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Abstract

This paper investigates the Multifractal Model of Asset Returns, a
continuous-time process that incorporates the thick tails and volatility
persistence exhibited by many financial time series. The model is
constructed by compounding a Brownian Motion with a multifractal
time-deformation process. Return moments scale as a power law of the
time horizon, a property confirmed for Deutschemark / U.S. Dollar
exchange rates and several equity series. The model implies semi-
martingale prices and thus precludes arbitrage in a standard two-asset
economy. Volatility has long-memory, and the highest finite moment
of returns can have any value greater than two. The local variability
of the process is characterized by a renormalized probability density
of local Holder exponents. Unlike standard models, multifractal paths
contain a multiplicity of these exponents within any time interval. We
develop an estimation method, and infer a parsimonious generating
mechanism for the exchange rate series. Simulated samples replicate
the moment-scaling found in the data.

Keywords: Multifractal Model of Asset Returns, Compound Stochas-
tic Process, Time Deformation, Scaling, Self-Similarity, Multifractal
Spectrum, Stochastic Volatility



1. Introduction

This paper investigates the Multifractal Model of Asset Returns (MMAR), a
continuous-time model that captures the thick tails and long-memory volatil-
ity persistence exhibited by many financial time series.! The model, which was
first introduced in Mandelbrot (1997), is constructed by compounding a standard
Brownian motion with a random time-deformation process.? Time-deformation
is specified to be multifractal, which requires its moments to satisfy a generalized
scaling rule, and produces clustering in volatility. The moments of returns scale
as a power law in the time horizon, a property confirmed for Deutschemark / U.S.
Dollar exchange rates, a U.S. equity index, and several individual stocks.

The model implies semi-martingale prices and uncorrelated returns, and thus
precludes arbitrage in a standard two-asset economy. Volatility has long-memory,
and the highest finite moment of returns can take any value greater than two.
The unconditional distribution of returns changes with the time scale, and sample
histograms may appear more thin-tailed at longer horizons. However, the uncon-
ditional distribution does not generally converge to a Gaussian with increasing
horizon, and never converges to a Gaussian with decreasing horizon.

We show how to construct a class of candidate time-deformation processes
as the limit of a simple iterative procedure called a multiplicative cascade. The
cascade begins with a uniform distribution of volatility at a suitably long time
horizon, and randomly concentrates volatility into progressively smaller time in-
tervals. The construction follows the same rule at each stage of the cascade, which
provides parsimony and ensures that returns satisfy moment-scaling. Volatility
clustering is thus present at all frequencies, corresponding to the intuition that
economic factors such as technology shocks, business cycles, earnings cycles, and
liquidity shocks all have different time scales. We anticipate that fully rational
equilibrium models can generate multifractal prices, either through exogenous

!Long memory is conveniently defined by hyperbolically declining autocorrelations. It was
first analyzed in the context of fractional integration by Mandelbrot (1965, 1969, 1971, 1972a),
Mandelbrot and van Ness (1968) and Mandelbrot and Wallis (1969). Long memory has been
documented in squared and absolute returns for many financial data sets (Taylor, 1986; Ding,
Granger, and Engle, 1993; Dacorogna et al., 1993). Baillie (1996) provides a survey of long-
memory in economics.

2 An extension of the model, considered in Mandelbrot (1997) and in earlier working papers
([63], [21], [37]), compounds a fractional Brownian motion with a multifractal trading time. To
simplify the discussion, we concentrate on the ordinary Brownian specification in Sections 1-4,
and consider the more general model in Sections 5 and 6.



shocks with scaling patterns, or endogenously due to market incompleteness or
informational cascades.

The MMAR introduces a fundamentally new class of processes to both fi-
nance and mathematics. Multifractal processes diffuse with continuous sample
paths, but lie outside the class of Ito0 processes and fractional Brownian Motions.
Whereas standard processes can be characterized by a single local scale that de-
scribes the magnitude of variations for successively smaller time increments, the
MMAR contains a continuum of local scales in any time interval. The relative
occurrences of each local scale are conveniently summarized in a renormalized
probability density called the multifractal spectrum. Given a specification of the
model, we provide a general rule for calculating the spectrum, and demonstrate its
use in a number of examples. The applied researcher can estimate the spectrum
through a transformation of the moments of data, and thus infer a specification
of the model.

Our empirical work first examines the Deutschemark / U.S. Dollar (“DM/USD”)
exchange rate. We use a high frequency data set of approximately 1.5 million
quotes collected over one year, and a twenty-three year sample of daily exchange
rates. Moments of the data scale as predicted by the model for a remarkable range
of time horizons. We estimate the multifractal spectrum and infer a generating
mechanism that replicates DM /USD scaling in simulations. Further simulations
show that GARCH and FIGARCH samples are less likely to reproduce these
results. We find additional evidence of scaling in a U.S. equity index and five
individual stocks.

Volatility modelling has received considerable attention in finance, and the
most common approaches currently include numerous variants of the ARCH /
GARCH class (Engle, 1982; Bollerslev, 1986) and the stochastic volatility ap-
proach (Wiggins, 1987). While weak memory is typical of earlier models, long-
memory in squared returns is present in FIGARCH (Baillie, Bollerslev and Mikkelsen,
1996) and the Long Memory Stochastic Volatility (LMSV) process proposed by
Breidt, Crato, and DeLima (1997). The multifractal model is analogous to previ-
ous stochastic volatility models in many respects, but extends the characterization
of randomness in volatility.?

By design, the MMAR incorporates sufficient intermittent bursts of extreme
volatility to fully capture a wide variety of tail behaviors, while maintaining a

3While standard stochastic volatility formulations consider infinitesimals of the form
o(t)(dt)'/2, the MMAR permits non-standard infinitesimals c(t) (dt)*®). This is further dis-
cussed in Section 4.



diffusion process. In contrast, previous research has found it necessary to modify
the conditional distribution of returns to fit thick-tailed data. These adaptations
include the Student-¢ specification (Bollerslev, 1987) and non-parametric specifi-
cations (Engle and Gonzalez-Rivera, 1991). In continuous time, the problem of
modeling thick tails is more acute, and is typically addressed by incorporating an
independent stochastic jump process.*

The multifractal model differs most fundamentally from previous volatility
models in its scaling properties. The emphasis on scaling can be traced back
to the work of Mandelbrot (1963) and Fama (1963) for extreme variations, and
Mandelbrot and van Ness (1967) for long-memory. Multifractality, a form of
generalized scaling that includes both extreme variations and long-memory, was
first developed in models of turbulent dissipation (Mandelbrot, 1972b, 1974). The
MMAR brings generalized scaling to finance by extending multifractality from
measures to processes.

Section 1.1 discusses the relation between the MMAR and earlier scaling mod-
els. Section 2 defines multifractals, and demonstrates their construction through
a number of simple examples. Section 3 formalizes the MMAR by compounding a
Brownian motion with a continuous time-deformation process. Section 4 develops
the concept of local scale and shows that multifractal processes can take a con-
tinuum of such values. We also present the multifractal spectrum, which provides
a convenient renormalized probability density for the distribution of local scales.
Section 5 extends the model to permit long-memory in the levels of returns. This
allows testing of the martingale hypothesis and may be useful in modelling eco-
nomic series other than exchange-rates and equities. In Section 6, we verify the
multifractal scaling rule for DM /USD exchange rates, and estimate the spectrum
of local scales. We infer a data-generating process and show that simulated sam-
ples replicate the scaling features of the data. Evidence of multifractal scaling
is also found in a U.S. equity index and five individual stocks. In Section 7, we
summarize our results and discuss possible extensions.

This paper simplifies the discussion and extends the results of three earlier
working papers ([63], [21], [37]). Throughout the text, we refer to them respec-
tively as MFC, CFM, and FCM, signifying the various permutations of the au-
thors.

“Bates (1995, 1996) finds that standard diffusions cannot produce tails sufficient to explain
the implied volatility smile in option prices, and recommends the incorporation of jumps. One
potentially undesirable consequence of this approach is that the most extreme fluctuations are
then disconnected from volatility.



1.1. Roots of the MMAR

The multifractal model combines several elements of previous research on financial
time series. First, the MMAR generates fat tails in the unconditional distribution
of returns, as in the L-stable processes of Mandelbrot (1963) and Fama (1963).°
The MMAR improves on this earlier model by allowing a finite variance,® and
modeling one of the main features of financial markets - fluctuations in volatility.

Second, the multifractal model has long memory in the absolute value of re-
turns, but the returns themselves can have a white spectrum. Long memory is
the characteristic feature of fractional Brownian motion (FBM), introduced by
Mandelbrot and van Ness (1968). A FBM, denoted Bg(t), has continuous sample
paths, as well as Gaussian and possibly dependent increments. The FBM is an
ordinary Brownian motion for H = 1/2, is antipersistent when 0 < H < 1/2, and
displays persistence and long memory when 1/2 < H < 1. Granger and Joyeux
(1980) and Hosking (1981) introduced ARFIMA, a discrete time generalization
of the FBM which advanced the use of long memory in economics. FBM and
ARFIMA do not permit the independent modeling of persistence in returns and
long memory in volatility.” More recent models, such as FIGARCH and LMSV,
contain long memory in volatility and uncorrelated returns in discrete time. The
MMAR has the same properties, but in a parsimonious, continuous-time setting.

The third essential component of the multifractal market model is the concept
of trading time, introduced by Mandelbrot and Taylor (1967).

Definition 1. Let {B(t)} be a stochastic process, and 0(t) an increasing function

of t. The process
X(t) = BlO(1)]

1s called a compound or subordinated process. The index t denotes clock time,
and 0(t) is called trading time or the time deformation process.

When the directing process B is a martingale, fluctuations in trading time cause
speeding up or slowing down of the process X (¢) without influencing its direction.

5Recent applications of the L-stable model to foreign exchange and stock prices include
Koedijk and Kool (1992), Belkacem, Lévy-Véhel and Walter (1995), and Phillips, McFarland
and McMahon (1996).

6In the leading case considered in this paper, the critical exponent g.,;; can take any value
in (2, 00].

"Taqqu (1975) establishes that By (t) has long memory in the absolute value of increments
when H > 1/2.



Compounding® can thus separate the direction and the size of price movements,
and has been used in the literature to model the unobserved natural time-scale
of economic series (Mandelbrot and Taylor, 1967; Clark, 1973; Mandelbrot, 1973;
Stock, 1987, 1988). More recently, this method has been used to build models
integrating seasonal factors (Dacorogna et al., 1993; Miiller et al., 1995), and
measures of market activity (Ghysels, Gouriéroux, and Jasiak, 1996). The MMAR
also incorporates compounding and the primary innovation is the specification of
trading time # as multifractal. While this is not a structural model of trade, future
work may specify the trading time 6 as a function of observable data.

Finally, the MMAR generalizes the concept of scale-consistency, in the sense
that a well-defined scaling rule relates returns over different sampling intervals.
Mandelbrot (1963), followed by Fama (1963), suggested that the shape of the
distribution of returns should be the same when the time scale is changed, or
more formally:

Definition 2. A random process {X (t)} that satisfies

{X(ctr), oy X (cti)} £ {X (1), o X (1)}

for some H > 0 and all c,k,t1,....t, > 0, is called self-affine.® The number H is
the self-affinity index, or scaling exponent, of the process {X(t)}.

The Brownian motion, the L-stable process and the FBM are the main examples
of self-affine processes in finance. Empirical evidence suggests that many financial
series are not exactly self-affine, but instead have thinner tails and become less
peaked in the bells when the sampling interval increases. The MMAR captures
this feature, as well as a generalized version of self-affinity exhibited by the data.
The multifractal process does not necessarily converge to a Gaussian at long
sampling intervals, and is sufficiently flexible to model a wide range of financial
time series.

8Tn mathematics, subordination differs from compounding, and requires that #(t) have in-
dependent increments (Bochner, 1955; Feller, 1968). The concept of subordination has evolved
differently in financial economics, and now encompasses any generic time deformation process.
9Self-affine processes are sometimes called self-similar in the literature.



2. Multifractal Measures and Processes

The MMAR is constructed in Section 3 by compounding a Brownian motion B(?)
with a stochastic trading time 6(¢):

In P(t) — In P(0) = B[A(¢)],

where 6(t) is a random increasing function or, equivalently, the cumulative distri-
bution function (c.d.f.) of a random measure y. In order to capture the outliers
and volatility persistence of many financial time series, we specify the measure p
to be multifractal, a concept which we now present.

2.1. The Binomial Measure

In the spirit of fractal geometry, multifractal measures are built by iterating an
elementary procedure, called a multiplicative cascade. The simplest multifractal
is the binomial measure'® on the compact interval [0,1]. Consider the uniform
probability measure y, on [0, 1], and two positive numbers mq and m; adding up
to 1. In the first step of the cascade, we define a new measure p; by uniformly
spreading the mass mg on the left subinterval [0,1/2], and the mass m; on the
right subinterval [1/2,1]. The density of y, is now a step function, as illustrated
in Figure la.

In the second stage of the cascade, we split the interval [0, 1/2] into two subin-
tervals of equal length, [0,1/4] and [1/4,1/2]. The left subinterval [0, 1/4] receives
a fraction myg of the mass p,[0,1/2], while the right subinterval receives a frac-
tion my. Applying this again to the interval [1/2, 1], we obtain a new measure .,
which satisfies

y’2[0’ 1/4] = mMoMmy, M2[1/4a 1/2] = Momy,
M2[1/27 3/4] = mymy, M2[3/47 1] =mimg.

Iteration of this procedure generates an infinite sequence of measures (1), which
converges'! to the binomial measure p. Figure 1b illustrates the density of the
measure u, obtained after £ = 4 steps of the recursion.
We now introduce notation that aids our treatment of the binomial measure
p. For any ny,..,n, € {0,1}, we denote by I, , the interval of length 2% with
lower endpoint
toy s = 2 4 o 275 (2.1)

10The binomial measure is sometimes called the Bernoulli or Besicovitch measure.
1Tn the sense of weak convergence.



With this definition, each vector (n,,..,7,) indexes an interval used in the kth
stage of the construction. For example, the first step of the cascade uses the
two intervals Iy = [0,1/2] and I; = [1/2, 1], while the second stage considers the
subintervals Iyo = [0,1/4], Inq = [1/4,1/2], I, o = [1/2,3/4], and I, ; = [3/4,1].
We note that subinterval I, ,. islocated inside the larger interval I, at a position
determined by 7,. More generally, a “stage £” interval I,,, . is contained in the
“stage k — 1”7 interval I, . ., and by recursion, I, ., C I, .  C..CI.
These notations make it transparent that the construction involves a countable
set of grid points and intervals. A number ¢ € [0, 1] is called dyadic if ¢ = 1 or
t = ty,,.n for some finite k. Similarly, a dyadic interval I C [0, 1] has dyadic
endpoints. The intervals I, and grid points ¢, in the construction are all
dyadic.

We now use this notation to analyze the properties of y. Consider the dyadic
interval [¢,t + 27%], where

197k 157k

b=ty m =Mm27 + ..+ 027"

and 7y, ...,n, € {0,1}. Let ¢, and ¢, denote the relative frequencies of 0s and 1s
in (1y,...,m;)- The measure of the dyadic interval simplifies to

plt, t+ 275 = mgPomi.

Like many multifractals, the binomial is a continuous but singular probability
measure; it thus has no density and no point mass. We also observe that since
mgy + my = 1, each stage of the construction preserves the mass of split dyadic
intervals.

This construction can be extended in several ways. For instance at each stage
of the cascade, intervals can be split into b > 2 intervals of equal size. Subintervals,
indexed from left to right by (0 < § < b— 1), receive fractions of the total mass
equal to mg,..,my_1. By the conservation of mass, these fractions, also called
multipliers, add up to one: ) mg = 1. This defines the class of multinomial
measures, which are discussed in Mandelbrot (1989a) and Evertsz and Mandelbrot
(1992).

Another extension randomizes the allocation of mass between subintervals at
each step of the iteration. The multiplier of each subinterval is a discrete ran-
dom variable My that takes values mg, my, ..., my_; with probabilities py, .., pp_1.
The preservation of mass imposes the additivity constraint: » Mgz = 1. Figure
1c shows the random density obtained after £ = 10 iterations with parameters



b=2 p=py= 0.5 and my = 0.6. This density, which represents the flow of
trading time, begins to show the properties we desire in modeling financial volatil-
ity. The occasional bursts of trading time generate thick tails in the compound
price process, and their clustering generates volatility persistence. Because the
reshuffling of mass follows the same rule at each stage of the cascade, volatility
clustering is present at all time scales.

2.2. Multiplicative Measures

Another extension of the multinomial allows non-negative multipliers Mz (0 <
B < b—1) that can have arbitrary probability distributions. For simplicity, we
assume identically distributed multipliers drawn from a random variable M. The
limit multiplicative measure is called conservative when mass is conserved at each
stage of the construction: ) Mg = 1, or canonical when it is only preserved “on
average” E( > Mpg) =1 or EM =1/b.

Consider the generating cascade of a conservative measure p. In the first stage,
we partition the unit interval [0, 1] into b-adic cells of length 1/b, and allocate
random masses My, .., M,_1 to each of these cells. By a repetition of this scheme,
the b-adic cell with length A¢ = b™* and lower endpoint ¢, , = S b
n; €{0,..,b — 1} for all i, has measure

p(At) = M(n) M (ny,m9)---M (11, -5 M), (2.2)

Multipliers defined at different stages of the cascade are chosen to be statistically
independent, and relation (2.2) implies that E[u(At)?] = [E(M9)]*, or equiva-
lently

E [p(At)7] = (Af)T9H, (2.3)

where 7(q) = —log, E(M?) — 1. The moment of an interval’s measure is thus
a power functions of the length At¢. This important scaling rule characterizes
multifractals.

Modifying the previous construction, we generate a canonical measure p by
imposing that the multipliers Mg be statistically independent within each stage
of the cascade. When EMyz = EM = 1/b, each iteration of the cascade conserves
mass on average, and the mass of the unit interval is a random variable .'2 The

12The random variable Q has interesting distributional and tail properties that are discussed
in Mandelbrot (1989a). ) is non negative, has a critical moment qri, 1 < geriz < 00, and
a Paretian tail: P{Q > w} ~ Ciw™ %"t as w — 400, where C; is a positive number. The

10



mass of a b-adic cell takes the form

p(AL) = Q015 e i) M (1) M (11,70 ) - M (115 -0 M),

where Q(ny, ..., n;) has the same distribution as Q. The measure p thus satisfies
the scaling relationship

E[u(A)7] = E(Q7) (At)T@+, (2.4)

which generalizes (2.3). We note that multiplicative measures constructed so far
are grid-bound, in the sense that the scaling rule (2.4) holds only when t = ¢, ..
and At = b !, [ > k. Let D denote the set of couples (¢, At) satisfying scaling rule
(2.4). D has interesting topological properties that are summarized in Condition
1 of Appendix 8.1. Alternatively, we can consider grid-free random measures that
satisfy scaling rule (2.4) for all admissible values of (¢, At) (Mandelbrot, 1989a).
This leads to the following

Definition 3. A random measure p defined on [0,1] is called multifractal if it
satisfies

E (ult, t + At]) = ¢(q)(At)"@+! for all (t,At) € D, q € Q,

where D is a subset of [0,1] x [0,1], Q is an interval, and 7(q) and c(q) are
functions with domain Q. Moreover, [0,1] C Q, and D satisfies Condition 1.'3

Maintaining the distinction between grid-bound and grid-free measures would
prove very cumbersome and lead to unnecessary technicalities. For this reason,
the difference between the two classes is henceforth neglected. This helps focus
on the key elements of the model: scaling, compounding and long memory.

2.3. Multifractal Processes

We now extend multifractality from measures to stochastic processes, a formal-
ization new to the mathematics and finance literature. We find it convenient to
define multifractal processes in terms of moments, because of its direct graphical
and testable implications.

cascade construction also implies that () satisfies the invariance relation Zle M;Q); 4 Q, where
My, .., My, Qy, .., are independent copies of the random variables M and Q.
13Condition 1 is defined in the Appendix.

11



Definition 4. A stochastic process {X (t)} is called multifractal if it has station-
ary increments and satisfies

E(|X(t)|9) = c(q)t™ @+, forallt € T, ¢ € Q, (2.5)

where T and Q are intervals on the real line, 7(q) and c(q) are functions with
domain Q. Moreover, T and Q have positive lengths, and 0 € T, [0,1] C Q.

The function 7(g) is called the scaling function of the multifractal process. Setting
g = 0 in condition (2.5), we see that all scaling functions have the same intercept
7(0) = —1. In addition, it is easy to show

Proposition 1. The scaling function 7(q) is concave.

Proof: See Appendix. |

We will see that the distinction between linear and nonlinear scaling functions
7(q) is particularly important in this framework.

Self-affine process {X (¢)} are multifractal and have a linear scaling function
7(q), as is now shown. Denoting by H the self-affinity index, we observe that the
invariance condition X () L t# X (1) implies E (| X (¢)|9) = t#9E(|X(1)]9), and
scaling rule (2.5) therefore holds with ¢(¢) = E(|X (1)|?) and

7(q) = Hq — 1.

In this special case, the scaling function 7(q) is linear and fully determined by its
index H. More generally, linear scaling functions 7(q) are determined by a unique
parameter, their slope, and the corresponding processes are called uniscaling or
unifractal.

Uniscaling processes, which may seem appealing for their simplicity, do not
satisfactorily model many financial time series. This is because most financial
data sets have thinner tails and become less peaked in the bell when the sampling
intervals At increases. In this paper, we focus on multiscaling processes, which
have a nonlinear 7(g). The proof of Proposition 1 shows that these processes
are only defined on bounded time intervals 7, a limitation of little consequence
in finance since 7 can have arbitrarily length. Multiscaling processes provide a
parsimonious framework with strict moment conditions, and enough flexibility to
model a wide range of financial prices.

12



3. The Multifractal Model of Asset Returns

We now formalize construction of the MMAR. Consider the price of a financial
asset P(t) on a bounded interval [0, 7], and define the log-price process

X(t) = In P(t) — In P(0).

We model X (¢) by compounding a Brownian motion with a multifractal trading
time:

Assumption 1. X(t) is a compound process
X(t) = Bl6()]
where B(t) is a Brownian motion, and 0(t) is a stochastic trading time.

Assumption 2. Trading time 6(t) is the c.d.f. of a multifractal measure p de-
fined on [0, T].

Assumption 3. The processes {B(t)} and {6(t)} are independent.

This construction, which is new to both mathematics and finance, generates a
large class of multifractal processes. We will show that the price process is a semi-
martingale, which implies the absence of arbitrage in simple cases. A straightfor-
ward generalization of the MMAR weakens Assumption 1 to a FBM Bg(t), and
is developed in Section 5. In Assumption 2, the multifractal measure y can be
multinomial or multiplicative, which implies a continuous trading time 6(¢) with
non-decreasing paths and stationary increments. Assumption 3 ensures that the
unconditional distribution of returns is symmetric. Weakening this assumption
allows leverage effects, as in EGARCH (Nelson, 1991) and Glosten, Jagannathan
and Runkle (1993), and is a promising area of future research.
Under the above assumptions,

Theorem 1. The log-price X (t) is a multifractal process with stationary incre-
ments and scaling function Tx(q) = T4(q/2).

Proof: See Appendix. |

Trading time controls the tail properties of the process X (¢). As shown in the
proof, the ¢g-th moment of X exists if (and only if) the process # has a moment

13



of order ¢/2. In particular if E | X (¢)|? is finite for some instant ¢, then it is finite
for all £, and we therefore drop the time index in the moments of multifractal
processes.

The tails of X (¢) have different properties if the generating measure is conser-
vative or canonical. If y is conservative, trading time is bounded, and the process
X (t) has finite moments of all (non-negative) order. Conservative measures thus
generate “mild” processes with relatively thin tails. Conversely, the total mass
O(T) = ul0,T] of a canonical measure is a random variable with Paretian tails
(Mandelbrot, 1972; Guivarc’h, 1987). In particular, there exists a critical expo-
nent qeit(0) > 1 for trading time such that E@? is finite when 0 < ¢ < g.it(6),
and infinite when ¢ > g.(0)."* The log-price X (¢) then has infinite moments,
and is accordingly called “wild”. Note however that X (¢) always has finite vari-
ance, since Qerit(X) = 2¢q(0) > 2. Overall, the MMAR has enough flexibility to
accommodate a wide variety of tail behaviors.

The model also has an appealing autocorrelation structure.

Theorem 2. The price {P(t)} is a semi-martingale (with respect to its natural
filtration), and the process {X(t)} is a martingale with finite variance and thus
uncorrelated increments.

Proof: See Appendix. |

The MMAR thus implies that asset returns have a white spectrum, a property
which has been extensively discussed in the market efficiency literature.'®

The price P(t) is a semi-martingale,'® which has important consequences for
arbitrage.!” Consider for instance the two asset economy consisting of the multi-
fractal security with price P(t), and a riskless bond with constant rate of return
r. Following Harrison and Kreps (1979), we can analyze if arbitrage profits can

1We also know that the scaling function 74(q) is negative when 0 < ¢ < 1, and positive when
1< q< qcrit(g)'

15Gee Campbell, Lo and MacKinlay (1997) for a recent discussion of these concepts. We also
note that immediate extensions of the MMAR, could add trends or other predictable components
to the compound process in order to fit financial time series other than exchange rates.

16Gince the process X (t) = In P(t) is a martingale, Jensen’s inequality implies that the price
P(t) is a submartingale but not a martingale. This result is of course not specific to the MMAR,
and holds for many It6 processes used in finance.

17See Dothan (1990) for a discussion of semi-martingales in the context of finance.
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be made by frequently rebalancing a portfolio of these two securities. Theorem 2
directly implies

Theorem 3. There are no arbitrage opportunities in the two asset economy.

This suggests that future research may seek to embed the MMAR in standard
financial models. Since the price P(t) is a semi-martingale, stochastic integration
can be used to calculate the gains from trading multifractal assets, which in future
work will greatly help us develop portfolio selection and option pricing theory.
Further research will also seek to integrate multifractality into equilibrium theory.
We may thus obtain the MMAR in a general equilibrium model with ezogenous
multifractal technological shocks, in the spirit of Cox, Ingersoll and Ross (1985).
Such a methodology is justified by the multifractality of many natural phenomena,
such as weather patterns, and will help build new economic models of asset and
commodity prices. Another line of research could also obtain multifractality as an
endogenous equilibrium property, which might stem from the incompleteness of
financial markets (Calvet, 1998) or informational cascades (Gennotte and Leland,
1990; Bikhchandani, Hirshleifer and Welch, 1992; Jacklin, Kleidon and Pfleiderer,
1992; Bulow and Klemperer, 1994; Avery and Zemsky, 1998).

Recent research focuses not only on predictability in returns, but also on per-
sistence in the size of price changes. The MMAR adds to this literature by propos-
ing a continuous time model with long memory in volatility. Because the price
process is only defined on a bounded time range, the definition of long memory
seems problematic. We note, however, that for any stochastic process Z with
stationary increments Z(a, At) = Z(a + At) — Z(t), the autocovariance in levels

0z(t,q) = Cov(|Z(a, At)|?,|Z(a +t, AL)[%),

quantifies the dependence in the size of the process’s increments. It is well-defined
when E|Z(a, At)*? is finite. For a fixed ¢, we say that the process has long
memory in the size of increments if the autocovariance in levels is hyperbolic
in ¢t when t/At — oo. When the process Z is multifractal, this concept does
not depend on the particular choice of ¢.'® It is easy to show that when p is a
multiplicative measure,

Theorem 4. Trading time 0(t) and log-price X (t) have long memory in the size
of increments.

18provided that E|Z(a, At)[*? < oo, as is implicitly assumed in the rest of the paper.
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Proof: See Appendix. |

This result can be illustrated graphically. Figure 2 shows simulated first differences
when 0(t) the c.d.f. of a randomized binomial measure with multiplier my = 0.6.
The simulated returns displays marked temporal heterogeneity at all time scales
and intermittent large fluctuations.

The MMAR is thus a flexible continuous time framework that accommodates
long memory in volatility, a variety of tail behaviors, and either unpredictability or
long memory in returns. Furthermore, the multifractal model contains volatility
persistence at all time frequencies. Table 1 places the MMAR within the existing
literature on financial time series.

Table 1: Typical Characteristics for Models of Financial Returns

Volatility Clustering | Volatility Clustering | PROPERTIES
Consistent with Implies
Martingale Price Predictable Price
MMAR FBM long memory
continuous time
FIGARCH ARFIMA* long memory
discrete time
GARCH ARMA* short memory
discrete time

x Asymptotically, ARMA scales like Brownian Motion, and ARFIMA like FBM.

4. The Multifractal Spectrum

This section examines the geometric properties of sample paths in the MMAR.
While we previously focused on global properties such as moments and autoco-
variances, we now adopt a more local viewpoint and examine the regularity of
realized paths around a given instant. The analysis builds on a concept borrowed
from real analysis, the local Holder exponent. On a given path, the infinitesimal
variation in price around a date ¢ is heuristically of the form®®

|In P(t + dt) — In P(t)| ~ Cy(dt)*®,

19The expression (dt)*® is an example of “non-standard infinitesimal”, as developed by Abra-
ham Robinson.
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where «(t) and Cy are respectively called the local Hélder exponent and the pref-
actor at t. As is apparent in this definition, the exponent «(t) quantifies the
scaling properties of the process at a given point in time, and is also called the
local scale of the process at t.

In continuous It6 diffusions, the Holder exponent takes the unique value a(t) =
1/2 at every instant.?® For this reason, traditional research obtains time variations
in market volatility through changes in the prefactor C;.?! In contrast, the MMAR
contains a continuum of local scales «(t) within any finite time interval. Thus,
multifractal processes are not continuous It6 diffusions and cannot be generated by
standard techniques. Fractal geometry imposes that in the MMAR, the instants
{t : a(t) < a} with local scale less than « cluster in clock time, thus accounting for
the concentration of price changes in our model. The relative frequency of the local
exponents can be represented by a renormalized density called the multifractal
spectrum. For a broad class of multifractals, we calculate this spectrum by an
application of Large Deviation Theory.

4.1. Local Scales

We first formalize the concept of local scale.

Definition 5. Let g be a function defined on the neighborhood of a given date t.
The number

a(t) =Sup {B>0:|gt+ At) — g(t)| = O(|At|ﬂ) as At — 0}
is called the local Holder exponent or local scale of g at t.

Lower values of the local scale thus correspond to more abrupt variations in the
path. The exponent «(t) is non-negative when the function g is bounded around
t, as is always the case in this paper. Definition 5 readily extends to measures on
the real line. At a given date ¢, a measure simply has the local exponent of its
c.d.f.

We can easily compute Holder exponents for many functions and processes.
For instance the local scale of a function is 0 at points of discontinuity, and
1 at (non-singular) differentiable points. Smooth functions thus have integral

20More precisely, the set {t : a(t) # 1/2} of instants with a local scale different from 1/2 has a
Hausdorff-Besicovitch measure (and therefore a Lebesgue measure) equal to zero. This set can
thus be neglected in our analysis. See Kahane (1997) for a recent survey of this topic.

21Gee Rossi (1997) for a recent presentation of these advances.
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exponents almost everywhere. On the other hand, the unique scale a(t) =1/2 is
observed on the jagged sample paths of a Brownian motion or of a continuous It6
diffusion. Similarly, a FBM By(t) is characterized by a unique exponent «(t) =
H. Thus, the continuous processes typically used in finance each have a unique
Holder exponent. In contrast, multifractal processes contain a continuum of local
scales. The mathematics literature has developed a convenient representation
for the distribution of Hdélder exponents within a multifractal measure. This
representation, called the multifractal spectrum, is a function f(«) that we now
describe.
From Definition 5, the Holder exponent «(t) is the limsup of the ratio

In|g(t, At)|/In(At) as At — 0,

where, consistent with previous notation, g(t, At) = g(t + At) — g(t). This sug-
gests estimating the distribution of the local scale «(t) at a random instant. For
increasing k > 1, we partition [0, T] into b* subintervals [t;,¢; + At], where length
At = b~*T, and calculate for each subinterval the coarse Hélder exponent

ag(t;) = In|g(t;, At)|/ In At.

This operation generates a set {a(t;)} of b¥ observations. We then divide the
range of as into small intervals of length Ac, and denote by Ni(«) the number of
coarse exponents contained in (a, o + Aa]. It would then be natural to calculate
a histogram with the relative frequencies Nj(c)/b*, which converge as k — oo
to the probability that a random instant ¢ has Hdélder exponent «. Using this
method, however, the histogram would degenerate into a spike and thus fail to
distinguish the MMAR from traditional processes. This is because multifractals
typically have a dominant exponent g, in the sense that a(t) = « at almost
every instant. Mandelbrot (1989a) instead suggested

Definition 6. The limit

f(a)Elim{%} as k — 00 (4.1)

represents a renormalized probability distribution of local Hélder erponents, and
is called the multifractal spectrum.

For instance if b = 3 and Ny(a) = 2%, the frequency Ni(c)/b* = (2/3)* vanishes
to zero as k — oo, while the ratio In Ni(a)/Inb* = In2/1n 3 is a positive constant.
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Histograms can then be plotted by applying the two methods for many values of a.
With a multifractal, the first technique degenerates into a spike, while the second
converges to a function f(a) of the Holder exponent. The multifractal spectrum
thus helps to identify events that happen many times in the construction but at a
vanishing frequency. We also note that Definition 6 directly extends to measures,
functions and processes.

Frisch and Parisi (1985) and Halsey et al. (1986) interpreted f(«) as the fractal
dimension of T'(a) = {t € [0,T] : a(t) = «a}, i.e. of the set of instants having
local Holder exponent «. For various levels of the scale «, Figure 1d illustrates
the subintervals with coarse exponent ay(t;) > a. When the number of iterations
k is sufficiently large, these “cuts” display a self-similar structure. Appendix 8.5
provides a more detailed discussion of this interpretation.

4.2. The Spectrum of Multiplicative Measures

We now use Large Deviation Theory to compute the multifractal spectrum of
multiplicative measures. First consider a conservative measure u defined on
the unit interval [0,1]. After k iterations, we know the masses u[t,t + At] =
M(n,)...M(nq,..,n,) in intervals of length At = b=%. We can therefore calculate
the coarse Holder exponents

ag(t) = Inplt,t+ At]/In At

= — [logy M(n) + ... +logy M (ny, ... ni)] /- (4.2)
The multifractal spectrum is obtained by forming renormalized histograms of
these exponents. It is therefore convenient to define V; = —log, M (n,,..,n;) and

interpret the coarse Holder exponents as draws of the random variable

o = % Z V;. (4.3)

The spectrum f(«) can then be directly derived from the asymptotic distribution
of ay. Since ay is the average of £ iid random variables, its asymptotic distribu-
tion can be analyzed with the Strong Law of Large Numbers (SLLN) and Large
Deviation Theory (LDT).

By the SLLN, a4 converges almost surely to??

ag=EV; =—E log, M > 1. (4.4)

22The relation —E log, M > 1 follows from Jensen’s inequality and E M = 1/b.
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As k — oo, almost all coarse exponents are contained in a small neighborhood of
. The standard histogram N} (c)/b* thus collapses to a spike at aq as anticipated
in Section 4.1. The other coarse exponents do matter, and in fact, most of the
mass concentrates on intervals with Hélder exponents that are bounded away from
ay.? Information on these “rare events” is presumably contained in the tail of
the random variable a.

Tail behavior is the object of Large Deviation Theory. In 1938, H. Cramér
established the following important theorem under conditions that were gradually
weakened.

Theorem 5. Let { X} denote a sequence of iid random variables. Then as k —
m’

k
%hﬂp{%ZXi > a} — Tnfln [E e?le=X1)]

i=1
for any a > EXj;.

Proofs of this theorem can be found in Billingsley (1979) and Durrett (1991).
Application of this theorem leads to

Theorem 6. The multifractal spectrum f(«) is the Legendre transform
f(a) =Inf [ag — 7(q)] (4.5)
of the scaling function 7(q).

This result holds for both conservative and canonical measures, and the proof is
sketched in the Appendix. The theorem provides the foundation of the empiri-
cal work developed in Section 6, where an estimation procedure for the scaling
function 7(g) is obtained and the Legendre transform yields an estimate of the
multifractal spectrum f(c).

Theorem 6 allows us to derive explicit formulae for the spectrum in a number
of useful examples. To aid future reference, we denote by fs(«) the spectrum

ZLet T}, denote the set of b-adic cells with local exponents greater than (1 + ag)/2. When k
is large, T}, contains “almost all” cells, but its mass:

Z (At)ak(t) < bk(At)(ao+1)/2 = p—k(ao—1)/2
teT),

vanishes as k goes to infinity.
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Distribution of V' | Multifractal Spectrum fy(«)

Normal(), 02) 1—(a—N\)?/[4(\ = 1)]

Binomial el log, (gace ) — ceemelog, (mean )
Poisson(7y) 1 —v/Inb+ alogy(ve/w)

Gamma(f, 7) 1 + ylogy(af/y) + (v — af)/Inb

Table 4.1: Examples of Multifractal Spectra

Using Large Deviation Theory, we can compute the Multifractal Spectrum of a multiplicative
measure and its corresponding trading time when the random variable V = —log, M is respec-
tively: (1) a Gaussian density of mean A and variance o2, (2) a binomial distribution with
discrete values @in and @uaz, (3) a discrete Poisson distribution p(z) = e 74" /z!, and (4) a
Gamma distribution with density p(z) = 8727~'e=P% /T'(y).

common to a measure p and its c.d.f. 8. First consider a measure generated by a
log-normal multiplier M with distribution —log,M ~ N'(),c?). Conservation of
mass imposes that E M = 1/b or equivalently 02 = 21Inb/(A—1). It is easy to show
that the scaling function 7(¢) = —log,(E MY) — 1 has the closed-form expression
7(q) = A\¢ — 1 — ¢*c*(Inb)/2. We infer from Theorem 6 that the multifractal
spectrum is a quadratic function

fo(@) =1~ (a—= )" /[4(A - 1)]

parameterized by a unique number A\ > 1. Similarly, we can compute fp(a) when
the random variable V' is binomial, Poisson or Gamma (see CFM for detailed
derivations). These results are reported in Table 2. We note that the spectrum is
very sensitive to the distribution of the multiplier, which suggests that the MMAR
has enough flexibility to model a wide range of financial prices. In the empirical
work, this allows us to identify a multiplicative measure from its spectrum fy(a),
as implemented in Section 6.

4.3. Application to the MMAR

We now examine the spectrum of price processes generated by the MMAR. De-
noting by fz(«) the spectrum of a process Z(t), we show

Theorem 7. The price P(t) and the log-price X (t) have identical multifractal
spectra: fp(a) = fx(a) = fo(2a).

Proof. Given a process Z, denote a(t) as its local scale at date ¢, and T ()
as the set of instants with scale a. At any date, the log-price has infinitesimal
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variation

I X(t+At)— X(t)| = |B(t+ At)]— B[A(t)] |
~ |8t + At) —6(t) |V
~ |At |aa(t)/2’

and thus local scale ax(t) = ay(t)/2. The sets Tx(a) and Ty(2«) coincide, and
in particular have identical fractal dimensions: fx(«a) = fg(2c). Moreover since
the price P(t) is a differentiable function of X (¢), the two processes have identical
scales and spectra. |

The log-price X (¢) contains a continuum of local exponents, and thus cannot be
generated by an It6 diffusion process. Denote by ag(Z) the most probable ex-
ponent of a process Z. At almost every instant, the log-price has a local scale
ag(X) = ag(#)/2 larger than 1/2. Thus despite their irregularity, the MMAR’s
sample paths are almost everywhere smoother than the paths of a Brownian mo-
tion. Our analysis of Section 2 indicates that the variability of the MMAR is
in fact explained by the “rare” local scales o < «p(X). While processes such
as jump diffusions also permit zero Lebesgue measure sets to contribute to the
total variation, it is notable that the MM AR has continuous paths with variations
dominated by rare events.

The most probable exponent satisfies ap(X) > 1/2, and Theorem 1 implies
that the standard deviation of the process

VE {[X(t 4+ At) - X(0)7} = ex(2)*VAT

is of the order (At)'/2. Thus while most shocks are of order (At)*(X) the ex-
ponents o < ag(X) appear frequently enough to alter the scaling properties of
the variance. This contrasts with the argument of standard textbooks,?* where a

Z4Merton (1990, ch. 3) provides an interesting discussion of multiple local scales and “rare
events” in financial processes. Assume that the price variation over a time interval At is a
discrete random variable taking values €1, ..., &, with probability p1, .., pm, and assume moreover
that p; ~ (At)%, e; ~ (At)" and r; > 0 for all i. Denote by I the events i such that p;e? ~ At.
When the variance of the process > i p;e? is of the order At, only events in I contribute to
the variance. If all events belong to I, Merton establishes that only events of the order (At)'/2
matter. The MMAR shows that events outside I can play a crucial role in the statistical
properties of the price process, a property previously overlooked in the literature.
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standard deviation in (At)'/? implies that most shocks are of the same order. We
expect these findings to have interesting consequences for decision and equilibrium
theory.

Finally, long memory of the MMAR has a direct geometric interpretation. On
a sample path, large variations are observed on the set of instants LV = {¢ :
ax(t) < ap(X)} where the local scale is smaller than the most probable exponent
ap(X). By Theorem 7, the set LV has a positive fractal dimension and therefore
clusters in certain regions of the time interval [0, T']. This explains the alternation
of periods with large and small price changes. Furthermore, LV is statistically
self-similar since it has the same spreading of points as its subsets. Observing
volatility in a given time period thus contains important information on future
volatility.

5. An Extension with Autocorrelated Returns

The multifractal model presented in Section 3 is characterized by long memory
in volatility but the absence of correlation in returns. Long memory has been
identified in the first differences of many economic series, including aggregate
output (Adelman, 1965; Diebold and Rudebusch, 1989; Sowell, 1992), the Bev-
eridge (1925) Wheat Price Index, the US Consumer Price Index (Baillie, Chung
and Tieslau, 1996), and interest rates (Backus and Zin, 1993).2> This has lead
authors to model these series with the fractional Brownian motion or the discrete
time ARIMA specification. We note, however, that these economic series have
volatility patterns which seem closer to the multifractal model than to the frac-
tional Brownian motion. This suggests an extension of the MMAR which has
both multifractal volatility and fractionally integrated increments.

The new model assumes that the economic series X (¢) is obtained by com-
pounding a FBM with a multifractal trading time. Consistent with the notation
of Section 3, we replace Assumption 1 by

Assumption la. X(t) is a compound process
X(t) = Bulb(1)]

where By (t) is a Fractional Brownian motion, and 6(t) is a stochastic trad-
g time.

Z5Baillie (1996) provides a good review of this literature.
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In addition, we maintain the multifractality of trading time (Assumption 2) and
the independence of the processes By (t) and 6(¢) (Assumption 3). Note that the
generalized model coincides with the MMAR if H = 1/2. For other values of
the index H, the increments of X (¢) display either antipersistent (H < 1/2) or
positive autocorrelations and long memory (H > 1/2). The more general model
is fully developed in MFC, CFM, FCM and Mandelbrot (1997).

The self-similarity of By (t) implies

Theorem 8. The process X (t) is a multifractal process with stationary incre-
ments, scaling function Tx(q) = To(Hq), and multifractal spectrum fx(a) =
fg(Ha/).

The proof of these results is provided in MFC. We observe that 7x(1/H) =
79(1) = 0, which allows the estimation of the index H in the empirical work.
The generalized construction has scaling properties analogous to the MMAR, and
provides a useful additional tool for empirical applications.

6. Empirical Evidence

6.1. Multifractal Moment Restrictions

Consider a price series P(t) on the time interval [0, 7], and the log-price X (t) =
In P(t) — In P(0). Partitioning [0,7] into integer N intervals of length At, we
define the sample sum or partition function

S, (T, At) = Nz_l X (it + At) — X (A1) (6.1)

=0

When X (t) is multifractal, the addends are identically distributed, and the scaling
law (2.5) yields B[S, (T, At)] = Nex(q)(At)™* @+ when the ¢™* moment exists.
This implies

InE[S, (T, At)] = 7x(q) In(At) + cx(q) (6.2)

where ¢ (¢) =Incx(¢) + In N.

For each admissible ¢, equation (6.2) provides restrictions on how the partition
function varies with increment size At. The possibility of rejecting these moment
conditions in data provides a test of the multifractal model. Various methods may

~

produce an estimate 7x(g), which provides an estimate f(a) of the multifractal
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spectrum through the Legendre transform (4.5). The spectrum is then mapped
back into a distribution M for multipliers in the cascade model of volatility, as
suggested by Table 2.

The model permits both parametric and non-parametric estimation of 7x(¢).
If we specify a parametric family of distributions for M, both 7x(¢) and f(c) are
constrained to implied parametric families of functions, and these constraints can
be imposed in estimation. Non-parametric estimation places few restrictions on
the scaling function and the multifractal spectrum. Since 74(q) = — log, E(AM?) —
1, the scaling function provides all the finite moments of M. While this does not
always uniquely identify the distribution of M, it is nonetheless informative.2

This paper uses a very simple approach to testing and estimation. For a set
of positive ¢, and a set of time scales At, we calculate the partition functions
Sq(T, At) of the data. The partition functions are then plotted against At in
logarithmic scales. By (6.2), the multifractal model implies that these plots should
be approximately linear when the ¢**» moment exists. If this condition holds, OLS
estimates of the slopes provide the corresponding scaling exponents 7x (q).?"

An advantage of this procedure is its transparency. Plotting the sample sums
provides striking visual evidence of moment scaling, a new empirical regularity
that will be useful in modelling many financial data sets. We anticipate, however,
several extensions to this methodology as the literature progresses. First, note
that the moment restrictions in (6.2) may be highly correlated across different
g and At, suggesting a Generalized Method of Moments (GMM) approach.?®
Whereas the plotting methodology produces a series of graphs that are inspected
for linearity for each ¢, GMM could provide a single test statistic for an arbitrary
set of the moment restrictions. Additionally, GMM provides standard errors and
increases efficiency by permitting joint estimation of the scaling exponents 7(q).

Because of the limitations of our current methodology, we conduct simulation
experiments designed to test the estimation method itself. The plotting method-
ology is first applied to simulated samples from the estimated multifractal data
generating process. We then simulate estimated GARCH and FIGARCH alter-

Z6Feller (1971), Durrett (1991) and Mandelbrot (1997) provide good discussions of the unique-
ness problem in moments.

27In the data, using weighted least squares produces very similar results since the plots are
approximately linear.

28 Analytical calculation of the covariance matrix of moment restrictions is non-trivial. How-
ever, one could use a two-step methodology that employs a consistent estimator for 7(gq) in the
first stage. The covariance matrix of moment restrictions can then be estimated by simulating
the inferred process, and used in the second stage.
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natives and examine whether these reproduce the scaling properties of the data.

6.2. Deutschemark / US Dollar Exchange Rates

We first investigate multifractality of Deutschemark / US Dollar (“DM/USD”)
exchange rates. We use two data sets provided by Olsen and Associates, a currency
research and trading firm based in Ziirich. The first data set (“daily”) consists of a
twenty four year series of daily data spanning June 1973 to December 1996. Olsen
collects price quotes from banks and other institutions through several electronic
networks. A price quote is converted to a single price observation by taking the
geometric mean of the concurrent bid and ask. The reported price in the daily
data is then calculated by linear interpolation of the price observations closest to
16:00 UK on each side.?” Figure 3 shows the daily data, which exhibits volatility
clustering at all time scales and intermittent large fluctuations.

The second data set (“high-frequency”) contains all bid /ask quotes and trans-
mittal times collected over the one year period from October 31, 1992 to Septem-
ber 1, 1993. We convert quotes to price observations using the same methodology
as Olsen. This provides a round-the-clock data set of 1,472,241 observations.
Olsen provides a flag for quotes believed to be erroneous or not representative
of actual willingness to trade. We eliminate these observations, which constitute
0.36% of the dataset. Combining the daily data and the high-frequency data
allows us to calculate partition functions over three orders of magnitude for At.

The high-frequency data show strong patterns of daily seasonality. In continu-
ous time, seasonality is a smooth transformation that does not affect local Holder
exponents. However since our data set is discrete, we may expect seasonality to
introduce noise. To reduce this effect, we can write a seasonally modified version
of the MMAR:

In P(t) —In P(0) = By {0 [SEAS(t)]},

where the seasonal transformation SEAS(t) is a differentiable function of clock
time. In this paper, we use a prefilter that smoothes variation in average absolute
returns over fifteen minute intervals of the week. An earlier working paper (FCM)
provides details on this and three other seasonal prefilters, and finds small, pre-
dictable differences in results depending on the deseasonalizing method. Moreover,
except for the reduction in noise, there are no systematic differences in reported
results for filtered and unfiltered data.

2 An earlier working paper (FCM) also uses noon buying rates provided by the Federal Re-
serve, and finds no significant difference in reported results.
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6.3. Main Results

We first calculate partition functions for each of the two DM /USD data sets. In-
crements At range from fifteen seconds to two weeks in the high frequency data,
and from one day to six months in the daily data. Values of At are chosen to
increase multiplicatively by a factor of 1.1 from minimum to maximum. For dif-
ferent ranges of ¢ and At, Figures 4 and 5 show renormalized plots of the partition
function against At in logarithmic scales. Since we focus on the slopes 7x(¢) but
not the intercepts, plots for each ¢ are renormalized by vertical displacement to
begin at zero for the lowest value of At in each graph. This allows plots for many ¢
to be presented simultaneously. The daily and high frequency plots are presented
in the same graph to highlight the similarity in their slopes. This is achieved by a
second vertical displacement of the daily data that provides the best linear fit.?°

Figure 4 shows the full range of calculated At, from fifteen seconds to six
months, and five values of ¢ ranging from 1.75 to 2.25. This range of ¢ permits
estimation of the self-affinity index H in the extended model presented in Section
5. Since 7x(1/H) = 0 and the standard Brownian specification H = 1/2 has
previous empirical support, we expect to find 7x(¢) = 0 for a value of g near two.

We first note the approximate linearity of the partition functions beginning
at At = 1.4 hours and extending to the largest increment used, At = 6 months.
In this range, the slope is zero for a value of ¢ slightly smaller than two, and we
report N

H =~ 53,

which implies very slight persistence in the DM /USD series. We do not estimate
standard errors, but this result is sufficiently close to H = 1/2 to appear consistent
with the martingale hypothesis for returns.

The two breaks in the linearity of the partition functions in Figure 4 are
evidence that the standard multifractal model breaks down at high frequencies,
and are thus called high-frequency crossovers. These crossovers presumably relate
to market frictions such as bid-ask spreads, discreteness of quoting units, and
discontinuous trading. These frictions become increasingly important relative to
price variation as the time scale decreases. In particular, the average spread is 0.07
pfennig,®* while the absolute change in the exchange rate averages 0.14 pfennig

30The linear fit is performed using OLS under the restriction that both lines have the same
slope.

31 One pfennig equals 0.01 DM. The two most common spread sizes are 0.05 pfennig (38.25%),
and 0.10 pfennig (52.55%), together comprising over 90% of all observed spreads.
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over a time increment of At = 1.4 hours, which corresponds to the first high-
frequency crossover. Since the spread has the same order of magnitude as the
price variation, it is not surprising that market microstructure begins to affect
scaling at this time scale.?> From the evidence in Figure 4, we thus identify
moment scaling in the DM /USD data that begins at At = 1.4 hours and extends
at least to the maximum value considered of At = 6 months.

Figure 5 presents partition functions for a larger range of moments 1.5 <
g < 5 for the scaling range At > 1.4 hours. Larger moments capture information
in the tails of the distribution of returns, and are thus generally more sensitive
to deviations from scaling. All plots are remarkably linear, and the overlapping
values from the two data sets have almost the same slope.®® Thus despite the
apparent non-stationarity of the 24 year series — such as long price swings and
long cycles of volatility — the moment restrictions imposed by the MMAR seem
to hold over a broad range of sampling frequencies. Extracting the estimated
slopes from these plots and additional moments ¢, Figure 6 presents estimated
scaling functions Tx(¢) for both data sets. The estimated scaling functions are
strictly concave, indicating multifractality, and are fairly similar except for very
large moments which produce greater estimation error. R

As suggested by Theorem 6, the estimated multifractal spectrum fx () is given
by the Legendre transform of 7x(q). Figure 7 shows the estimated multifractal
spectrum of the daily data.?* The estimated spectrum is concave, in contrast
to the degenerate spectra of Brownian Motion and other unifractals. Using the
estimated spectrum, we can recover a generating mechanism for trading time
based upon the canonical multiplicative cascades described in Section 2.2.

The spectrum of daily data is very nearly quadratic. Section 4.2 shows that
quadratic spectra are generated by lognormally distributed multipliers M. We
thus specify —log, M ~ N'(), 0?), giving trading time 0(¢) with multifractal spec-
trum fp(a) = 1 — (@ — A)?/[4(A — 1)]. The log-price process has most probable

32Moreover, for time scales between 3.6 minutes and 1.4 hours, the partition function has
approximate slope of zero for the moment ¢ = 2.25. This implies H near 0.44 and negative
autocorrelation at high frequencies, which further supports a bid-ask spread explanation for the
Crossover.

33We also observe an apparent increase in variability with the time scale At, which can be
attributed to the shrinking number of addends in the partition function at low frequencies.
Because the plots are approximately linear, accounting for differences in variability through
weighted least squares has little effect on the reported results.

34The estimated multifractal spectrum of the high frequency data is similar in many respects,
and is discussed in FCM.
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exponent oy = AH, and spectrum

(a — ap)?
=1 "V
Ix(a) 4H(ap — H)
Since H = 0.53, the single free parameter oy is used to fit the estimated spectrum.
We report

p = .589,

which produces the parabola shown in Figure 8. Choosing a generating construc-
tion with base b = 2, this immediately implies A = 1.11, 3> = 0.32.

The estimated value of the most probable local Holder exponent o is greater
than 1/2. On a set of Lebesgue measure 1, the estimated multifractal process is
therefore more regular than a Brownian Motion. However, the concavity of the
spectrum also implies the existence of lower Holder exponents that correspond to
more irregular instants of the price process. These contribute disproportionately
to volatility.?s

6.4. Monte Carlo Simulations

We now present simulation experiments designed to provide a preliminary assess-
ment of our estimation procedure. One first would like to determine whether
the inferred multifractal generating mechanism does in fact reproduce the scal-
ing properties in the data. This requires simulating the estimated multifractal
process, and applying the plotting methodology to the simulated data. Figure 8
shows raw simulated data and log differences of the estimated process. The sim-
ulated sample shows a variety of large price changes, apparent trends, persistent
bursts of volatility, and other characteristics found in the USD/DM data.

Figure 9a shows the partition function plots of four random simulations. The
plots are approximately linear and tend to follow their theoretically predicted
slopes, which are nearly identical to the slopes estimated in the DM /USD data.
Repetition of this exercise can provide a more thorough assessment of the es-
timation method. Preliminary work indicates that estimated slopes have small
biases that become small as sample size grows, but also a relatively large degree

35Moreover, because of the particular structure of fractal sets, the set of instants with a
particular value of a tends to be clumped together, simultaneously generating more risk and
long memory in volatility. See Appendix 8.6 for further discussion on fractal clustering of local
scales.
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of estimation error in typical sample sizes.>® Since a thorough analysis of these
econometric issues is relatively complex, and may be made obsolete by the de-
velopment of an appropriate GMM methodology, we leave these topics for future
research. From the preliminary results in Figure 9a, we observe that the multi-
fractal model can replicate the scaling features of the data. The simple plotting
methodology also appears to be a useful first step in designing estimators for
multifractal processes.

Another important question is whether other standard econometric models
possess scaling properties. To assess this, we apply the plotting methodology to
simulated GARCH and FIGARCH processes with parameters taken from previ-
ously published research on daily DM /USD exchange rates. Figure 9b shows four
simulated partition functions from a GARCH(1, 1) process with parameter values
taken from Baillie and Bollerslev (1989). Figure 9¢ shows simulated partition
functions from the preferred FIGARCH(1, d, 0) specification estimated in Baillie,
Bollerslev, and Mikkelsen (1996). The simulated GARCH partition functions ap-
pear fairly linear, but their apparent slope is similar to the predicted slope of
Brownian Motion rather than the data. This is symptomatic of the fact that
GARCH models are short memory processes. Over long time periods, temporal
clustering disappears, and thus GARCH should be expected to scale like Brownian
Motion at low frequencies. For low values of At, the GARCH partition functions
increase more quickly than Brownian Motion, indicating the effect of volatility
clustering. But this effect disappears as At grows. Because FIGARCH contains
long-memory in volatility, it may behave differently at low frequencies than the
Brownian Motion. However, the FIGARCH partition functions tend to be more
irregular than both the MMAR partition functions and the data, and do not often
have the same slopes as the data. While statistical testing against the various al-
ternatives requires further econometric research, the simple plotting methodology
does appear to discriminate between competing models.

6.5. Equity Data

After observing multifractal properties in DM /USD exchange rates, it is natural to
test the model on other financial data. This section presents evidence of moment-

36 Another interesting finding is that at comparable sample sizes, simulated partition functions
tend to show more variability around their slope than we find in the data. This suggests stronger
scaling in the data than in the estimated multifractal process, which is somewhat surprising since
the model has been designed to capture scaling. It is difficult to distinguish, however, whether
this should be attributed to the model or bias in the estimation method.
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scaling in a sample of five major U.S. stocks and one equity index.?”

The Center for Research in Security Prices (“CRSP”) provides daily stock re-
turns for 9, 190 trading days from July 1962 to December 1998. We present results
for the value weighted NYSE-AMEX-NASDAQ index® (“CRSP Index”) and five
stocks: Archer Daniels Midland (“ADM”), General Motors (“GM”), Lockheed-
Martin (“Lockheed”), Motorola, and United Airlines (“UAL”). The individual
stocks are issued by large, well-known corporations from various economic sec-
tors, and have reported data for the full CRSP sample span.? For each series,
we convert the daily return data into a renormalized log-price series X;, and then
apply the partition function methodology described in Section 6.2.4°

Figure 10 shows results for the CRSP index and GM. In the first two panels, the
full data sets are used with increments At ranging from one day to approximately
one year. The partition functions for moments ¢ = {1,2,3} are approximately
linear for both series, with little variation around the apparent slope.*! In con-
trast, the partition functions vary considerably for ¢ = 5, making a determination
of linearity in their expectations more difficult. This suggests investigation of the
tails of the data. We find that the behavior of the fifth moment is dominated by
volatility surrounding the stock market crash of October 1987. This is demon-
strated by the second two panels of Figure 10, which show striking linearity after
simply removing the crash day from both data sets.

Since discarding data is an unsatisfactory approach to financial modelling,*?

37The multifractal model offers a flexible framework that may be amenable to many types of
financial prices, but the version presented in this paper is not intended to be applied directly to
equities. In contrast to exchange rates, equities require further consideration of mean returns.
For example, one might permit negative correlation between the Brownian Motion B and the
trading time 6(t) to account for conditional skewness. In the absence of an explicit model, the
empirical work in this section investigates scaling in raw returns.

38The index return on each day is calculated as the value weighted average return including
cash distributions for all stocks from the NYSE, AMEX, and NASDAQ exchanges with reported
return data for the day. Weights are given by market capitalization on the previous day.

39 Choosing stocks with full samples allows testing of the moment-scaling restrictions over a
larger range of frequencies.

40The CRSP holding period returns r; = [P, — P,_1 + d;]/P;—1 include cash distributions d;.
We construct the series {Xt}z;o by Xo =0, Xy = X¢—1 + In(1 + 7).

41The CRSP Index has noticeably positive slope for the moment ¢ = 2, which indicates
persistence. This characteristic is very atypical of individual securities.

42While discarding data may be justified in specific circumstances, our approach in this paper
has been to build a stationary model flexible enough to accomodate a wide range of changing
economic circumstances. This includes both long-range structural shifts, and extreme tail events
such as the 1987 crash.
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we reexamine the full data sets. The partition functions S,—5(7, At) for both
series drop considerably from At = 2 days to At = 3 days. In the raw data, the
CRSP index falls 17% on the day of the crash, but rebounds more than 8% two
days later. GM loses 21% in the crash, recovering almost all its losses over the next
two days. When At = 3 days, aggregation of these returns within a single interval
contributes to the severe declines in the ¢ = 5 partition functions.*® As At grows,
the crash and the two following days occasionally fall in separate intervals and
the partition functions spike.** More often, however, these three days lie within
a single interval when At is large.

The partition functions S;5(7, At) for the full data sets thus show large vari-
ability for low At, and estimates of their slopes would appear to be relatively
imprecise. After removing the crash from both data sets, the same partition
functions appear to give a more precise fit, but at a cost. Both slopes increase
to appear more Brownian or “mild,” suggesting that important information has
been lost. Additionally, removing the crash does not necessarily improve fit since
our moment restrictions constrain only the expectations of the partition functions,
not their variability.*> Thus, the artifice of removing the crash (or similarly trim-
ming the data) gives a false impression of improved model fit and alters scaling
properties to imply a much milder process.

In contrast to GM and the CRSP index, the other four stocks in our sample
scale remarkably well despite the crash.?® These results are shown in Figure 11.
Consistent with the martingale hypothesis for returns, three of the four stocks

“3When calculating the partition functions for At = 2 days, the crash day and the two
following days belong to separate intervals, each of which make large contributions to S5 (T, At =
2 days). When At = 3 days, however, the crash and the two following days belong to a
single interval. Their returns partially cancel when aggregated, explaining the decreases in the
partition functions S5(T, At) at At = 3 days.

44 Additionally, the size of these spikes decreases with At because of the diminishing influence
of the crash on high sample moments. Together with the decreasing frequency of crash-related
spikes in the partition functions, this explains why both plots of S5(T', At) become less variable
as At increases. In most cases, we expect partition function variability to increase with At
because moments must be calculated with fewer observations. For GM and the CRSP index,
however, sharp rebounds from the crash cause larger variation at high frequencies.

45Incorporating moment restrictions that reflect the variability of the partition function plots
is a promising avenue for future research.

46Extreme sensitivity to the crash in the ¢ = 5 partition function seems to concentrate in the
very largest stocks. Results for IBM, ATT, Kodak, Coca-Cola, Exxon, P&G, Sears, 3M, and a
few other similar large stocks tend to look like the results for GM and the CRSP Index. This
pattern is not as apparent for even marginally smaller stocks.
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have almost exactly flat partition functions for ¢ = 2, while ADM has a slight
negative slope. The difference between Brownian scaling and multiscaling becomes
perceptible for ¢ = 3, and for the fifth moment, this difference is pronounced. UAL
appears the most variable, with lower slopes at higher moments and thus a wider
multifractal spectrum.

While not exhaustive, this analysis indicates that moment-scaling is a promi-
nent feature of many equity series. We anticipate the confirmation of scaling in
additional financial data, and suggest that future work consider not just the exis-
tence of scaling, but also its range of behaviors. Some data may appear closer to
Brownian than the examples studied here, while others will appear more “wild.”
The most interesting extensions may investigate whether scaling behaviors can
lead to economic insights. For example, we observed that anomalous scaling in
high moments due to the 1987 crash tends to concentrate among the very largest
firms in the CRSP database. We also observed that the CRSP index scales very
differently in its second moment than individual securities.*” While these find-
ings are preliminary, they suggest that the partition function plots summarize a
great deal of information in a convenient form. Analysis of moment-scaling may
thus be useful in uncovering empirical regularities, and in evaluating and building
financial models.

7. Conclusion

This paper investigates the multifractal model of asset returns, a continuous time
stochastic process that incorporates the outliers and volatility persistence exhib-
ited by many financial time series. The model compounds a standard Brown-
ian Motion with an independent multifractal time-deformation process that pro-
duces volatility clustering. We show how to construct a class of candidate time-
deformation processes as the limit of a simple iterative procedure, called a multi-
plicative cascade. The cascade provides parsimonious modelling, and results in a
generalized scaling rule that restricts return moments to vary as power laws of the
time increment. The price process is a semi-martingale with uncorrelated returns,
and thus precludes arbitrage in a standard two-asset setting.

47The scaling of the second moment of the CRSP index indicates persistence. Previous work,
for example Boudoukh, Richardson, and Whitelaw (1994), focuses on the persistence of portfolio
returns at short horizons. The atypical scaling of the CRSP index, however, appears to be
present at horizons as long as one year.
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The MMAR  introduces a fundamentally new class of processes to both fi-
nance and mathematics. Multifractal processes have continuous sample paths,
but lie outside the class of Ito diffusions. Whereas standard processes can be
characterized by a single local scale that describes the local growth rate of varia-
tion, sample paths of multifractal processes contain a continuum of local Holder
exponents within any time interval. The distribution of these exponents is con-
veniently quantified by a renormalized density, the multifractal spectrum f(«).
For a large class of multifractal processes, the spectrum can be explicitly derived
from Cramér’s Large Deviation Theory. We demonstrate through a number of ex-
amples the sensitivity of the multifractal spectrum to the generating mechanism.
The applied researcher may thus relate an empirical estimate of the spectrum
back to a particular construction of the process, and is permitted considerable
flexibility in modelling different types of data.

We find evidence of multifractality in the moment-scaling behavior of Deutsche-
mark / US Dollar exchange rates. Over a range of observational frequencies from
approximately two hours to 180 days, and over a range of time from 1973 to 1996,
moments of the data grow approximately like a power law. We obtain an estimate
of the multifractal spectrum by a Legendre transform of the moments’ growth
rates. From the shape of the estimated spectrum, we infer a lognormal distribu-
tion as the primitive of the generating mechanism, and estimate its parameters.
We simulate the process, and confirm that the multifractal model replicates the
moment behavior found in the data. We also demonstrate scaling behavior in an
equity index and five major U.S. stocks.

The results of this paper indicate several directions for future research. We
anticipate improvements in the empirical methodology through systematic Monte
Carlo simulations and econometric theory based on the Generalized Method of
Moments. Risk analysis, forecasting, and option pricing are promising applica-
tions developed in other papers. Further research will seek to derive the MMAR
as an equilibrium process of economies with fully rational agents. In such frame-
works, multifractality is expected to arise in equilibrium either exogenously, for
instance as a consequence of multifractal technological shocks, or endogenously
because of market incompleteness or informational cascades. The early empirical
success of the MMAR thus offers new challenges in econometrics, finance, and
economic theory.
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8. Appendix

8.1. Scaling Rule

This Appendix analyzes the set D defined by a multiplicative measure with para-
meter b > 2. Consider a fixed instant ¢ € [0, 1]. For all € > 0, there exists a dyadic
number #, such that |t, —t| < e. We can then find a number A, = b~ < ¢
for which (¢,,A,) € D. In the plane R?, the point (¢,0) is thus the limit of the
sequence (t,,A,) € D, which establishes

Property 1. The closure of D contains the set [0, 1] x {0}.

The scaling relation (2.4) thus holds “in the neighborhood of any instant”.

8.2. Proof of Proposition 1

Consider two exponents ¢, g2, and two positive weights w;, wy adding up to one.
Hoélder’s inequality implies

E (X @) < [E(X@*)]™ E(X@)]™,
where ¢ = w1q; + waqo. Taking logarithms and using (2.5), we obtain
Inc(q) + 7(q) Int < [wiT(q1) + wer(g2)]Int + [wy Inc(qr) + weInc(g)].  (8.1)
We divide by Int < 0, and let ¢ go to zero:
7(q) = wiT(q1) + war(go), (8.2)

which establishes the concavity of 7. In fact this proof contains additional informa-
tion on multifractal processes. Assuming that relation (2.5) holds for ¢ € [0, c0),
we divide inequality (8.1) by In¢ > 0 and let ¢ go to infinity. We obtain the reverse
of inequality (8.2), and conclude that 7(g) is linear. Thus multiscaling can only
hold for bounded time intervals T .

8.3. Proof of Theorem 1

Since the trading time and the Brownian motion B(t) are independent, condition-
ing on 6(t) yields

E{X@[[0¢) =u} = E[|Bw)|"|0(t) =u]
0(t)"* E[|B(1)|7,
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and thus E [| X (¢)|9] = E[6(¢)?] E[|B(1)|7]. The process X (t) satisfies the mul-
tiscaling relation (2.5), with 7x(¢) = 74(¢/2) and cx(q) = ¢o(q/2) E[|B(1)|7].

8.4. Proof of Theorem 2

Let F; and F| denote the natural filtrations of {X (¢)} and {X(¢),0(¢)}. For any
t,T,u, the independence of B and € implies

E{ X(t+T)| F,0(t+T)=u} = E{B(u)|F}
= B,

since {B(t)} is a martingale. We now infer that E[ X (¢t + T) | F;]| = X (¢), which
establishes that X (¢) is a martingale and has thus uncorrelated increments. The
price P(t) is a smooth function of X (¢) and therefore a semi-martingale, which
precludes arbitrage opportunities in the two asset economy.

8.5. Proof of Theorem 4

1. Trading Time

Consider a canonical cascade after £k > 1 stages. Consistent with the notation
of Section 2, the interval [0, 7] is partitioned into cells of length At = b=*T', and
I = [t1,t, + At] and I, = [tg, ty + At] denote two distinct cells. Assume that
the first [ > 1 terms are equal in the b-adic expansions of ¢, /T and t5/T, so that

t1/T = 0.9y -1y and to/T = 0.9y..m;, -1, With n;., # n;,,. The distance
t = |ty — t;| satisfies b'71 < ¢/T < b~!, and the product p(I;)9u(l2)?, which is
equal to

Qg5 - M) QU ) M (1) M (1., 1)
M(Tlla © 77l+1)q--M(771: ©y nk)q M(7717 (g 77;+1)q"M(771: t ’r];c)qv

has mean (EQ?)2[EM2¢]'[EM?)2*k~1. We conclude that

Cov[u(1)%; p(h)?] = (BQ!)*(EM)* {[(EM*)/(EM?)?)' — 1}
_ Cl(At)Qm(qH—Q [b—l[rg(Zq)—QTg(q)—l] _ 1]

is bounded by two hyperbolic functions of .

2. Log-Price
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Since B(t) and 6(t) are independent processes, the conditional expectation
E{|X(0,At)X (¢, At)|?|0(At) = u1, 0(t) = uq, O(t + At) = uz}, (8.3)
simplifies to
E[|B(u1)|] E[|B(us) = B(us)|] = |ua|*"? Jug — up|”* [E|B(1)|"]".
Taking expectations, we infer that
E[[X(0,At)X (t, At)|*] = E| (0, At)0(t, ALY | [E|B(1)[*)

and therefore dx(t,q) = dy(t, q/2) [E|B(1)‘q]2-

8.6. Interpretation of f(«) as a Fractal Dimension

Fractal geometry considers irregular and winding structures that are not well
described by their Euclidean length. For instance, a geographer measuring the
length of a coastline will find very different results as she increases the precision of
her measurement. In fact, the structure of the coastline is usually so intricate that
the measured length diverges to infinity as the geographer’s measurement scale
goes to zero. For this reason, we cannot use the Euclidean length to compare two
different coastlines, and it is natural to introduce a new concept of dimension.
Given a precision level ¢ > 0, we consider coverings of the coastline with balls
of diameter €. Let N(¢) denote the smallest number of balls required for such a
covering. The approximate length of the coastline is defined by L(e) = eN(g). In
many cases, N () satisfies a power law as ¢ goes to zero:

N(e) ~e P,

where D is a constant called the fractal or Hausdorff-Besicovitch dimension. Frac-
tal dimension helps to analyze the structure of a fixed multifractal. For any o > 0,
we can define the set T'(«) of instants with Holder exponent «. As any subset of
the real line, T'(a) has a fractal dimension D(«), which satisfies 0 < D(a) < 1. It
can be shown that for a large class of multifractals, the dimension D(«) coincides
with the multifractal spectrum f(«).

In the case of measures, we can provide a heuristic interpretation of this result
based on coarse Holder exponents. Denoting by N(«a, At) the number of intervals
[t,t + At] required to cover T'(a), we infer from Equation (4.1) that: N(«a, At) ~
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(At)~7® . We then rewrite the total mass u[0,7] = 3 u(At) ~ 3 (A)*Y | and
rearrange it as a sum over Holder exponents:

1[0, T] ~ / (A @ g

The integral is dominated by the contribution of the Hélder exponent «; that
minimizes « — f(«), and therefore

u[0,T] ~ (At)n It

Since the total mass u[0,77] is positive, we infer that f(a1) = a1, and f(a) < «
for all . When f is differentiable, the coefficient «; also satisfies f’(aq) = 1. The
spectrum f(«) then lies under the 45° line, with tangential contact at o = «.

8.7. Large Deviation Theory and the Multifractal Spectrum

This Appendix sketches the proof of Theorem 6, and introduces the concepts of
latent and virtual Hélder exponents.*® First consider a conservative multiplicative
measure u. Application of LDT begins with the histogram method of Section 4.1:
Subdivide the range of as into intervals of length Ac«, and denote by Ni(«) the
number of coarse Holder exponents in the interval (o, @ + Aca]. For large values
of k, we write

1 N, 1
Elogb [ ];)ia)] ~ Elogb]P’{a <ap <a+Aa}. (8.4)

This relation holds exactly for multinomial measures, which have discrete coarse
exponents oy, but is postulated in more general cases. For any a > g, Cramér’s
theorem implies

k™' log, P {ay > a} — Inflog, [Eele= V)] (8.5)
q

as k — oo. Using the definition of the scaling function, we simplify the limit to
Inf [ag — 7(¢q)] — 1. Combining this with (4.1) and (8.4), it follows*® that Theorem
q

6 holds.

“8We refer the reader to Mandelbrot (1989b), Peyriére (1991) and CFM for more detailed
discussions.
49Gee CFM for a more detailed proof.
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These arguments easily extend to a canonical measure u. Given a b-adic
instant ¢, the coarse exponent ay(t) = In u[t,t + At]/In At is the sum of a high
frequency component, —log, Q(ny,...,n)/k, and of the familiar low frequency
average

ag,(t) = — [logy M (1) + ... +log, M (11, .., m)] /K-

The exponent ay(t) converges almost surely to ay = —Elog, M, and the multi-
fractal spectrum is again the Legendre transform of the scaling function 7(g).
Relation (8.5) also shows that f(«) is the limit of

k' logy P{ay () > a} +1 ifa > ag, and
k™ ogy P{ay () < a} +1 ifa < ap.

f(a) is therefore a hump-shaped function, reaching a maximum at the most prob-
able exponent: f(a) < f(ag) = 1.°% We have successively viewed the spectrum

f(a) as:
(D1) the limit of a renormalized histogram of coarse Holder exponents,
(D2) the fractal dimension of the set of instants with Hoélder exponent «,

(D3) the limit of k™' log, P {ax 1(t) > a} + 1 provided by LDT.

The three definitions coincide for multinomial measures, and (D1) and (D2) agree
for a large class of multifractals (Peyriére, 1991). However, (D1) and (D2) imply
that f(«) > 0, while (D3) imposes no such restriction. When f(a) < 0, the
corresponding as, called latent, are rare coarse exponents, which appear in few
draws of the random measure and control high and low moments (Mandelbrot,
1989b). Similarly, since canonical measures allow M to be greater than 1, the
low-frequency average oy 1(t) can be negative with positive probability. (D3)
thus defines the multifractal spectrum for negative, or virtual, values of a.. This
topic, further discussed in Mandelbrot (1989b), remains an active research area
in mathematics.

50Tt is easy to show that apq — 7(q) is minimal for ¢ = 0. The set T'(ag) has therefore fractal
dimension f(ap) = —7(0) = 1, and thus carries all of the Lebesgue measure. Moreover by the
Central Limit Theorem, f(«a) is locally quadratic around «g, as shown in CFM.
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Fig l.a Density Function (Iteration k = 1)

Fig 1.b  Density Function (Iteration k = 4)

. L] ]

Fig 1.c Density Function (Iteration k = 10)

Fig 1.d Fractal Cuts (Iteration k = 10)

Figure 1: Construction of the Binomial Measure. In panels (a) and (b), the
construction is deterministic with the fraction mo = 0.6 of the mass always allocated to the left,
and fraction my = 0.4 always allocated to the right. Panel (c) shows a randomized binomial measure
after k& = 10 stages. The masses mo and m; each have equal probabilities of going to the left or
right. The final panel shows the fractal character of “cuts” of various sizes. Each cut shows the set
of instants at which the random measure in panel (c) exceeds a given level. The clustering of these
sets has a silf-similar structure, and the extreme bursts of volatility are intermittent, as discussed
in Appendix 8.6.
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Figure 2: MMAR Simulations with Random Binomial Trading Time. This
figure shows the first differences of simulations obtained by compounding a standard Brownian
Motion with a binomial trading time. The simulations display volatility clustering at all time scales
and intermittent large fluctuations.



DM/USD Daily Exchange Rate: June 4, 1973 — December 31, 1996
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Figure 3: DM /USD Daily Data. The data is provided by Olsen and Associates and
spans from June 1973 to December 1996. The outlined area labeled “HF data” shows the one year
period from October 1992 to October 1993 that corresponds to the span of our high-frequency data.
Despite the apparent long-cycles and clustering of volatility in the daily data, the MMAR provides
sufficient flexibility to capture this behavior in a parsimonious stationary model. Moreover, both
the daily data and the high-frequency data show similar scaling patterns.



DM/USD Partition Functions: Crossover
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Figure 4: DM /USD Partition Functions for the full set of time scales and
moments ¢ near 2. This figure shows high-frequency crossover in the DM/USD data. We
identify a scaling region from about 1.4 hours to at least six months, the largest horizon for which
the partition function was calculated. High-frequency crossover is caused by market frictions such
as bid-ask spread, discreteness of trading units, and non-continuous trade. Choosing moments ¢
near 2 allows us to test the martingale hypothesis for returns since the slope 7(¢ = 1/H) = 0. We
find a flat slope near ¢ = 1.88, implying H= 0.53, or slight persistence. We do not report standard
errors, but this is close to the value H = 1/2 predicted by the martingale hypothesis.



DM/USD Partition Functions: Scaling Range
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Figure 5: DM /USD Partition Functions in the scaling region for moments
1.5 < g < 5. For each moment, the first solid line plotted from 1.4 hours to two weeks corresponds
to the high-frequency data. The second solid line ranges from At = 1 day to 6 months, and
corresponds to the daily data. The lines are remarkably straight, as predicted by the model, and
have nearly identical slopes. Also, their scaling is noticeably different from that of the Brownian
Motion, which is shown by the dotted lines in the figure.



DM/USD Scaling Functions
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Figure 6: Estimated DM /USD Scaling Functions. For each partition function
S, (T, At) we estimate the slope using OLS to obtain 7x(q). The estimated scaling functions for
both data sets are concave, and have a similar shape until high moments are reached. The contrast
with Brownian Motion is shown by the dotted line.



Multifractal Spectrum of Daily DM/USD Data
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Figure 7: Estimated Multifractal Spectrum of Daily DM/USD Data. The

estimated spectrum

this graph by the lower envelope of the dotted lines.

is obtained from the Legendre transform fx () = Inflag — 7(q)], shown in
q
The shape is nearly quadratic, with the

best fit shown by the marked symbols. A quadratic spectrum implies a lognormal distribution for

multipliers M in the

multifractal generating mechanism.



Simulated MMAR Generating Process for DM/USD Data
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Figure 8: Simulated Multifractal Generating Process for the DM /USD
Data. We use the estimated values of H = 0.53 and & = 0.589 with the limit lognormal
construction of trading time. The plots show volatility clustering at all time scales and occasional
large fluctuations.
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(a) MMAR Simulations
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(b) GARCH Simulations
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(c) FIGARCH Simulations

Figure 9: Simulated Partition Functions. Each panel shows estimated partition
functions for a simulated sample of 100,000 observations. The multifractal data generating process in
(a) uses our estimates. The data generating processes in (b) and (c) use specifications from previously
published research on daily DM/USD exchange rates. Large simulated samples are used to reduce
variability as much as possible and obtain the expected scaling properties of each process. Dotted lines
in each figure represent the scaling predicted for Brownian Motion, and dashed lines represent the scaling
found in the data. The MMAR appears most likely to capture scaling in the DM/USD data, as expected
from its construction. Nonetheless, at smaller sample sizes comparable to the daily DM/USD data, MMAR
simulations tend to be more variable than both the data and the examples above. This suggests either bias
in our estimation method, or possibly that the data generating process has stronger scaling features than
our model. The GARCH simulations tend to scale like Brownian Motion, but with some slight bend in
the partition functions. FIGARCH simulations occasionally show scaling that is similar to the data, as in
panel c2, but in general tend to be much more irregular.
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Figure 10: Partition Functions for CRSP Index and GM. The data spans from
1962 to 1998, and the time increments labeled “d”, “w”, “m”, and “y” correspond to one day, one
week, one month, and one year respectively. When the full data sets are used, we observe scaling
in the first three moments, and for horizons At > 3 days in the fifth moments. The drop in the
fifth moments between two and three days is caused by sharp rebounds for both series from the
1987 crash. After removing the crash from the data, the second two panels show striking linearity,
but change the slopes of the full-sample plots to increase and thus appear more Brownian.
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Figure 11: Partition Functions for ADM, Lockheed, Motorola, and UAL.
Each of these show strong scaling properties despite the 1987 crash.



