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Abstract

In a model with housing collateral, the ratio of housing wealth to human wealth shifts
the conditional distribution of asset prices and consumption growth. A decrease in house
prices reduces the collateral value of housing, increases household exposure to idiosyncratic
risk, and increases the conditional market price of risk. Using aggregate data for the US, we
find that a decrease in the ratio of housing wealth to human wealth predicts higher returns
on stocks. Conditional on this ratio, the covariance of returns with aggregate risk factors
explains eighty percent of the cross-sectional variation in annual size and book-to-market
portfolio returns.
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Introduction

We identify a novel collateral channel that transmits shocks in the housing market to risk premia.
In a model with collateralized borrowing and lending, the ratio of housing wealth to human
wealth, the housing collateral ratio, changes the conditional distribution of consumption growth
across households. When the collateral ratio is low, the dispersion of consumption growth across
households is more sensitive to aggregate consumption growth shocks and this raises the market
price of aggregate risk.

The model predicts that risk premia fluctuate predictably over time and in the cross-section.
These predictions are confirmed by US equity return data. Investors demand a larger compensa-
tion for a given amount of aggregate risk in times when the housing collateral ratio is low. This
implies that the housing collateral ratio predicts aggregate stock returns over time. In the cross-
section, the model predicts that assets whose returns are more tightly correlated with aggregate
consumption growth shocks when collateral is scarce trade at a discount. Conditional on the
housing collateral ratio, the covariance of returns with aggregate consumption growth shocks
explains about eighty percent of the cross-sectional variation in US stock returns, because the
returns of value stocks are more correlated with aggregate consumption growth shocks during
low collateral periods than are growth stocks. In Lustig & VanNieuwerburgh (2003) we calibrate
this model and we show that the collateral effect can match the time-series and cross-sectional
variation in risk premia in US data at moderate levels of risk aversion.

There are two main channels that transmit shocks originating in the housing market to the
risk premia in asset markets. First, households want to hedge against rental price shocks or con-
sumption basket composition shocks when the utility function is non-separable in non-durable
consumption and housing services. This introduces a new risk factor is the focus of recent
work by Piazzesi, Schneider, & Tuzel (2002) and Yogo (2003). In particular, if housing services
and consumption are complements then households command a larger risk premium if returns
and rental price growth are positively correlated. This approach relies on a particular type
of non-separability to generate large risk premia, but does not rely on imperfect consumption
insurance. We argue that the market price of composition risk is small and roughly constant for
plausible parameter values, in line with earlier work by Dunn & Singleton (1986) and Eichen-
baum & Hansen (1990). They report substantial evidence against the null of separability in a
representative agent model with non-durable consumption and durables, but they conclude that
introducing durables does not help in reducing the pricing errors for stocks.

Second, a drop in the housing collateral ratio adversely affects the risk sharing technology
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that enables households to insulate consumption from labor income shocks, and the distribution
of consumption growth fans out as this ratio decreases. When housing prices decrease, collateral
is destroyed and households are more exposed to idiosyncratic labor income risk. The risk asso-
ciated with these collateral constraints contributes a liquidity factor to the stochastic discount
factor. The collateral effect does not hinge on whether and how preferences over nondurable and
housing consumption are non-separable. Instead, it relies on imperfect consumption insurance
among households induced by occasionally binding collateral constraints. The housing market
delivers shocks to the risk-sharing technology.

Without these collateral constraints our model collapses to the standard consumption-based
capital-asset-pricing model of Lucas (1978) and Breeden (1979). That model prices only aggre-
gate consumption growth risk and it has been rejected by the data (e.g. Hansen & Singleton
(1983)). Our paper addresses two empirical failures of the consumption-based capital-asset-
pricing model (CCAPM).

First, because US aggregate consumption growth is approximately i.i.d., the CCAPM implies
a market price of risk that is approximately constant. However, in the data, stock market
returns are predictable and this suggests that the market price of aggregate risk varies over
time (e.g. Fama & French (1988), Campbell & Shiller (1988), Ferson, Kandel, & Stambaugh
(1987), Whitelaw (1997), Lamont (1998), Lettau & Ludvigson (2003) and Campbell (2000) for
an overview). Our model delivers time variation in the market price endogenously through
the housing market. As the housing collateral ratio decreases, the conditional volatility of the
liquidity factor increases. In the data, the housing collateral ratio does predict the aggregate
US stock market return, mainly at lower frequencies.

Second, the covariance of asset returns with consumption growth explains only a small frac-
tion of the variation in the cross-section of stock returns of firms sorted in portfolios according to
size (market capitalization) and value (book-value to market-value ratio) characteristics (Fama
& French (1992)). In response to this failure, Fama & French (1993) directly specify the stochas-
tic discount factor as a linear function of the market return, the return on a small minus big
firm portfolio, and a high minus low book-to-market firm portfolio. The empirical success of this
three-factor model has motivated quite some more recent research on the underlying macroeco-
nomic sources of risk for which their factors proxy (e.g. Bansal, Dittmar, & Lundblad (2002),
Lettau & Ludvigson (2001b), Santos & Veronesi (2001) and Cochrane (2001) for an overview).
Our model generates large value premia for stocks whose dividends are more sensitive to the
housing collateral ratio. In the data, the collateral model explains eighty percent of the vari-
ability in annual returns of the Fama-French size and book-to-market portfolios. For annual
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returns, this matches the empirical success of the Fama & French (1993) three-factor model and
recent conditional consumption-based asset pricing models (e.g. Lettau & Ludvigson (2001b)).

We measure the aggregate stock of housing collateral in three different ways: the value of
outstanding mortgages, the value of residential real estate (structures and land) and the value of
residential fixed assets (structures). The housing collateral ratio, which we label my, is measured
as the deviation from the cointegration relationship between the value of the aggregate housing
stock and aggregate labor income.

The collateral constraints are motivated by the empirical importance of housing as a collateral
asset. In the US, two-thirds of households own their house. For the median-wealth homeowner,
home equity represents seventy percent of household net worth (Survey of Consumer Finance,
1998). Residential real estate wealth accounts for twenty-eight percent of total household net
worth and sixty-eight percent of non-financial assets, while home mortgages make up sixty-
four percent of household liabilities (Flow of Funds, Federal Reserve, averages for 1952-2002).
Currently, the value of residential wealth exceeds the total household stock market wealth ($13.6
trillion) and the mortgage market is the largest credit market in the US ($6.1 trillion).

The model that underlies these empirical results contains the following essential ingredients.
It is an endowment economy with a continuum of agents who are subject to labor income shocks.
As in Lustig (2001), we allow households to forget their debts. The new feature of our model
is that each household owns part of the housing stock. Housing provides utility services and
collateral services. When a household chooses to forget its debts, it loses all its housing wealth
but its labor income is protected from creditors, and the household is not excluded from trading.
This gives rise to collateral constraints whose tightness depends on the abundance of housing
collateral. We measure this by the housing collateral ratio: the ratio of collateralizable housing
wealth to non-collateralizable human wealth.

The stochastic discount factor contains a new component which we label the aggregate liquid-
ity shock (see Lustig (2001)). It is the growth rate of a cross-sectional moment of the consump-
tion share distribution. The household’s consumption share of the total endowment, both for
non-durables and housing services, increases whenever the household switches to a state with a
binding constraint. When a large fraction of households is constrained this growth rate is high.
We call this a liquidity shock.

The housing collateral ratio changes the conditional moments of the aggregate liquidity shock.
When the housing collateral ratio is low, households run into binding collateral constraints more
frequently. This increases the conditional standard deviation of the aggregate weight shock,
and, by the same token, the market price of risk. Thus, endogenous movements in the housing
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collateral ratio turn the liquidity shocks in the stochastic discount factor on and off, and this
induces heteroskedasticity and counter-cyclicality in the Sharpe ratio. This collateral mechanism
is a novel feature of the model.

In Lustig & VanNieuwerburgh (2003) we fully calibrate and solve the model. The equilibrium
aggregate liquidity shock is a function of the primitives of the model: the preferences, the
household endowment process, the aggregate endowment process and the aggregate rental price
process. The model generates large, time-varying risk premia and a value premium for stocks
whose dividends are more responsive to collateral ratio shocks.

The empirical strategy here is to estimate the stochastic process for the aggregate weight
shocks. In a first step we allow this process to depend in a non-linear fashion on the aggregate
pricing factors. We estimate the parameters from the moment conditions implied by the Euler
equations for the aggregate market return, the risk-free rate, a long term bond and a limited
number of size and book-to-market portfolios. The Euler inequalities for the representative
agent allow us to precisely estimate the coefficient of risk aversion. The estimated coefficients of
relative risk aversion are plausible (between 2 and 5) and much lower than those for the other
models we consider, as shown by Figure 1. In addition, the parameters in the aggregate weight
shock specification are estimated precisely and have the sign predicted by the collateral channel.
The pricing errors are small and the model cannot be rejected.

The linear specification for the aggregate weight shock fits the data best and it allows us to
make contact with the linear factor models in empirical finance. This specification delivers a
conditional version of the CCAPM with the housing collateral ratio as the conditioning variable.
The housing collateral ratio summarizes the investor’s time-varying information set. This model
prices the 25 Fama-French size and book-to-market portfolios surprisingly well. It assigns the
value premium to risk compensation for a higher correlation of value returns with aggregate
risk factors in times when collateral is scarce. We provide evidence on dividend dynamics that
potentially explains why value returns respond differently to aggregate shocks when the collateral
ratio is small.

We organize the paper as follows. In section 1, we briefly discuss other related literature.
Section 2 describes the essence of the model. The third section discusses the composition channel
and collateral channel in more depth. Section 4 contains the time-series predictability results
and sections 5 and 6 contain the empirical results for the cross-section. Section 7 concludes.
Appendix A contains technical remarks about the estimation and a more detailed description of
the data. The most important figures and tables appear in the main text, all others in Appendix
B.
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Figure 1: CCAPM, HCAPM and Collateral-CAPM - Moments of the estimated SDF. The Hansen-

Jagannathan bounds are computed using annual data from 1926-2002 for the real value-weighted market return, the risk-free

rate, a 10 year bond and RHML, the return on the high value minus low value stock portfolio. The model parameters are

estimated by GMM for these 4 test assets. The plot shows the moments of the implied SDF.
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1 Related Literature

Our paper is closest to the work of Lettau & Ludvigson (2001b). We also develop a scaled
version of the CCAPM. Our state variable my summarizes information about future returns on
housing relative to human capital while the scaling variable in Lettau & Ludvigson (2001b) is
the consumption-wealth ratio, which summarizes household expectations about future returns
on the entire market portfolio.

In a different class of models, Cogley (2002) and Brav, Constantinides, & Gezcy (2002) find
that including higher moments like the standard deviation and skewness of the consumption
growth distribution reduces the size of Euler equation errors for stock returns. This evidence
is consistent with our model. In case of a large aggregate weight shock, the dispersion of the
consumption growth distribution increases, while its skewness decreases. This provides indirect
evidence for the consumption growth distribution shocks that drive our results. We provide a
theory of what governs these shocks.

Cochrane (1996) explores the explanatory power of residential and non-residential investment
for equity returns in the context of his production-based asset pricing framework (Cochrane
(1991a)). Li, Vassalou, & Xing (2002) find that investment growth, including household sector
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investment which is largely residential, can help account for a large fraction of the cross-sectional
variation in equity returns. Similarly, Kullmann (2002) uses returns on residential and commer-
cial real estate to improve the performance of the capital asset pricing model. We do not offer
a theory of what distinguishes value firms from growth firms, but we report empirical evidence
that the dividend process of value firms is more sensitive to the housing collateral ratio than the
dividend process for growth firms. Our model generates significantly larger premia for claims
to dividend processes that are highly sensitive to collateral shocks (Lustig & VanNieuwerburgh
(2003)).

Life-cycle and portfolio choice models with housing such as Krueger & Villaverde (2001),
Cocco (2000), Yao & Zhang (2002), Flavin & Yamashita (2002) posit an exogenous price process
for housing. We endogenize the price of the asset but we abstract from life-cycle considerations.

2 Model

Our economy’s risk sharing technology is subject to shocks originating in the housing market
and these shocks determine the size of the wedge between the market’s valuation of payoffs and
the representative agent’s IMRS. The stochastic discount factor in our model is

mt+1 = ma
t+1g

γ
t+1,

where ma
t+1 is the IMRS of a representative agent who consumes non-durable consumption

and housing services, and gγ
t+1 is the liquidity factor contributed by the solvency constraints.

This factor can be interpreted as the aggregate cost of the solvency constraints. When these
solvency constraints do not bind, the liquidity factor disappears and payoffs can be priced off
the representative agent’s IMRS ma

t+1. We show that this liquidity factor can explain some of
the variation in US stock returns over time and in the cross-section.

2.1 Collateral Channel

In our economy a continuum of agents are endowed with claims to stochastic labor income
streams. These agents consume non-durable consumption and housing services. The markets
for housing services are frictionless in that the ownership of the asset and use of its services are
completely distinct.

We use st to denote the history of events st = (yt, zt), where yt denotes the history of
idiosyncratic events and zt denotes the history of aggregate events. Households can purchase
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housing services
{
ht(st)

}
in the spot markets at spot prices

{
ρt(zt)

}
as well as non-durable

consumption
{
ct(st)

}
.

Although agents cannot sell claims to their labor income stream
{
ηt(st)

}
, they can trade

a complete set of contingent claims to insure against idiosyncratic labor income risk, but these
trades are subject to solvency constraints. The solvency constraints can be stated as a restric-
tions on the value of a household’s consumption claim, net of its labor income claim:

Πst

[{
ct(st) + ρt(z

t)ht(st)
}] ≥ Πst

[{
ηt(s

t)
}]

,

where Πst

[{
dt(st)

}]
denotes the price of a claim to

{
dt(st)

}
.

The supply of housing wealth relative to human wealth governs the tightness of the solvency
constraints.

{
ca
t (z

t)
}

denotes the aggregate endowment stream of non-durable consumption and{
ha

t (z
t)

}
denotes the aggregate endowment of housing services. The effectiveness of the risk

sharing technology our economy is endowed with depends on the ratio of the housing wealth to
total wealth. We call this ratio the housing collateral ratio my:

myt(zt) =
Πzt [{ρha}]
Πzt [{c}]

Suppose the households in this economy derive no utility from housing services, then there is no
collateral in this economy and my is zero. All the solvency constraints necessarily bind at all
nodes and households are in autarchy. As my increases, perfect risk sharing becomes feasible.

The aggregate housing collateral ratio my is a quasi-sufficient statistic for the risk sharing
capacity of this economy. The stock of collateral is allocated efficiently across households in
a stationary equilibrium and this absolves us from the need to track the entire distribution of
collateral across households.

Shocks to my change the conditional distribution of consumption across households and asset
prices. The next section explains exactly how shocks to my impinge on allocations and prices.

Consumption We use Pareto-Negishi weights to characterize the equilibrium prices and al-
locations. ξt(`, st) denotes the stochastic Pareto-Negishi weight of a household that starts off
with initial weight ` and ξa

t (z
t) denotes the 1/γ-th cross-sectional moment of these household

weights at aggregate node zt :
∫

ξt(yt, zt)
1
γ dΦt(zt). Φ0 is the initial distribution over `(θ0, s0),

implied by the initial wealth distribution Θ0. Φt(zt) is the distribution over weights after ag-
gregate history zt. These weights are constant as long as the agent does no switch to a state
with a binding constraint. The consumption share of an agent equals the ratio of his individual
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stochastic Pareto-Negishi weight to the aggregate Pareto-Negishi weight:

ct(`, st) =
ξt(`, st)

1
γ

ξa
t (zt)

ca
t (z

t) and ht(`, st) =
ξt(`, st)

1
γ

ξa
t (zt)

ha
t (z

t), (1)

ξa
t (z

t) is a non-decreasing stochastic process. An agent’s consumption share decreases until she
switches to a state with a binding constraint. These Pareto-Negishi weights are raised to the
cutoff level lct (yt, z

t) whenever a constraint binds. The cutoff levels for the weights increase as
the housing collateral ratio decreases. When there is no housing collateral, the cutoff level for
the consumption share equals the household’s labor income share:

lct (yt, z
t)

1
γ

ξa
t (zt)

= ωt(yt, z
t) ↗ η̂(yt, zt) as my ↘,

where η̂(yt, zt) is the labor income share relative to the total non-durable endowment. The lower
the collateral ratio, the larger the increase in its consumption share when it switches to a state
with a binding solvency constraint. Household consumption becomes increasingly sensitive to
income shocks as the housing collateral ratio decreases (see Figure 2.)1

In a stationary equilibrium, each household’s consumption share is drifting downwards as long
as it does not switch to a state with a binding constraint. The rate at which these shares decrease
depends on the housing collateral ratio. When this ratio is low, the solvency constraints are
tight, many households are highly constrained and the remainder experience large consumption
share drops. The risk-free rate is low, inducing households to decumulate assets at a high rate.
When this ratio is high enough, none of the households are constrained and interest rates are
high. The growth rate of aggregate weight process ξa

t (z
t) determines the consumption growth

of the unconstrained households and these households price payoffs in each state of the world.

3 The Market Price of Aggregate Risk

Using the risk sharing rules in (1), the following expression for the IMRS of the unconstrained
household emerges: mt+1 = ma

t+1g
γ
t+1. This is the SDF in the sense of (Hansen & Jagannathan

(1991)) that prices payoffs. The first section focusses on ma and it examines the data through the
lens of a representative agent model. The new risk factor contributed by the non-separability
in the utility function is referred to as composition risk. We show that the market price of

1The calibration is discussed in Lustig & VanNieuwerburgh (2003).
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Figure 2: The Consumption Share Cutoff of One Household and my The dotted line is the collateral

ratio and the full line is ωt: β is .95, γ is 8 and ε is .15. The graph shows a 200 period simulation of the model at an annual

frequency.
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composition risk is likely to be small. The second section focusses on gt+1 and it examines the
liquidity risk factor contributed by the collateral channel more carefully.

3.1 Composition Effect

Without the collateral constraints, ours is a representative agent economy. If utility is non-
separable, the housing market introduces a novel risk factor: shocks to the non-housing expen-
diture share. The representative agent’s marginal utility growth is determined by aggregate
consumption growth and non-housing expenditure share growth:

ma
t+1 = δ

(
ca
t+1

ca
t

)−γ (
αt+1

αt

) ε− 1
γ

1
γ (ε−1)

where αt is the non-housing expenditure share, γ is the coefficient of relative risk aversion
and ε is the intratemporal elasticity of substitution between housing services and non-durable
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consumption.
We simply apply this stochastic discount factor to the data. We use the annual personal

consumption expenditures data from the BEA (1929-2002) to compute the expenditure shares.
Consumption is non-durable consumption measured by total expenditures on non-durable goods
and services minus apparel and minus rent and imputed rent. The non-housing expenditure share
is the ratio of non-durable consumption to rent expenditures and non-durable consumption.

Composition risk is small. The standard deviation of aggregate expenditure share growth
is .7 percent between 1929 and 2002, much smaller than the standard deviation of aggregate
consumption growth. A large power coefficient is needed on the expenditure share growth term
for composition risk to matter. Piazzesi et al. (2002) (henceforth PST) show that only values for
the elasticity of intratemporal substitution ε close to but slightly larger than one, and low values
for the intertemporal elasticity deliver a volatile SDF. The power coefficient on the expenditure
share growth rate reaches values of 85 and higher. In this range, the model delivers a large
market price of risk of about 1.3, at the cost of overstating the volatility of rental price growth
by a factor ranging from 3 when ε is 1.05 to 15 when ε is 1.01.2 In addition, our estimates of ε

are always smaller than 1, implying a much smaller market price of composition risk (see Table
10 in the Appendix).3

Second, in this region of the parameter space, composition risk is “good times” risk and its
market price is negative. The SDF is volatile, but it is not the right kind of volatility, because
expenditure share growth and consumption growth are positively correlated -the correlation is
.46 over the entire sample. Marginal utility growth increases in expansions, when aggregate
consumption growth is high, rather than in recessions, because the composition risk effects
swamps the consumption risk effect. The model implies a large but negative equity premium of
4 percent over the entire sample, because equity provides an effective hedge against this “good
times” risk and the market imputes a negative price to composition risk.4

Finally, this composition effect generates little or no variation in the conditional Sharpe
ratio’s on risky assets. The conditional volatility of the SDF is roughly constant. PST introduce
heteroskedasticity in the expenditure shares to address this defect of the model, but is hard

2Put differently, if we would have restated the SDF in terms of rental price growth and applied the actual
rental price data to this calibration, the new risk factor would have contributed very little because the implied
expenditure shares would have been roughly constant. In fact, when ε is 1, the expenditure shares are constant
and there is no composition risk.

3The value of ε implied by the PST estimates for the cross-sectional regressions is also smaller than one.
4The equity premium is computed as −cov(m,Re)

E(m)
= −0.0463

1.1314
using the sample moments of the SDF and the

annual value-weighted return on the market less the annualized return on 1-month T-bill , where ε = 1.05, β = .99
and γ = 5. For ε = 1.01 the moments cannot be computed.
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to conceive of preferences and/or a technology that would deliver this feature in equilibrium.
Our collateral channel generates endogenous time-variation in the conditional moments of the
pricing kernel.

We conclude that the share of risk premia that is due to composition risk is likely to be small
for plausible preferences, because (1) volatile SDF’s can only be generated by preferences that
generate too much rental price volatility and because (2) composition risk is “good times” risk,
at least in the region of the parameter space that delivers volatile SDF’s.

3.2 Liquidity Effect and the Collateral Channel

We now focus on the case of separable utility. The representative agent’s IMRS ma is the
aggregate consumption growth rate raised to the power −γ and the SDF reduces to:

mt+1 = δ

(
ca
t+1

ca
t

)−γ

gγ
t+1

For the liquidity effect to increase the volatility of the SDF, the liquidity factor needs to be
negatively correlated with aggregate consumption growth. There are two features that deliver a
negative correlation between aggregate consumption growth and the aggregate liquidity shock:
(1) an increase in the cross-sectional dispersion of labor income shocks, and (2) a decrease in the
amount of collateral, both when aggregate consumption growth is low. The first one relies on
the time series properties of labor income in the US, the second one on the time series properties
of rental prices in the housing market. Both of these channels amplify the effect of aggregate
consumption growth shocks on the SDF.

Dispersion of Labor Income Shocks Constantinides & Duffie (1996) build a negative cor-
relation between the dispersion of consumption growth across households and aggregate stock
returns in their model to generate large risk premia, drawing on earlier work by Mankiw (1986).
The first channel in our model is a different version of this (see Lustig (2001)). It delivers a
negative correlation between the standard deviation of the consumption growth distribution and
stock returns, but this correlation is the equilibrium outcome of the interaction between the sol-
vency constraints and the time series properties of the labor income process. A larger fraction of
agents draws higher labor income shares η̂(y, z) when aggregate consumption growth is low and,
as a result of the persistence of labor income shocks, higher cutoff levels lc(y, zt). This increases
the size of the aggregate weight shock in low aggregate consumption growth states. There is
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some empirical support for this channel. Storesletten, Telmer, & Yaron (2003) conclude that
the volatility of idiosyncratic labor income shocks in the US more than doubles in recessions.

Collateral Supply Shocks If the rental price of housing services declines in response to a
negative aggregate consumption growth shocks, liquidity shocks will tend to be larger when
aggregate consumption growth is low, because the destruction of collateral tightens the solvency
constraints. In the US rental prices increase in response to a positive aggregate consumption
growth in the post-war sample shocks while the expenditure ratio z, increases as well, both in
the post-war sample and over the entire sample. Table 9 in the Appendix list the regression
results.

Time-Varying Market Price of Risk The housing collateral ratio governs the amount of
risk sharing that can be sustained and variations in the ratio endogenously generate heteroskedas-
ticity in the SDF. Low housing collateral ratios coincide with a high conditional volatility of the
SDF, because a large fraction of households will be severely constrained in case of an adverse
aggregate consumption growth shock. This mechanism leaves a huge footprint in the cross-
sectional standard deviation of consumption growth, plotted in Figure 3.

The next section concentrates on measuring the US housing collateral ratio directly. Our
measure reveals a surprising amount of historical variation that is consistent with the variation
in US stock returns.

4 Time Series Evidence

In testing the model, we chose to measure the housing collateral ratio my directly, simply
because forces outside our model probably influence housing prices. In the model, both the
housing collateral ratio and the rental price or the expenditure share are valid state variables.
The first section concentrates on its measurement. The second section confronts our measure
with stock returns.

4.1 Measuring the Housing Collateral Ratio

my is defined as the ratio of collateralizable housing wealth to non-collateralizable human wealth.
Human wealth is unobserved. Following Lettau & Ludvigson (2001a), we assume that the non-
stationary component of human wealth H is well approximated by the non-stationary component
of labor income Y . In particular, log (Ht) = log(Yt)+εt, where εt is a stationary random process.
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Figure 3: The Standard Deviation of Consumption Growth, Liquidity Shocks and my The dotted

line is the collateral ratio: β is .95, γ is 8 and ε is .15l ratio: β is .95. The left panel plots my against the cross-sectional

std. of consumption growth (right axis). The right panel plots my against the aggregate liquidity shock g (right axis).
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The assumption is valid in a model in which the expected return on human capital is stationary
(see Jagannathan & Wang (1996) and Campbell (1996)).

Housing Collateral We use three distinct measures of the housing collateral stock HV : the
value of outstanding home mortgages (mo), the market value of residential real estate wealth
(rw) and the net stock current cost value of owner-occupied and tenant occupied residential
fixed assets (fa). The first two time series are from the Historical Statistics for the US (Bureau
of the Census) for the period 1889-1945 and from the Flow of Funds data (Federal Board of
Governors) for 1945-2001. The last series is from the Fixed Asset Tables (Bureau of Economic
Analysis) for 1925-2001.

We use both the value of mortgages HV mo and the total value of residential fixed assets
HV rw to allow for changes in the extent to which housing can be used as a collateral asset,
and we use both HV rw, which is a measure of the value of housing owned by households, and
HV fa which is a measure of the value of housing households live in, to allow for changes in the
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home-ownership rate over time. Appendix A.3 provides detailed sources. Real per household
variables are denoted by lower case letters. The real, per household housing collateral series
hvmo, hvrw, hvfa are constructed using the all items CPI from the BLS, pa, and the total number
of households, N , from the Bureau of the Census.

Income Aggregate income is labor income plus net transfer income. Nominal data are from
the Historical Statistics of the US for 1926-1930 and from the National Income and Product
Accounts for 1930-2001. Consumption and income are deflated by pc and pa and divided by the
number of households N .

Cointegration Log, real, per household real estate wealth (log hv) and labor income plus
transfers (log y) are non-stationary. According to an augmented Dickey-Fuller test, the null
hypothesis of a unit root cannot be rejected at the 1 percent level. This is true for all three
measures of housing wealth (hv = mo, rw, fa).

If a linear combination of log hv and log y, log (hvt) + $ log (yt) + χ , is trend stationary,
the components log hv and log y are said to be stochastically cointegrated with cointegrating
vector [1, $, χ]. We additionally impose the restriction that the cointegrating vector eliminates
the deterministic trends, so that log (hvt) + $ log (yt) + ϑt + χ is stationary. A likelihood-ratio
test (Johansen & Juselius (1990)) shows that the null hypothesis of no cointegration relationship
can be rejected, whereas the null hypothesis of one cointegration relationship cannot. This is
evidence for one cointegration relationship between housing collateral and labor income plus
transfers. Table 12 reports the results of this test and of the vector error correction estimation
of the cointegration coefficients:

[
∆log (hvt)
∆ log (yt)

]
= α [log (hvt) + $ log (yt) + ϑt + χ] +

K∑

k=1

Dk

[
∆log (hvt−k)
∆ log (yt−k)

]
+ εt. (2)

The K error correction terms are included to eliminate the effect of regressor endogeneity
on the distribution of the least squares estimators of [1, $, ϑ, χ]. The housing collateral ratio
my is measured as the deviation from the cointegration relationship:

myt = log (hvt) + $̂ log (yt) + ϑ̂t + χ̂.

The OLS estimators of the cointegration parameters are superconsistent: They converge to
their true value at rate 1/T (rather than 1/

√
T ). The superconsistency allows us to use the
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housing collateral ratio my as a regressor without need for an errors-in-variables standard error
correction.

We also estimate the constant and trend in the cointegrating relationship while imposing
the restriction $ = −1. This is the second block of each panel in table 12. For mo and fa,
we find strong evidence for one cointegrating relationship. The coefficient on log yt is precisely
estimated (significant at the 1 percent level, not reported), varies little between subperiods, and
the 95 percent confidence interval contains -1. The resulting time-series are stationary. The null
hypothesis of a unit root is rejected for mymo and myfa. For each subperiod, the correlation
between the residual estimated assuming $ = −1 and the one with $ freely estimated is
higher than 0.95. For rw, the evidence for a cointegrating relationship is weaker, except for
the 1925-2002 period. Furthermore, the slope coefficient in the cointegration relationship varies
considerably between subperiods and does not contain -1 in its 95 percent confidence interval.
The correlation between the residual estimated assuming $ = −1 and the one with $ freely
estimated is 0.81 for the entire sample, 0.88 for 1925-2002 and 0.89 for the post-war period.

For consistency we impose $ = −1 on all three of these series. The housing collateral ratios
are labelled mymo, myrw and myfa. For the common sample period 1925-2001, the correlation
between mymo and myrw is 0.89, 0.76 between mymo and myfa and 0.86 between myrw and
myfa. Figure 4 displays my between 1889 and 2002. All three series exhibit large persistent
swings. They reach a maximum deviation in 1932-33. Residential wealth and residential fixed
assets are 30 and 34 percent above their respective joint trends with human wealth. Mortgage
debt is 53 percent above its trend. The series reach a minimum in 1944-45, when mymo is
−.92, myrw is −.57 and myfa is −.38. mymo and myrw have increased considerably since the
year 2000: from .24 to .36 and from 0.19 to 0.30 respectively. Figure 5 shows the cointegration
residuals my for that post-war period. Housing collateral wealth fluctuates within 30 percent
below and above the long-run trend with human wealth.5

In section 4.2 we provide evidence that the housing collateral ratio predicts stock returns.
This suggests that the market price of risk is indeed a function of my.

5When housing wealth deviates from its long-run ratio with labor income, the equilibrium relationship is
restored by transitory movements in both housing wealth and labor income. Table 13 (in appendix B) shows
the estimation results of a bivariate vector autoregression of changes in housing wealth and labor income. The
lagged housing collateral ratio, myt−1, is an exogenous regressor. The coefficients on myt−1 in both equations
have about the same size (and opposite signs). This suggests that the transitory return to the common trend is
achieved by both variables.
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Figure 4: Housing Collateral Ratio 1889-2002. Measured by outstanding home mortgages (mo), non-farm

residential wealth (rw) and residential fixed asset wealth (fa) relative to human wealth (y)
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Figure 5: Housing Collateral Ratio 1945-2002.Measured by outstanding home mortgages (mo), non-farm

residential wealth (rw) and residential fixed asset wealth (fa) relative to human wealth (y)
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4.2 Time-Series Predictability

The model predicts that the reward for aggregate risk is higher when housing collateral is scarce.
We document this negative relationship for the US market return.

Market Return Our market return is the cum-dividend return on the Standard and Poor’s
composite stock price index. The market return is expressed in excess of a risk-free rate, the
annual return on six-month prime commercial paper. The returns are available for the period
1889-2001 from Robert Shiller’s web site.
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VAR A bivariate vector autoregression of one-year excess returns on the aggregate stock mar-
ket and the housing collateral ratio provides a first look at the predictability question. We study
the response of excess returns to an innovation in my. Figure 10 plots the impulse-reponse of the
excess return to a one-standard-deviation innovation in myfa, the my measure for fixed assets.
The initial drop in the equity risk premium is followed by a further decrease which persists
for multiple years.6 The effect is large: a 4 percentage point innovation to myfa causes a 2.4
percentage point decrease in the equity risk premium. Between 1941 and 1942, myfa declined
by 20 percentage points in one year. Our estimates reveal a 12 percentage point increase in the
risk premium! 7

Long Horizon Predictability We also project long-horizon excess returns on the housing
collateral ratio. The K-year continuously compounded excess return is defined as rvw,K

t+K = (rvw,1
t+1

+ ... + rvw,1
t+K ) where rvw,1

t equals log(1 + Rvw,e
t ). Figure 6 shows the housing collateral ratio

(mymo) and the annualized ten-year excess return. The series exhibit a negative correlation of
−0.52. Regressions of the one- to ten-year cumulative stock returns on the housing collateral
ratio (mymo) provide further evidence of predictability.

Figure 6: 10-year Excess Market Return and the Collateral ratio mymo.
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Row 1 of table 1 reports the least squares coefficient estimate on the housing collateral ratio
6The optimal lag length for the VAR is two years according to the Akaike Information criterion. The covariance

matrix of innovations has small off-diagonal elements, i.e. their innovations have a small common component.
Therefore, changing the ordering of the variables Rvw,e and my in the VAR does not affect the impulse-responses.

7The impulse responses for the two housing collateral measures mymo and myrw show a similar pattern. They
are available upon request.
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89-02 1 2 3 4 5 6 7 8 9 10

bLS
my .09 .18 .26 .33 .42 .54∗ .70∗∗ .87∗∗ 1.04∗∗∗ 1.14∗∗∗

R2 .01 .02 .03 .03 .04 .07 .10 .14 .18 .20
bss
my .08 .16 .23 .29 .38 .49 .64 .80 .97 1.07

p [.14] [.14] [.15] [.16] [.15] [.13] [.11] [.08] [.07] [.06]

45-02 1 2 3 4 5 6 7 8 9 10

bLS
my -.01 .08 .23 .41∗∗ .62∗∗∗ .81∗∗∗ 1.00∗∗∗ 1.22∗∗∗ 1.49∗∗∗ 1.71∗∗∗

R2 .00 .00 .03 .08 .13 .18 .23 .29 .37 .43
bss
my .00 .11 .28 .46 .68 .88 1.08 1.32 1.59 1.83

p [.58] [.43] [.32] [.25] [.19] [.16] [.14] [.11] [.09] [.07]

Table 1: Long-Horizon Predictability Regressions. The results are for the regression Rvw,e
t+K = b0 +

bmy

(
mymax−myt

mymax−mymin

)
+ εt+K , where Rvw,e

t+K are cumulative excess returns on the S&P Composite Index over a K-year

horizon. The housing collateral ratio my is mymo, estimated on the entire sample in the first panel and on the postwar
sample in the second panel. mymax and mymin are the maximum and minimum observation on mymo in the respective
samples. The first row reports least squares estimates for bmy. Newey-West HAC standard errors are used to denote
significance at the 1 percent (***), 5 percent (**) and 10 percent level (*). The second row reports the R2 for this OLS
regression. The third row reports small sample coefficient estimates (see A.1). The fourth row gives the p-value of the null
hypothesis of no predictability. For 1889-2002, the sample size decreases from 113 observations for K=1 to 104 years for
K=10. For 1945-2002, it decreases from 57 observations for K=1 to 48 years for K=10.

for the period 1889-2001 and row 5 contains the estimates for the postwar period. All of the
slope coefficients are positive. A low housing collateral ratio predicts a high future risk premium
as predicted by the model . The R2 of the least-squares regression increases with the horizon,
to 20 percent for the entire sample and 43 percent in the postwar period (row 5, k = 10). There
are two econometric problems with the ordinary least squares regression:

rvw,K
t+K = b0 + bmymyt + et+1. (3)

First, because the forecasting variable my is a slow-moving process, the least squares estimator
of the coefficient on my, bLS

my, suffers from persistent regressor bias in small samples (Stambaugh
(1999)). Second, because rvw,K

t+K contains overlapping observations, the standard errors on bLS
my

need to be corrected for serial correlation in the residuals e. 8 To address the persistent regressor
bias and the serial correlation issues we conduct a bootstrap exercise, detailed in appendix A.1.
The small-sample coefficient estimates generated by bootstrapping -rows 3 and 7 in table 1- are
positive at every horizon, slightly lower than the least squares estimates in the entire sample,
but slightly higher in the post-war sample. Rows 4 and 8 show the p-value of a two-sided
test statistic of the no-predictability null, generated by bootstrap. The statistic measures one
minus the likelihood of observing the least squares coefficient estimate when returns are in fact
unpredictable. For K ≥ 5, there is evidence against the null-hypothesis at the 15 percent level.

8The asymptotic corrections advocated by Hansen & Hodrick (1980) have poor small sample properties. Ang
& Bekaert (2001) find that use of those standard errors leads to over-rejection of the no-predictability null.
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Comparison Across Models Many financial and macroeconomic variables have forecasting
power for the market return. The dividend-price and dividend-earnings ratio, the treasury bill
rate, the term spread between long-term government bonds and treasury bills and the default
spread between low- and high-grade corporate bonds are financial variables with forecasting
power for excess returns. A subset of those variables, such as the investment-capital ratio
(Cochrane (1991a)), the consumption-wealth ratio, cay, (Lettau & Ludvigson (2001a)) and the
labor income - consumption ratio, lc, (Santos & Veronesi (2001)), are macroeconomic variables.

We compare the return-forecasting ability of the housing collateral ratio with that of the
dividend yield (log dp), the consumption-wealth ratio (cay), and the labor income-consumption
ratio (lc). The two samples we consider are (1) the longest available (1926-2002) and (2) the
postwar sample (1945-2002). Table 14 displays the results for the long-horizon regressions. The
dividend yield is a strong predictor of excess returns in both samples (lines 2 and 9). For K ≥ 5,
the forecasting power of the housing collateral ratio is almost as strong (lines 1 and 8). Lines 5
and 12 show that the housing collateral ratio contains information that is relevant for predicting
returns beyond what is included in the dividend yield. Both coefficients remain jointly significant
for K > 5. The R2 goes up to 57 percent in the postwar period for 10-year returns, 13 percent
more than in each of the individual regressions.

Lettau & Ludvigson (2001b) explore a conditional version of the CCAPM with the consump-
tion to wealth ratio as conditioning variable. The ratio is measured as the deviation from the
common trend in consumption, labor income and financial wealth (cay).9 Periods with high
cay indicate high expected future returns, thereby rationalizing a high propensity to consume
out of wealth. In the representative agent economy of Santos & Veronesi (2001), the ratio of
labor income to consumption lc predicts stock returns.10 Times in which investors finance a
large fraction of consumption out of labor income rather than out of stock dividend income (lc
is high), are less risky. For the entire sample, cay and lc have no forecasting ability (lines 3
and 4). Moreover, the coefficients have the wrong sign. This problem goes away in the post-
war period (lines 10 and 11). When both the housing collateral ratio and the labor income to
consumption ratio are included, lc has the right sign for K ≥ 5 (line 6). The coefficient on the

9We construct the cay variable for the period 1926-2001 using log real per household total consumption
expenditures (c), log real per household labor income plus transfers (ylt) and log real per household financial
wealth (fw). We find evidence for one cointegration relationship between the three variables. The estimated
relationship we find with annual data is cay = log c − .259 log fw − .682 log y + 0.035, estimated with one lag.
For the postwar period we use the cay variable constructed by Lettau and Ludvigson for the period 1948-2001:
cay = c− 0.292fw − 0.597y.

10We construct their scaling variable as the ratio of annual labor income to total consumption expenditures,
for the period 1926-2001.
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housing collateral ratio remains significant and the R2 of the regression increases to 47 percent.
In the postwar period, my and lc enter jointly significantly and explain up to 54 percent of the
time-series variation in excess returns (line 13). The highest predictive power is obtained when
all three variables my, lc, and dp are included (lines 7 and 14). In the postwar period the R2

goes up to 64 percent for K = 10, and all three coefficients are measured precisely.

5 Cross-sectional Evidence: Non-linear Factor Model

We use returns on stock portfolios sorted by size and value characteristics, bond returns and
the return on a risk-free asset to test our model. Size and book-to-market value are asset
characteristics that challenge the standard CCAPM. Historically, small firm stocks and high
book-to-market firm stocks have had much higher returns. In the post-war period, the size
premium has largely disappeared, but the value premium is still prominent. The value premium
-the average return difference between the lowest and the highest book-to-market decile- is 5.7
percent over the entire sample.

Size and Book-to-Market Portfolios A total of twenty-five portfolios of NYSE, NASDAQ
and AMEX stocks are grouped each year into five size bins and five value (book-to-market
ratio) bins. Size is market capitalization at the end of June. Book-to-market is book equity
at the end of the prior fiscal year divided by the market value of equity in December of the
prior year. Portfolio returns are value-weighted. We also include the market return Rvw, the
value-weighted return on all NYSE, AMEX and NASDAQ stocks. All returns are expressed in
excess of an annual return on a one-month Treasury bill rate (from Ibbotson Associates). The
returns are available for the period 1926-2001 from Kenneth French’s web site and are described
in more detail in Fama & French (1992). The first column of table 11 shows mean and standard
deviation for the 26 excess returns.

5.1 Measuring the Liquidity Factor

In the model, the aggregate weight shock depends on the entire history of aggregate shocks
z∞ and my0. To solve the model numerically, we rely on an approximation of g(z∞,my0), the
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growth rate of the aggregate weight process, using a truncated history of aggregate shocks and
the current myt.11

To bring the model to the data, we take a similar approach and use a flexible, non-linear
function of the relevant state variables to parametrize the investor’s forecast of aggregate weight
growth:

log(gt(z∞t ,my0)) ' φ(F a
t , F a

t−1, . . . , F
a
t−k; myt),

where F a
t denotes the vector of aggregate factors F a

t+1 = (∆ log(ca
t+1), ∆log(αt+1))′, consisting

of aggregate consumption growth and expenditure share growth. We use GMM to identify the
function φ in addition to the structural parameters from the moment conditions:

Et[ma
t+1exp(γ ∗ φ(F a

t+1, F
a
t , . . . , F a

t−k;myt+1))R
j
t+1] = 1,

where Rj
t+1, j = 1, . . . , n are the returns on the test assets. In addition, the theory imposes

additional inequality constraints (1) φ(F a
t+1, F

a
t , . . . , F a

t−k; myt+1) ≥ 0 and (2) Et[ma
t+1R

j
t+1] ≤ 1

that further restrict the set of feasible parameters. (1) follows from the fact that ξa
t (z

t) is a non-
decreasing process and this immediately implies (2). The second set of inequality constraints
will prove useful in identifying the structural parameter γ.12

5.2 Non-Linear Factor Model and GMM

We use Chebyshev orthogonal polynomials to approximate the non-linear φ-function. The ad-
vantage is that the different terms of the polynomial have the usual interpretation as linear
pricing factors (Chapman (1997)).

Moment Restrictions The first moments are the average pricing errors for the test asset
returns and the risk-free rate:

E[mt+1R
j
t+1 − 1] = 0

The theory tells us that the aggregate weight shock gt+1 is exactly equal to one when the
constraints do not bind and strictly greater than one in all other periods. This delivers two
additional restrictions. First, we impose parametric restrictions on the polynomial such that

11This is discussed in Lustig & VanNieuwerburgh (2003). These approximations work well, because the supply
of collateral is distributed efficiently across households. The percentage forecast error has a natural interpretation:
it equals the percentage deviation between aggregate consumption and the aggregate endowment.

12Luttmer (1991) exploits this restriction to derive Hansen-Jagannathan bounds in an environment with sol-
vency constraints .
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φ(F a
t , F a

t−1, . . . , F
a
t−k; myt) = 0 when my equals mymax. In particular, we restrict ourselves to

functions of the form φ(·) = (mymax −myt−1) ∗ φ̃(F a
t , F a

t−1, . . . , F
a
t−k).

13

Second, it is useful to impose the inequality restrictions E[ma
t+1R

i
t+1−1] ≤ 0 on the represen-

tative agent’s Euler equations by adding the Kuhn-Tucker moment conditions to the standard
moment conditions:

λ(θ)E[ma
t+1R

j
t+1 − 1] = 0

We adopt the penalty function approach by parametrizing the Lagrangian multiplier λ as
exp(cE[ma

t+1R
j
t+1 − 1]) for a positive scalar c. 14 Without these inequality constraints, γ,

which features multiplicatively in both components of the SDF, cannot be separately identified.
In a first pass, we estimate the model using four different assets. In a second stage, we expand
the set of test assets.

Results with Four Test assets First, we estimate our model using only four test assets:
the risk-free rate, the value weighted market return, the 10 year bond return and the return on
a portfolio that goes long in value and short in growth (the Fama-French benchmark portfolio
RHML). We use annual real, gross holding period returns from 1926 until 2002 (77 observa-
tions).15 There are four standard moment conditions and four Kuhn-Tucker moment conditions,
adding up to a total of eight moment conditions. We use the identity matrix as a weighting
matrix. The Chebyshev polynomial is restricted to be first order. This restriction is tested in
the next subsection.

Table 2 shows how the coefficient estimates converge to low risk aversion estimates and
significantly negative θ2 estimates as the penalty parameter is increased. The representative
agent’s Euler inequalities rule out high γ estimates.

The coefficient estimates lend support to the collateral channel. The estimate for θ̂1 implies
that periods with less collateral coincide with a high value for the aggregate weight shock and
SDF. The estimate for θ̂2 implies that, when aggregate consumption growth is below average
(the rescaled consumption growth is negative), the aggregate weight shock is large. This effect
increases as collateral becomes scarcer (higher mymax −myt) as predicted by the model. The
average pricing errors are small and the null hypothesis that all pricing errors are zero cannot

13We cannot allow the aggregate weight shock to be a function of aggregate consumption growth in isolation,
because that would preclude identification of γ.

14To solve saddle point problems numerically, the shadow price of a binding constraint is usually approximated
by the product of the penalty parameter and the constraint violation, see Judd (1998) theorem 4.7.1. The
algorithm involves increasing the penalty parameter until convergence is achieved.

15Results with quarterly data for 1952.1:2002.4 are also available.
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be rejected.

c 10 15 20 30 40 60 80 100 150 300 500
γ̂ 23.48 13.23 8.83 5.62 4.13 2.84 2.23 1.84 1.24 1.24 1.24

s.e. (16.32) (9.34) (5.79) (4.40) (3.46) (2.67) (2.52) (5.52) (.78) (.75) (.72)

θ̂1 .13 .18 .24 .34 .44 .62 .77 .92 1.34 1.34 1.34
s.e. (.05) (.09) (.14) (.25) (.36) (.59) (.880 (2.66) (.74) (.71) (.68)

θ̂2 -.34 -.60 -.90 -1.42 -1.93 -2.80 -3.56 -4.30 -6.41 -6.40 -6.39
s.e. (.39) (.74) (1.09) (1.89) (2.68) (4.20) (6.00) (15.16) (4.14) (4.05) (3.96)
J 31.56 9.68 3.83 1.61 1.16 .94 .89 .89 .79 .40 .27
p .000 .0847 .5748 .8999 .9487 .9671 .9729 .9708 .9779 .9953 .9982

Table 2: GMM Coefficient Estimates for separable Coll-CAPM. These estimates were obtained using 4
moment conditions and 4 inequality conditions. The Chebyshev polynomial is first order. β was fixed at .95. The identity
weighting matrix was used in estimating the model. We use the Newey West procedure with 3 lags which corrects for serial
correlation and heteroskedasticity. We use a repeated GMM procedure, allowing for ten iterations.

Results with Seven Test Assets Next, we use a more extensive set of seven test assets:
a three month T-bill, a 10 year government bond, the value weighted aggregate stock market
and the four extreme size and value portfolios, in particular S1B1, S1B5, S5B1, and S5B5. This
adds up to a total of fourteen moment conditions. The order of the Chebyshev polynomial varies
from 1 to 3.

The left panel of Table 3 reports the estimates for the collateral model with separable pref-
erences. In the linear specification of the aggregate weight shock all coefficients are estimated
precisely and the point estimates are not very different from the ones we reported in the case
of four test assets. This model dominates the ones with higher order terms in the polynomial
on the basis of a likelihood ratio test, a Wald test and a Lagrange multiplier test; the null
hypothesis that all higher order polynomial coefficients are zero cannot be rejected. 16

Comparing Pricing Errors With seven test assets, the null that pricing errors are zero
is rejected on the basis of its J-statistic, except in the non-separable case with a first order
polynomial. This model cannot be rejected. The Collateral-CAPM does much better than the
other models we consider for all of the test assets (see Table 4). Only the small value portfolio
(S1B5) is still priced poorly by the collateral model with separability (Coll-CAPM 1), although
the collateral model without separability (Coll-CAPM 2) reduces this error to 2.5 percent. Coll-
CAPM 3 allows for history dependence by including lagged consumption growth in φ. This does

16When the unrestricted model is the second order and the restricted model is the first order polynomial model,
the p-values are : polynomial order 1 vs 2: LHR 1.00, Wald .93, LM .91 polynomial order 1 vs 3: LHR 1.00,
Wald .70, LM .76. We conclude that the first order polynomial specification for the aggregate weight shock is the
best fitting one.
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Model Separability Non-Separability

Polynomial Order 1 2 3 1 2 3
γ̂ 4.78 4.96 4.67 2.07 1.35 1.35

s.e. [1.72] [1.68] [1.58] [.32] [.19] [.20]
θ̂1 .37 .63 -.31 -.15 7.31 .44
s.e. [.31] [3.15] [2.77] [2.43] [3.96] [6.78]
θ̂2 -2.00 -1.93 -6.61 -5.16 -8.14 6.44
s.e. [.92] [.85] [13.46] [1.78] [4.87] [7.40]
θ̂3 .33 -.77 -3.67 3.63 .23
s.e. [4.05] [3.16] [8.31] [28.37] [10.14]
θ̂4 -1.69 -.92 -6.59
s.e. [5.26] [19.73] [5.83]
θ̂5 7.56 6.53
s.e. [ 14.21] [3.13]
θ̂6 7.53
s.e. [7.95]
θ̂7 -.70
s.e. [13.37]
J 33.68 110.37 56.31 14.18 60.36 54.15
p .0000 .0000 .0000 .1671 .0000 .0000

Table 3: GMM Coefficient Estimates for Coll-CAPM. These estimates were obtained using 7 moment
conditions and 7 inequality conditions. β was fixed at .95. The left panel imposes separability by fixing ε at 0, wile the left
panel fixes ε at .85. In the separable case, the penalty parameter c is 100 in columns 1, 12 in column 2 and 11 in column
3, while in the non-separable case,the penalty parameter c is 300 in column 1, and 2 in columns 2 and 3. The identity
weighting matrix was used in estimating the model. We use the Newey West procedure with 3 lags which corrects for serial
correlation and heteroskedasticity. We use a repeated GMM procedure, allowing for ten iterations.

not produce significant improvements.
By contrast, the CCAPM does a poor job at pricing the risk free rate and the long-term

bond, while massively overpricing growth portfolios and underpricing value portfolios.17.
Since the higher order terms in the polynomials are not significant, we choose to impose

linearity on φ̃. This allows us to make contact with the linear factor model literature, and it
also allows us to increase the number of test assets in the estimation stage.

6 Cross-sectional Evidence: Linear Factor Model

First, we assume φ̃ is linear in (F a
t , F a

t−1, . . . , F
a
t−k), and, second, we assume that the housing

collateral ratio follows an autoregressive process myt+1(myt, F
a
t+1) that interacts linearly with

the aggregate factors. The innovations to the aggregate factors are the structural innovations
17Table 10 in the Appendix reports the coefficient estimates for the CCPAM and the HCAPM
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C-CAPM H-CAPM Coll-CAPM 1 Coll-CAPM 2 Coll-CAPM 3

Rf -.069 -.057 .016 .006 .015
(t− stat) (-3.11) (-3.78) (.68) (.30) (3.38)

Rvw -.016 -.000 -.010 -.002 -.010
(t− stat) (-0.85) (-.04) (-.73) (-.25) (-1.38)

RS1B1 -.060 -.042 -.017 .009 -.011
(t− stat) (-1.53) (-1.68) (-.19) (.23) (-.78)

RS1B5 .070 .078 .042 .024 .043
(t− stat) (1.83) (-3.44) (1.71) (.39) (1.42)

RS5B1 -.021 -.001 -.021 -.007 -.021
(t− stat) (-1.00) (-.09) (-1.58) (-.25) (-1.56)

RS5B5 .071 .070 .001 -.003 -.003
(t− stat) (2.20) (3.76) (.01) (-.14) (-.18)

Rbond -.059 -.045 -.013 -.029 -.017
(t− stat) (-2.72) (-2.73) (-.25) (-.88) (-2.98)

Table 4: Pricing Errors. Average pricing errors implied by the previously reported model estimations. GMM t-stats
are in parentheses. The Coll-CAPM pricing errors pertain to the model with first order polynomials only. Coll-CAPM 1
is the model with separability, Coll-CAPM 2 does not impose separability, while Coll-CAPM 3 adds a lagged consumption
growth term as factor in φ. The coefficient estimates for 2 and 3 are not reported. The errors for the inequality restrictions
are not reported. The penalty parameter c is 100, 300 and 12 in columns 3,4 and 5 respectively.

in our model.

Aggregate Weight Shocks We propose a linear expression for φ (·):

φ(F a
t , F a

t−1, . . . , F
a
t−k; myt) = (mymax −myt)B(L)(F a

t −Υ) (4)

where B(L) is a polynomial of order k in the lag operator and Υ is the unconditional mean of
the aggregate factors F a

t . For now, we set k = 0, but we test for additional history dependence
in the estimation exercise by including up to four lags of the factors, F a

t−k for k = 1, 2, 3, 4, in
B(L). Bij denotes the coefficient on factor i in lag j.

6.1 Linear Factor Model and Fama-MacBeth

The factor model for the weight shocks and the autoregressive process for my provide a complete
description of the pricing model. By combining φt+1

(
myt+1, F

a
t+1

)
and myt+1(myt, F

a
t+1), the

stochastic discount factor can be stated in terms of the aggregate factors F a
t+1 and the state

variable myt. A first-order Taylor approximation of this expression delivers our linear factor
model:

mt+1 ≈ δ̃(const− θaF a
t+1 − θcF c

t+1 + γεt+1), (5)
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where the constraint factors F c
t+1 are18:

F c
t+1 = (mymax −myt)(1, F a

t+1)

When the utility kernel is separable, the equity risk premium is determined by the conditional
covariance of its returns with consumption growth and a state-varying market price of risk:

Et

[
Re,j

t+1

]
≈ δ̃Rf

t γ
[
(1 + Υc)

−1 −B10γ(1− ρ)mymax −B10ρ (mymax −myt)
]

Covt

(
∆log ca

t+1, R
e,j
t+1

)

where Rf
t is the risk-free rate at time t. If B10 is zero, the expression collapses to the stan-

dard CCAPM of Lucas (1978) and Breeden (1979). The market price of consumption risk is
determined by the coefficient of relative risk aversion γ. In contrast, our theory predicts an
increase in the size of the aggregate weight shock when aggregate consumption growth is low,
driven by an increase in idiosyncratic risk. Consumption growth has an effect on the liquidity
shock: B10 < 0. When housing collateral is scarce (mymax −myt is large), the market price of
consumption risk is high.

Non-separability introduces a second covariance in the risk premium equation: the covariance
with expenditure share changes. If B20 is zero, the market price of composition risk is constant.
In contrast, if B20 < 0, the market price of composition risk is high when housing collateral is
scarce (mymax −myt is large).

Unconditional β-Representation The discount factor consists of a representative agent and
a constraint component:

mt+1 = −θFt+1, (6)

where θ is a vector of constants, θ =
(
const, θ̃

)
and θ̃ = (θa, θc) and Ft+1 =

(
1, F̃t+1

)
.

F̃t+1 =
(
F a′

t+1, F
c′
t+1

)′ is a vector of representative agent and constraint risk pricing factors. The
conditioning information is embedded in the scaled constraint factors while θ itself is constant.

18The associated factor loadings are:

θa =

(
γ − γ(1− ρ)B10mymax,

−ε + 1
γ

1
γ
(ε− 1)

− γ(1− ρ)B20mymax

)

θc = (γρ(B10Υc + B20Υρ),−γρB10,−γρB20)
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These constraint factors contain the original aggregate factors scaled by the housing collateral
ratio myt. myt is the conditioning variable that summarizes the investor’s information set. The
model can be tested using the unconditional orthogonality conditions of the discount factor and
excess asset returns j:

E
[
mt,t+1R

e,j
t+1

]
= 0. (7)

Using the definition of the risk-free rate and the covariance, the unconditional factor model
in (6) implies an unconditional β-representation:

E
[
Re,j

t+1

]
= δ̃R̄f θ̃Cov

(
F̃t+1, R

e,j
t+1

)
= λ̃β̃

j

where R̄f is the average risk-free rate, β̃
j

is asset j’s risk exposure and λ̃ is a transformation of
the parameter vector θ̃19:

β̃
j

= Cov
(
F̃ , F̃ ′

)−1
Cov

(
F̃ , Re,j

)

λ̃ = δ̃R̄f θ̃Cov
(
F̃ , F̃ ′

)

This unconditional β-representation is the equation we estimate using the Fama-MacBeth pro-
cedure.

Computational Procedure We apply the two-stage Fama-MacBeth procedure and estimate
the unconditional β-representation E

[
Re,j

t+1

]
= λ̃β̃

j
. In a first time-series stage, for each asset j

separately, excess returns are regressed on factors to uncover the β̃’s. In a second cross-sectional
stage, average excess returns are regressed on the β̃’s from the first stage to obtain the market
prices of risk λ̃. Appendix A.2 describes the procedure in more detail.

Results with 26 Test Assets We use all 25 size and book-to-market portfolios and the value
weighted market return as test assets. Only the results for annual data from 1926 until 2002 (77
observations) are presented in the paper, but the results with quarterly data for 1952.1:2002.4
are also available.

Table 5 reports the estimates for the market price of risk λ̃ obtained from the second-stage
of the Fama-MacBeth procedure. Below the estimates for λ̃, we report conventional standard

19Lettau & Ludvigson (2001b) point out that λ̃ does not have a straightforward interpretation as the vector of
market prices of risk. The market prices of risk λ depend on the conditional covariance matrix of factors which
is unobserved.
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errors and Shanken (1992) standard errors, which correct for the fact that the β̃’s are generated
regressors from the first time-series step.

Row 1 shows the standard CCAPM. It explains 9 percent of the cross-sectional variation in
excess returns of the size and book-to-market portfolios between 1926 and 2002. Unsurprisingly,
the coefficient of relative risk aversion γ implied by the market price of consumption risk λ̃c

is very high (22, not reported). With non-separable preferences but perfect commitment, the
change in relative rental prices scaled by the housing expenditure share is an additional asset
pricing factor. This is the HCAPM of PST. The non-separability effect increases the R2 to 50
percent (row 2). Rows 3 through 8 investigate the collateral effect. With separable preferences,
the new asset pricing factors are the housing collateral ratio my and consumption growth scaled
by my. The fit improves to 73 - 88 percent for the respective measures of the housing collateral
ratio (rows 3-5). The coefficients on the interaction terms are positive and significant. With non-
separable preferences, the interaction term of my with expenditure share growth is an additional
asset pricing factor (rows 6-8). The new interaction term has a positive factor loading, but does
not enter statistically significantly. Except for the conditioning variable myfa, non-separability
does not add much to the explanatory power of the collateral CAPM.

The intercept in the cross-sectional regression, λ̃0 should be zero. Its estimate is positive
and significant in rows 1 and 2, but becomes insignificant for the collateral CCAPM.

The coefficient estimates for λ̃ can be related to the structural parameters of the model, and
we can infer that a decrease in the housing collateral ratio myt increases the market price of
consumption risk. This follows because the estimated λ̃my.c is positive. Why? We know that
λ̃ = θ̃

[
δ̃R̄fCov

(
F̃ , F̃ ′

)]
and the loadings θ̃ can be backed out of the λ̃ estimates. These factor

loadings are listed in Table 6. The first two loadings on the constraint factors θc
1 and θc

2 are
positive. Assuming the AR-coefficient ρ for my is positive, this implies that B10 is negative -B10

is the coefficient on aggregate consumption growth in the aggregate weight growth function.
An adverse aggregate consumption growth shock increases the the aggregate weight shock and
hence the risk premium. This is exactly the effect predicted by the theory. 20The implied B20

estimates are negative as well (see Table 6).
20A negative consumption growth shocks has two effects. First, a recession decreases my which makes the risk-

sharing bounds narrower. Second, a recession coincides with an increase in the income dispersion, which makes the
bounds narrower as well. In either case, the extent to which a recession narrows the bounds depends on the level
of my or, equivalently, the housing collateral ratio. When the risk-sharing bounds are narrower, agents run more
frequently into them and the aggregate weight growth is high. When housing collateral is scarce, mymax−myt+1
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λ̃0 λ̃c λ̃ρ λ̃my λ̃my.c λ̃my.α R2

1 8.87 1.61 9.4
CCAPM (2.55) (1.01) 5.6

[2.77] [1.18]
2 6.90 .51 .55 37.5

HCAPM (2.31) (.88) (.24) 32.0
[2.60] [1.08] [.30]

3 4.22 1.94 -.03 2.23 86.5
Separable Prefs. (2.29) (1.05) (.06) (.79) 84.6

mymo [3.31] [1.58] [.09] [1.17]
4 3.52 2.12 -.03 1.36 87.8

Separable Prefs. (2.25) (1.02) (.03) (.47) 86.1
myrw [3.33] [1.58] [.05] [.72]

5 2.81 .97 -.00 .66 73.3
Separable Prefs. (2.27) (.94) (.02) (.35) 69.7

myfa [2.93] [1.28] [.03] [.47]
6 2.87 2.59 .11 -.02 2.77 .05 87.4

Non-Sep. Prefs. (2.73) (.81) (.26) (.06) (.64) (.18) 84.3
mymo [4.45] [1.38] [.44] [.10] [1.09] [.30]

7 3.62 2.30 .25 -.03 1.45 .11 88.1
Non-Sep. Prefs. (2.48) (.92) (.20) (.03) (.41) (.08) 85.1

myrw [3.81] [1.47] [.33] [.06] [.65] [.13]
8 3.20 1.56 -.05 -.02 .94 .05 85.4

Non-Sep. Prefs. (2.44) (1.01) (.21) (.02) (.38) (.06) 81.7
myfa [4.11] [1.75] [.38] [.04] [.66] [.11]

Table 5: Cross-Sectional Results with Aggregate Pricing Factors. The sample period is 1926-2002.
The asset pricing factors are ∆ log(ct+1) in row 1, ∆ log(ct+1) and At∆log(ρt+1) in row 2, ∆ log(ct+1), mymax − myt,
(mymax −myt) ∆ log(ct+1) in rows 3-5 and ∆ log(ct+1), ∆ log(αt+1), mymax − myt ,(mymax −myt)∆ log(ct+1) and
(mymax −myt) ∆ log(αt+1) in rows 6-8. The housing collateral variable is mymo in rows 3 and 6, myrw in row 4 and 7
and myfa in row 5 and 8. my is estimated with data from 1925-2002. The variables used are ∆c1 and ∆α1 described in
the data appendix. The estimation is done using the Fama-MacBeth procedure. The set of test assets is T1. OLS standard
errors are in parenthesis, Shanken (1992) corrected standard errors are in brackets. The last column reports the R2 and
the adjusted R2 just below it.

Figure 7 compares the CCAPM and the collateral-CAPM under separability. The left panel
plots the sample average excess return on each of the 26 portfolios against the return predicted
by the standard CCAPM. The CCAPM hardly explains any of the variation in excess returns
across portfolios. The right panel, which corresponds to the estimates in row 4 of table 5, shows
the returns predicted by the collateral-CAPM. Most of the size and value portfolios line up along
the 45 degree line.

Table 7 reports the sample average pricing errors on each of the 26 portfolios. Relative
to the CCAPM, the collateral-CAPM largely eliminates the overpricing of growth stocks and
the underpricing of value stocks. The average pricing error across portfolios is 3.27 percentage
points for the CCAPM (first column, second to last row) but less than half as large for the

is large. A negative consumption growth shock increases φt+1 for B10 < 0. When myt+1 = mymax, there is
no effect of innovations to aggregate consumption and rental price growth on the expression for the aggregate
weights: φt+1 is one.

30



Model Separability Non-Separability
Parameter θa

1 θc
1 θc

2 θa
1 θa

2 θc
1 θc

2 θc
3

mymo 44.17 0.91 29.42 57.67 8.10 1.17 38.09 4.43
myrw 35.59 41 12.68 39.04 5.91 0.44 13.85 1.66
myfa 16.19 0.11 5.02 25.39 3.74 0.17 7.85 1.06

Table 6: Coll-CAPM Factor Loadings. Factor Loadings implied by the Fama-MacBeth coefficient estimates.
The implied standard errors not reported.

Figure 7: CCAPM and Collateral-CAPM - Aggregate Pricing Factors. Left Panel: Realized average

excess returns on 25 Fama-French portfolios and the value weighted market return against predicted excess returns by

standard Consumption-CAPM. Right Panel: against predicted returns by Collateral-CAPM (under separability).
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collateral-CAPM (1.21 percent, last column). The errors are comparable in size and sign to
the Fama & French (1993) three-factor model (second column of table 7, see also section 6.2).
Especially the pricing errors on the small growth firms (S1B1 and S1B2) and large growth and
value firms (S5B1, S5B4, S5B5) are lower than for the three-factor model. The last row of the
table shows a χ2-distributed test statistic for the null hypothesis that all pricing errors are zero.
The collateral-CAPM is the only model for which the hypothesis of zero pricing errors cannot
be rejected at the 5 percent level.21

21Because of the sampling error in the regressors the Shanken correction for the χ2 test statistics is large. This
is because the macro-economic factors have a low sample variance and the size of the standard-error correction
is inversely related to this variability. While increasing the standard errors, this correction reduces the χ2 test
statistic (see A.2). The result that the collateral-CAPM fails to reject the null hypothesis of zero pricing errors
should be interpreted in this light.
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Portfolio CCAPM Fama-French Collateral-CCAPM

RVW 2.97 -.20 .07
S1B1 7.97 3.96 1.79
S1B2 1.89 2.51 1.23
S1B3 -1.01 -1.08 -.34
S1B4 -7.10 -2.07 1.53
S1B5 -5.29 -2.78 -.62
S2B1 4.64 1.94 2.03
S2B2 -.30 -1.15 -1.27
S2B3 -2.65 -1.23 -.96
S2B4 -3.31 -.79 -1.14
S2B5 -3.00 -.08 -1.72
S3B1 1.99 -1.41 2.00
S3B2 -.24 -1.12 .28
S3B3 -.50 -.62 -.55
S3B4 -1.28 .03 -1.40
S3B5 -1.92 1.58 .38
S4B1 1.65 -2.54 -1.25
S4B2 .90 .70 .85
S4B3 -.22 .24 -2.08
S4B4 -1.18 .64 .62
S4B5 -3.90 -.11 -2.38
S5B1 3.41 -2.52 -.07
S5B2 3.31 .73 -.21
S5B3 2.13 .46 -.59
S5B4 1.19 1.96 -.10
S5B5 -3.95 -.86 .10

Average 3.27 1.61 1.21
χ2 72.1∗∗∗ 61.1∗∗∗ 35.1∗

Table 7: Average Pricing Errors. Pricing errors from the Fama-MacBeth Regressions with aggregate
pricing factors. The set of returns is the value weighted market return and the 25 size and book-to-market
portfolio returns. The sample is 1926-2002. The second column reports errors from the consumption CAPM, the
third from the three-factor Fama-French model and the last column reports average errors from the collateral
CAPM with scaling variable myrw and separability in preferences (line 4 in table 5). The last two rows report
the square root of the average squared pricing errors and the χ2 statistic for the null hypothesis that all pricing
errors are zero. The degrees of freedom are 25, 23 and 23 respectively. Three stars denote rejection of the null
hypothesis at the 1 percent level, 2 stars at the 5 percent level and 1 star at the 10 percent level.

As a robustness check, we relax the Markov assumption that we imposed on the aggregate
weight shock by including additional lags of the aggregate factors in the empirical specification
of the aggregate weight process. This introduces additional asset pricing factors in the uncondi-
tional β-representation. Table 15 in the Appendix reports the estimation results for k ∈ 1, 2, 3, 4
for the sample 1929-2002. They show that the fit of the cross-sectional estimation does not
improve significantly and the extra factors enter insignificantly. Only for k = 4 is there some
additional explanatory power. We conclude that the Markov assumption fits the data well.

As second robustness exercise, we estimate the cross-sectional regression for the postwar
period (1945-2002). The results are in table 16 in the Appendix. The benchmark consumption
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CAPM performs much better in the postwar sample (49 percent R2). The collateral-CAPM
with separable preferences explains between 70 and 83 percent and the collateral-CAPM with
non-separable preferences between 76 and 84 percent of the cross-sectional variation in the 26
portfolios. The implied coefficient estimates for B1 are still negative, so that the post-war results
confirm the presence of the collateral effect.

Time-Varying Betas Why does the collateral-CAPM help explain the value premium? In
the model, a stock’s riskiness is determined by the covariance of its returns with aggregate risk
factors conditional on the state variable my. The conditional covariance reflects time-variation
in risk premia. If time variation in risk premia is important for explaining the value premium,
then stocks with high book-to-market ratios should have a larger covariance with aggregate risk
factors in risky times, when my is low (mymax−myt is high), than in less risky times, when my

is high (mymax −myt is low). This is the pattern we find in the data.
We estimate the risk exposure (the β’s) for each of the twenty-five size and book-to-market

portfolios and the value weighted market return. This is the first step of the Fama-MacBeth
two-step procedure. To make the point more forcefully we impose separability on the preferences
over housing and non-durable consumption:

Re,j
t+1 = β̃

j
0 + β̃

j
c∆ log ct+1 + β̃

j
my(mymax −myt) + β̃

j
my.c(mymax −myt)∆ log ct+1. (8)

Equation (8) allows the covariance of returns with consumption growth to vary with my.
For each asset j, we define the conditional consumption beta as βj

t = β̃
j
c +(mymax −myt) β̃

j
my.c.

We estimate equation (8) and compute the average consumption beta in good states, defined
as times in which my is one standard deviation above zero, and in bad states (risky times)
when my is one standard deviation below zero. Table 17 shows that the high book-to-market
portfolios (B4 and B5) have a consumption β that is large when housing collateral is scarce and
small in times of collateral abundance. The opposite is true for growth portfolios (B1 and B2).
Moreover, the value stocks have higher consumption betas than the growth stocks in bad states,
and vice versa for the good states. This is the sense in which value portfolios are riskier than
growth portfolios.

The left panel of figure 8 shows that the value portfolios (B4, B5) have a high return and
the growth portfolios (B1, B2) have a low return. The right panel plots realized excess returns
against β̃

j
my.c, the exposure to the interaction term of the housing collateral ratio with aggregate

consumption growth. Growth stocks in the lower left corner have a low exposure to collateral
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constraint risk whereas value stocks have a large exposure. So, value stocks, are riskier than
growth stocks because their returns are more highly correlated with the aggregate factors when
risk is high (mymax −myt is high) than when risk is low (mymax −myt is low). Because both
the estimates of λ̃my.c and of β̃

j
my.c are positive, value stocks are predicted to have a higher risk

premium. The value premium is the compensation for the fact that high book-to-market firms
pay low returns when housing collateral is scarce and constraints bind more frequently.

Figure 8: Collateral CAPM: The Value Premium. Left Panel: Realized average excess returns on 25 Fama-

French portfolios and the value weighted market return against excess returns predicted by the collateral-CAPM with myrw.

Right Panel: Realized average excess returns against β̃my.c exposure to interaction term of myt and ∆ log ct+1.
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6.2 Comparison Across Models

The cross-sectional explanatory power of the collateral-CAPM proposed in this paper compares
favorably to other asset pricing models. Table 8 compares return-based asset pricing models in
rows 1-3 with consumption-based models in rows 4-6.

The capital asset pricing model relates the returns on stocks to their correlation with the
return on the wealth portfolio. In the standard CAPM of Lintner (1965), the return on the
wealth portfolio is proxied by the market return Rvw (row 1). It explains 28 percent of annual
returns. Because stock market wealth is an incomplete total wealth measure, Jagannathan &
Wang (1996) include the return on human wealth in the return on the wealth portfolio. That
return is measured by the growth rate in labor income (plus transfers). The R2 in row 2
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Model λ̃0 λ̃1 λ̃2 λ̃3 R2

1 −.30 9.35 28.3
Static CAPM (4.02) (4.68) 25.3
Sharpe-Lintner [4.40] [5.65]

2 2.24 7.13 3.91 37.2
Human Capital-CAPM (3.93) (4.58) (1.28) 31.7

Jagannathan-Wang [4.87] [6.16] [1.71]
3 1.47 7.48 −.00 5.57 49.3

lc-conditional CAPM (4.17) (4.82) (0.02) (4.99) 42.4
Santos-Veronesi [5.49] [6.42] [0.03] [6.62]

4 8.88 1.61 9.4
Static CCAPM (2.55) (1.01) 5.6
Breeden-Lucas [2.77] [1.18]

5 3.88 2.68 .02 .42 86.2
cay-conditional CCAPM (2.32) (1.05) (.02) (.30) 84.3

Lettau-Ludvigson [3.84] [1.80] [.03] [.53]
6 3.52 2.12 −.03 1.36 87.8

Collateral-CAPM (2.25) (1.02) (.03) (.47) 86.1
this paper [3.33] [1.58] [.05] [.71]

7 10.21 −2.46 2.71 6.30 78.1
Three-factor model (4.63) (5.17) (1.68) (1.74) 75.1

Fama-French [5.24] [6.32] [2.52] [2.56]

Table 8: Model Comparison: 7 models, 1926-2002. Row 1: factor is Rvw,e
t+1 . Row 2: factors are Rvw,e

t+1 and

Rhc,e
t+1 . Row 3 factors: Rvw,e

t+1 , lct and lctR
vw,e
t+1 . Row 4: ∆ log (ct+1). Row 5: ∆ log (ct+1), cayt, cayt∆log (ct+1). Row 6

is the collateral model under separability: ∆ log (ct+1), myrwmax − myfat, and (myrwmax − myfat)∆ log (ct+1). Row

7: Rvw,e
t+1 , Rsmb,e

t+1 , and Rhml,e
t+1 . The second column gives the zero-β return λ̃0. OLS standard errors are in parenthesis,

Shanken corrected standard errors are in brackets.

increases slightly to 37 percent. Kullmann (2002) investigates the improvements to the CAPM
when residential housing wealth is incorporated into the definition of wealth. In our model
housing wealth affects returns only through the collateral ratio. In the economy of Santos &
Veronesi (2001), times in which investors finance a large fraction of consumption out of labor
income (lc is low), are less risky. Their conditional CAPM explains 50 percent of the annual
returns (row 3).22

The Fama & French (1993) three-factor model adds a size and a book-to-market factor to
the standard CAPM. The size factor is the return on a hedge portfolio that goes long in small
firms and short in big firms (smb). The value factor is the return on a hedge portfolio that goes
long in high book-to-market firms and short in low book-to-market firms (hml). This model
accounts for 78 percent of the cross-sectional variation in annual returns (row 7). Given its good
fit, this model serves as the empirical benchmark.

In contrast to the previous models, consumption-based asset pricing models measure the
riskiness of an asset directly off the covariance with marginal utility growth. One of the objectives

22The authors also investigate a scaled version of the CCAPM, as we do, but their results for the scaled CCAPM
are not as strong as for the scaled CAPM.
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of this literature has been to identify macroeconomic sources of risk that can explain the empirical
success of the Fama & French (1993) size and book-to-market factors. The fourth row reports
the standard CCAPM of Breeden (1979). Lettau & Ludvigson (2001b) explore a conditional
version of the CCAPM with the consumption-wealth ratio as scaling variable. The market price
of consumption risk increases in times with low cay (recessions). The Lettau-Ludvigson model
explains 86 percent of the annual cross-sectional variation.

Model 6 is our collateral-CCAPM. The model goes a long way in accounting for the cross-
sectional differences in returns on the 25 Fama-French portfolios and the market return. The
R2 of 88 percent improves upon the fit of the Fama-French model.23

Sofar we have documented that the returns of value firms are more correlated with aggregate
risk in times when the housing collateral ratio is low. The next section takes the next step
by identifying one potential source of this pattern by examining the response of dividends to
collateral shocks.

6.3 Dividends on Value Portfolios

We use annual dividend data on each of the 10 book-to-market decile portfolios. Book-to-market
is book equity at the end of the prior fiscal year divided by the market value of equity in December
of the prior year. We follow Bansal et al. (2002) by constructing dividends from value-weighted
total returns and price appreciation rates on the decile value portfolios (both from Kenneth
French). We construct nominal annual dividends by summing up monthly nominal dividends.
The data are for 1952-1999.

Table 19 shows how dividends of the high book-to-market portfolios (normalized by the ag-
gregate labor income plus transfers) are strongly positively correlated with the housing collateral
ratio (e.g. the tenth decile portfolio B10). The normalized dividend process for the low book-to-
market ratio portfolios is strongly negatively correlated with my (e.g. the first decile portfolio
B1). Using a bivariate VAR, we study the response of the normalized dividend process on the
growth (B1) and value (B10) portfolios to an impulse in the housing collateral ratio. Figure 9
shows the impulse response graphs. The responses of the dividend shares to an innovation to
myfa are mirror images of each other. In Lustig & VanNieuwerburgh (2003) we show that claims
to dividend processes with this type of “value ”response to my shocks trade at a substantial

23Table 18 in the Appendix investigates the residual explanatory power of the idiosyncratic portfolio character-
istics, size and value. The top panel includes the log market capitalization into the regression, the bottom panel
the log value weighted book-to-market ratio of the portfolio. In contrast with the return-based models and the
static CAPM, there are no residual size nor value effects in the collateral-CCAPM. The same conclusion is found
for the post-war sample.
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discount in equilibrium.

Figure 9: Response of the the log Dividend Share on Portfolio B1 to Impulse in Collateral Ratio
myfa. Sample is 1952-2002, standard errors are computed from 5,000 Monte Carlo simulations.
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7 Conclusion

House price fluctuations play an important role in explaining the time-series and cross-sectional
variation in asset returns. Given the magnitude of the housing market this is unsurprising. This
paper shows that the way in which housing affects asset returns is through the role of housing as
a collateral asset. The housing collateral mechanism endogenously generates heteroskedasticity
and counter-cyclicality in the market price of risk. In Lustig & VanNieuwerburgh (2003) we
solve for the equilibrium of the model numerically, while this paper focusses on connecting the
model to the data. We specify the liquidity factor in the SDF as a semi-parametric function of
the housing collateral ratio and the aggregate pricing factors.

The Euler equation restrictions for the stock market return, a short-term bond, a long-term
bond and a few size and book-to-market portfolios, in addition to the Euler inequality restrictions
for the representative agent, yield precise, low risk aversion estimates. The estimated liquidity
shocks are larger in times of low aggregate consumption growth when housing collateral is scarce,
as predicted by the model. A linear version of this model prices the 25 size and book-to-market
portfolios remarkably well.

We attribute the failure of the CCAPM to shocks to the economy’s risk sharing technology.
There is a wealth of empirical evidence against full consumption insurance at different levels
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of aggregation: at the household level (e.g. Attanasio & Davis (1996) and Cochrane (1991b)),
the regional level (e.g. Hess & Shin (1998)) and the international level (e.g. Backus, Kehoe,
& Kydland (1992)). Blundell, Pistaferri, & Preston (2002) find evidence for shocks to the
economy’s risk sharing technology. Lustig & VanNieuwerburgh (2002) provide direct empirical
support for the underlying time-variation in risk-sharing. Using US metropolitan area data, we
find that the degree of insurance between regions decreases when the housing collateral ratio is
low. Our theory only predicts strong consumption growth correlations when housing collateral
is abundant. The data seem to support this qualification; conditioning on my weakens the
consumption growth puzzle for US regions.
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A Appendix

A.1 Bootstrap Procedure

The bootstrap procedure addresses the persistent-regressor bias of the OLS coefficient estimators and serial

correlation in the OLS residuals in the estimation of equation (3). We compute small-sample coefficient estimates

and small-sample p-values for the null hypothesis of no predictability.

A univariate specification test shows that my is best described by an AR(2) process.

(
mymax −myt+1

mymax −mymin

)
= c0 + c1

(
mymax −myt

mymax −mymin

)
+ c2

(
mymax −myt−1

mymax −mymin

)
+ vt+1, (9)

where v is i.i.d. mean zero.

If annual returns are truly unforecastable, the data generating process for
(
rvw,e

t+1

)
is

rvw,1
t+1 = bnp

0,1 + e1
t+1 (10)

rvw,2
t+2 = bnp

0,2 + e1
t+1 + e1

t+2

rvw,K
t+K = bnp

0,K + e1
t+1 + e1

t+2 + ... + e1
t+K

where e1 is an i.i.d. mean zero process of innovations to the 1-year log excess return. Under the no-predictability

null, K-period returns have a MA(K) error structure because of overlapping observations.

Similarly, with predictability

rvw,1
t+1 = bwp

0,1 + bwp
1,1

(
mymax −myt

mymax −mymin

)
+ u1

t+1. (11)

rvw,2
t+2 = bwp

0,2 + bwp
1,2

(
mymax −myt

mymax −mymin

)
+ u1

t+1 + u1
t+2.

rvw,K
t+K = bwp

0,K + bwp
1,K

(
mymax −myt

mymax −mymin

)
+ u1

t+1 + u1
t+2 + ... + u1

t+K

where u1 is an i.i.d. mean zero process of innovations to the 1-year log excess return.

In a preliminary step, we estimate the no-predictability coefficients bnp
0,1 through bnp

0,K in K OLS regressions of

the form of equation (10). We do the same for the with-predictability coefficients
(
bwp
0,1, b

wp
1,1

)
through

(
bwp
0,K , bwp

1,K

)

in K OLS regressions of the form of equation 11. We store the residuals
{
e1, u1

}
.

The bootstrap exercise for the small sample bias consists of the following steps.

step 1 Draw a sample of length T with replacement from the residuals
{
u1, v

}
obtained in preliminary step.

step 2 For given my0, my1 (which we set equal to the sample values) and parameter estimates from preliminary

step, build up time series for re,K and myt+1 recursively from equations (11) and (9), for K ∈ {1, ..., 10}.
This takes into account the MA(K) structure of the innovations.

step 3 Estimate by OLS the intercept and the coefficient on the rescaled housing collateral ratio in the return

equation. Let the coefficient on my be bn,∗
1,K , for K ∈ {1, ..., 10}.

step 4 Repeat steps 1 through 4 N = 20, 000 times.

The small sample coefficient estimate is 1
N

∑
bn,∗
1,K . The bias equals 1

N

∑
bn,∗
1,K − bLS

1,K .
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The second bootstrap exercise (for the no-predictability p-value) proceeds as the first, except it imposes the

null hypothesis of no predictability in step 1. It consists of the following steps.

step 1 Draw a sample of length T with replacement from the residuals
{
e1, v

}
obtained in preliminary step.

step 2 For given my0, my1 (which we set equal to the sample values) and parameter estimates from preliminary

step, build up time series for re,K and myt+1 recursively from equations (10) and (9), for K ∈ {1, ..., 10}.
This takes into account the MA(K) structure of the innovations.

step 3 Estimate by OLS the intercept and the coefficient on the rescaled housing collateral ratio in the return

equation. Let the coefficient on my be bn,∗∗
1,K , for K ∈ {1, ..., 10}.

step 4 Repeat steps 1 through 4 N = 20, 000 times.

The p-value is the frequency of observing estimates bn,∗∗
1,K smaller than the least-squares estimate bLS

1,K :

p = 1− 1

N

N∑
n=1

Ibn,∗∗
1,K

>bLS
1,K

.

It’s the p-value of a two-sided test of no predictability.

A.2 Fama-MacBeth Procedure

The estimation problem is

E
[
Re,j

t+1

]
= λ̃β̃

j′
,

with

λ̃ = θCov
(
Ft+1, F

′
t+1

)
,

β̃
j

= Cov
(
Ft+1, F

′
t+1

)−1
Cov

(
Ft+1, R

e,j
t+1

)
.

First, for each j, the vector β̃
j

is obtained from the time-series regression of returns on the factors. Given the

limited length of the time series, the β are estimated using 1 regression over the entire sample instead of a rolling

regression.

Re,j
t = βj

0 + β̃
j′
a F a

t + β̃
j′
c F c

t + εj
t t = 1, 2, ..., T. (12)

Let Σ = E [εtε
′
t] be the N×N covariance matrix of the errors εt =

[
ε1t , ..., ε

N
t

]
. Second, for each t, a cross-sectional

regression of returns on the estimated β̃
i

uncovers estimates for
(
λ̃a, λ̃c

)
and the zero-β return λ̃0:

Re,j
t = λ̃0 + β̃

j′
a,tλ̃a,t+β̃

j

c,tλ̃c,t + α
j

t
j = 1, 2, ..., J.

The estimator for the price of risk is the time series average of the estimated second stage coefficients: λ̃ =
1
T

∑T
t=1 λ̃t. The αj

t are the pricing errors, α̂j = 1
T

∑T
t=1 α̂j

t . The sampling error for λ̂ and the covariance matrix
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for α̂ are given by:

var
(
λ̂FMB

)
=

1

T 2

[
T∑

t=1

(
λ̂t − λ̂

)2
]

cov (α̂FMB) =
1

T 2

[
T∑

t=1

(α̂t − α̂) (α̂t − α̂)′
]

The pricing errors are the basis for a goodness of fit statistic α̂cov (α̂)−1 α̂. In a regression with K factors the

statistic has a χ2 distribution with J −K degrees of freedom. A second measure of fit is the R2 constructed from

the cross-sectional variance of the time-averages (denoted by a bar) of errors and returns for each of the portfolios:

R2
FMB = 1−

var
(
α̂i

t

)

var(Ri
t+1 −Rf

t )

The β′s are generated regressors from a first stage time-series analysis. Generally, this error in variables problem

gives rise to an underestimation of the asymptotic variance-covariance matrix. The standard errors for λ and

α are corrected following Shanken (1992). Let the matrix Σf be the covariance matrix of the factors F . The

Shanken correction to the variance of the estimator λ̂ and the covariance matrix of pricing errors α is:

V ar
(
λ̂corr

)
= V ar

(
λ̂uncorr

) (
1 + λ̂

′
Σ−1

F λ̂
)

+
1

T
ΣF

cov (α̂corr) =
(
1 + λ̂

′
Σ−1

F λ̂
)

cov (α̂uncorr) .

Cochrane (2001) (pp.241-242) describes a GMM procedure that carries out the time series and cross-sectional

estimation jointly. It corrects for serial correlation and conditional heteroskedasticity in the residuals εi
t and for

correlation of αi
t across assets.

A.3 Data Appendix

Labor Income plus Transfers 1929-2002: Bureau of economic Analysis, NIPA Table 2.1, Aggregate

labor income is the sum of wage and salary disbursements (line 2), other labor income (line 9), and proprietors’

income with inventory valuation and capital consumption adjustments (line 10). Transfers is transfer payments

to persons (line 16) minus personal contributions for social insurance (line 23). Prior to 1929, labor income

plus transfers is 0.65 times nominal GDP. Nominal GDP Between 1929 and 2002, the ratio of labor income plus

transfers to nominal GDP stays between .65 and .70 and equals .65 in 1929 and 1930. Nominal GDP for 1889-1928

is from Maddison (2001).

Number of Households For 1889-1945: Census (1976), series A335, A2, and A7. Household data are for

1880, 1890 1900, 1910, 1920, 1930, and 1940, while the population data are annual. In constructing an annual

series for the number of households, we assume that the number of persons per household declines linearly in

between the decade observations. For 1945-2002: U.S. Bureau of the Census, table HH-1, Households by Type:

1940: Present.
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Price Indices All Items (pa) 1890-1912: Census (1976), Cost of Living Index (series L38). 1913-2002: CPI

(BLS), base year is 1982-84. In parenthesis are the last letters of the BLS code. All codes start by CUUR0000S.

Total price index (pa): All items (code A0). Shelter (ph): Item rent of primary residence (code EHA). Food (pc)

1913-2002: Item food (code AF1). Apparel (papp) 1913-2002: Item apparel (code AA).

Aggregate Consumption

Total Consumption Expenditures C 1909-1928: Census (1976), Total Consumption Expendi-

tures (series G470). The observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau

of economic Analysis, NIPA table 2.2. Total Consumption expenditures is personal consumption expenditures

(line 1).

Housing Services Consumption Crent 1909-1928: Census (1976), Rent and Imputed Rent (series

G477). The observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic

Analysis, NIPA table 2.2. Housing services consumption H is nominal consumption on housing services (line 14).

Food Consumption Cfood 1909-1928: Census (1976), Food (series G471 + G472 + G473). The

observations are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic Analysis,

NIPA table 2.2. Nominal consumption of food (line 7).

Apparel Consumption Ccloth For 1909-1928: Census (1976), Apparel (series G474). The observa-

tions are for 1909, 1914, 1919, 1921, 1923, 1925, and 1927. For 1929-2002: Bureau of economic Analysis, NIPA

table 2.2. Nominal consumption of clothing and shoes (line 8).

Housing Expenditure share A It is computed in two ways. The nondurable consumption share α =

1−A

First, for 1909-2002, the housing expenditure share is computed as rent and imputed rent divided by total

consumption expenditures minus rent and imputed rent and minus apparel. The observations are for 1909, 1914,

1919, 1921, 1923, 1925, and 1927. The cell entries for 1920, 22, 24, 26, and 28 are the average of the adjacent

cells. The corresponding measure for the nondurable consumption share is α1 = 1−A1.

Second, for 1929-2002: The housing expenditure share is A is nominal consumption on housing services (line

14) divided by nominal consumption of non-durables (line 6) and services (line 13) minus clothing and shoes (line

8). The corresponding measure for the nondurable consumption share is α2 = 1−A2.

Real Per Household Consumption Growth dc It is computed in two ways. First, for 1922-

2002, we construct real nondurable consumption, as total consumption deflated by the all items CPI minus rent

deflated by the rent component of the CPI minus clothes and shoes deflated by the apparel CPI component. Per

household variables are obtained by dividing by the number of households. The missing data for 1924, 26, and

28 are interpolated using Mehra & Prescott (1985) real per capita consumption growth. The growth rate dc1 is

the log difference multiplied by 100. Second, for 1930-2002, we define real nondurable and services consumption

(NDS), as nondurable consumption deflated by the NIPA nondurable price index plus services deflated by the

NIPA services price index minus housing services deflated by the NIPA housing services price index minus clothes
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and shoes deflated by the NIPA clothes and shoes price index. The basis of all NIPA price deflators is 1996=100.

They are not the same as the corresponding CPI components from the BLS. Per household variables are obtained

by dividing by the number of households. The growth rate dc2 is the log difference of NDS multiplied by 100.

Rental Price Growth dρ It is computed in two ways. First, for 1913-2002 we use the ratio of CPI

rent component to the CPI food component: ρ = ph

pc . The growth rate dρ1 is the log difference multiplied by

100. Second, for 1930-2002, we construct nominal non-durable consumption (non-durables plus services excluding

housing services and excluding clothes and shoes) and real non-durable consumption (where each item is separately

deflated by its own NIPA price deflator, basis 1996=100). The deflator for nondurable consumption is then the

ratio of the nominal to the real non-durable consumption series. The relative rental price is then the ratio of the

price deflator for housing services to the price deflator for nondurable consumption. The growth rate dρ2 is the

log difference multiplied by 100.

Financial Wealth In order to construct the consumption wealth ratio at annual frequency (Lettau and

Ludvigson (2001)) we need a measure of financial wealth. For 1945-2002: Flow of Funds, Federal Reserve Board,

Balance sheet of households and non-profit organizations (B.100). Line 8: Financial Asses (FL154090005.Q). For

1926-1945: Total deposits, all commercial banks, NBER Macro-history database (series 14145). We assume that

the ratio of deposits to total wealth decreases slowly from .205 to .185, its level in 1945 (FoF deposits series).

B Tables and Figures

log(zt) θ λ log(ρt) θ λ
log(z1

t ) .925 log(ρ1
t ) .953

(.039) (.027)
log(z2

t ) .940 log(ρ2
t ) .941

(.037) (.023)
log(z1

t ) .890 .824 log(ρ1
t ) .955 .102

(.033) (.141) (.027) (.181)
log(z2

t ) .940 .816 log(ρ2
t ) .932 -.321

(.032) (.159) (.023) (.158)
log(z1

t ) .950 log(ρ1
t ) .851

(.033) (.056)
log(z2

t ) .936 log(ρ2
t ) .911

(.026) (.046)
log(z1

t ) .957 .824 log(ρ1
t ) .817 .261

(.033) (.180) (.054) (.240)
log(z2

t ) .952 .816 log(ρ2
t ) .896 .259

(.027) (.181) (.047) (.172)

Table 9: Expenditure Share and Rental Price Regression Results Regression results for the log expenditure
share log(zt) and the rental prices log(ρt) in an AR(1)-specification with or without consumption growth as additional
regressor. θ is the AR(1) coefficient and λ is the consumption growth coefficient. The upper panel reports the results
for the entire sample, while the lower panel reports the results for the post-war sample. The variables with subscript 1
are available for 1926-2002. The variables with subscript 2 are available for 1929-2002. The Data Appendix contains the
definitions of all the variables .
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Model CCAPM HCAPM
γ̂ 10.74 4.30

s.e. [11.94] [4.82]
ε̂ .81

s.e. [.31]
J 26.15 24.25
p 0.0002 .0002

Table 10: GMM Coefficient Estimates CCAPM and HCAPM. These estimates were obtained using the
7 moment conditions. β was fixed at .98. The identity weighting matrix was used in estimating the model. We use the
Newey West procedure with 3 lags which corrects for serial correlation and heteroskedasticity. We use a repeated GMM
procedure, allowing for ten iterations.

V W Mean St. Dev Mean St. Dev. B/M

RVW 7.9 20.9
S1B1 3.8 38.0 7.3 40.4 0.35
S1B2 9.7 37.4 15.6 45.2 0.70
S1B3 13.8 35.9 17.6 40.1 1.03
S1B4 17.8 44.6 22.1 53.4 1.55
S1B5 18.2 37.6 26.2 48.6 5.52
S2B1 6.9 32.3 7.1 35.5 0.38
S2B2 11.8 30.3 12.6 32.6 0.70
S2B3 13.7 30.5 15.0 33.6 1.03
S2B4 14.7 32.8 15.3 35.1 1.52
S2B5 15.1 33.0 16.5 36.2 3.76
S3B1 8.5 30.5 8.0 30.2 0.38
S3B2 11.4 28.0 11.7 29.8 0.69
S3B3 12.3 27.2 12.8 28.2 1.02
S3B4 13.1 27.8 13.7 28.1 1.51
S3B5 13.9 32.6 14.9 32.8 3.40
S4B1 8.4 24.0 8.4 24.5 0.37
S4B2 9.2 25.6 9.4 26.2 0.69
S4B3 11.1 25.9 11.4 26.9 1.01
S4B4 12.1 27.0 12.4 27.8 1.49
S4B5 13.6 34.5 14.3 36.6 3.35
S5B1 7.6 21.6 6.9 21.1 0.33
S5B2 7.2 19.5 8.4 20.3 0.68
S5B3 8.8 22.1 9.5 23.7 1.00
S5B4 9.5 25.4 10.6 27.3 1.50
S5B5 11.0 33.7 11.5 34.4 1.59

Table 11: Annual Portfolio Returns 1927-2002. Time-series mean and standard deviation of gross portfolio
returns. All returns are in excess of a 1 month T-bill return. The first two columns are value-weighted portfolios, the next
two for equally-weighted portfolios and the last column denotes the value weighted portfolio average book-market ratio. All
data are from Kenneth French.
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mymo $ ϑ χ LHR ADF
1889-2002 -1.5164 -.0066 1.8010 21.07∗ -3.46∗∗
1925-2002 -1.2064 -.0164 2.3546 35.04∗∗∗ -5.38∗∗∗
1945-2002 -1.2987 -.0176 2.6511 30.77∗∗∗ -3.06 ∗∗
1889-2002 -1 -.0102 1.6974 -3.08∗∗
1925-2002 -1 -.0148 2.0624 -4.16∗∗∗
1945-2002 -1 -.0233 2.8302 -2.89∗

myrw $ ϑ χ LHR ADF
1889-2002 -1.8255 .0084 -.3659 15.16 -3.46∗∗
1925-2002 -.5480 -.0120 .1895 34.00∗∗∗ -4.01∗∗∗
1945-2002 -.4108 -.0147 .3311 25.00∗ -3.32∗∗
1889-2002 -1 .0011 -.4434 -2.29
1925-2002 -1 -.0023 -.1720 -3.42∗∗
1945-2002 -1 -.0083 .3784 -3.51∗∗

myfa $ ϑ χ LHR ADF
1925-2001 -1.0137 -.0004 -.2257 52.01∗∗∗ -4.70∗∗∗
1945-2001 -1.0055 -.0011 -.1624 28.45∗∗ -3.41∗∗
1925-2001 -1 -.0005 -.2254 -4.65∗∗∗
1945-2001 -1 -.0026 -.0365 -2.88∗

Table 12: Cointegration Relationship. The second through fourth columns show coefficient estimates for the
cointegration relationship. The cointegration relationship is estimated for 1889-2002, 1925-2002, and 1945-2002 for hv = mo
and hv = rw, and for 1925-2001 and 1945-2001 for hv = fa. Coefficient estimates for Dk are not reported. We set K = 8 in
the VECM. The fifth column shows the likelihood ratio statistic of the Johansen cointegration test. It assumes a constant
and a trend in the cointegration relationship. The last column shows the value of the ADF test statistic (with K=8 lags) of
the null hypothesis of a unit root in the resulting my series. For both test, significance at the 10% level is denoted by a ∗,
significance at the 5% level by ∗∗, and at the 1% level by ∗∗∗. The second part of each block gives the parameter estimates
of an OLS regression of log hv − log ylt on a constant and a trend.

Dependent var: ∆ log(hvmo
t ) ∆ log(yt) ∆ log(hvrw

t ) ∆ log(yt) ∆ log(hvfa
t ) ∆ log(yt)

∆ log(hvt−1) .75 -.15 .14 -.39 .33 .21
(s.e.) (.09) (.13) (.10) (.13) (.12) (.19)

∆ log(hvt−2) -.20 .07 -.17 -.11 -.29 -.50
(s.e.) (.09) (.13) (.11) (.13) (.12) (.19)

∆ log(yt−1) -.09 .24 -.06 .34 .04 .73
(s.e.) (.07) (.10) (.09) (.11) (.06) (.11)

∆ log(yt−2) -.11 -.05 -.02 -.01 -.05 -.18
(s.e.) (.07) (.10) (.09) (.11) (.07) (.12)

myt−1 -.038 .023 -.037 .042 -.072 .110
(s.e.) (.015) (.021) (.027) (.033) (.032) (.052)
R2 49.3 7.6 5.8 15.3 22.8 48.4

Table 13: Estimates from Bivariate VAR. For each of the three measures of the housing collateral ratio, a
bivariate VAR is estimated. The dependent variables are the current growth rate in housing wealth and in labor income
plus transfers. The dependent variables are the first two lags of these variables and the one-period lagged housing collateral
ratio (mymo, myrw, and myfa respectively). A constant is included in the system, but its coefficients are not reported. The
sample period is 1889-2002 for the first two VAR’s and 1925-2001 for the last VAR.
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Table 14: Long-Horizon Predictability Regressions.
The regressor in the first row is the rescaled housing collateral ratio mymo, estimated for the period 1925-2002. In row 2,

it is the log dividend yield. In row 3, cay is the consumption-wealth ratio cay = log c − .259 log fw − .682 log y + 0.035,

estimated with data for 1930-2002. It stays always positive. In row 4, the regressor is the labor income plus transfers

to total consumption expenditures ratio. Row 5 includes both the housing collateral ratio and the log dividend yield as

regressors. Row 6 includes both the housing collateral ratio and the labor income to consumption ratio as regressors. Row

7 includes the housing collateral ratio, the log dividend yield, and the labor income to consumption ratio as regressors.

The regressor in the row 8 is the housing collateral ratio mymo, estimated for the post-war period. In row 10, we use the

cay ratio constructed by Lettau and Ludvigson for the period 1948-2001: cay = c - 0.292 fw - 0.597 y. The predictability

results in this row are for 1948-2001. The first row of each panel reports least squares estimates for b1. Newey-West HAC

standard errors are used to denote significance at the 1 percent (***), 5 percent (**) and 10 percent level (*). The second

row reports the R2 for this regression.
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Table 15: Cross-Sectional Results with Lagged Aggregate Pricing Factors. The asset pricing factors
are mymax − myt, (mymax −myt)∆ log(ct+1) in row 1, row 2-4 contain in addition the one through four period lagged
interaction terms (mymax −myt)∆ log(ct+1−k), k = 1−4. Row 5 contains the factors ∆ log(ct+1), ∆ log(αt+1), mymax−
myt, (mymax −myt) ∆ log(ct+1) and (mymax −myt) ∆ log(αt+1). Rows 6-8 contain in addition the one through four
period lagged interaction terms (mymax −myt)∆ log(ct+1−k), k = 1 − 4 and (mymax −myt)∆ log(αt+1−k), k = 1 − 4.
The housing collateral variable is myrw in all rows. The estimation is done using the Fama-MacBeth procedure. The same
returns are used in each row: 1930-2002, i.e. in row 4, consumption growth up to 1926 is used. OLS standard errors are
in parenthesis, Shanken (1992) corrected standard errors are in brackets. The last column reports the R2 and the adjusted
R2 just below it.
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λ̃0 λ̃c λ̃ρ λ̃my λ̃my.c λ̃my.ρ R2

1 9.30 2.43 49.1
CCAPM (2.69) (.84) 47.0

[4.64] [1.47]
2 8.73 2.46 .16 49.4

HCAPM (4.09) (.91) (.17) 45.0
[7.15] [1.60] [.30]

3 7.12 1.66 -.11 -.03 70.0
Separable Prefs. (2.19) (.66) (.09) (.31) 65.4

mymo [4.43] [1.36] [.18] [.54]
4 9.61 1.15 .02 -.04 69.9

Separable Prefs. (3.23) (.67) (.06) (.13) 65.8
myrw [6.50] [1.37] [.12] [.27]

5 4.30 1.28 -.06 -.15 83.8
Separable Prefs. (2.62) (.68) (.05) (.13) 81.6

myfa [5.37] [1.42] [.10] [.27]
6 9.06 1.22 .18 -.08 -.17 -.04 78.4

Non-Sep. Prefs. (2.79) (.61) (.12) (.07) (.37) (.04) 73.1
mymo [6.24] [1.39] [.28] [.16] [.83] [.09]

7 10.44 1.06 .18 .00 -.12 -.01 70.7
Non-Sep. Prefs. (3.72) (.58) (.15) (.05) (.11) (.01) 63.4

myrw [8.05] [1.29] [.33] [.10] [.24] [.03]
8 7.38 .53 .07 -.05 -.27 -.01 85.8

Non-Sep. Prefs. (2.98) (.67) (.10) (.03) (.17) (.01) 82.2
myfa [5.66] [1.29] [.20] [.06] [.33] [.03]

Table 16: Post-war Cross-Sectional Results. The sample period is 1945-2002. The asset pricing factors are
∆ log(ct+1) in row 1, ∆ log(ct+1) and ∆ log(αt+1) in row 2, ∆ log(ct+1), mymax−myt, (mymax −myt)∆ log(ct+1) in rows
3-5 and ∆ log(ct+1), ∆ log(αt+1), mymax−myt ,(mymax −myt)∆ log(ct+1) and (mymax −myt)∆ log(αt+1) in rows 6-8.
The housing collateral variable is mymo in rows 3 and 6, myrw in row 4 and 7 and myfa in row 5 and 8. my is estimated
with data from 1945-2002. The variables used are ∆c2, ∆α2 described in the data appendix. The estimation is done
using the Fama-MacBeth procedure. The set of test assets is T1. OLS standard errors are in parenthesis, Shanken (1992)
corrected standard errors are in brackets. The last column reports the R2 and the adjusted R2 just below it.
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Portfolio All States Good States Bad States
RVW 1.56 0.89 2.34
S1B1 1.48 1.27 1.76
S1B2 2.28 .47 4.34
S1B3 3.20 1.70 4.95
S1B4 3.39 -.70 8.00
S1B5 3.96 .85 7.50
S2B1 1.94 .98 3.04
S2B2 2.23 1.25 3.37
S2B3 2.42 .33 4.80
S2B4 2.68 .49 5.17
S2B5 2.89 .58 5.51
S3B1 1.80 .33 3.46
S3B2 2.27 .61 4.17
S3B3 2.52 1.16 4.08
S3B4 2.53 .91 4.39
S3B5 2.99 .53 5.79
S4B1 1.05 .37 1.84
S4B2 1.58 .04 3.33
S4B3 1.71 .65 2.93
S4B4 2.34 .04 4.93
S4B5 1.62 -1.10 4.67
S5B1 1.54 1.20 1.95
S5B2 1.21 .76 1.74
S5B3 1.57 .77 2.50
S5B4 1.69 .32 3.25
S5B5 1.57 -1.66 5.18

Table 17: Consumption Betas. Consumption betas are computed as βt = βc +βc.my(mymax−myt). Good states
are states where (mymax −myrwt) is below below zero and bad states are times where myrw is one standard deviation
above zero (11 observations each). The third and fourth column report the average consumption betas in good states and
bad states respectively. The sample is 1926-2002. Lettau and Ludvigson (2001b) do the same exercise for their scaling
variable, the consumption-wealth ratio.
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Model λ̃0 λ̃1 λ̃2 λ̃3 Size R2

1 2.64 6.31 -1.28 44.2
Static CAPM (4.11) (4.72) (.35) 39.2
Sharpe-Lintner [5.27] [6.49] [.48]

2 5.53 3.80 4.12 -1.32 54.5
Human Capital-CAPM (4.08) (4.67) (1.29) (.35) 48.0

Jagannathan-Wang [5.93] [7.18] [1.99] [.55]
3 12.93 −4.00 .05 −5.26 -1.46 64.7

lc-conditional CAPM (5.67) (5.96) (0.03) (6.09) (.43) 57.6
Santos-Veronesi [10.09] [10.87] [0.05] [11.11] [.78]

4 6.20 .86 -1.40 44.2
Static CCAPM (2.33) (.93) (.36) 39.2
Breeden-Lucas [3.14] [1.33] [.52]

5 4.57 .64 −.62 -1.03 57.5
HCAPM (2.26) (.91) (.27) (.32) 51.4

Non-Separabililty [2.91] [1.25] [.36] [.45]
6 3.60 2.34 −.04 1.43 .07 87.8

Collateral-CAPM (2.21) (.90) (.04) (.43) (.45) 85.4
this paper [3.38] [1.45] [.07] [.68] [.71]

Model λ̃0 λ̃1 λ̃2 λ̃3 Value R2

1 4.30 4.20 .24 34.8
Static CAPM (4.28) (4.87) (.09) 28.9
Sharpe-Lintner [4.62] [5.76] [.12]

2 7.80 .99 3.43 .23 43.4
Human Capital-CAPM (4.37) (4.93) (1.25) (.08) 35.3

Jagannathan-Wang [5.30] [6.44] [1.65] [.12]
3 14.91 −6.92 .05 −8.04 .22 68.8

lc-conditional CAPM (6.08) (6.45) (0.02) (6.62) (.08) 62.5
Santos-Veronesi [9.38] [10.23] [0.04] [10.49] [.14]

4 8.05 2.10 -.06 17.7
Static CCAPM (2.46) (.83) (.05) 10.2
Breeden-Lucas [2.82] [1.05] [.09]

5 7.20 1.37 −.70 -.10 43.1
HCAPM (2.42) (.79) (.28) (.05) 35.0

Non-Separabililty [3.13] [1.10] [.39] [.10]
6 3.53 2.71 −.01 1.76 -.03 78.0

Collateral-CAPM (2.33) (.77) (.04) (.42) (.06) 73.6
this paper [3.95] [1.37] [.06] [.73] [.13]

Table 18: Residual Size and Value Effects, 1926-2002. Row 1: factor is Rvw,e
t+1 . Row 2: factors are Rvw,e

t+1

and Rhc,e
t+1 . Row 3 factors: Rvw,e

t+1 , lct and lctR
vw,e
t+1 . Row 4: ∆ log (ct+1). Row 5: ∆ log (ct+1), At∆log

(
ρt+1

)
. Row 6 is

the collateral model: ∆ log (ct+1), , myrwmax − myrwt, and (myrwmax − myrwt)∆ log (ct+1). Size is log of portfolio’s
market capitalization. Value is log of portfolio’s book-to-market ratio.
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
mymo b0 -4.60 -4.47 -4.26 -4.46 -3.75 -3.80 -4.05 -3.27 -3.50 -3.44

b1 -1.93 -.81 -1.35 -1.62 -.76 -.53 -1.12 -.10 1.01 1.79
R2 .27 .07 .22 .21 .10 .18 .49 .01 .30 .34
s.e. .47 .41 .36 .46 .33 .16 .17 .18 .22 .36

myrw b0 -4.69 -4.51 -4.32 -4.53 -3.78 -3.83 -4.10 -3.27 -3.45 -3.36
b1 -3.08 -1.72 -2.30 -2.52 -2.05 -1.09 -1.08 .21 1.69 2.57
R2 .57 .29 .56 .43 .62 .65 .39 .03 .72 .60
s.e. .36 .36 .27 .39 .21 .11 .18 .18 .14 .28

myfa b0 -4.69 -4.51 -4.32 -4.53 -3.78 -3.83 -4.10 -3.28 -3.46 -3.36
b1 -3.53 -3.15 -3.4 -3.52 -3.03 -1.38 -.91 1.59 2.28 2.39
R2 .13 .17 .22 .15 .24 .19 .05 .24 .23 .09
s.e. .51 .39 .37 .48 .30 .16 .23 .16 .23 .42

Table 19: Dividend Share and the Housing Collateral Ratio. The results are for the regression log(dt)−
log(yt) = b0 + b1myt + εt, where dt is the nominal dividend on each of 10 decile value portfolios and yt is the nominal
aggregate labor income plus transfers. The regressor in the first (second and third) row is the annual housing collateral ratio
mymo (myrw and myfa), estimated for the period 1889-2002. The first row of each panel reports least squares estimates
for the intercept b0, the second row for the slope coefficient b1. The third row reports the OLS R2 for this regression. The
last row gives the standard error of the regression (i.e. of εt). The dividend data are annual for 1952 to 1999, constructed
from the monthly dividend yield provided by Bansal, Dittmar and Lundblad (2002).

Figure 10: Response of the One-Year Excess Return to Impulse in Collateral Ratio myfa.
Sample is 1925-2002, The standard errors are computed from 50,000 Monte Carlo simulations. The bottom panel displays
the response of the market excess return.
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