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Abstract

This paper studies equilibrium asset pricing with liquidity risk —

the risk arising from unpredictable changes in liquidity over time. It

is shown that a security’s required return depends on its expected

illiquidity and on the covariances of its own return and illiquidity with

market return and market illiquidity. This gives rise to a liquidity-

adjusted capital asset pricing model. Further, if a security’s liquidity

is persistent, a shock to its illiquidity results in low contemporaneous

returns and high predicted future returns. Empirical evidence based

on cross-sectional tests is consistent with liquidity risk being priced.
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1 Introduction

The existing theoretical literature on frictions and asset pricing has focused

on various frictions with deterministic severity (for instance, Amihud and

Mendelson (1986), Constantinides (1986), Vayanos (1998), Vayanos and Vila

(1999), Gârleanu and Pedersen (2000), Huang (2002)). Empirically, however,

various measures of liquidity vary over time both for individual stocks and for

the market as a whole (Chordia, Roll, and Subrahmanyam (2000), Hasbrouck

and Seppi (2000), and Huberman and Halka (1999)). Hence, investors face

uncertainty about liquidity, which raises the question: How does liquidity

risk affect asset prices in equilibrium? We answer this question by deriving

explicitly a liquidity-adjusted capital asset pricing model (CAPM) wherein

there are price effects associated with the risk of changes in the liquidity of

an individual security as well as in market liquidity.

In the liquidity-adjusted CAPM, the expected return of a security is in-

creasing in its expected illiquidity and its “net beta,” which is proportional

to the covariance of its return, net of illiquidity costs, with the market port-

folio’s net return. The net beta can be decomposed into the sensitivity of the

security’s return and tradability to market downturns as well as to liquidity

crises. We discuss in turn the three aspects of liquidity risk highlighted by

the model and their empirical relevance.

First, the model shows that investors require a return premium for a se-

curity that is illiquid when the market as a whole is illiquid. The potential

importance of this result follows from the empirically documented common-

ality in liquidity. In particular, Chordia, Roll, and Subrahmanyam (2000)

find significant commonality in liquidity using daily data for NYSE stocks
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in 1992, Huberman and Halka (1999) find a systematic time-varying compo-

nent of liquidity using daily NYSE data from 1996, and Hasbrouck and Seppi

(2000) find weak commonality in liquidity for 30 Dow stocks over 15-minute

intervals during 1994. The effect of commonality of liquidity on required re-

turns has not yet been tested. Empirically, we find support for this prediction

but its economic effect on expected returns seems small.

Second, the model shows that investors are willing to pay a premium for

a security that has a high return when the market is illiquid. Pastor and

Stambaugh (2001) find empirical support for this effect using monthly data

over 34 years with a measure of liquidity that they construct based on the

return reversals induced by order flow. Consistently, we also find empirical

support for this prediction.

Third, the model implies that investors are willing to pay a premium for

a security that is liquid when the market return is low. This is a new testable

prediction that has not been considered in the literature. We find support

for it empirically in most of our specifications and robustness tests. Further,

the risk premium arising from this effect is economically significant.

We test the model cross-sectionally using the liquidity measure suggested

by Amihud (2002), which is based on daily return and volume data on NYSE

and AMEX stocks over the period 1963–1999. Monthly cross-sectional tests

of the liquidity-adjusted CAPM demonstrate that it cannot be rejected at

conventional levels of confidence. Furthermore, it fares significantly better

— in terms of its R2 for cross-sectional returns and p-values in specification

tests — than the standard CAPM, even though both models employ exactly

one degree of freedom.
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In our tests, the three covariances described above contribute on average

to a difference in risk premium between stocks with high expected illiquidity

and low expected illiquidity of about 1.1% annually. 80% of this effect is

attributable to the third aspect of liquidity risk, the sensitivity of a security’s

illiquidity to market returns. Overall, the combined effect of differences in

liquidity risk and differences in the level of liquidity is 4.6% per year.1 When

we depart in the tests from the model-implied liquidity adjustment in that

the risk premia on different liquidity betas are allowed to be different, the

economic effect of the covariances is even higher. We conclude that the

liquidity risk indeed appears to be priced.

Another result, interesting in its own right, that emerges from our empir-

ical exercise is that illiquid securities also have high liquidity risk : A security

which is illiquid in absolute terms, measured by its average transaction cost,

also tends to have a lot of commonality in liquidity with the market liq-

uidity, a lot of return sensitivity to market liquidity, and a lot of liquidity

sensitivity to market returns. This finding points towards a fruitful direction

of research aimed at understanding the sources of time-variation in liquidity

at an individual stock level as well as at the market level.

The model also shows that, since liquidity is persistent,2 liquidity predicts

future returns and liquidity co-moves with contemporaneous returns. This is

because a positive shock to illiquidity predicts high future illiquidity, which

raises the required return and lowers contemporaneous prices. In support of

1We show later that sorting stocks by expected illiquidity also produces a sorting on
the covariances.

2The persistence of liquidity is documented empirically by Amihud (2002), Chordia,
Roll, and Subrahmanyam (2000, 2001), Hasbrouck and Seppi (2000), Huberman and Halka
(1999), Jones (2001), and Pastor and Stambaugh (2001).
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this prediction, Amihud (2002) finds a negative relation between return and

unexpected illiquidity for size portfolios, Chordia, Roll, and Subrahmanyam

(2001), Jones (2001), and Pastor and Stambaugh (2001) find a negative re-

lation between market return and illiquidity, and Amihud, Mendelson, and

Wood (1990) find that stocks, whose liquidity worsened more during the 1987

crash, had more negative returns.

The paper is organized as follows. Section 2 describes the economy, Sec-

tion 3 derives the liquidity-adjusted capital asset pricing model and studies

how liquidity predicts and co-moves with returns, Section 4 contains our

empirical results, Section 5 concludes, and proofs are in the Appendix.

2 Assumptions

The model assumes a simple overlapping generations economy in which a

new generation of agents is born at any time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}
(Samuelson (1958)). Generation t consists of N agents, indexed by n, who

live for two periods, t and t + 1. Agent n of generation t has an endowment

at time t and no other sources of income, trades in periods t and t + 1, and

derives utility from consumption at time t+1. He has constant absolute risk

aversion An so that his preferences are represented by the expected utility

function −Et exp(−Anxt+1), where xt+1 is his consumption at time t + 1.

There are I securities indexed by i = 1, . . . , I with a total of S i shares of

security i. At time t, security i pays a dividend of Di
t, has an ex-dividend

share price of P i
t , and has an illiquidity cost of C i

t , where Di
t and C i

t are
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random variables.3 The illiquidity cost, C i
t , is modeled simply as the per-

share cost of selling security i. Hence, agents can buy at P i
t but must sell at

P i
t − C i

t . Short-selling is not allowed.

Uncertainty about the illiquidity cost is what generates the liquidity risk

in this model. Specifically, we assume that Di
t and C i

t are autoregressive

processes of order one, that is:

Dt = D̄ + γ(Dt−1 − D̄) + εt

Ct = C̄ + γ(Ct−1 − C̄) + ηt ,

where D̄, C̄ ∈ R
I
+ are positive real vectors, γ ∈ [0, 1], and (εt, ηt) is an inde-

pendent identically distributed normal process with mean E(εt) = E(ηt) = 0

and variance-covariance matrices var(εt) = ΣD, var(ηt) = ΣC , E(εtη
>
t ) =

ΣCD, and var(εt − ηt) = Γ (= ΣD + ΣC − ΣCD − (ΣCD)>).

We assume that agents can borrow and lend at a risk-free real return of

rf > 1, which is exogenous. This can be interpreted as an inelastic world

bond market, or a generally available production technology that turns a

unit of consumption at time t into rf units of consumption at time t + 1.

The assumptions with respect to agents, preferences, and dividends are

strong. These assumptions are made for tractability, and, as we shall see, they

imply natural closed-form results for prices and expected returns. The main

result (Proposition 1) applies more generally, however. It holds for arbitrary

utility functions as long as conditional expected net returns are normal,4 and

3All random variables are defined on a probability space (Ω,F ,P), and all random
variables indexed by t are measurable with respect to the filtration {Ft}, representing the
information commonly available to investors.

4The normal returns assumption is an assumption about endogenous variables that is
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also for arbitrary return distribution and quadratic utility. Furthermore, it

can be viewed as a result of near-rational behavior, for instance, by using a

Taylor expansion of the utility function (see Huang and Litzenberger (1988),

Markowitz (2000), and Cochrane (2001)). Our assumptions allow us, addi-

tionally, to study return predictability caused by illiquidity (Proposition 2)

and the co-movements of returns and illiquidity (Proposition 3), producing

insights that also seem robust to the specification.

Perhaps the strongest assumption is that investors need to sell all their

securities after one period (when they die). In a more general setting with

endogenous holding periods, deriving a general equilibrium with time-varying

liquidity is an onerous task. While our model is mostly suggestive, it is helpful

since it provides guidelines concerning the first-order effect of liquidity risk,

showing which risks are priced. The assumption of overlapping generations

can capture investors’ life-cycle motives for trade (as in Vayanos (1998), and

Constantinides, Donaldson, and Mehra (2002)), or can be viewed as a way

of capturing short investment horizons (as in De Long, Shleifer, Summers,

and Waldmann (1990)) and the large turnover observed empirically in many

markets.

It should also be noted that a narrow interpretation of the illiquidity cost,

C i
t , is that it is a transaction cost such as broker fees and bid-ask spread,

in line with the literature on exogenous transactions costs. More broadly,

however, the illiquidity cost could represent other the real costs, for instance,

arising from delay and search associated with trade execution as in Duffie,

used in standard CAPM analysis (for instance, Huang and Litzenberger (1988)). This
assumption is satisfied in the equilibrium of the model of this paper, and may also be
satisfied in larger classes of models.
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Gârleanu, and Pedersen (2000). The novelty in our model arises from the

fact that we allow this cost to be time-varying. While research on endoge-

nous time-variation in illiquidity is sparse, in a recent paper Eisfeldt (1999)

presents a model in which liquidity fluctuates with real-sector productivity

and investment.

3 Liquidity-Adjusted Capital Asset Pricing

Model

This section shows that, under the stylized assumption of mean-variance

investors, a liquidity-adjusted version of the Capital Asset Pricing Model

(CAPM) applies and its asset pricing implications are studied.

We are interested in how an asset’s expected (gross) return,

ri
t =

Di
t + P i

t

P i
t−1

,

depends on its relative illiquidity cost, defined as

ci
t =

C i
t

P i
t−1

,

on the market return,

rM
t =

∑

i S
i(Di

t + P i
t )

∑

i S
iP i

t−1

,

and on the relative market illiquidity,

cM
t =

∑

i S
iC i

t
∑

i S
iP i

t−1

.
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In a competitive equilibrium of the model (henceforth referred to simply as

equilibrium), agents choose consumption and portfolios so as to maximize

their expected utility taking prices as given, and prices are determined such

that markets clear.

To determine equilibrium prices, consider first an economy with the same

agents in which asset i has a dividend of Di
t−C i

t and no illiquidity cost. In this

imagined economy, standard results imply that the CAPM holds (Markowitz

(1952), Sharpe (1964), Lintner (1965), and Mossin (1966)). We claim that

the equilibrium prices in the original economy with frictions are the same

as those of the imagined economy. This follows from two facts: (i) the net

return on a long position is the same in both economies; (ii) all investors in

the imagined economy hold a long position in the market portfolio, and a

(long or short) position in the risk-free asset. Hence, an investor’s equilibrium

return in the frictionless economy is feasible in the original economy, and is

also optimal, given the more limited investment opportunities due to the

short-selling constraints.5

These arguments show that the CAPM in the imagined frictionless econ-

omy translates into a CAPM in net returns for the original economy with

illiquidity costs, that is,

Et−1(r
i
t − ci

t − rf ) = λt−1

covt−1(r
i
t − ci

t, r
M
t − cM

t )

vart−1(rM
t − cM

t )
(1)

Rewriting the one-beta CAPM in net returns in terms of gross returns, we

5This argument applies more generally since positive transactions costs imply that a
short position has a worse payoff than minus the payoff of a long position. We impose the
short-sale constraint because C can be negative in our normal setting.
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get a liquidity-adjusted CAPM for gross returns. This is the main testable6

implication of this paper:

Proposition 1 In the unique linear equilibrium, the conditional expected re-

turn of security i is

Et−1(r
i
t − rf ) = Et−1(c

i
t) + λt−1

covt−1(r
i
t, r

M
t )

vart−1(rM
t − cM

t )
+ λt−1

covt−1(c
i
t, c

M
t )

vart−1(rM
t − cM

t )

−λt−1

covt−1(r
i
t, c

M
t )

vart−1(rM
t − cM

t )
− λt−1

covt−1(c
i
t, r

M
t )

vart−1(rM
t − cM

t )
, (2)

where λt−1 is the risk premium,

λt−1 = Et−1(r
M
t − cM

t − rf ) (3)

Equation (2) is simple and natural. It states that the required excess return

is the expected relative illiquidity cost, Et−1(c
i
t), as first found theoretically

and empirically7 by Amihud and Mendelson (1986)), plus four betas (or

covariances) times the risk premium. These four betas depend on the asset’s

payoff and liquidity risks. As in the standard CAPM, the required return on

6Difficulties in testing this model arise from the fact that it makes predictions concern-
ing conditional moments as is standard in asset pricing. See Hansen and Richard (1987),
Cochrane (2001), and references therein. An unconditional version of (2) applies under
stronger assumptions as discussed in Section 3.3.

7Empirically, Amihud and Mendelson (1986, 1989) find the required rate of return
on NYSE stocks to increase with the relative bid-ask spread. This result is supported
for amortized spreads for NYSE stocks by Chen and Kan (1996), and for Nasdaq stocks
by Eleswarapu (1997), but is questioned for NYSE stocks by Eleswarapu and Reinganum
(1993), and Chalmers and Kadlec (1998). Gârleanu and Pedersen (2000) find that adverse-
selection costs are priced only to the extent that they render allocations inefficient. The
ability of a market to allocate assets efficiently may be related to market depth, and,
consistent with this view, the required rate of return has been found to decrease with
measures of depth (Brennan and Subrahmanyam (1996) and Amihud (2002)). Easley,
Hvidkjær, and O’Hara (2000) find returns to increase with a measure of the probability
of informed trading.
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an asset increases (linearly) with the covariance between the asset’s return

and the market return. This model yields three additional effects which could

be regarded as three forms of liquidity risks.

3.1 Three Liquidity Risks

1. covt−1(c
i
t, c

M
t ): The first effect is that the return increases with the covari-

ance between the asset’s illiquidity and the market illiquidity (covt−1(c
i
t, c

M
t )).

This is because investors want to be compensated for holding a security that

becomes illiquid when the market in general becomes illiquid. The potential

empirical significance of this pricing implication follows from the presence of

a time-varying common factor in liquidity, which is documented by Chordia,

Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2000), and Huber-

man and Halka (1999). These papers find that most stocks’ illiquidities

are positively related to market illiquidity, so the required return should be

raised by the commonality-in-liquidity effect. The effect of commonality in

liquidity on asset prices is, however, not studied by these authors; We study

empirically this effect is studied in Section 4.

In this model, the risk premium associated with commonality in liquidity

is caused by the wealth effects of illiquidity. Also, this risk premium would

potentially apply in an economy in which investors can choose which securi-

ties to sell. In such a model, an investor who holds a security that becomes

illiquid (that is, has a high cost ci
t) can choose not to trade this security and

instead trade other (similar) securities. It is more likely that an investor

can trade other (similar) securities, at low cost, if the liquidity of this asset

11



does not co-move with the market liquidity. Hence, investors would require

a return premium for assets with positive covariance between individual and

market illiquidity.

2. covt−1(r
i
t, c

M
t ): The second effect on expected returns is due to covari-

ation between a security’s return and the market liquidity. We see that

covt−1(r
i
t, c

M
t ) affects required returns negatively because investors pay a pre-

mium for an asset with a high return in times of market illiquidity. Such an ef-

fect also arises in the theoretical models of Holmstrom and Tirole (2000) who

examine implications of corporate demand for liquidity, and Lustig (2001)

who studies the equilibrium implications of solvency constraints. Empirical

support for this effect is provided by Pastor and Stambaugh (2001), who find

that “the average return on stocks with high sensitivities to [market] liquid-

ity exceeds that for stocks with low sensitivities by 7.5% annually, adjusted

for exposures to the market return as well as size, value, and momentum

factors.” Sadka (2002) and Wang (2002) also present consistent evidence for

this effect using alternative measures of liquidity.

3. covt−1(c
i
t, r

M
t ): The third effect on required returns is due to covariation,

covt−1(c
i
t, r

M
t ), between a security’s illiquidity and the market return. This

effect stems from investors’ willingness to accept a lower expected return on a

security that is liquid in a down market. When the market declines, investors

are poor, and the ability to sell easily is especially valuable. Hence, an

investor is willing to accept a discounted return on stocks with low illiquidity

costs in states of poor market return. We find consistent evidence of this

effect in Section 4, and the effect seems economically important.
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Outside our model, intuition suggests that a low market return causes

wealth problems for some investors, who then need to sell. If a selling in-

vestor holds securities that are illiquid at this time, then his problems are

magnified. Consistent with this intuition, Lynch and Tan (2003) find that

the liquidity premium is large if the transactions costs covary negatively with

wealth shocks, among other conditions. This is consistent with our effect of

covt−1(c
i
t, r

M
t ) to the extent that rM proxies for wealth shocks. Lynch and

Tan (2003) complement our paper by showing by calibration that, even if an

investor chooses his holding period endogenously, the liquidity premium can

be large (3.55% in one calibration). They follow Constantinides (1986) in

using a partial-equilibrium framework and defining the liquidity premium as

the decrease in expected return that makes an investor indifferent between

having access to the asset without transaction costs rather than with them.

The three covariances thus provide a characterization of the liquidity risk

of a security. While the covariance between a security’s return and the market

liquidity has been shown empirically to affect its expected return, the effect

of the other two covariances on expected returns has not yet been examined.

Finally, note that in our model, the conditional CAPM holds for net

returns, that is, returns net of illiquidity costs. The analysis is, however,

focused on gross returns. The focus on gross returns is motivated by sev-

eral considerations. First, computing the net return is not straightforward

since it depends on the investor’s holding period, and the holding period may

be different from the econometrician’s sampling period. We explain in Sec-

tion 4 how we overcome this problem by separating the net return into gross

return and illiquidity costs. Second, most empirical work uses some mea-

13



sure of gross returns and possibly some measure of illiquidity costs. Third,

the model shows interesting pricing implications of co-movements in individ-

ual and market gross return and liquidity. Empirical work has documented

that some of these interactions are significant (Chordia, Roll, and Subrah-

manyam (2000), Hasbrouck and Seppi (2000), and Huberman and Halka

(1999)) and priced (Amihud and Mendelson (1986), Amihud (2002), and

Pastor and Stambaugh (2001)). Fourth, a pricing relation for gross returns

and illiquidity, which is similar in spirit to (2), may hold in richer models in

which net returns are not sufficient state variables. As argued above, some

additional liquidity effects suggest risk premia of the same sign for the co-

variance terms in (2). These additional liquidity effects also suggest that the

size of the risk premia need not be identical across the covariance terms. To

accommodate the possibility of a richer liquidity framework, we also consider

a generalized relation in our empirical work in Section 4.

3.2 Implications of Persistence of Liquidity

This section shows that persistence of liquidity implies that liquidity predicts

future returns and co-moves with contemporaneous returns.

Empirically, liquidity is time-varying and persistent (which means that

γ > 0).8 This model shows that persistent liquidity implies that returns are

predictable. Intuitively, high illiquidity today predicts high expected illiquid-

ity next period, implying a high required return.

8See Amihud (2002), Chordia, Roll, and Subrahmanyam (2000, 2001), Hasbrouck and
Seppi (2000), Huberman and Halka (1999), Jones (2001), and Pastor and Stambaugh
(2001).
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Proposition 2 Suppose that γ > 0, and that q ∈ R
I is a portfolio9 with

γDq
t−1+(1−γ)E(Dq

t +P q
t

∣

∣ Dq
t−1 = D̄q, Cq

t−1 = C̄q) > 0. Then, the conditional

expected return increases with illiquidity,

∂

∂Cq
t−1

Et−1(r
q
t − rf ) > 0. (4)

Proposition 2 relies on a mild technical condition, which is satisfied, for

instance, for any portfolio with positive values for current dividend, mean

dividend and mean price. The proposition states that the conditional ex-

pected return depends positively on the current illiquidity cost, that is, the

current liquidity predicts the return.

Jones (2001) finds empirically that the expected annual stock market

return increases with the previous year’s bid-ask spread and decreases with

the previous year’s turnover. Amihud (2002) finds that illiquidity predicts

excess return both for the market and for size-based portfolios.

Predictability of liquidity further implies a negative conditional covari-

ance between contemporaneous returns and illiquidity. Naturally, when illiq-

uidity is high, the required return is high also, which depresses the current

price, leading to a low return. This intuition applies as long as liquidity is

persistent (γ > 0) and innovations in dividends and illiquidity are not too

correlated (q>ΣCDq low for a portfolio q) as is formalized in the following

proposition.

Proposition 3 Suppose q ∈ R
I is a portfolio such that γ > rf q>ΣCDq

q>ΣCq
. Then,

covt−1(c
q
t , r

q
t ) < 0.

9For any q ∈ R
I , we use the obvious notation D

q
t = q>Dt, r

q
t =

∑

i
qi(Di

t+P i
t )

∑

i
qiP i

t−1

and so
on.
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Consistent with this result, Chordia, Roll, and Subrahmanyam (2001), Jones

(2001), and Pastor and Stambaugh (2001) find a negative relation between

the market return and measures of market illiquidity, Amihud (2002) finds a

negative relation between the return on size portfolios and their correspond-

ing unexpected illiquidity, and Amihud, Mendelson, and Wood (1990) argue

that the 1987 crash was in part due to an increase in (perceived) market

illiquidity.

3.3 An Unconditional Liquidity-Adjusted CAPM

To estimate the liquidity-adjusted CAPM, we derive an unconditional ver-

sion. An unconditional result obtains, for instance, under the assumption of

independence over time of dividends and illiquidity costs. Empirically, how-

ever, illiquidity is persistent. Therefore, we rely instead on an assumption of

constant conditional covariances of innovations in illiquidity and returns.10

This assumption yields the unconditional result that,

E(ri
t − rf

t ) = E(ci
t) + λβ1i + λβ2i − λβ3i − λβ4i , (6)

10Alternatively, the same unconditional model can be derived by assuming a constant
risk premium λ, and by using the fact that for any random variables X and Y , it holds
that

E(covt(X,Y )) = cov(X − Et(X), Y ) = cov(X − Et(X), Y − Et(Y )). (5)

We note that the possible time-variation of risk premium is driven by constant absolute
risk aversion in our model, but with constant relative risk aversion the risk premium is
approximately constant. See Friend and Blume (1975).
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where

β1i =
cov(ri

t, r
M
t − Et−1(r

M
t ))

var (rM
t − [cM

t − Et−1(cM
t )])

(7)

β2i =
cov(ci

t − Et−1(c
i
t), c

M
t − Et−1(c

M
t ))

var (rM
t − [cM

t − Et−1(cM
t )])

(8)

β3i =
cov(ri

t, c
M
t − Et−1(c

M
t ))

var (rM
t − [cM

t − Et−1(cM
t )])

(9)

β4i =
cov(ci

t − Et−1(c
i
t), r

M
t − Et−1(r

M
t ))

var (rM
t − [cM

t − Et−1(cM
t )])

, (10)

and λ = E(λt) = E(rm
t − cm

t − rf
t ). Next, we describe the empirical tests of

this unconditional relation.

4 Empirical Results

In this section, we estimate and test the liquidity-adjusted CAPM as specified

in Equation (6). We do this in five steps:

(i) We estimate, in each month t of our sample, a measure of illiquidity,

ci
t, for each individual security i. (Section 4.1.)

(ii) We form a “market portfolio” and sets of 25 test portfolios sorted

on the basis of illiquidity, size, and book-to-market by size, respectively.

For each portfolio and each month, we compute its return and illiquidity.

(Section 4.2.)

(iii) For the market portfolio as well as the test portfolios, we estimate

the innovations in illiquidity, cp
t − Et−1(c

p
t ). (Section 4.3.)

(iv) Using these illiquidity innovations and returns, we estimate and an-

alyze the liquidity betas. (Section 4.4.)
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(v) Finally, we consider the empirical fit of the (unconditional) liquidity-

adjusted CAPM by running cross-sectional regressions based on the empirical

methodology of Fama and MacBeth (1973). To check the robustness of our

results, we do the analysis with a number of different specifications. (Sec-

tion 4.5.)

4.1 The Illiquidity Measure

Liquidity is (unfortunately) not an observable variable. There exist, however,

many proxies for liquidity. Some proxies, such as the bid-ask spread, are

based on market microstructure data, which is not available for a time series

as long as is usually desirable for studying the effect on expected returns.

Further, the bid-ask spread measures well the cost of selling a small number

of shares, but it does not necessarily measure well the cost of selling many

shares. We follow Amihud (2002) in estimating illiquidity using only daily

data from the Center for Research in Security Prices (CRSP). In particular,

Amihud (2002) defines the illiquidity of stock i in month t as

ILLIQ i
t =

1

Days i
t

Daysi
t

∑

d=1

|Ri
td|

V i
td

, (11)

where Ri
td and V i

td are, respectively, the return and dollar volume on day d in

month t, and Days i
t is the number of valid observation days in month t for

stock i. Throughout our empirical analysis, ILLIQ i
t is multiplied by a scale

factor of 106.

The intuition behind this illiquidity measure is as follows. A stock is

illiquid — that is, has a high value of ILLIQ i
t — if the stock’s price moves
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a lot in response to little volume. In our model, illiquidity is the cost of

selling and, as discussed in Section 2, real markets have several different sell-

ing costs including broker fees, bid-ask spreads, market impact, and search

costs. Our empirical strategy is based on an assumption that ILLIQ is a

valid instrument for the costs of selling, broadly interpreted. Consistent

with this view, Amihud (2002) shows empirically that ILLIQ is positively

related to measures of price impact and fixed trading costs over the time

period in which he has the microstructure data. Similarly, Hasbrouck (2002)

computes a measure of Kyle’s lambda using micro-structure data for NYSE,

AMEX and NASDAQ stocks, and finds that its Spearman (Pearson) corre-

lation with ILLIQ in the cross-section of stocks is 0.737 (0.473). Hasbrouck

(2002) concludes that “[a]mong the proxies considered here, the illiquidity

measure [ILLIQ] appears to be the best.” Furthermore, ILLIQ is closely

related to the Amivest measure of illiquidity, which has often been used in

the empirical microstructure literature.11

There are two problems with using ILLIQ . First, it is measured in “per-

cent per dollar,” whereas the model is specified in terms of “dollar cost per

dollar invested.” This is a problem because it means that ILLIQ is not sta-

tionary (e.g., inflation is ignored). Second, while ILLIQ is an instrument for

the cost of selling, it does not directly measure the cost of a trade. To solve

these problems, we define a normalized measure of illiquidity, ci
t, by

ci
t = min

(

0.25 + 0.30 ILLIQ i
t P

M
t−1 , 30.00

)

, (12)

where P M
t−1 is the ratio of the capitalizations of the market portfolio at the

11The Amivest measure of liquidity is the average ratio of volume to absolute return.
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end of month t− 1 and of the market portfolio at the end of July 1962. The

PM
t−1 adjustment solves the first problem mentioned above, and it makes this

measure of illiquidity relatively stationary. The coefficients 0.25 and 0.30 are

chosen such that the cross-sectional distribution of normalized illiquidity (ci
t)

for size-decile portfolios has approximately the same level and variance as

does the effective bid-ask spread reported by Chalmers and Kadlec (1998).

This normalized illiquidity is capped at a maximum value of 30% in order to

ensure that our results are not driven by the extreme observations of ILLIQi
t.

Furthermore, a per-trade cost greater than 30% seems unreasonable and is

an artifact of the effect of low volume days on ILLIQi
t.

Chalmers and Kadlec (1998) report that the mean effective spread for

size-decile portfolios of NYSE and AMEX stocks over the period 1983–1992

ranges from 0.25% to 4.16% with an average of 1.11%. The normalized

illiquidity, ci
t, for identically formed portfolios has an average of 1.24%, a

standard deviation of 0.37%, and matches the range as well as the cross-

sectional variation reported by Chalmers and Kadlec (1998). This means

that we can interpret the illiquidity measure ci
t as directly related to (a lower

bound of) the per-trade cost.

Admittedly, this is a noisy measure of illiquidity, which makes it harder

for us to find an empirical connection between returns and illiquidity. This

problem is alleviated in part, however, by considering portfolios rather than

individual stocks.
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4.2 Portfolios

We employ daily return and volume data from CRSP from July 1st, 1962

until December 31st, 1999 for all common shares (CRSP sharecodes 10 and

11) listed on NYSE and AMEX.12 Also, we use book-to-market data based

on the COMPUSTAT measure of book value.13

We form a market portfolio for each month t during this sample period

based on stocks with beginning-of-month price between 5 and 1000, and with

at least 15 days of return and volume data in that month.

We form 25 illiquidity portfolios for each year y during the period 1964 to

1999 by sorting stocks with price, at beginning of year, between 5 and 1000,

and return and volume data in year y−1 for at least 100 days.14 We compute

the annual illiquidity for each eligible stock as the average over the entire year

y − 1 of daily illiquidities, analogously to monthly illiquidity calculation in

(11). The eligible stocks are then sorted into 25 portfolios, p ∈ {1, 2, . . . , 25},
based on their year y − 1 illiquidities.

We also form 25 size portfolios for each year y during the period 1964

to 1999 by ranking the eligible stocks (as above for illiquidity portfolios)

12Since volume data in CRSP for Nasdaq stocks is available only from 1982 and includes
inter-dealer trades, we employ only NYSE and AMEX stocks for sake of consistency in
the illiquidity measure.

13We are grateful to Joe Chen for providing us with data on book-to-market ratios.
The book-to-market ratios are computed as described in Ang and Chen (2002): [For a
given month] the book-to-market ratio is calculated using the most recently available
fiscal year-end balance sheet data on COMPUSTAT. Following Fama and French (1993),
we define “book value” as the value of common stockholders’ equity, plus deferred taxes
and investment tax credit, minus the book value of preferred stock. The book value is
then divided by the market value on the day of the firm’s fiscal year-end.

14Amihud (2002) and Pastor and Stambaugh (2001) employ similar requirements for
the inclusion of stocks in their samples. These requirements help reduce the measurement
error in the monthly illiquidity series.
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based on their market capitalization at the beginning of year y. Finally, we

form portfolios sorted first in 5 book-to-market quintiles and then in 5 size

quintiles within the book-to-market groups as in Fama and French (1992)

and Fama and French (1993). This sample is restricted to stocks with book-

to-market data in year y − 1. When considering the portfolio properties, we

use the year-y book-to-market, averaging across stocks with available book-

to-market data in that year.

For each portfolio p (including the market portfolio), we compute its

return in month t, as

rp
t =

∑

i in p

wip
t ri

t, (13)

where the sum is taken over the stocks included in portfolio p in month t,

and where wip
t are either equal weights or value-based weights, depending on

the specification.15

Similarly, we compute the normalized illiquidity of a portfolio, p, as

cp
t =

∑

i in p

wip
t ci

t, (14)

where, as above, wip
t are either equal weights or value-based weights, depend-

ing on the specification.

15The returns, ri
t, are adjusted for stock delisting to avoid survivorship bias, following

Shumway (1997). In particular, the last return used is either the last return available on
CRSP, or the delisting return, if available. While a last return for the stock of −100% is
naturally included in the study, a return of −30% is assigned if the deletion reason is coded
in CRSP as 500 (reason unavailable), 520 (went to OTC), 551–573 and 580 (various rea-
sons), 574 (bankruptcy) and 584 (does not meet exchange financial guidelines). Shumway
(1997) obtains that −30% is the average delisting return, examining the OTC returns of
delisted stocks. Amihud (2002) employs an identical survivorship bias correction.
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The model’s results are phrased in terms of value-weighted returns and

value-weighted illiquidity for the market portfolio. Several studies, however,

focus on equal-weighted return and illiquidity measures, for instance Ami-

hud (2002) and Chordia, Roll, and Subrahmanyam (2000). Computing the

market return and illiquidity as equal-weighted averages is a way of com-

pensating for the over-representation in our sample of large liquid securities,

as compared to the “true” market portfolio in the economy. In particular,

our sample does not include illiquid assets such as corporate bonds, private

equity, real estate, and many small stocks, and these assets constitute a sig-

nificant fraction of aggregate wealth.16 Therefore, we focus in our empirical

work on an equal-weighted market portfolio, although we also estimate the

model with a value-weighted market portfolio for robustness. Also, we use

both equal- and value-weighted averages for the test portfolios.

4.3 Innovations in Illiquidity

Illiquidity is persistent. The auto-correlation of the market illiquidity, for in-

stance, is 0.87 at monthly frequency. Therefore, we focus on the innovations,

cp
t − Et−1(c

p
t ), in illiquidity of a portfolio when computing its liquidity betas

as explained in Section 3.3.

To compute these innovations, we first define the un-normalized illiquid-

16Heaton and Lucas (2000) report that stocks constitute only 13.6% of national wealth,
while non-corporate (i.e. private) equity is 13.8%, other financial wealth is 28.2%, owner-
occupied real estate is 33.3%, and consumer durables is 11.1%.
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ity, truncated for outliers, of a portfolio p as

ILLIQ
p

t :=
∑

i in p

wip
t min

(

ILLIQ i
t ,

30.00 − 0.25

0.30 P M
t−1

)

, (15)

where wip
t is the portfolio weight. As explained in Section 4.1, we normalize

illiquidity to make it stationary and to put it on a scale corresponding to

the cost of a single trade. Hence, to predict illiquidity, we run the following

regression for each portfolio:

(

0.25 + 0.30 ILLIQ
p

t PM
t−1

)

= a0 + a1

(

0.25 + 0.30 ILLIQ
p

t−1 PM
t−1

)

+ a2

(

0.25 + 0.30 ILLIQ
p

t−2 PM
t−1

)

+ ut . (16)

Note that the three terms inside parentheses in this specification correspond

closely to cp
t , cp

t−1, and cp
t−2, respectively, as given by (12) and (14), with

the difference that the same date is used for the market index (P M
t−1) in all

three terms. This is to ensure that we are measuring innovations only in

illiquidity, not changes in P M . Our results are robust to the specification of

liquidity innovations and, in particular, employing other stock-market vari-

ables available at time t − 1 did not improve significantly the explanatory

power of the regression. Pastor and Stambaugh (2001) employ a specification

to compute market liquidity innovations that is similar in spirit to the AR(2)

specification in (16).

The residual, u, of the regression in (16) is interpreted as the standardized
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liquidity innovation, cp
t − Et−1(c

p
t ), that is,

cp
t − Et−1(c

p
t ) := ut . (17)

For the market illiquidity series, the AR(2) specification has a R2 of

78%. The resulting innovations in market illiquidity, cM
t − Et−1(c

M
t ), have a

standard deviation of 0.17%. Figure 1 plots the time-series of these innova-

tions, scaled to have unit standard deviation. The auto-correlation of these

illiquidity innovations is low (−0.03) and, visually, they appear stationary.

Employing AR(1) specification produces a significantly greater correlation of

innovations (−0.29), whereas employing AR(3) specification produces little

improvement in the explanatory power. The measured innovations in mar-

ket illiquidity are high during periods that anecdotally were characterized by

liquidity crisis, for instance, in 11/1973, 10/1987, the oil crisis and the stock

market crash, respectively. Also, there is a string of relatively large shocks

in 6–10/1998, the period in which Russia defaulted and Long-Term Capital

Management suffered large losses. The correlation between this measure of

innovations in market illiquidity and the measure of innovations in liquidity

used by Pastor and Stambaugh (2001) is −0.33.17 (The negative sign is due

to the fact that Pastor and Stambaugh (2001) measure liquidity, whereas we

follow Amihud (2002) in considering il liquidity.)

17We thank Pastor and Stambaugh for providing their data on innovations in market
liquidity.

25



1960 1965 1970 1975 1980 1985 1990 1995 2000
−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

Date

In
n
ov

at
io

n
s

in
m

ar
ke

t
IL

L
IQ

Figure 1: Standardized innovations in market illiquidity from 1964-1999.

4.4 Liquidity Risk

In this section, we present the descriptive statistics of liquidity risk, measured

through the betas β2p, β3p and β4p. We focus on the value-weighted illiquid-

ity portfolios whose properties are reported in Table 1. Similar conclusions

are drawn from examining the properties of equal-weighted illiquidity port-

folios (not reported) or size portfolios (Table 10). The four betas, β1p, β2p,

β3p and β4p, for each portfolio are computed as per Equation (7) using the

entire time-series, that is, using all monthly return and illiquidity observa-

tions for the portfolio and the market portfolio from the beginning of year

1964 till end of year 1999. Similarly, average illiquidity E(cp) for a portfolio

is computed using the entire time-series of monthly illiquidity observations
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for the portfolio. This approach of using the entire time-series in computing

the portfolio characteristics is similar to the one adopted in Black, Jensen,

and Scholes (1990) and Pastor and Stambaugh (2001).

Table 1 shows that the sort on past illiquidity successfully produces

portfolios with monotonically increasing average illiquidity from portfolio

1 through portfolio 25. Not surprisingly, we see that illiquid stocks – that

is, stocks with high values of E(cp) – tend to have a high volatility of stock

returns, a low turnover, and a small market capitalization. Furthermore, we

find that illiquid stocks also have high liquidity risk : they have large values

of β2p and large negative values of β3p and β4p. This is an interesting result

on its own. It says that a stock, which is illiquid in absolute terms (cp), also

tends to have a lot of commonality in liquidity with the market (cov(cp, cM)),

a lot of return sensitivity to market liquidity (cov(rp, cM)), and a lot of liq-

uidity sensitivity to market returns (cov(cp, rM )). We note that all of the

betas are estimated with a small error (i.e., a small asymptotic variance).

Indeed, almost all of the betas are statistically significant at conventional

levels.

A liquidity beta is proportional to the product of the correlation between

its respective arguments and their standard deviations. As noted before,

more illiquid stocks have greater volatility of returns. Furthermore, since

illiquidity is bounded below by zero, it is natural that more illiquid stocks

also have more volatile illiquidity innovations. This is verified in Table 1

which shows that the standard deviation of portfolio illiquidity innovations,

σ(∆cp), increases monotonically in portfolio illiquidity. The higher variability

of returns and illiquidity innovations are, however, not the sole drivers of the
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positive relationship between illiquidity and liquidity risk. The correlation

coefficients between cp and cM (rp and cM) are also increasing (decreasing)

in portfolio illiquidity. The correlation coefficients between cp and rM are

decreasing in illiquidity between portfolios 1−15 and are gradually increasing

thereafter. Nevertheless, the variability of cp ensures that the covariances

between cp and rM are decreasing in illiquidity.18

This co-linearity of measures of liquidity risk is confirmed by considering

the correlation among the betas, reported in Table 2. This correlation of

betas is not just a property of the liquidity-sorted portfolios; it also exists

at an individual stock level as is seen in Table 3. The correlation at the

stock level is smaller, which could be due in part to larger estimation errors.

While this correlation is theoretically intriguing, it makes it hard to empiri-

cally distinguish the separate effects of illiquidity and the individual liquidity

betas.19

4.5 How Liquidity Risk Affects Returns

In this section, we study how liquidity risk affects expected returns. Specifi-

cally, we estimate the liquidity-adjusted CAPM (6) using the portfolios based

on the sorting by illiquidity or size. Using the portfolios’ betas and the illiq-

18These correlations are not reported in the table for sake of brevity.
19We have not been able to construct portfolios which allow us to better identify the sep-

arate beta effects. For instance, we have considered portfolios based on predicted liquidity
betas, similar to the approach taken by Pastor and Stambaugh (2001). These results are
not reported as these portfolios did not improve statistical power: The liquidity betas
after portfolio formation turned out to be better sorted for illiquidity and size portfolios
than for the portfolios sorted using predicted liquidity betas. We attribute this, in part,
to the large estimation errors associated with predicting liquidity betas at the individual
stock level.
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uidity, we estimate our model (6), and subsets of its coefficients, by running

cross-sectional regression using the method of Fama and MacBeth (1973). To

be precise, in each month over the period 1964–1999, we run a cross-sectional

regression of the excess returns on the 25 test portfolios with explanatory

variables being the portfolio characteristics. The estimated coefficients are

then averaged over all months.

We consider first the liquidity-adjusted CAPM (6) with the model-implied

constraint that the risk premia of the different betas is the same. In doing

this, we define the “net beta” as

βnet,p := β1p + β2p − β3p − β4p. (18)

With this definition, the liquidity-adjusted CAPM becomes

E(rp
t − rf

t ) = α + kE(cp
t ) + λβnet,p , (19)

where we allow a non-zero intercept, α, in the estimation, although the model

implies that the intercept is zero. In our model, investors incur the illiquidity

cost exactly once over their holding period. The coefficient k adjusts for the

difference between the monthly period used in estimation, and the typical

holding period of an investor (which is the period implicitly considered in

the model). More precisely, k is the ratio of the monthly estimation period

to the typical holding period.20 The average holding period is proxied by

20If the estimation period is equal to the holding period, then the model implies (19)

with k = 1. If the estimation period is k times the holding period, then E(rp
t − r

f
t ) is

(approximately) k times the expected holding period return, and βnet,p is assumed to be
approximately k times the holding-period net beta. This is because a k-period return
(or illiquidity innovation) is approximately a sum of k 1-period returns (or illiquidity
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the period over which all shares are turned over once. Hence, we calibrate

k as the average monthly turnover across all stocks in the sample.21 In the

sample of liquidity portfolios, k is calibrated to 0.034, which corresponds to

a holding period of 1/0.034 ∼= 29 months. The expected illiquidity, E(cp
t ),

is computed as the portfolio’s average illiquidity. Note that the structure

of the liquidity-adjusted CAPM and its calibration using k equal to the

average monthly turnover for stocks make the estimation different from the

typical cross-sectional regression study in which the asset-pricing relationship

is backed out from the return series and data on security characteristics such

as beta, size, book-to-market, etc.

The resulting liquidity-adjusted CAPM (19) has only one risk premium,

λ, that needs to be estimated as in the standard CAPM. Here, the risk factor

is the net beta instead of the standard CAPM beta. Hence, the empirical

improvement in fit is not achieved by adding factors (or otherwise adding

degrees of freedom), but simply by making a liquidity adjustment.

We consider first the illiquidity portfolios. The estimated results for Equa-

tion (19) are reported in line 1 of Table 4 with value-weighted portfolios, and

in Table 5 with equally-weighted portfolios. In Table 4, we report both Fama

and MacBeth (1973) standard errors, and GMM standard errors that account

for the pre-estimation of betas (see Shanken (1992) and Cochrane (2001)).

In the other tables, we report for simplicity only the Fama and MacBeth

innovations), and because returns and illiquidity innovations have low correlation across
time. The illiquidity, E(cp), however, does not scale with time period because it is an
average of daily illiquidities (not a sum of such terms). Therefore, the E(cp) term is scaled
by k in (19).

21To run the regression (19) with a fixed k, we treat the net return, E(rp
t −r

f
t )−kE(cp

t ),
as the dependent variable.
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(1973) standard errors.22

We see that the λ is positive and significant at a 1% level for value-

weighted portfolios and at a 5% level for equal-weighted portfolios, and that

α is always insignificant, both results lending support to our model. Further,

we see that the R2 is high, close to 82% in both tables. In line 2 of Tables 4

and 5, we see that the k and λ parameters (and their t-stats) change only

modestly when k is estimated as a free parameter.

The tables also show the result of different empirical specifications with

various combinations of betas and expected illiquidity cost, allowing the be-

tas to have different risk premia and not restricting the coefficient k to be

the average monthly turnover. That is, we consider components of the gen-

eralized relation

E(rp
t − rf

t ) = α + κE(cp
t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p (20)

where the risk premia, λ1, . . . , λ4, λ, and the coefficient κ, are estimated

as unconstrained coefficients. Our model implies the restrictions α = 0,

κ = k, and λ1 = λ2 = −λ3 = −λ4. The estimated market prices of liquidity

risks for this generalized specification have signs that are broadly consistent

with the model’s prediction. In particular, a security’s required return is

increasing in its level of β2 and decreasing in its level of β3 and β4. The

22Since betas are estimated accurately, their pre-estimation has a relatively modest
effect on the results. Also, the serial correlation in monthly Fama-MacBeth estimates
of the risk premia is low for all our tests. (It is usually lower in magnitude than 0.10
and always lower than 0.20.) The resulting bias in t-statistics, if any, is thus negligible.
Furthermore, estimation of the cross-sectional regressions using the weighted least squares
method to account for heteroskedascticity in the residuals produced qualitatively similar
results (available from the authors upon request). Some of the specifications however
suffer from the multi-collinearity problem under the weighted least squares estimation.
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market prices of liquidity risks are significant at a 5% level in univariate

regressions. Interestingly, the highest R2 among the univariate regressions is

the R2 of the liquidity-adjusted CAPM (line 1).

To determine whether the liquidity risks (β2, β3, and β4) matter sepa-

rately from market risk (β1), we include both β1 and βnet in regressions 9

and 10. For robustness, κ is calibrated as the average turnover in the former

regression, while κ is estimated as a free parameter in the latter regression.

The result indicate that liquidity risk does matter. Indeed, liquidity risk

may actually have a higher risk premium than market risk. For instance,

Regression 9 of Table 4 shows that

E(rp
t − rf

t ) =−0.333 + 0.034E(cp
t ) − 3.181β1p + 4.334βnet,p

=−0.333 + 0.034E(cp
t ) + 1.153β1p + 4.334

(

β2p − β3p − β4p
)

As more coefficients are estimated simultaneously in regressions 11–15,

the statistical significance is reduced but the coefficients on some betas re-

main significant. For instance, the coefficient related to β4 is significant at a

5% level whenever it is included, except for value-weighted portfolios when all

coefficients are estimated simultaneously (where it is marginally significant).

It should also be noted that the coefficient λ2, the risk premium on liquidity

risk β2, is either magnified substantially or reverses its sign whenever β2 is

included in the regression along with E(cp). The lack of ability to identify

all the coefficients jointly may be due, at least in part, to the co-linearity of

the different kinds of liquidity risk. Indeed, β2 and E(cp) have a correlation

that exceeds 0.99 for illiquidity portfolios. Of course, we must also entertain

the possibility that not all these risk factors are empirically relevant.
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The top panel of Figure 2 illustrates the empirical fit of the standard

CAPM for the illiquidity portfolios. The middle and bottom panels show,

respectively, the fit of the constrained and unconstrained liquidity-adjusted

CAPM, that is, lines 1 and 15, respectively, from Table 4. We see that the

liquidity adjustment improves the fit especially for the illiquid portfolios,

consistent with what our intuition would suggest. We note that the number

of free parameters is the same in top and middle panels, so the improvement

in fit is not a consequence of more degrees of freedom.

The effect of liquidity risk on required returns seems economically mean-

ingful. To get a perspective on the magnitude of the effects of different forms

of liquidity risk, we consider the risk premium, λ = 1.512, from Row 1 in

Table 4. The difference in annualized expected return between portfolio 1

and 25 that can be attributed to a difference in β2, i.e., in the covariance,

covt−1(c
i
t, c

M
t ), between the portfolio illiquidity and the market illiquidity, is

λ(β2,p25 − β2,p1) · 12 = 0.08%.

Using the Fama-MacBeth standard error of the estimate of λ and ignoring

the estimation error in betas, the 95% confidence interval for the effect of

β2 is (0.02%, 0.13%). Similarly, the annualized return difference stemming

from the difference in β3, i.e., in the covariance, covt−1(r
i
t, c

M
t ), between the

portfolio return and the market illiquidity, is

−λ(β3,p25 − β3,p1) · 12 = 0.17%,

with a 95% confidence interval of (0.05%, 0.28%). The effect of β4, i.e., in
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the covariance, covt−1(r
i
t, c

M
t ), between the security’s return and the market

illiquidity, is

−λ(β4,p25 − β4,p1) · 12 = 0.83%,

with a 95% confidence interval of (0.27%, 1.39%).

The total effect of liquidity risk is therefore 1.1% per year. Interestingly,

of the three liquidity risks the effect of β4, the covariation of a security’s illiq-

uidity to market returns, appears the strongest both from a statistical stand-

point and in terms of the economic impact on expected returns, although

this aspect of liquidity risk has not been studied before either theoretically

or empirically. Our model and its tests suggest that this liquidity risk is

priced: All else being equal, securities which are difficult to trade in market

downturns are priced significantly lower than the ones which are relatively

easy to trade in such times.

Finally, the difference in annualized expected return between portfolio 1

and 25 that can be attributed to a difference in E(c), the expected illiquid-

ity, is 3.5%, using the calibrated coefficient. The overall effect of expected

illiquidity and liquidity risk is thus 4.6% per year. We note that, due to

the colinearity issues, it is difficult to identify the contribution to expected

returns of each liquidity risk and of liquidity itself, and the numbers given

above rely on our model and on the calibrated value of k.

While this magnitude is economically significant, it is lower than the

magnitude estimated by Pastor and Stambaugh (2001). This could be due

to the fact that they employ a different measure of liquidity, one that is

based on the principle that order flow induces greater return reversal when

liquidity is lower, as theoretically motivated by Campbell, Grossman, and
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Wang (1993). This difference may be in part due to the fact that they sort

portfolios based on liquidity risk (in their case, β3) whereas we sort based

on the level of liquidity. Also, this could be because they do not control

for the level of illiquidity which has been shown to command a significant

premium in a number of studies including Amihud and Mendelson (1986),

Brennan and Subrahmanyam (1996), Brennan, Chordia, and Subrahmanyam

(1998), Datar, Naik, and Radcliffe (1998), Swan (2002), and Dimson and

Hanke (2002). Finally, the difference could also arise because we restrict the

risk premia on different liquidity betas to be the same. For instance, the

magnitude of the risk premium related to β4 is estimated to be higher in

Model 14 and Model 15 of Table 4. This higher risk premium results in a

per year effect of 8.21% and 9.52%, respectively, from β4 alone.23

To formally test the liquidity-adjusted CAPM, we use the Wald test.24

First, we note that we fail to reject at conventional levels the model-implied

restriction that α = 0 in the liquidity-adjusted CAPM (Row 1 of Table 4 and

Table 5).

Second, we test the five model-implied restrictions λ1 = λ2 = −λ3 = −λ4,

α = 0, and κ = k in context of the model with unrestricted risk premia (Row

15 of Table 4 and Table 5).

The test for λ1 = λ2 = −λ3 = −λ4 is asymptotically distributed as chi

square with three degrees of freedom. For value-weighted illiquidity portfolios

23In another recent paper, Chordia, Subrahmanyam, and Anshuman (2001) find that
expected returns in the cross-section are higher for stocks with low variability of liquidity,
measured using variables such as trading volume and turnover. They examine the firm-
specific variability of liquidity. By contrast, our model and tests suggest that it is the
co-movement of firm-specific liquidity with market return and market liquidity that affects
expected returns.

24We provide details on this standard test method in the Appendix.
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in Table 4, the test statistic has a p-value of 16.2%, and for equally-weighted

portfolios in Table 5, it has a p-value of 3.9%. If we add the restriction α = 0,

then the test statistic has a p-value of 22.9% for value-weighted portfolios

and a p-value of 7.2% for equally-weighted portfolios.

Finally, we test jointly all the five model-implied restrictions stated above.

For value-weighted illiquidity portfolios this test statistic has a p-value of

33.6%, and for equally-weighted portfolios it has a p-value of 12.4%. Overall,

the model-implied restrictions are not statistically rejected. By contrast, a

test of the standard CAPM restrictions that λ2 = λ3 = λ4 = 0, α = 0, and

κ = 0, yields a p-value of 7.0% for value-weighted portfolios and a p-value of

0.0% for equally-weighted portfolios.

Another testable restriction implied by the model is that the risk premium

λ equals E(rm
t − rf

t − kcm
t ), the expected net return on the market in excess

of the risk-free rate. This test of the liquidity-adjusted CAPM has a p-

value of 6.5% in regression 1 of Table 4 and a p-value of 7.6% in regression

2. Hence, we cannot reject on a 5% level the model restriction that λ =

E(rm
t − rf

t − kcm
t ), but we note that the point estimate of the risk premium,

λ, is somewhat larger than the sample average of the excess return of the

market net of transaction costs, E(rm
t − rf

t − kcm
t ).

Lastly, we test that all the error terms have mean equal to zero. This

is perhaps the most stringent test since it requires that the model is pricing

all portfolios correctly. (See Cochrane (2001) page 246 for this test.) The

p-values for regressions 1, 10, and 15 are, respectively, 3.0%, 7.2%, and 4.0%.

(In comparison, the CAPM has a p-value of 0.2%.) This is a borderline

rejection that the model prices correctly all portfolios.
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Based on our numerous specification tests, we conclude that most, but

not all, model-implied restrictions are supported by the data. Importantly,

the overall evidence supports that liquidity risk is priced and has explanatory

power in the cross section.

To check the robustness of our results, we estimate the model with a

number of different specifications. We use a value-weighted market portfolio

(Table 6) and find similar results. We control for size and book-to-market

(Table 7). The results are similar to the earlier results, although the standard

errors increase because of the additional variables. The coefficient on βnet is

significant in the liquidity-adjusted CAPM of Regression 1 and marginally

so in Regression 2. The coefficient on book-to-market is significant in some

specifications such as Regressions 1 and 2, but it is insignificant whenever

β4 is included in the regression, and when we allow βnet and market beta to

have different risk premia. The coefficient on size is always insignificant. (In-

cluding volatility does not change the results, and volatility is not significant.

These results are not reported.) Also, we consider the sub-period 1964–1981

(Table 8), and the sub-period 1982–1999 (Table 9). We see that the signs

of the beta coefficients are stable across all specifications of the model. We

find some, but not all, beta coefficients that are significant at conventional

levels in almost all specifications. The statistical significance is reduced in

the later sample.

As a further robustness check, we re-estimate our model with size-based

portfolios. Table 10 shows the properties of value-weighted size-based port-

folios, confirming that small-sized stocks are illiquid (in absolute terms as

measured by E(c)) and also have high liquidity risk (as measured by the
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three betas β2p, β3p and β4p). Table 11 shows that the Fama-MacBeth re-

gressions are generally consistent with the model.

Figure 3 shows graphically the fit of the standard CAPM, and the liquidity-

adjusted CAPM, with constrained and unconstrained risk premia. We see

again that the liquidity adjustment improves the fit, particularly for the

smaller size portfolios. Formal statistical tests cannot reject the model-

implied restrictions at conventional confidence levels. The p-values of tests

for value-weighted and equally-weighted size portfolios are, respectively: (i)

44.5% and 50.5% for the restrictions that λ1 = λ2 = −λ3 = −λ4; (ii) 61.4%

and 65.5% with the additional restriction that α = 0; and (iii) 74.9% and

73.2% with the further restriction that κ = k. This lends strong support

in favor of our liquidity-adjusted CAPM. By contrast, a test of the stan-

dard CAPM restrictions that λ2 = λ3 = λ4 = 0, α = 0, and κ = 0, yields

a p-value of 21.5% for value-weighted portfolios and a p-value of 5.1% for

equally-weighted portfolios.

As a final robustness check, we consider portfolios sorted first in 5 book-

to-market quintiles and then in 5 size quintiles within the book-to-market

groups as in Fama and French (1992) and Fama and French (1993). Ta-

ble 12 and Figure 4 show the models’ fit of these portfolios. The results,

although weaker, are similar to our previous ones. The coefficient of βnet

is estimated to be positive and of the same magnitude as previously. The

liquidity-adjusted CAPM still has a higher R2 than the standard CAPM,

while both models have lower R2’s than with the other portfolios. Figure

4 shows that CAPM does relatively poorly for book-to-market by size port-

folios (adjusted R2 = 40.6%). This is consistent with the findings of Fama
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and French (1992) and Fama and French (1993) that beta is more or less

“flat” across these portfolios. The liquidity-adjusted CAPM seems to pro-

vide a moderate improvement in the fit (adjusted R2 = 49.9%) whereas the

model with unconstrained risk premia produces a significant improvement in

the fit (adjusted R2 = 73.3%). It should be noted, however, that some of

the risk premia estimated under the unconstrained specification are either

insignificant or have incorrect signs. These results, together with Table 7,

indicate that liquidity risk is important even controlling for book-to-market,

but that liquidity risk may not fully explain the book-to-market effects. This

is consistent with the findings of Pastor and Stambaugh (2001).

Overall, the evidence appears to be supportive of the liquidity-adjusted

CAPM model. The results highlight the importance of liquidity and liquidity

risk for asset prices. They also underscore the need for further empirical re-

search aimed at better measurement of liquidity and its time-series variation,

for an individual security as well as for the market.

5 Conclusion

This paper considers the effect of liquidity risk. It develops a simple pricing

formula that shows that investors should worry about a security’s perfor-

mance and tradability both in market downturns and when liquidity “dries

up.” Said differently, the required return of a security i is increasing in the

covariance, covt−1(c
i
t, c

M
t ), between its illiquidity and the market illiquidity,

decreasing in the covariance, covt−1(r
i
t, c

M
t ), between the security’s return

and the market illiquidity, and decreasing in the covariance, covt−1(c
i
t, r

M
t ),
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between its illiquidity and market returns.

The model also shows why high illiquidity predicts high future returns,

and why contemporaneous liquidity and returns co-move.

Hence, the model helps explain the existing empirical evidence related to

liquidity risk. Further, its novel predictions are consistent with our empir-

ical findings. In particular, we find, in a variety of specifications, that the

liquidity-adjusted CAPM explains the data better than the standard CAPM.

The model with net beta provides a better fit than the standard CAPM while

still exploiting the same degrees of freedom. In tests of the model with uncon-

strained risk premia, the covariance between a security’s illiquidity and the

market return appears to be particularly important, an effect not previously

studied in the literature. We conclude that liquidity risk indeed appears to

be priced.

While the model gives clear predictions that seem to have some bearing

in the data, it is decidedly simplistic. The model and the empirical results

are suggestive of further theoretical and empirical work. In particular, it

would be of interest to explain the time-variation in liquidity, and why stocks

that are illiquid in absolute terms also are more liquidity risky in the sense

of high values of all three liquidity betas. Another interesting topic is to

consider liquidity premia in a general equilibrium with liquidity risk and en-

dogenous holdings periods. We note that if investors live several periods, but

their probability of living more than one period approaches zero, then our

general-equilibrium economy is approached (assuming continuity). Hence,

our effects would also be present in the more general economy, although en-

dogenous holding periods may imply a smaller effect of liquidity risk (as in
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Constantinides (1986)). The effect of liquidity risk is strengthened, however,

if investors have important reasons to trade frequently. Such reasons include

return predictability and wealth shocks (as considered in the context of liq-

uidity by Lynch and Tan (2003)), differences of opinions (e.g. Harris and

Raviv (1993)), asymmetric information (e.g. He and Wang (1995)), institu-

tional effects (e.g. Allen (2001)), taxes (e.g. Constantinides (1983)), etc. It

would be interesting to determine the equilibrium impact of liquidity risk in

light of these trading motives.
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A Appendix

Proof of Proposition 1:

We first solve the investment problem of any investor n at time t. We assume,

and later confirm, that the price at time t + 1 is normally distributed condi-

tional on the time t information. Hence, the investor’s problem is to choose

optimally the number of shares, yn = (yn,1, . . . , yn,I), to purchase according

to

max
yn∈R

I
+

(

Et(W
n
t+1) −

1

2
An vart(W

n
t+1)

)

,

where

W n
t+1 = (Pt+1 + Dt+1 − Ct+1)

>yn + rf (en
t − P>

t yn),

and en
t is this agent’s endowment. If we disregard the no-short-sale constraint,

the solution is

yn =
1

An
(vart(Pt+1 + Dt+1 − Ct+1))

−1
(

Et(Pt+1 + Dt+1 − Ct+1) − rfPt

)

.

We shortly verify that, in equilibrium, this solution does not entail short

selling. In equilibrium,
∑

n yn = S, so equilibrium is characterized by the

condition that

Pt =
1

rf
[Et(Pt+1 + Dt+1 − Ct+1) − A vart(Pt+1 + Dt+1 − Ct+1)S ] ,
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where A =
(
∑

n
1

An

)−1
. The unique stationary linear equilibrium is

Pt =
1

rf − 1

(

rf (1 − γ)

rf − γ
(D̄ − C̄) − A

(

rf

rf − γ

)2

ΓS

)

(A.1)

+
γ

rf − γ
(Dt − Ct),

where S = (S1, . . . , SI) is the total supply of shares.

With this price, conditional expected net returns are normally distributed,

and any investor n holds a fraction A/An > 0 of the market portfolio S > 0 so

he is not short selling any securities. Therefore, our assumptions are satisfied

in equilibrium.

Finally, since investors have mean-variance preferences, the conditional

CAPM holds for net returns. See, for instance, Huang and Litzenberger

(1988). Rewriting in terms of net returns yields the result stated in the

proposition. �

Proof of Proposition 2:

The conditional expected return on a portfolio q is computed using (A.1):

Et−1(r
q
t ) = Et−1

(

B + rfDq
t − γCq

t

B + γDq
t−1 − γCq

t−1

)

=
B + rf (1 − γ)D̄q + rfγDq

t−1 − γ(1 − γ)C̄q − γ2Cq
t−1

B + γDq
t−1 − γCq

t−1

,

where,

B =
rf − γ

rf − 1
q>

(

rf (1 − γ)

rf − γ
(D̄ − C̄) − A

(

rf

rf − γ

)2

ΓS

)

.
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The conditional expected return depends on Cq
t−1 in the following way:

∂

∂Cq
t−1

Et−1(r
q
t − rf )

=
γ

(rf − γ)2P 2
t−1

[

− γ
(

B + γDq
t−1 − γCq

t−1

)

+
(

B + rf (1 − γ)D̄q + rfγDq
t−1 − γ(1 − γ)C̄q − γ2Cq

t−1

)

]

=
γ

(rf − γ)P 2
t−1

[

γDq
t−1 + (1 − γ)E(Dq

t + P q
t

∣

∣ Dq
t−1 = D̄q, Cq

t−1 = C̄q)

]

.

This partial derivative is greater than 0 under the conditions given in the

proposition. �

Proof of Proposition 3:

The conditional covariance between illiquidity and return for a portfolio q is:

covt−1(c
q
t , r

q
t ) =

1

(P q
t−1)

2
covt−1(C

q
t , P q

t + Dq
t )

=
1

(P q
t−1)

2(rf − γ)
covt−1(C

q
t , rfDq

t − γCq
t )

=
1

(P q
t−1)

2(rf − γ)
(rf q>ΣCDq − γ q>ΣCq),

which yields the proposition. �

Wald Test of Parameter Restrictions: Let θ = (α, κ, λ1, . . . , λ4)′ denote

the 6-vector of coefficients. The Fama-MacBeth method estimates are given

by

θ̂ = 1/T
∑

θt,
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where θt is the period-t estimates. Under independence assumptions,
√

T (θ̂−
θ) is asymptotically normal with mean 0 and a variance-covariance matrix

Σ, which can be estimated consistently by

Σ̂ = 1/T
∑

(θt − θ̂)(θt − θ̂)′

To jointly test K parameter restrictions, consider the following null hy-

potheses:

H0 : Gθ = g

where G is an K-by-6 matrix and g is a K vector. In our case, G and

g are chosen as follows. First, the restriction of identical risk premia are

implemented by letting G’s first row be G1 = (0, 0, 1,−1, 0, 0) and g1 = 0.

This means that λ1 = λ2. Similarly, the second and the third rows of G, are

respectively, (0, 0, 1, 0, 1, 0) and (0, 0, 1, 0, 0, 1), and g3 = g4 = 0, which imply

that λ1 = −λ3 = −λ4.

To further impose the restriction α = 0, we let G’s 4’th row equal

(1, 0, 0, 0, 0, 0) and g4 = 0. Finally, to impose the restriction κ = k, we

let the fifth row of G equal (0, 1, 0, 0, 0, 0) and g5 = k.

Under H0, the asymptotic distribution of
√

T (Gθ̂ − g) is normal with

mean 0 and variance-covariance matrix GΣG′. Hence, the test statistic

T (Gθ̂ − g)′(GΣ̂G′)−1(Gθ̂ − g)

is asymptotically χ2 with K degrees of freedom.
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Table 1: Properties of illiquidity portfolios.

This table reports the properties of the odd–numbered portfolios of 25 value-
weighted illiquidity portfolios formed each year during 1964–1999 as described in
Section 4.2. The four betas (βip) are computed for each portfolio using all monthly
return and illiquidity observations for a portfolio, and an equal-weighted market
portfolio. In particular, these betas based on (7), where the innovations in port-
folio illiquidity and market illiquidity are computed using the AR(2) specification
in (16) for the standardized illiquidity series, and the innovations in market port-
folio return is computed using an AR(2) specification for the market return series
that also employs available market characteristics at the beginning of the month
(return, volatility, average illiquidity, log of average dollar volume, log of average
turnover, all measured over past six months, and log of one-month lagged mar-
ket capitalization). The t-statistics, reported in parenthesis, are estimated using
GMM. The standard deviation of the portfolio illiquidity innovations is reported
under the column σ(∆cp). The average illiquidity, E(cp), the average excess return,
E(re,p), the turnover (trn), the market capitalization (size), and book-to-market
(BM) are computed for each portfolio as time-series averages of the respective
monthly characteristics. Finally, σ(rp), is the average of the standard deviation of
daily returns for the portfolio’s constituent stocks computed each month.

β1p β2p β3p β4p E(cp) σ(∆cp) E(re,p) σ(rp) trn size BM
(· 100) (· 100) (· 100) (· 100) (%) (%) (%) (%) (%) (ml$)

1 55.10 0.00 −0.80 −0.00 0.25 0.00 0.48 1.43 3.25 983.15 0.53
(16.14) (0.10) (−6.18) (−0.10)

3 67.70 0.00 −1.05 −0.03 0.26 0.00 0.39 1.64 4.19 180.06 0.72
(18.20) (0.64) (−7.60) (−0.60)

5 74.67 0.00 −1.24 −0.07 0.27 0.01 0.60 1.74 4.17 94.77 0.71
(22.20) (1.36) (−8.13) (−1.31)

7 76.25 0.00 −1.27 −0.10 0.29 0.01 0.57 1.83 4.14 58.29 0.73
(19.34) (2.18) (−8.04) (−1.85)

9 81.93 0.01 −1.37 −0.18 0.32 0.02 0.71 1.86 3.82 37.98 0.73
(32.13) (3.79) (−8.38) (−3.44)

11 84.59 0.01 −1.41 −0.33 0.36 0.04 0.73 1.94 3.87 25.78 0.76
(28.22) (4.54) (−7.80) (−5.23)

13 85.29 0.01 −1.47 −0.40 0.43 0.05 0.77 1.99 3.47 18.90 0.77
(31.18) (6.80) (−8.07) (−8.09)

15 88.99 0.02 −1.61 −0.70 0.53 0.08 0.85 2.04 3.20 13.59 0.83
(42.83) (6.17) (−8.06) (−7.68)

17 87.89 0.04 −1.59 −0.98 0.71 0.13 0.80 2.11 2.96 10.03 0.88
(25.28) (8.25) (−7.66) (−9.96)

19 87.50 0.05 −1.58 −1.53 1.01 0.21 0.83 2.13 2.68 7.31 0.92
(39.43) (7.21) (−8.19) (−8.80)

21 92.73 0.09 −1.69 −2.10 1.61 0.34 1.13 2.28 2.97 5.07 0.99
(33.24) (6.87) (−8.03) (−6.59)

23 94.76 0.19 −1.71 −3.35 3.02 0.62 1.12 2.57 2.75 2.89 1.09
(39.36) (6.93) (−8.39) (−6.66)

25 84.54 0.42 −1.69 −4.52 8.83 1.46 1.10 2.87 2.60 1.37 1.15
(20.31) (5.29) (−7.27) (−4.08)



Table 2: Beta correlations for illiquidity portfolios.

This table reports the correlations of the four covariances, β1p, β2p, β3p and β4p,
for the 25 value-weighted illiquidity portfolios formed for each year during 1964–
1999 as described in Section 4.2. The four betas are computed for each portfolio as
per (7) using all monthly return and illiquidity observations for the portfolio and
the market portfolio. The monthly innovations in portfolio illiquidity and market
illiquidity are computed using the AR(2) specification in (16) for the standardized
illiquidity series. The monthly innovations in market portfolio return are com-
puted using an AR(2) specification for the market return series that also employs
available market characteristics at the beginning of the month.

β1p β2p β3p β4p

β1p 1.000 0.562 −0.967 −0.679
β2p 1.000 −0.554 −0.935
β3p 1.000 0.669
β4p 1.000

Table 3: Beta correlations for individual stocks.

This table reports the correlations of the four covariances, β1i, β2i, β3i and β4i, for
the common shares listed on NYSE and AMEX during the period 1964–1999. The
correlations are computed annually for all eligible stocks in a year as described in
Section 4.2 and then averaged over the sample period. The four betas are com-
puted for each stock as per (7) using all monthly return and illiquidity observations
for the stock and the market portfolio. The monthly innovations in market illiq-
uidity are computed using the AR(2) specification in (16) for the standardized
market illiquidity series. The innovations in stock illiquidity are computed using
a similar AR(2) specification with coefficients estimated for the market illiquid-
ity. The monthly innovations in market portfolio return are computed using an
AR(2) specification for the market return series that also employs available market
characteristics at the beginning of the month.

β1i β2i β3i β4i

β1i 1.000 0.020 −0.685 −0.164
β2i 1.000 −0.072 −0.270
β3i 1.000 0.192
β4i 1.000



Table 4: Illiquidity portfolios

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted illiquidity portfo-
lios using monthly data during 1964–1999 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p + β2p − β3p − β4p. In some specifications, κ is set to be the
average monthly turnover. The first t-statistic, reported in the parentheses, is
estimated using the standard Fama–Macbeth method, and the second t-statistic,
also reported in the parentheses, is computed using a GMM framework as explained
in Section 4.5. The R2 is obtained in a single cross-sectional regression, and the
adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.556 0.034 1.512 0.822
(−1.347) ( — ) (2.898) (0.822)
(−1.347) ( — ) (2.538)

2 −0.512 0.042 1.449 0.825
(−1.366) (2.244) (2.991) (0.809)
(−1.282) (2.493) (2.581)

3 0.671 0.080 0.443
(2.883) (3.362) (0.418)
(2.931) (3.022)

4 −0.788 1.891 0.653
(−1.838) (3.333) (0.638)
(−1.749) (2.838)

5 0.669 171.134 0.537
(2.883) (3.476) (0.517)
(2.947) (2.183)

6 −0.371 −79.458 0.719
(−1.117) (−3.356) (0.707)
(−0.957) (−2.309)

7 0.606 −14.946 0.762
(2.645) (−3.656) (0.751)
(2.909) (−2.289)

8 −0.743 1.780 0.728
(−1.799) (3.411) (0.716)
(−1.797) (2.985)

9 −0.333 0.034 −3.181 4.334 0.842
(−0.954) ( — ) (−0.993) (1.398) (0.836)
(−0.811) ( — ) (−0.938) (1.302)

10 0.005 −0.032 −13.223 13.767 0.878
(0.015) (−0.971) (−2.225) (2.428) (0.861)
(0.012) (−0.665) (−1.801) (1.911)

11 −0.137 85.842 −59.725 0.810
(−0.460) (2.222) (−2.687) (0.793)
(−0.387) (1.921) (−1.620)

12 0.058 −42.504 −9.305 0.859
(0.204) (−1.922) (−2.678) (0.846)
(0.156) (−1.371) (−2.221)

13 0.060 −0.180 453.278 −46.437 0.841
(0.205) (−1.825) (2.170) (−2.117) (0.818)
(0.160) (−1.274) (1.543) (−1.738)

14 0.165 −0.037 −33.778 −15.142 0.874
(0.574) (−1.222) (−1.529) (−2.610) (0.856)
(0.580) (−0.624) (−0.404) (−2.061)

15 −0.089 0.033 0.992 −151.152 7.087 −17.542 0.881
(−0.240) (0.242) (0.915) (−0.430) (0.147) (−1.777) (0.850)
(−0.226) (0.178) (0.889) (−0.300) (0.231) (−1.186)



Table 5: Illiquidity portfolios, equal weighted.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 equal-weighted illiquidity portfo-
lios using monthly data during 1964–1999 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.391 0.046 1.115 0.825
(−0.835) ( — ) (2.085) (0.825)

2 −0.299 0.062 0.996 0.846
(−0.715) (3.647) (2.031) (0.832)

3 0.614 0.082 0.634
(2.397) (3.808) (0.618)

4 −0.530 1.374 0.350
(−1.129) (2.392) (0.322)

5 0.602 154.046 0.759
(2.358) (3.731) (0.748)

6 −0.276 −63.214 0.498
(−0.762) (−2.653) (0.476)

7 0.558 −9.023 0.863
(2.202) (−3.615) (0.857)

8 −0.653 1.456 0.529
(−1.397) (2.723) (0.509)

9 −0.088 0.046 −2.699 3.395 0.878
(−0.236) ( — ) (−1.364) (1.711) (0.873)

10 0.105 0.008 −6.392 6.800 0.901
(0.282) (0.384) (−2.266) (2.476) (0.886)

11 0.084 122.545 −34.470 0.875
(0.271) (3.713) (−1.634) (0.863)

12 0.262 −20.377 −7.689 0.896
(0.898) (−0.988) (−3.704) (0.887)

13 0.174 −0.050 212.382 −28.493 0.882
(0.572) (−1.005) (1.996) (−1.320) (0.865)

14 0.229 0.009 −22.808 −6.753 0.897
(0.771) (0.463) (−1.067) (−2.308) (0.883)

15 −0.053 0.117 1.207 −346.547 33.043 −17.356 0.913
(−0.129) (1.208) (0.988) (−1.217) (0.622) (−2.242) (0.890)



Table 6: Illiquidity portfolios, value-weighted market.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted illiquidity portfo-
lios using monthly data during 1964–1999 with an value-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −1.938 0.034 2.495 0.486
(−2.278) ( — ) (2.797) (0.486)

2 −2.059 0.081 2.556 0.642
(−2.322) (3.382) (2.811) (0.609)

3 0.671 0.080 0.443
(2.883) (3.362) (0.418)

4 0.700 0.062 0.000
(1.224) (0.099) (−0.043)

5 0.647 1955.555 0.630
(2.801) (3.569) (0.614)

6 −0.616 −937.655 0.627
(−1.551) (−3.242) (0.610)

7 0.625 −9.829 0.704
(2.718) (−3.620) (0.692)

8 −1.851 2.451 0.183
(−2.176) (2.748) (0.148)

9 −1.536 0.034 −6.070 8.099 0.754
(−2.029) ( — ) (−2.351) (2.699) (0.743)

10 −0.583 −0.076 −16.226 17.333 0.841
(−0.866) (−1.945) (−3.211) (3.317) (0.819)

11 −0.216 1286.806 −613.320 0.824
(−0.637) (2.935) (−2.423) (0.808)

12 −0.129 −542.221 −6.703 0.843
(−0.389) (−2.171) (−3.034) (0.828)

13 0.000 −0.097 3380.318 −458.446 0.857
(0.001) (−1.772) (2.597) (−1.822) (0.836)

14 0.050 −0.057 −408.975 −12.713 0.865
(0.150) (−1.491) (−1.622) (−2.711) (0.846)

15 0.039 −0.056 0.015 −116.450 −405.451 −13.135 0.865
(0.069) (−0.850) (0.019) (−0.035) (−1.257) (−1.063) (0.829)



Table 7: Illiquidity portfolios, with control variables.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted illiquidity portfo-
lios using monthly data during 1964–1999 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t−r

f
t ) = α+κE(cp

t )+λ1β1p+λ2β2p+λ3β3p+λ4β4p+λβnet,p+λ5ln(sizep)+λ6BMp ,

where βnet,p = β1p + β2p − β3p − β4p, and the control variables ln(sizep) and
BMp are, respectively, the time-series average of the natural log of the ratio of
the portfolio’s market capitalization at the beginning of the month to the total
market capitalization, and BM is the time-series average of the average monthly
book-to-market of the stocks constituting the portfolio. In some specifications,
κ is set to be the average monthly turnover. The t-statistic, reported in the
parentheses, is estimated using the standard Fama–Macbeth method. The R2 is
obtained in a single cross-sectional regression, and the adjusted R2 is reported in
the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p ln(sizep) B/M R2

1 −1.358 0.034 2.158 0.142 1.076 0.865
(−2.319) ( — ) (2.504) (1.637) (2.123) (0.852)

2 −1.286 0.028 1.970 0.129 1.120 0.865
(−2.037) (1.169) (1.964) (1.284) (2.278) (0.838)

3 −0.263 −0.003 −0.032 1.067 0.841
(−0.748) (−0.174) (−0.611) (2.196) (0.818)

4 −0.818 0.798 0.043 1.350 0.850
(−1.410) (0.989) (0.522) (2.616) (0.829)

5 −0.243 −2.584 −0.034 1.030 0.841
(−0.686) (−0.058) (−0.650) (2.071) (0.818)

6 −0.550 −31.418 0.032 1.213 0.844
(−1.095) (−0.697) (0.327) (2.354) (0.821)

7 0.166 −5.499 −0.060 0.326 0.850
(0.470) (−1.078) (−1.145) (0.612) (0.828)

8 −0.942 1.061 0.066 1.329 0.855
(−1.609) (1.231) (0.761) (2.621) (0.834)

9 −1.273 0.034 −3.740 6.145 0.155 0.679 0.869
(−2.223) ( — ) (−0.755) (1.165) (1.717) (1.313) (0.850)

10 −0.441 −0.018 −12.278 13.565 0.068 0.159 0.882
(−0.674) (−0.458) (−1.511) (1.723) (0.671) (0.272) (0.850)

11 −0.614 21.881 −48.906 0.060 1.125 0.845
(−1.216) (0.434) (−1.073) (0.574) (2.176) (0.814)

12 −0.344 −76.978 −9.320 0.087 0.362 0.864
(−0.691) (−1.676) (−1.745) (0.864) (0.672) (0.837)

13 −0.289 −0.098 238.283 −37.520 0.024 0.732 0.850
(−0.549) (−0.860) (0.963) (−0.819) (0.230) (1.318) (0.811)

14 0.150 −0.036 −39.860 −15.693 0.009 −0.044 0.874
(0.276) (−1.054) (−0.868) (−1.941) (0.088) (−0.072) (0.841)

15 −0.557 0.059 1.300 −183.466 −19.865 −17.238 0.087 0.253 0.884
(−0.848) (0.418) (1.107) (−0.520) (−0.373) (−1.544) (0.759) (0.424) (0.836)



Table 8: Illiquidity portfolios, 1964–1981.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted illiquidity portfo-
lios using monthly data during 1964–1981 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −1.781 0.034 2.814 0.867
(−3.019) ( — ) (3.403) (0.867)

2 −1.744 0.040 2.762 0.868
(−3.279) (1.438) (3.633) (0.856)

3 0.510 0.112 0.336
(1.460) (3.037) (0.307)

4 −2.098 3.337 0.777
(−3.405) (3.721) (0.768)

5 0.503 248.964 0.434
(1.446) (3.224) (0.410)

6 −1.332 −138.112 0.830
(−2.906) (−3.701) (0.823)

7 0.402 −22.700 0.671
(1.189) (−3.517) (0.657)

8 −1.967 3.082 0.833
(−3.336) (3.727) (0.826)

9 −1.529 0.034 −3.591 6.000 0.877
(−3.109) ( — ) (−0.763) (1.294) (0.871)

10 −1.059 −0.058 −17.523 19.086 0.903
(−2.102) (−1.156) (−2.054) (2.310) (0.889)

11 −1.122 77.011 −120.409 0.858
(−2.757) (1.348) (−3.521) (0.845)

12 −0.905 −101.409 −9.242 0.883
(−2.355) (−3.119) (−1.847) (0.872)

13 −0.768 −0.323 735.624 −96.591 0.895
(−1.933) (−2.171) (2.365) (−2.998) (0.881)

14 −0.710 −0.067 −85.394 −19.953 0.902
(−1.842) (−1.437) (−2.731) (−2.333) (0.888)

15 −0.933 −0.155 0.969 267.298 −46.940 −13.440 0.906
(−1.707) (−0.844) (0.617) (0.562) (−0.698) (−1.000) (0.881)



Table 9: Illiquidity portfolios, 1982–1999.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted illiquidity portfo-
lios using monthly data during 1982–1999 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 0.668 0.034 0.211 0.394
(1.178) ( — ) (0.336) (0.394)

2 0.721 0.043 0.135 0.407
(1.399) (1.759) (0.229) (0.353)

3 0.831 0.047 0.398
(2.701) (1.590) (0.372)

4 0.522 0.444 0.094
(0.892) (0.651) (0.054)

5 0.834 93.304 0.414
(2.716) (1.534) (0.388)

6 0.589 −20.804 0.128
(1.245) (−0.725) (0.090)

7 0.810 −7.192 0.457
(2.616) (−1.445) (0.433)

8 0.482 0.478 0.136
(0.849) (0.763) (0.099)

9 0.862 0.034 −2.770 2.668 0.435
(1.779) ( — ) (−0.636) (0.647) (0.410)

10 1.070 −0.007 −8.923 8.448 0.469
(2.067) (−0.152) (−1.077) (1.087) (0.394)

11 0.847 94.674 0.959 0.414
(1.982) (1.814) (0.034) (0.361)

12 1.022 16.401 −9.369 0.494
(2.476) (0.556) (−1.937) (0.448)

13 0.888 −0.037 170.932 3.717 0.417
(2.107) (−0.289) (0.615) (0.126) (0.334)

14 1.039 −0.006 17.838 −10.330 0.495
(2.489) (−0.161) (0.578) (−1.316) (0.423)

15 0.755 0.221 1.015 −569.601 61.114 −21.644 0.568
(1.535) (1.106) (0.678) (−1.101) (0.888) (−1.494) (0.454)



Table 10: Properties of size portfolios.

This table reports the properties of the odd–numbered portfolios of 25 value-
weighted size portfolios formed each year during 1964–1999 as described in Section
4.2. The four betas (βip) are computed for each portfolio using all monthly return
and illiquidity observations for a portfolio, and an equal-weighted market portfolio.
In particular, these betas based on (7), where the innovations in portfolio illiquid-
ity and market illiquidity are computed using the AR(2) specification in (16) for
the standardized illiquidity series, and the innovations in market portfolio return
is computed using an AR(2) specification for the market return series that also
employs available market characteristics at the beginning of the month (return,
volatility, average illiquidity, log of average dollar volume, log of average turnover,
all measured over past six months, and log of one-month lagged market capital-
ization). The t-statistics, reported in parenthesis, are estimated using GMM. The
standard deviation of the portfolio illiquidity innovations is reported under the
column σ(∆cp). The average illiquidity, E(cp), the average excess return, E(re,p),
the turnover (trn), the market capitalization (size), and book-to-market (BM) are
computed for each portfolio as time-series averages of the respective monthly char-
acteristics. Finally, σ(rp), is the average of the standard deviation of daily returns
for the portfolio’s constituent stocks computed each month.

β1p β2p β3p β4p E(cp) σ(∆cp) E(re,p) σ(rp) trn size BM
(· 100) (· 100) (· 100) (· 100) (%) (%) (%) (%) (%) (ml$)

1 97.87 0.38 −1.77 −5.00 5.46 1.25 1.13 2.76 4.86 0.71 1.37
(22.50) (5.38) (−9.24) (−3.45)

3 100.00 0.20 −1.80 −4.21 2.66 0.67 0.93 2.72 4.74 1.98 1.15
(35.16) (8.54) (−8.64) (−5.02)

5 105.04 0.12 −1.93 −2.56 1.66 0.44 0.83 2.62 4.96 3.47 1.10
(32.70) (7.06) (−9.15) (−5.59)

7 101.27 0.08 −1.81 −1.77 1.15 0.25 0.98 2.45 4.73 5.45 1.01
(31.58) (7.80) (−7.51) (−5.95)

9 101.11 0.05 −1.80 −1.18 0.78 0.16 0.84 2.38 5.29 8.09 0.93
(38.24) (8.74) (−8.30) (−7.72)

11 97.95 0.03 −1.75 −0.78 0.62 0.11 0.81 2.28 5.20 11.61 0.91
(34.84) (7.40) (−7.25) (−6.81)

13 96.30 0.02 −1.64 −0.57 0.49 0.08 0.79 2.18 5.09 16.73 0.84
(45.84) (6.36) (−6.66) (−6.53)

15 91.81 0.01 −1.57 −0.41 0.41 0.06 0.69 2.08 4.92 24.45 0.85
(28.71) (4.61) (−6.61) (−4.72)

17 85.88 0.01 −1.44 −0.25 0.36 0.03 0.73 1.96 4.86 36.59 0.79
(42.70) (4.28) (−6.07) (−4.62)

19 83.56 0.00 −1.40 −0.16 0.31 0.02 0.65 1.85 4.73 57.12 0.77
(35.98) (2.18) (−5.94) (−2.46)

21 77.79 0.00 −1.25 −0.06 0.28 0.01 0.62 1.75 4.54 96.24 0.74
(34.91) (0.96) (−5.45) (−1.11)

23 69.60 0.00 −1.12 −0.03 0.27 0.01 0.50 1.63 4.20 186.57 0.71
(20.88) (0.59) (−4.66) (−0.55)

25 53.34 0.00 −0.78 −0.00 0.25 0.00 0.49 1.42 2.80 988.69 0.52
(16.53) (0.05) (−4.06) (−0.06)



Table 11: Size portfolios.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted size portfolios
using monthly data during 1964–1999 with an equal-weighted market portfolio.
We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.087 0.047 0.865 0.910
(−0.255) ( — ) (1.993) (0.910)

2 −0.059 0.056 0.823 0.912
(−0.191) (1.885) (2.010) (0.904)

3 0.647 0.111 0.583
(2.639) (2.721) (0.565)

4 −0.265 1.144 0.757
(−0.749) (2.443) (0.747)

5 0.668 151.962 0.619
(2.714) (2.725) (0.603)

6 −0.045 −51.693 0.793
(−0.156) (−2.470) (0.784)

7 0.640 −9.871 0.698
(2.641) (−2.657) (0.685)

8 −0.236 1.077 0.810
(−0.686) (2.483) (0.801)

9 −0.043 0.047 −0.770 1.562 0.912
(−0.146) ( — ) (−0.289) (0.603) (0.908)

10 −0.055 0.054 −0.168 0.984 0.912
(−0.180) (1.054) (−0.034) (0.209) (0.900)

11 0.118 80.542 −38.030 0.912
(0.464) (1.981) (−1.951) (0.904)

12 0.155 −34.828 −5.108 0.896
(0.626) (−1.782) (−1.817) (0.886)

13 0.199 −0.188 334.539 −35.211 0.918
(0.790) (−0.816) (1.035) (−1.835) (0.906)

14 0.093 0.056 −38.954 −0.213 0.907
(0.368) (1.136) (−1.964) (−0.043) (0.894)

15 0.224 −0.408 −0.079 742.841 −42.800 7.933 0.929
(0.619) (−1.403) (−0.070) (1.622) (−0.846) (1.152) (0.911)



Table 12: Book-to-market by size portfolios.

This table reports the estimated coefficients from Fama and Macbeth (1973)-type
regressions of the liquidity-adjusted CAPM for 25 value-weighted book-to-market
by size portfolios using monthly data during 1964–1999 with an equal-weighted
market portfolio. We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p+β2p−β3p−β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using
the standard Fama–Macbeth method. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

constant E(cp) β1p β2p β3p β4p βnet,p R2

1 0.200 0.045 0.582 0.406
(0.699) ( — ) (1.466) (0.406)

2 0.453 0.167 0.182 0.541
(1.716) (3.546) (0.456) (0.499)

3 0.598 0.189 0.530
(2.559) (3.162) (0.510)

4 0.109 0.748 0.262
(0.370) (1.764) (0.229)

5 0.637 303.217 0.540
(2.702) (3.086) (0.520)

6 0.343 −27.769 0.201
(1.493) (−1.552) (0.166)

7 0.629 −14.231 0.511
(2.698) (−2.903) (0.490)

8 0.107 0.729 0.288
(0.373) (1.838) (0.257)

9 0.529 0.045 −8.289 8.275 0.503
(2.009) ( — ) (−2.240) (2.341) (0.481)

10 0.187 0.387 18.229 −17.458 0.571
(0.679) (3.330) (2.072) (−2.039) (0.510)

11 0.663 311.642 1.994 0.541
(3.113) (3.698) (0.110) (0.499)

12 0.696 5.158 −15.370 0.514
(3.270) (0.278) (−3.573) (0.470)

13 0.704 −0.112 494.141 3.193 0.543
(3.078) (−0.475) (1.158) (0.172) (0.477)

14 0.597 0.175 −0.222 −1.007 0.530
(2.714) (1.615) (−0.012) (−0.099) (0.463)

15 −0.395 −0.031 4.545 397.770 195.128 0.380 0.789
(−1.128) (−0.112) (3.487) (0.533) (3.240) (0.019) (0.733)
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Figure 2: Illiquidity portfolios: The top panel shows the fitted CAPM returns vs.
realized returns using monthly data 1964–1999 for value-weighted illiquidity portfolios.
The middle panel shows the same for the liquidity-adjusted CAPM, and the lower panel
shows the relation for the liquidity adjusted CAPM with unconstrained risk premia.
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Figure 3: Size portfolios: The top panel shows the fitted CAPM returns vs. realized
returns using monthly data 1964–1999 for value-weighted size portfolios. The middle panel
shows the same for the liquidity-adjusted CAPM, and the lower panel shows the relation
for the liquidity adjusted CAPM with unconstrained risk premia.
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Figure 4: Book-to-market by size portfolios: The top panel shows the fitted
CAPM returns vs. realized returns using monthly data 1964–1999 for value-weighted BM-
size portfolios. The middle panel shows the same for the liquidity-adjusted CAPM, and
the lower panel shows the relation for the liquidity adjusted CAPM with unconstrained
risk premia.


