the response to an innovation (see Caner and Kilian,
1998).
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for and for  for all forecast horizons and sample sizes considered.  For andD'1 D'0.99 D'0.97

 however, the L model is at least as accurate as the P model, and for  the twoD'0.9, D'0.5

methods are tied.  This finding suggests that pre-testing is useful only for processes with roots of

0.99 or higher, and in all other cases the L model will be more accurate.

For daily data (say, T = 360-720 and h = 1-90), pre-testing only improves forecast

accuracy uniformly for   For  the performance is mixed, with the P model beingD'1. D'0.99

more accurate for sample sizes of fewer than 600 days at all horizons.  For larger sample sizes, the

L model is slightly more accurate at long forecast horizons, and roughly as accurate as the P

model at shorter horizons.  For  the L model is uniformly more accurate.  For  theD'0.97 D'0.9

L model is slightly more accurate for small T, especially for T < 500, except at very short

horizons.  For larger sample sizes the differences vanish.  For  the two methods are tied. D'0.5

This finding suggests that pre-testing is useful for forecasting daily data only  if the data are very

persistent with roots of 0.99 or higher.  For other applications, the L model is likely to be more

appropriate.  

Our advice may appear to be circular in that it often depends on knowledge of the true

root.  In practice, however, OLS point estimates of the roots for quarterly macroeconomic data

are typically in excess of 0.97, estimates for monthly data are in excess of 0.99 and estimates for

daily data are well in excess of 0.99.2  Moreover, the presence of small-sample bias suggests that

these OLS estimates, if anything, understate the true roots.  We therefore conclude that pre-
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testing is recommended for virtually all forecasting exercises involving trending macroeconomic

data.

5.  Concluding Remarks and Directions for Future Research 

Difference stationary and trend stationary models of the same series may imply very

different predictions.  Deciding which model to use thus is tremendously important for applied

forecasters, and unit root pre-tests may provide a formal criterion for deciding whether to

difference the data.  However, very little is known about the usefulness of unit root tests as

diagnostic tools for selecting a forecasting model.  In an effort to remedy this situation, we

conducted a Monte Carlo study in which we explored systematically the extent to which pre-

testing for unit roots improves forecast accuracy in a canonical AR(1) model with trend, for a

variety of sample sizes, forecast horizons, and degrees of persistence.  We found strong evidence

that pre-testing improves forecast accuracy relative to routinely differencing the data.  We also

characterized in detail under what conditions pre-testing is likely to improve forecast accuracy

relative to forecasts from models in levels and provided some practical advice.

Our work builds on, and complements, a small literature dating back almost a decade. 

Stock (1990) finds in a particular application that model specification in levels vs. differences

matters little, but points out that in general it will.  Some preliminary evidence in favor of pre-

testing is presented in Campbell and Perron (1991) who study 1-step-ahead and 20-step-ahead

forecasts made using autoregressive models.  They show that one loses little by pretesting relative

to using the true model, and sometimes one actually gains.  In their study, autoregressive models

in levels do best for series that are near white noise, while autoregressive models in differences do

best for series that are near a random walk.  Cochrane (1991), in a comment on Campbell and
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Perron, explores longer forecast horizons.  He compares level and difference stationary models,

but does not discuss pre-testing.  Neither do Franses and Kleibergen (1996), who study the out-

of-sample forecasting accuracy of trend stationary and difference stationary models for the

Nelson-Plosser data set.  

The extant work most closely related to ours is Stock (1996) and Stock and Watson

(1998).  Stock (1996) provides theoretical arguments in favor of pre-testing from a local-to-unity

asymptotic perspective and presents some Monte Carlo evidence for the AR(1) model without

trend.  In recent contemporaneous and independent work, Stock and Watson (1998) provide a

comprehensive empirical study of the out-of-sample accuracy of macroeconomic forecasting

models; one of their conclusions is that autoregressive models based on unit root pre-tests tend to

perform well.

Our Monte Carlo results complement and strengthen both the largely theoretical work of

Stock (1996) and the purely empirical work of Stock and Watson (1998).  Our analysis is closer

in spirit to Stock’s, but there are important differences.  Stock focused narrowly on documenting

problems in long horizon forecasting from models with roots close to unity.  Moreover, he did not

consider models with trend, and he fixed the ratio h/T in his Monte Carlo analysis.  Our analysis,

in contrast, is wider in scope.  It includes a grid of alternative values of , h and T, correspondingD

to applications of autoregressive forecast models using daily, weekly, monthly, quarterly, and

annual data.  To the extent that results can be compared directly, ours and Stock’s tend to agree;

however, we find stronger evidence in favor of pre-testing than Stock (1996), reflecting the

greater importance of small-sample bias in models with trends.

There are many useful directions for future research.  Given the narrow confines of our



3 In addition, it would be of interest to explore tests that take L rather than D as the null
hypothesis (see Kwiatkowski, Phillips, Schmidt and Shin, 1992, and Leybourne and McCabe,
994).  Pretest procedures based on such unit root tests might be expected to dominate L for the
same reason that the Dickey-Fuller pretest dominates D.  This optimism is tempered, however, by
recent work of Caner and Kilian (1998), which documents large finite-sample size distortions of
such tests and the impossibility of fixing them by conventional means.
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AR(1) data generating process, the results by necessity are tentative, and there are many obvious

but nevertheless important variations on the applications considered in this paper.  For example,

we chose to focus on just one of many pre-tests for unit roots, and we ignored asymptotic

refinements of unit root tests based on bootstrap theory (e.g., Nankervis and Savin, 1996). 

Moreover, Stock (1996) showed that the asymptotically more powerful DF-GLS test of Elliott et

al. (1996) may further improve forecast accuracy.  Our analysis confirmed that there are 

important potential advantages to the use of more powerful unit root tests in some regions of the

parameter space, but it also showed that low power in some cases may improve forecast accuracy. 

This finding suggests that there are likely to be tradeoffs between different unit root pre-tests in

terms of their power properties. Working with daily data, for example, may call for different unit

root tests than working with annual data.  Future research will have to quantify these tradeoffs.3

Another limitation of our Monte Carlo analysis is the greatly simplified lag structure of the

data generating process.  Further research is required to verify the robustness of our findings in

models with richer dynamics.  We also deliberately ignored the issue of lag order uncertainty at

this stage of the analysis.  Future work will have to address the fact that the population model is

unknown in practice and may not even be of finite lag order.  Appropriate data-based lag order

selection procedures for the class of ARMA(p,q) models are discussed for example in Ng and

Perron (1995).
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A third limitation of our analysis is our focus on univariate models.  Univariate models are

of central interest in many applications and often have proved superior to multivariate forecasting

models, but they are not the only model in use.  For example, Stock (1990, 1994) notes that

results for univariate models do not bear directly on macroeconomic forecasting, which is

typically multivariate.  Future research undoubtedly will have to include vector valued processes. 

While the standard ADF test used in this paper is widely used as a pre-test for vector

autoregressions, a similar analysis for multivariate cointegration tests would be useful.  One would

conjecture that imposing cointegration in small samples ought to improve forecast accuracy,

whether or not cointegration holds exactly.  However, there is reason to believe that imposing

cointegration may be less important than commonly thought.  For example, Christoffersen and

Diebold (1998) show that when forecasting cointegrated systems at long horizons, imposing the

correct order of integration is crucial, but imposing cointegration is not. 

A fourth extension would be to allow for endogenously selected deterministic trend breaks

under the alternative.  In particular, piece-wise linear deterministic trend models may forecast

more accurately than linear models.  The ADF test considered in this paper does not allow for

trend breaks, but tests like those developed in Zivot and Andrews (1992) do.  Moreover,

alternative procedures for the simultaneous determination of the trend model and of the order of

integration have been proposed for example by Phillips and Ploberger (1994). 

A fifth extension would be to explore alternative estimators.  Canjels and Watson (1997)

document that for processes with roots close to unity, the feasible GLS estimator of Prais and

Winsten (1954) provides the best estimates of the trend coefficient.  Given the obvious

importance of accurate trend estimates, especially at long forecast horizons, a comparison of the



-17-

forecast accuracy of the Prais-Winston estimator to the OLS estimator used in this paper would

be useful.  In addition, it would be worthwhile to study bias-corrected OLS forecasts.  Our

simulation results are consistent with the view that much of the advantage of falsely imposing a

unit root in borderline stationary processes is due to the elimination of OLS small-sample bias.  A

natural conjecture is that the mean squared error of forecasts from trend stationary models may be

improved by replacing the OLS autoregressive coefficient estimates by bias-corrected coefficient

estimates.  Such corrections have been used successfully in the closely related area of impulse

response analysis.  For example, Andrews and Chen (1994) report that approximate median bias

corrections for univariate autoregressive models may reduce the mean squared error of impulse

response estimates for at least some parameter ranges and horizons. Alternative bias corrections

based on the mean bias of the autoregressive coefficient estimates have been explored by

Rudebusch (1993) and Kilian (1998) based on work by Shaman and Stine (1988) and Pope

(1990).

A sixth extension would be to examine the robustness of the results to structural change,

in light of recent work by Clements and Hendry (1998) indicating that certain specifications may

be relatively more robust to structural change than others.

A final extension, and perhaps the most novel and interesting in our view, would be to

consider unit root test sizes other than 5 percent, and to determine how the performance of P

relative to D and L varies with test size.  In particular, it should be possible to tune the test size to

optimize the performance of P.  The present fairly stringent size of 5 percent leads to domination

of D by P, because the pretest selects D except when there is strong evidence against D, but fails

to produce domination of L by P.  It is possible that increasing the test size would leave largely
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intact the domination of D by P, but could bring us closer to a similar domination of L by P.  At

any rate, there is certainly no reason to think that the arbitrary size of 5 percent is necessarily

close to optimal.  Hence our results on the generally good performance of the pretesting strategy

are conservative -- some simple additional tuning could cast the pretest strategy in an even more

favorable light.
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Table 1
Data Generating Processes

Frequency a b F DGP based on:

Annual -6.0674 0.0173 0.0500 U.S. per capita
real GNP

Quarterly 7.3707 0.0065 0.0099 U.S. real GNP

Monthly 3.3654 0.0024 0.0105 U.S. industrial
production

Daily 5.1126 0.0004 0.0095 Dow Jones
stock price index

Notes: The DGP is , where  is the standard error of . (yt&a&bt) ' D(yt&1&a&b(t&1)) % gt F gt



Figure 1a:  PMSE(D)/PMSE(L)
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     SOURCE: 20,000 Monte Carlo trials based on DGP y a a b b b t yt t t= − + + − + +−( ) ( )ρ ρ ρ ρ ε1 ,

where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
D denotes the model in first differences; L denotes the model in levels.



Figure 1b:  PMSE(D)/PMSE(L)
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where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
D denotes the model in first differences; L denotes the model in levels.



Figure 2a:  PMSE(D)/PMSE(P)
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where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
D denotes the model in first differences; P denotes the model after pre-testing.



Figure 2b:  PMSE(D)/PMSE(P)
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where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
D denotes the model in first differences; P denotes the model after pre-testing.



Figure 3a:  PMSE(P)/PMSE(L)
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where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
P denotes the model after pre-testing; L denotes the model in levels.



Figure 3b:  PMSE(P)/PMSE(L)

20 40 60 80 100

200
400

600
800

1000
0

1

2

Forecast Horizon

ρ = 0.90

Sample Size

P/
L

20 40 60 80 100

200
400

600
800

1000
0

1

2

Forecast Horizon

ρ = 0.50

Sample Size

P/
L

SOURCE: 20,000 Monte Carlo trials based on DGP y a a b b b t yt t t= − + + − + +−( ) ( )ρ ρ ρ ρ ε1 ,

where ε t N~ ( , . )0 0 012 , a = 7 3707. , b = 0 0065. .
P denotes the model after pre-testing; L denotes the model in levels.








