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A Model of Optimal Capital Structure

with Stochastic Interest Rates

Abstract

This paper develops a model of optimal capital structure with stochastic interest
rate which is assumed to follow a mean-reverting process. Closed-form solutions are
obtained for both the value of the firm and the value of its risky debt. The paper finds
that the current level and the long-run mean of the interest rate process play distinctive
roles in our integrated model. The current level of the interest rate is critical in the
pricing of risky bonds, while the long-run mean plays a key role in the determination of
a firm’s optimal capital structure such as the optimal coupon rate and leverage ratio.
Our findings demonstrate that a model of optimal capital structure with a constant
interest rate cannot price risky bonds and determine the optimal capital structure
simultaneously in a satisfactory manner. Furthermore, our numerical results indicate
that the correlation between the stochastic interest rate and the asset return of a firm
has little impact on the firm’s optimal capital structure.
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1 Introduction

The problem of optimal capital structure has long been an intriguing one among researchers.

Brennan and Schwartz (1978) are perhaps the first to study this problem using the contingent-

claims analysis approach of Black and Scholes (1973) and Merton (1974). In an important

recent development, Leland (1994) introduces a model of optimal capital structure based

on a perpetuity. Leland and Toft (1996) extend the Leland model to examine the effect of

debt maturity on bond prices, credit spreads, and optimal leverage. Titman and Tsyplakov

(2002) develop a model of a firm that can dynamically adjust both its capital structure

and its investment choices. While very insightful, all these models assume that the risk-free

interest rate is constant, thus ignoring the impact of the stochastic nature of the interest

rate on the firm’s optimal capital structure. Empirical evidence has indicated that firms do

take into account the slope of the default-free term structure when they issue debt. See, for

example, Barclay and Smith (1995), Guedes and Opler (1996), Stohs and Mauer (1996), and

Graham and Harvey (2001). In particular, there is evidence that firms prefer short maturity

debt when the term structure is steep. Graham and Harvey report that CFOs state that

the slope of the term structure is one important consideration when they decide on how to

refinance. These empirical evidences call for a model that includes both optimal leverage

and stochastic interest rate.

In this paper, we develop a model of optimal capital structure with stochastic interest

rate. More specifically, we combine the Leland-Toft optimal capital structure model with

the Longstaff-Schwartz (1995) bond valuation model under stochastic interest rate. One

advantage of our model is that it has closed-form solutions for both the firm value and

the debt value in the spirit of Longstaff and Schwartz (1995). This allows us to perform

comparative statics. Modelling the interest rate as a mean-reverting process allows us to
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examine separately the impact of the long-run mean and the initial interest rate. Numerical

results from the implementation of our model indicate that the long-run mean of the interest

rate is an important determinant of the optimal capital structure. This is intuitive since

the long-run mean plays a key role in the determination of the tax shields and bankruptcy

costs resulting from the future debt issues. The initial interest rate level is important in

determining the price of current outstanding risky bonds, especially those with short and

moderate maturities. The reason is that it takes time for the interest rate to revert to its

mean level. Our results also indicate that the correlation between the interest rate and the

firm asset return has little impact. Furthermore, we find that the maturity of a bond is also

an important determinant in capital structure considerations.

An active and growing body of work has studied the valuation of risky corporate bonds

and other derivative instruments in a stochastic interest rate environment. Kim, Ramaswamy,

and Sundaresan (1993) calculate various corporate bonds in a series of numerical examples.

Longstaff and Schwartz (1995) derive closed-form valuation expressions for fixed and float-

ing rate debt and find that the correlation between the underlying asset return and interest

rate has a significant effect on credit spreads.1 These models, however, assume that the

Modigliani-Miller theory holds, i.e., the value of a firm is independent of its capital struc-

ture. This implies that the firm does not derive tax benefits from issuing bonds.

The model proposed here combines two strands of the literature, namely, the valuation

models with stochastic interest rate in the absence of optimal capital structure, and the

optimal capital structure models in the absence of stochastic interest rate.

The remainder of this paper is organized as follows. Section 2 introduces the model

and derives various closed-form valuation expressions. Section 3 presents numerical results.

1Duffie and Singleton (1999), Jarrow and Turnbull (1995), and many others specify the default outcomes
and value credit risk by no arbitrage.
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Some concluding remarks regarding possible extensions of the model are given in Section

4. The Appendix reviews the T -forward risk-neutral measure used to derive the valuation

expressions in Section 2.

2 The Model

In this section we first set up the valuation problem and then derive the formulas for the

firm value and the debt value.

2.1 The setup

Our assumptions and notations are mainly adopted from Leland and Toft (1996) and Longstaff

and Schwartz (1995). The main assumptions are summarized as follows.

Assumption 1 Financial markets are dynamically complete, and trading takes place con-

tinuously. Therefore, there exists an equivalent martingale measure (Harrion and Kreps,

1979) or a risk-neutral measure (Cox and Ross, 1976), Q, under which discounted price

processes are martingales.

Below we shall work directly under the risk-neutral measure Q (and the forward measure).

Assumption 2 The total value of the firm’s unlevered assets, Vt, is described by a geometric

Brownian motion process given by

dVt

Vt

= (rt − δ) dt + σv dwQ
1t, (1)

where rt is the interest rate at time t, δ is a constant payout rate, σv is a constant, and wQ
1t

is a standard Wiener process defined on a complete probability space (Ω, P, F).
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Assumption 3 The interest rate rt follows the Vasicek (1977) model

drt = (α− β rt) dt + σr dwQ
2t, (2)

where α, β, and σr are constants, and wQ
2t is another standard Wiener process on the same

probability space (Ω, P, F). The instantaneous correlation between dwQ
1t and dwQ

2t is given

by ρ dt.

Assumption 4 Assume that bankruptcy occurs when the value of the firm falls below a

constant level VB. If Vt > VB, the firm is solvent and pays the contractual coupon rate to its

debt holders. In the event of bankruptcy, bond holders will receive φVB with φ ∈ [0, 1) and

equity holders get nothing.

The exogenous flat default boundary assumed here follows from Longstaff and Schwartz

(1995) or Leland (1994). As mentioned in Black and Cox (1976), this type of boundary can

be considered to model some kind of net asset requirement in the bond covenants (protected

debt). This assumption is also made for analytical tractability. An endogenous default

boundary can be defined in our setting here. However, with stochastic interest rates, such a

boundary could only be obtained by using numerically intensive methods. The martingale

technique introduced later on won’t be applicable any more.

The sharing rule specified above is similar to the one assumed in Leland and Toft (1996)

and is referred to as the absolute priority rule. This assumption can be easily relaxed to

allow equity holders to share φVB with the bond holders.

Assumption 5 We consider a stationary debt structure where a firm continuously sells a

constant (principal) amount of new debt with a maturity of m years to replace the same

amount of principal of retiring debt. New bond principal and coupon are issued at rates

5



p = P/m and c = C/m per year, where P and C are the total principal and total coupon

rates of all outstanding bonds, respectively.

This debt structure is the same as the one assumed in Leland and Toft (1996). The

advantage of this debt structure is its analytical tractability.

Essentially, we consider the Leland and Toft (1996) debt structure in the Longstaff and

Schwartz (1995) setting. Below we shall first derive formulas of risky bond prices and then

determine the optimal capital structure.

2.2 Default Probability under the T -forward Measure

Longstaff and Schwartz (1995) derive various debt valuation expressions by solving a partial

differential equation (PDE). However, with rollover finite maturity debt, it is more convenient

to obtain the corresponding valuation expressions in closed form by the martingale approach.

To this end, we first derive the density distribution for the first passage time to be defined

below and then derive valuation expressions for finite maturity debt, using the T -forward

risk-neutral measure QT developed in the Appendix.

Given the interest rate process in Eq. (2), the price of a zero-coupon bond at time t with

a maturity of T years is given by (Vasicek (1977))

Λ(rt, T − t) = eA(T−t)−B(T−t) rt , (3)

where

A(T − t) =

(
σ2

r

2β2
− α

β

)
(T − t) +

(
σ2

r

β3
− α

β2

)
(e−β(T−t) − 1)−

(
σ2

r

4β3

)
(e−2β(T−t) − 1), (4)

B(T − t) =
1− e−β (T−t)

β
. (5)
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Simple algebra now yields

σr Λr

Λ
= −σr B(T − t). (6)

It follows from the Appendix that under the T -forward risk-neural measure, QT , the two

processes, wQT

1t and wQT

2t , defined by

dwQT

1t = dwQ
1t + ρ σr B(T − t) dt, (7)

dwQT

2t = dwQ
2t + σr B(T − t) dt, (8)

are two standard Wiener processes with correlation coefficient ρ. Under QT , the firm value

and the interest rate processes are given by

dVt

Vt

= (r − δ − ρ σv σr B(T − t)) dt + σv dwQT

1t , (9)

dr = (α− β r − σ2
r B(T − t)) dt + σr dwQT

2t . (10)

Define the first passage time τ as τ = min{t : Vt ≤ VB}, which is the first time that the

firm value Vt hits VB in some ω ∈ Ω under QT . Denote by F (T ) the cumulative distribution

function of τ under QT . Using a result in Longstaff and Schwartz (1995), we arrive at an

expression for F (T ):2

F (T ) = lim
n→∞

n∑

i=1

q(ti− 1
2
), (11)

where for i = 1, 2, . . . , n,

ti = i
T

n
, (12)

q(ti− 1
2
) =

N(a(ti))−∑i−1
j=1 q(tj− 1

2
) N(b(ti; tj− 1

2
))

N(b(ti; ti− 1
2
))

, (13)

2Note that we have modified the Longstaff and Schwartz’s original formulas. For details, see Huang and
Huang (2000) and Collin-Dufresne and Goldstein (2001).
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a(ti) = −M(ti, T |X0, r0)√
S(ti|X0, r0)

, (14)

b(ti; tj) = −M(ti, T |Xtj)√
S(ti|Xtj)

, (15)

and where X ≡ V/VB, the sum on the RHS of (13) is defined to be zero when i = 1, and

M(t, T |X0, r0) ≡ EQT

0 [ln Xt] ; (16)

S(t|X0, r0) ≡ VarQT

0 [ln Xt] ; (17)

M(t, T |Xu) = M(t, T |X0, r0)−M(u, T |X0, r0)
CovQT

0 [ln Xt, ln Xu]

S(u|X0, r0)
(18)

S(t|Xu) = S(t|X0, r0)−
(
CovQT

0 [ln Xt, ln Xu]
)2

S(u|X0, r0)
, (19)

with

EQT

0 [ln Xt] = ln X0 +

(
−δ − σ2

v

2
+

α− ρσvσr

β
− σ2

r

β2

)
t

+

(
r0 − α

β
+

σ2
r

β2
− σ2

r

2β2
e−βT

)
B(0, t)

+

(
ρσvσr

β
+

σ2
r

2β2

)
B(0, t)e−β(T−t) (20)

CovQT

0 [ln Xt, ln Xu] =

(
σ2

v +
2ρσvσr

β
+

σ2
r

β2

)
u−

(
ρσvσr

β
+

σ2
r

β2

)
B(0, u)

−
(

ρσvσr

β
+

σ2
r

2β
B(0, u)

)
B(0, u)eβ(u−t) (21)

VarQT

0 [ln Xt] =

(
σ2

v +
2ρσvσr

β
+

σ2
r

β2

)
t−

(
2ρσvσr

β
+

σ2
r

β2

)
B(0, t)

−σ2
r

2β
B(0, t)2. (22)

2.3 Valuation Formulas in Closed Form

In this subsection, using the cumulative density function F (T ) obtained in the previous

subsection, we derive expressions for the bond price, the value of tax benefits, and the value
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of bankruptcy costs in closed form.

Consider a bond that pays a coupon rate c, has a principal value p, and matures at time

t. The payment rate g(s) to the debt holders at any time s is equal to

g(s) = c 1(s ≤ t) 1(s ≤ τ) + p δ(s− t) 1(s ≤ τ) + φ(t)VBδ(s− τ) 1(s ≤ t), (23)

where 1(·) denotes the indicator function and δ(·) is the Dirac delta function. Note that g(s)

is random because τ , by definition, is random. φ(t) is the fraction of the asset value, VB,

that the maturity-t bondholders receive in bankruptcy.

Under the risk-neutral measure, Q, the value of the debt at time zero is given by

d(V ; VB, t) =
∫ ∞

0
EQ[e−

∫ s

0
r(u)dug(s)]ds =

∫ ∞

0
Λ(s)EQs

[g(s)]ds. (24)

For simplicity, r0 has been suppressed in Λ = EQ[e−
∫ s

0
r(u)du]. The term inside the square

brackets represents the discounted cash flow received during time interval ds. Taking expec-

tation under Q represents the present value of the cash flow, and integrating it gives rise to

the present value of the debt. The last step results from the s-forward risk-neutral measure

Qs,3 defined in the Appendix. Evaluating EQs
[g(s)], we have

EQs

[g(s)] = EQs

[c1(s ≤ t)1(s ≤ τ)] + EQs

[p δ(s− t)1(s ≤ τ)] +

EQs

[φ(t)VBδ(s− τ)1(s ≤ t)] = c1(s ≤ t)(1− F (s)) +

p δ(s− t)(1− F (s)) + φ(t)VB1(s ≤ t)f(s). (25)

Note that F (s) = EQs
[1(s ≤ τ)] and f(s) = EQs

[δ(s − τ)] =
∫∞
0 f(τ)δ(s − τ)dτ are the

distribution function and density function of τ under the s-forward risk-neutral measure,

respectively.

3Note that we have used Qs to denote the forward risk-neutral measure because the appropriate time
here is s.
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We can now express d(V, VB, t) in closed form:

d(V ; VB, t) =
∫ ∞

0
Λ(s)c1(s ≤ t)(1− F (s))ds +

∫ ∞

0
Λ(s)p δ(s− t)(1− F (s))ds +

∫ ∞

0
Λ(s)φ(t)VB1(s ≤ t)f(s)ds = c

∫ t

0
Λ(s)(1− F (s))ds + Λ(t)p (1− F (t))

+φ(t)VB

∫ t

0
Λ(s)f(s)ds =

C

m

∫ t

0
Λ(s)(1− F (s))ds +

P

m
(Λ(t)(1− F (t))) +

φVB

m

(
Λ(t)F (t)−

∫ t

0
Λ′(s)F (s)ds

)
, (26)

where φ(t) = φ/m,4 c = C/m, and p = P/m have been substituted.

Assuming that the newly issued debt (at time 0) is priced at par, i.e., d(V ; VB,m) = P/m,

the coupon rate C can then be solved in terms of P by

C =
P (1− Λ(m)(1− F (m)))− φVB(Λ(m)F (m)− ∫ m

0 Λ′(s)F (s)ds)∫ m
0 Λ(s)(1− F (s))ds

. (27)

Integrating d(V, VB, t) from 0 to m, we obtain the total value of all outstanding debts:

D(V ) =
C

m

∫ m

0

(∫ t

0
Λ(s)(1− F (s))ds

)
dt +

P

m

∫ m

0
Λ(st)(1− F (t))dt +

φVB

m

∫ m

0
Λ(t)F (t)dt− φVB

m

∫ m

0

(∫ t

0
Λ′(s)F (s)ds

)
dt, (28)

which can be simplified to

D(V ) =
C

m

∫ m

0
Λ(t)(1− F (t))(m− t)dt +

P

m

∫ m

0
Λ(t)(1− F (t))dt +

φVB

m

∫ m

0
(Λ(t)F (t)− Λ′(t)F (t)(m− t)) dt. (29)

The tax shield accumulation rate is given by θ C 1(s < τ), with θ being the corporate

tax rate. As in Brennan and Schwartz (1978) and Leland (1994), it is assumed here that the

firm loses its tax benefits forever after bankruptcy has occurred. Consequently, the value of

4This assumes that all the debts with remaining time to maturity within [0, m] have the same seniority.
φ is the total fraction of the assets that bondholders receive in bankruptcy.
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the tax shields is given by

TB(V ) =
∫ ∞

0
EQ[e−

∫ s

0
r(u)duθ C 1(s < τ)]ds = θC

∫ ∞

0
Λ(s)EQs

[1(s < τ)]ds

= θC
∫ ∞

0
Λ(s)(1− F (s))ds. (30)

Similarly, the rate of bankruptcy costs is given by (1 − φ)VBδ(s − τ), and the value of

bankruptcy costs is equal to

BC(V ) =
∫ ∞

0
EQ[e−

∫ s

0
r(u)du(1− φ)VBδ(s− τ)]ds = (1− φ)VB

∫ ∞

0
Λ(s)f(s)ds

= −(1− φ)VB

∫ ∞

0
Λ′(s)F (s)ds. (31)

Finally, the total firm value consists of three terms: the firms unlevered asset value, plus

the value of tax shields, less the value of bankruptcy costs:

v(V ) = V + TB(V )−BC(V ) = V + θC
∫ ∞

0
Λ(s)(1− F (s))ds +

(1− φ)VB

∫ ∞

0
Λ′(s)F (s)ds. (32)

The total principal P shall be determined by maximizing v(V ). Substituting C in terms of

P from (27) into the above expression for v(V ), we arrive at an unconstrained, univariate

maximization problem.

3 Numerical Results

In this section, we implement the optimal capital structure model developed in the previous

section. We consider first the benchmark case where the interest rate is assumed to be

constant. We then examine our proposed model with stochastic interest rate.

In the numerical calculations, the following base parameters are fixed: the asset return

volatility σv = 0.2; the corporate tax rate θ = 0.35; the bankruptcy cost parameter φ = 0.5;
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the asset payout ratio δ = 0.02; the interest rate process parameters are taken from Longstaff

and Schwartz (1995) and are given by σ2
r = 0.001, α = 0.06, and β = 1.0. The base value

for the correlation coefficient between the interest rate and the asset return is assumed to

be zero.

3.1 Optimally levered firms with constant interest rates

Though a lot of work has been performed pricing defaultable bonds in a stochastic interest

rate environment, almost all work on optimal structure has assumed constant interest rate.

To see the impact of the interest rate variability on capital structure, we first consider the

benchmark case in which the interest rate is a constant.

Table 1 reports results with different interest levels (constant) and different bankruptcy

constraints. One observation from the table is that in a low interest rate environment, the

optimal coupon rate and leverage ratio are lower. One reason behind this is as follows. The

coupon payments contribute less to the total market value of a bond if the interest rate is

low, but only the coupon part is tax deductible. Therefore, with the same market value,

a bond in a low interest environment offers less tax shield. Another reason is that, in a

low interest rate environment, the risk-neutral drift of the asset return is lower, and thus,

the (risk-neutral) probability of bankruptcy is higher, and the expected bankruptcy cost

is higher. Consequently, it follows that a firm optimally levers less in a low interest rate

environment.

The result that a firm optimally levers less in a low interest rate environment may seem

odd at first glance. Intuition suggests that firms may find it more attractive to issue debt

in a low interest rate environment because the coupons they pay will be lower. However,

implicitly behind this reasoning is the assumption that interest rate will likely increase in
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the future. Ours is a comparative static result. It is assumed that the interest rate will be at

that level forever. Therefore, in a sense, it makes no sense to talk about high or low interest

rate. Each level represents a different state of the world.

Another observation from the table is that with less restrictive bankruptcy trigger level

(VB = 0.9P ), a firm optimally levers more. The reason is that with a lower bankruptcy level,

the probability and expected cost of bankruptcy are both lower. We can think of the level of

VB as the strength of the bond covenants to force bankruptcy. As the rights of debt holders

to force default increase (higher VB), firms find it optimal to use less leverage.

We can also see from the table that the coupon rate and credit spread of optimally levered

firms seem to be related to the maturity of the bonds in a non-uniform fashion. This is due

to the interplay of the tax shields, which favors long maturity debt, and the bankruptcy cost,

which favors short maturity debt. On the one hand, for the same market value of the bond,

the tax shield for short maturity debt is less than that of a longer maturity debt because the

coupon payments contribute less to the market value of the short maturity debts and only

the coupon part is tax deductible. Therefore, tax shield favors long maturity debt. On the

other hand, for the same coupon and principal, the expected bankruptcy cost is higher for

a longer maturity debt. Therefore, debt maturity is an important consideration in capital

structure considerations.

A somewhat surprising result is that at high interest rates, for given coupon and principal

of the bond, its yield curve is inverted. Initially the yield increases with maturity and then

declines. Since the interest rate is constant, the yield spread curve has the same property.

This implies that initially the market thinks the bond is risky but if the firm survives the first

few years, then its default probability will be considered to decrease. Another implication of

an inverted (risky) yield curve is that the yield of the total debt is higher than that of the
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newly issued debt, whose maturity is twice of the average maturity of the total debt.

3.2 Optimally levered firms with stochastic interest rate with base
values

We now examine the impact of stochastic interest rate. More specifically, we look at how the

characteristics of an optimally levered firm–such as the leverage ratio and credit spreads–

change when we vary a particular parameter in the interest rate process.

In Table 2, we consider the impact of the initial interest rate. As can be seen from the

table, the initial interest rate level is not as crucial as in the constant interest rate case. By

comparing with table 1, it is clear that a firm levers a lot more when the initial interest rate

is only 3%. In the stochastic case, the long-run mean of the interest rate is 6%. Therefore,

when a firm determines the debt amount initially, it considers not only the impact of the

current issue on the firm value but also the impact of all future issues on the firm value.

Therefore, the long-run mean is important. Since the interest rate in the real world is

stochastic, it is important to take into account the long-run mean of the interest rate process

in deciding the leverage ratio. For this reason, the characteristics of the optimally levered

firm with different initial interest rates are quite similar to the one with an initial interest

rate of 6%, which happens to be the long-run mean of the interest rate. Our results indicate

that when the current interest rate is different from the long-run mean, a stochastic interest

rate has a significant impact on the characteristics of the optimally levered firms. It is also

clear that bonds with longer maturities are even closer to their counterparts with an initial

interest rate 6% because the mean-reverting property of the interest rate has more time to

affect the initial bonds. The credit spread is lower for the total debt than the newly issued

ones. The reason is quite simple. The average maturity of the total debt is only half of the

maturity of the newly issued debt and generally shorter maturity debts have lower credit
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spread because the probability of bankruptcy is lower for shorter maturity debts. Notice

that, however, even though this result is intuitive, in the high constant rate case, the yield

curve may be inverted.

Note that even though in the stochastic interest rate case, the initial interest rate level

is less important than the constant interest rate case, this initial level of the stochastic

interest rate is still important in determining the price of a corporate bond. Note that if a

constant interest rate is to be used, the long-run mean appears to be the appropriate rate

to use. From table 2, we note that the characteristics of optimally levered firms change only

moderately when the initial interest rate changes from far below the long-run mean to far

above the long-run mean. However, using the long-run mean as the constant interest rate

level will grossly misprice the current outstanding debt. Suppose, for example, the initial

(current) interest is 3%. To price current outstanding debt, especially short-term ones, the

long-run mean, say 6%, is not appropriate. On the other hand, to price the future debts, or

more precisely, the tax shields and expected bankruptcy costs resulting from future debts,

the long-run mean is more appropriate than the current interest rate level, especially when

it is far from the long-run mean. Therefore, the assumption of a constant interest rate is

incapable of correctly pricing the current outstanding debt and determining the optimal

capital structure, especially when the current interest rate is different from the long-run

mean. In a stochastic interest rate model like ours, both the current outstanding debt and

future tax shields and expected bankruptcy costs are determined appropriately.

3.3 Optimally levered firms with stochastic interest rate with dif-
ferent correlation coefficients

Now we consider the effects of the correlation between the interest rate and the return of the

firm value on the characteristics of optimally levered firms. We keep the other parameters
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at their base values and the initial interest rate is the long-run mean 6%. We note that

for a given maturity, the characteristics of optimally levered firms with different correlation

between the interest rate and the return of the firms’ assets are similar. The reason is due to

the small impact of the correlation on the drift of the unlevered firm value dynamics under

the T -forward risk-neutral process. Note that in (9), under QT , the drift of Vt is changed by

ρσrσvB(T − t), which is less than 0.0063ρB(T − t) since we used σv = 0.2 and σr = 0.0316.

Because β = 1.0, B(T − t) is smaller than 1. Therefore, |ρσrσvB(T − t)| is less than 0.0063

and thus the correlation’s impact is small. However, we do note that the drift increases if the

correlation ρ is negative and decreases if ρ is positive. For this reason, the optimal coupon

and leverage ratio are higher for negative correlations.

3.4 Optimally levered firms with different correlations and initial
interest rates

In the previous subsection, we considered the impact of correlation with the same initial

interest rate. Here we consider the effects with different correlations and different initial

interest rates. Table 4 demonstrates clearly that the initial interest rate is more important

than the correlation between the interest rate and the return of the firm’s assets, especially for

bonds with shorter maturities. The reason is quite simple: for short maturity debts, there is

less time for the interest rate to revert to its long-run mean before the initial debts mature.

Again, with the same maturity and initial interest rate, firms with negative correlation

between the interest rate and the return of the firm’s asset optimally lever more because

negative correlation implies the risk-neutral bankruptcy probability is smaller.
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4 Concluding Remarks

Existing models of the optimal capital structure of a firm do not consider stochastic interest

rates. This paper considers stochastic interest rate, a firm’s capital structure, and the valu-

ation of the firm’s debt in a unified framework. Expressions for the total value of the firm

and for the firm’s risky debt are obtained in closed form.

When the interest rate is assumed to be a constant, the level of the interest rate has a

significant impact on both the optimal coupon and the leverage ratio. When the interest

rate is assumed to follow a mean-reverting stochastic process, however, the long-run mean

as well as the current level of the interest rate process are required to price the risky bond

and determine the optimal capital structure of the firm. On the one hand, the current

interest rate level is crucial in the pricing of the risky bond. On the other hand, the long-run

mean plays a key role in the determination of the tax shields and bankruptcy costs resulting

from the future debt. Therefore, a model of optimal capital structure with a constant

interest rate cannot simultaneously price risky corporate debts and determine the optimal

capital structure appropriately. A stochastic interest rate process is needed to account for

the evolution of the interest rate. While the long-run mean is shown to be important in

determining the optimal capital structure, numerical results indicate that the correlation

between the stochastic interest rate and the return of the firm’s assets has little impact.

Finally, besides the long-run mean, the maturity of the bond is also an important determinant

in capital structure considerations.

For tractability of the model, we have assumed that the default boundary VB is an

exogenously specified constant. Extending our model to allow for an endogenous default

boundary, in the sense of Leland (1994) and Leland and Toft (1996), is an important but

challenging topic for future research.
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A The Forward Risk-Neutral Measure

In this appendix, we use the Girsanov theorem to derive the T -forward risk-neutral measure

in a multi-dimensional setting. Without loss of generality, we assume a probability space Q

generated by two standard Wiener processes

w̃Q
t =

[
wQ

1t

wQ
2t

]
, (33)

with correlation matrix

ρ̃(t) =

[
1 ρ(t)

ρ(t) 1

]
. (34)

In the following, Q should be interpreted as the risk-neutral probability measure and rt the

riskless interest rate and is given by

drt = µ(r, t)dt + σ(r, t)dwQ
2t. (35)

We leave other random variables generated by wQ
1t and wQ

2t unspecified.

Suppose we want to compute the following expectation

h = EQ[e−
∫ T

0
r(u)duH({· · ·}, T )], (36)

where {· · ·} indicates that H({· · ·}, T ) may depend on the sample path in space Q from 0

to T . Let Λ(r0, T ) be the discount bond price at t = 0 with maturity T . Define

ξT =
e−

∫ T

0
r(u)du

Λ(r0, T )
. (37)

Then

h = Λ(r0, T )EQ[ξT H({· · ·}, T )]. (38)
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It is clear that ξT is strictly positive and EQ[ξT ] = 1. Therefore it can be used as a Radon-

Nikodym derivative to define a new probability measure QT equivalent to the original mea-

sure Q such that

EQT

[1{A}] = EQ[ξT 1{A}] (39)

for any event A. Under the new measure QT ,

h = Λ(r0, T )EQT

[H({· · ·}, T )]. (40)

To find the Wiener processes under QT , define the likelihood ratio

ξt = EQ
t [ξT ] =

e−
∫ t

0
r(s)dsΛ(rt, T − t)

Λ(r0, T )
. (41)

It follows that

log ξt = −
∫ t

0
r(s)ds + log Λ(rt, T − t)− log Λ(r0, T ). (42)

Ito’s lemma implies

d log ξt = −rdt +
dΛ(rt, T − t)

Λ(rt, T − t)
− 1

2

(
dΛ(rt, T − t)

Λ(rt, T − t)

)2

= (43)

[
−rΛ + Λt + u(r, t)Λr +

1

2
σ2(r, t)Λrr

]
dt/Λ +

σ(r, t)Λr

Λ
dwQ

2 (t)− 1

2

(
σ(r)Λr

Λ

)2

dt. (44)

The term inside the square bracket is the fundamental PDE satisfied by the discount bond

price Λ, therefore

d log ξt = −1

2

(
σ(r, t)Λr

Λ

)2

dt +
σ(r, t)Λr

Λ
dwQ

2 (t). (45)

Another application of Ito’s lemma yields

dξt = ξt
σ(r, t)Λr

Λ
dwQ

2 (t) = ξtβ̃(t)Tdw̃Q
t , (46)

19



where

β̃(t) =

[
0

σ(r,t)Λr

Λ

]
, dw̃Q

t =

[
dwQ

1t

dwQ
2t

]
. (47)

Now the multi-dimensional Girsanov’s theorem implies that under the new probability

measure QT ,

w̃QT

t =


 wQT

1t

wQT

2t


 = w̃Q

t −
∫ t

0
ρ̃(s)β̃(s)ds (48)

are two standard Winner processes with correlation matrix ρ̃(t). In differential form,

dw̃QT

t = dw̃Q
t − ρ̃(t)β̃(t)dt. (49)
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Table 1: Characteristics of Optimally Levered Firms with

Constant Interest Rate: σv = 0.2; θ = 0.35; φ = 0.5; δ = 2%

Maturity Coupon Principal Optimal Credit Spread Credit Spread Firm Value
m C P Leverage Total Debt Newly Issued v(V )

(Years) (Dollars) (Dollars) Ratio (Basis Points) (Basis Points) (Dollars)
Panel A: Constant Interest Rate r0 = 3% and VB = P

1.0 0.6176 20.5882 0.1987 0.0000 0.0000 103.6029
5.0 0.6283 20.8999 0.2017 0.6043 0.6451 103.6146

10.0 0.7877 24.7836 0.2397 16.1291 17.8134 103.8407
20.0 0.9580 27.4572 0.2665 43.4026 48.8942 104.3381

Panel B: Constant Interest Rate r0 = 6% and VB = P
1.0 2.4301 40.5001 0.3686 0.0186 0.0192 109.8807
5.0 3.3803 49.7279 0.4517 73.7005 79.7677 110.7958

10.0 3.2781 47.9478 0.4339 77.4542 83.6904 111.1916
20.0 3.0897 46.0659 0.4154 68.5268 70.7147 111.1333

Panel C: Constant Interest Rate r0 = 9% and VB = P
1.0 4.7490 52.6036 0.4601 2.6483 2.7821 114.3440
5.0 6.1185 59.8206 0.5186 115.8387 122.8091 115.8210

10.0 5.6558 57.1965 0.4948 88.2098 88.8410 115.6358
20.0 5.3945 55.7980 0.4818 72.7368 66.7967 115.3747

Panel D: Constant Interest Rate r0 = 3% and VB = 0.9P
1.0 0.7292 24.3056 0.2331 0.0000 0.0000 104.2535
5.0 0.7528 24.9875 0.2397 1.1949 1.2740 104.2789

10.0 1.1689 34.0796 0.3283 39.3084 42.9928 104.7507
20.0 1.3142 35.1986 0.3389 66.2648 73.3636 105.4574

Panel E: Constant Interest Rate r0 = 6% and VB = 0.9P
1.0 2.7731 46.2150 0.4153 0.0385 0.0398 111.2719
5.0 4.9811 63.7446 0.5692 171.2418 181.4226 112.9948

10.0 4.1046 57.0966 0.5074 112.1969 118.8833 113.2291
20.0 3.7298 53.9606 0.4778 90.2216 91.2042 113.0315

Panel F: Constant Interest Rate r0 = 9% and VB = 0.9P
1.0 5.4269 59.9717 0.5161 4.6805 4.9122 116.2305
5.0 7.6570 70.4273 0.5966 180.5942 187.2129 118.4640

10.0 6.7047 65.9760 0.5585 117.7985 116.2332 118.0199
20.0 6.2902 63.9390 0.5407 92.5907 83.7871 117.6183
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Table 2: Characteristics of Optimally Levered Firms with
Stochastic Interest Rate with Base Parameters: σv = 0.2;

α = 0.06; β = 1.0; σ2
r = 0.001; ρ = 0; θ = 0.35; φ = 0.5

Maturity Coupon Principal Optimal Credit Spread Credit Spread Firm Value
m C P Leverage Total Debt Newly Issued v(V )

(Years) (Dollars) (Dollars) Ratio (Basis Points) (Basis Points) (Dollars)
Panel A: Initial Interest Rate r0 = 3% and VB = P

1.0 1.7123 41.8706 0.3894 0.0002 0.0408 107.6783
5.0 3.6721 56.0164 0.5071 23.8926 124.5056 111.9693

10.0 3.3144 51.6853 0.4646 33.2413 83.2486 112.6234
20.0 3.1245 49.5142 0.4426 46.2934 59.8242 112.6577

Panel B: Initial Interest Rate r0 = 6% and VB = P
1.0 2.7869 46.4925 0.4147 0.0030 0.2712 112.1220
5.0 4.3414 58.9209 0.5206 32.8860 140.1551 113.8083

10.0 3.7114 54.0841 0.4767 40.6638 90.2966 113.6959
20.0 3.4082 51.6394 0.4542 53.1024 64.4086 113.3671

Panel C: Initial Interest Rate r0 = 9% and VB = P
1.0 3.9664 50.1499 0.4291 0.0161 0.8782 116.7087
5.0 5.0483 61.7168 0.5322 43.4948 154.4233 115.7025

10.0 4.1414 56.5406 0.4888 49.3796 97.6445 114.8094
20.0 3.7148 53.8405 0.4660 60.5302 69.2923 114.1049

Panel D: Initial Interest Rate r0 = 3% and VB = 0.9P
1.0 1.9503 47.6877 0.4392 0.0005 0.0793 108.7401
5.0 5.7367 71.1636 0.6270 78.8985 276.1910 114.6721

10.0 4.1122 60.9477 0.5365 51.4572 116.9725 114.8322
20.0 3.7234 57.4568 0.5035 61.7316 76.9479 114.6856

Panel E: Initial Interest Rate r0 = 6% and VB = 0.9P
1.0 3.1702 52.8664 0.4648 0.0056 0.4913 113.7572
5.0 6.5094 73.6921 0.6324 94.8493 286.6396 116.7986

10.0 4.5970 63.6789 0.5490 62.2818 125.9666 116.0744
20.0 4.0622 59.8997 0.5161 70.4812 82.5317 115.5039

Panel F: Initial Interest Rate r0 = 9% and VB = 0.9P
1.0 4.5135 57.0181 0.4788 0.0293 1.5408 118.9232
5.0 7.3212 76.2254 0.6376 112.3469 295.8597 118.9732

10.0 5.1205 66.4680 0.5612 74.7832 135.2299 117.3616
20.0 4.4276 62.4259 0.5288 79.9280 88.4518 116.3546
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Table 3: Characteristics of Optimally Levered Firms with
Stochastic Interest Rate with Different Correlation: σv = 0.2;

α = 0.06; β = 1.0; σ2
r = 0.001; VB = P ; θ = 0.35; φ = 0.5

Maturity Coupon Principal Optimal Credit Spread Credit Spread Firm Value
m C P Leverage Total Debt Newly Issued v(V )

(Years) (Dollars) (Dollars) Ratio (Basis Points) (Basis Points) (Dollars)
Panel A: Initial Interest Rate r0 = 6% and ρ = 0.75

1.0 2.5319 42.2514 0.3827 0.0007 0.0684 110.4136
5.0 3.9521 54.5552 0.4913 26.7767 127.8191 111.8328

10.0 3.5018 50.4945 0.4530 41.8276 97.5690 111.9598
20.0 3.2188 48.0706 0.4298 58.7829 74.0058 111.7186

Panel B: Initial Interest Rate r0 = 6% and ρ = 0.5
1.0 2.6126 43.5969 0.3930 0.0011 0.1065 110.9471
5.0 4.0777 55.9849 0.5012 28.6001 131.7372 112.4497

10.0 3.5662 51.6129 0.4604 41.2936 95.0002 112.5059
20.0 3.2809 49.2213 0.4378 56.9776 70.9347 112.2375

Panel C: Initial Interest Rate r0 = 6% and ρ = 0.25
1.0 2.6976 45.0081 0.4036 0.0018 0.1687 111.5156
5.0 4.2072 57.4403 0.5110 30.6236 135.8377 113.1073

10.0 3.6407 52.8540 0.4688 41.0847 92.8850 113.0847
20.0 3.3439 50.4103 0.4459 55.0852 67.7370 112.7865

Panel D: Initial Interest Rate r0 = 6% and ρ = −0.25
1.0 2.8819 48.0635 0.4262 0.0051 0.4433 112.7693
5.0 4.4793 60.4234 0.5300 35.4245 144.7009 114.5553

10.0 3.7828 55.3481 0.4847 40.2062 87.5224 114.3417
20.0 3.4739 52.9116 0.4626 51.0320 60.9521 113.9804

Panel E: Initial Interest Rate r0 = 6% and ρ = −0.5
1.0 2.9839 49.7385 0.4384 0.0090 0.7394 113.4608
5.0 4.6220 61.9459 0.5391 38.2941 149.5160 115.3508

10.0 3.8546 56.6459 0.4927 39.7094 84.5462 115.0230
20.0 3.5401 54.2194 0.4711 48.8333 57.3285 114.6290

Panel F: Initial Interest Rate r0 = 6% and ρ = −0.75
1.0 3.0953 51.5495 0.4514 0.0166 1.2698 114.2006
5.0 4.7695 63.4860 0.5479 41.5640 154.6523 116.1964

10.0 3.9265 57.9751 0.5007 39.1639 81.3396 115.7400
20.0 3.6074 55.5700 0.4797 46.5333 53.5681 115.3122

25



Table 4: Characteristics of Optimally Levered Firms with

Stochastic Interest Rate with Different Correlation and Initial

Interest Rate: σv = 0.2; α = 0.06; β = 1.0; σ2
r = 0.001; VB = P ;

θ = 0.35; φ = 0.5

Maturity Coupon Principal Optimal Credit Spread Credit Spread Firm Value
m C P Leverage Total Debt Newly Issued v(V )

(Years) (Dollars) (Dollars) Ratio (Basis Points) (Basis Points) (Dollars)
Panel A: Initial Interest Rate r0 = 3% and ρ = −0.75

1.0 1.9275 47.1071 0.4322 0.0018 0.2750 109.1616
5.0 4.0973 60.8780 0.5392 31.8391 142.0945 114.1619

10.0 3.5213 55.6016 0.4901 32.2114 75.2066 114.5599
20.0 3.3184 53.4298 0.4690 40.6354 49.7744 114.5377

Panel B: Initial Interest Rate r0 = 3% and ρ = 0.75
1.0 1.5281 37.3717 0.3515 0.0 0.0080 106.4706
5.0 3.2919 51.3580 0.4732 18.4873 109.7921 110.1700

10.0 3.1137 48.0764 0.4394 33.9977 89.6750 110.9819
20.0 2.9410 45.9640 0.4174 51.1678 68.6957 111.0676

Panel C: Initial Interest Rate r0 = 9% and ρ = 0.75
1.0 3.6391 46.0467 0.4015 0.0046 0.2763 114.5271
5.0 4.6539 57.5939 0.5069 36.8653 144.5609 113.5549

10.0 3.9238 52.9717 0.4664 51.0588 105.8202 112.9773
20.0 3.5201 50.2559 0.4424 67.1008 79.6749 112.3973

Panel D: Initial Interest Rate r0 = 9% and ρ = −0.75
1.0 4.3825 55.2303 0.4621 0.0751 3.4501 119.3566
5.0 5.4796 66.0473 0.5555 52.7467 165.9900 118.2829

10.0 4.3639 60.4041 0.5112 47.2834 87.7010 116.9617
20.0 3.9188 57.7829 0.4906 52.9556 57.5973 116.1156
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