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Abstract

This paper theoretically investigates the pricing effects of financial
innovation in an economy with endogenous participation and hetero-
geneous income risks. The introduction of non-redundant assets can
endogenously modify the participation set, reduce the covariance be-
tween dividends and participants’ consumption and thus lead to lower
risk premia. This mechanism is demonstrated in a tractable exchange
economy with a finite number of macroeconomic factors. Agents can
freely borrow and lend, but must pay a fixed entry cost to invest in
risky assets. Security prices and the participation structure are jointly
determined in equilibrium. The model is consistent with several fea-
tures of financial markets over the past few decades: substantial finan-
cial innovation; a sharp increase in investor participation; improved
risk management practices; a slight increase in interest rates; and a
reduction in risk premia.

Keywords: Endogenous participation, Epstein-Zin utility, financial in-
novation, incomplete markets, multiple risk factors, spanning.

JEL Classification: D52, E44, G12.
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1. Introduction

This paper theoretically investigates how financial innovation affects asset prices in
an economy with endogenous participation and heterogeneous income risks. We
show that the introduction of non-redundant securities can endogenously mod-
ify the participation set, decrease the covariance between dividends and partic-
ipants’ consumption, and thus lead to a lower market premium. In multifactor
economies, financial innovation spreads across markets through the diversified
portfolio choices of new entrants, and can have rich effects on the cross-section of
expected returns.
Our approach builds on two stylized facts. First, participation in financial

markets is costly. Corporate hedging requires the employment of experts able
to effectively reduce the firm’s risk exposure using existing financial assets. In-
vestors have to sustain learning efforts, and expenses related to the opening and
maintenance of accounts with an exchange or a brokerage firm. Statutory and
government regulations often create costly barriers to the participation of institu-
tional investors in some markets. Second, when some asset markets are initially
missing, financial innovation affects risk-sharing and investment opportunities.
For instance, options and futures can provide additional insurance against the
price risk of commodities and financial assets.1 Similarly, asset-backed securities
allow lending institutions to reduce their risk exposure to various forms of debt
contracts. For this reason, new securities affect individual incentives to participate
in financial markets when trading is limited by entry costs.
We introduce a two-period economy with incomplete markets and endogenous

participation. Agents receive heterogeneous random incomes determined by a
finite number of macroeconomic risk factors. They can borrow or lend freely,
but have to pay a fixed cost to invest in risky assets. Security prices and the
participation structure are jointly determined in equilibrium. The model is com-
putationally tractable and leads to a closed-form system of equilibrium equations
in the CARA-normal case.
The introduction of non-redundant instruments encourages more investors to

participate in financial markets for hedging and diversification purposes. This
tends to reduce the precautionary demand for savings and thus increase the equi-
librium interest rate. Under plausible conditions on the cross-sectional distribu-
tion of risk, the new entrants reduce the covariance between stock returns and
the mean consumption of participants, leading to a lower market premium. The

1See for instance Ross (1976).
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model is thus consistent with features that have characterized financial markets in
the past few decades: substantial financial innovation, a sharp increase in investor
participation, improvements in risk-management practices, a slight increase of real
interest rates, and a reduction in the risk premium.2

Participation can also play an important role in spreading the effects of in-
novation across markets. When a factor becomes tradable, new agents decide to
enter financial markets in order to manage their risk exposure. The new par-
ticipants also trade other assets for diversification purposes, and can modify the
risk premia of securities uncorrelated to the factor. Financial innovation can thus
differentially affect distinct sectors of the economy and have a rich impact on the
cross-section of expected returns. Furthermore, the price changes caused by the
new entrants adversely affect a subset of existing participants and lead some of
them to leave financial markets. The introduction of new assets can thus induce
the simultaneous entry and exit of investors, giving rise to non-degenerate forms
of participation turnover.3

The tractable model introduced in this paper emphasizes the role of the cross-
sectional distribution of risk in an economy with endogenous participation. We
mainly use this approach to analyze the effects of new securities on risk pricing, a
topic that earlier research has mostly examined without consideration of participa-
tion. Changes in taxes or in entry costs represent other direct applications, which
are discussed only briefly because of space constraints. Extensions to richer cost
structures or heterogeneity in risk aversion would also preserve the tractability of
the model and prove useful for empirical applications.
Section 2 introduces a simple asset pricing model with endogenous market

participation. Section 3 demonstrates the pricing and participation effects of
financial innovation in a one factor model of risk exposure. We consider in Section
4 an economy with multiple risk factors. Simple numerical simulations show that
financial innovation can substantially reduce the equity premium, differentially
spread across security markets, and either increase or decrease the interest rate.
All proofs are given in the Appendices.

2The recent decrease in the risk premium is reported in Blanchard (1993), Campbell and
Shiller (2001), Cochrane (1997), Fama and French (2002) and Vuolteenaho (2000). Similarly,
Barro and Sala-i-Martin (1990) and Honohan (2000) document a slight increase in real interest
rates over the past three decades.

3Hurst, Luoh and Stafford (1998) and Vissing-Jørgensen (2002) report substantial rates of
entry and exit in US stockownership.
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1.1. Review of Previous Literature

This paper builds on two strands of the asset pricing literature that have essen-
tially been developed separately. First, researchers have examined how limited
investor participation affects the prices of a fixed set of securities. Second, the
price impact of financial innovation has been examined both empirically and the-
oretically without consideration of participation. The novelty of this paper is to
combine these two lines of research in a simple and tractable framework. We show
that one of the consequences of financial innovation could be its effect on partic-
ipation, which could induce a reduction in the risk premium. This potentially
provides useful guidance for future empirical research.
Research on limited participation was pioneered by Mankiw and Zeldes (1991),

who reported that only 28% of households owned stocks in 1984, and that only 47%
of the households holding other liquid assets in excess of $100, 000 held any equity.4

The fraction of households owning stocks increases with income and education,
implying that there could be fixed information costs to participate in financial
markets. The consumption of stockholders is also more highly correlated with the
stock market than aggregate consumption. The distinction between stockholders
and non-stockholders therefore helps explain the equity premium puzzle. The
empirical validity of this mechanism is further confirmed by Vissing-Jørgensen
(1997) and Attanasio, Banks and Tanner (1998). Poterba and Samwick (1995)
and Vissing-Jørgensen (1997) also document the sharp increase of stock market
participation in the United States since 1945.
These empirical findings have prompted the development of theoretical models

that restrict participation exogenously. Saito (1995) and Basak and Cuoco (1998)
thus consider two-asset exchange economies in which individual income is spanned
by the risky security. They succeed in matching the historical risk premium with
a reasonable degree of risk aversion at low participation levels. Heaton and Lucas
(1999) extend their analysis by considering heterogeneous incomes with a common
nonmarketable factor. In contrast to this earlier work, we consider multiple assets
and factors, and endogenize the participation structure by considering fixed costs
to trading in financial markets. The entry-cost approach has been widely used
in finance to analyze issues such as portfolio choice (Campbell, Cocco, Gomes
and Maenhout, 2001), volatility (Pagano, 1989; Allen and Gale, 1994b; Orosel,
1998), futures risk premia (Hirshleifer, 1988), market size (Allen and Gale, 1990;

4The structure of stockownership is further analyzed by Blume and Zeldes (1993) and Bertaut
and Haliassos (1995).
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Pagano, 1993), and the effect of social security reform on capital accumulation
(Abel, 2001). We use this setup to analyze how financial innovation affects investor
participation and asset prices.
The paper is also related to a line of research that examines the price impact

of financial innovation without consideration of participation. Conrad (1989) and
Detemple and Jorion (1990) find empirically that the introduction of new batches
of options had a substantial price impact between 1973 and 1986. The effect is
stronger for underlying stocks, but can also be observed for an industry index that
excludes the optioned stock as well as for the market index. Similar empirical
evidence is available for other countries and derivative markets (e.g. Jochum
and Kodres, 1998). These empirical findings have prompted a rich theoretical
literature. In the presence of informational asymmetries, the introduction of an
option contract has been shown to affect the volatility of the underlying stock
(e.g. Stein, 1987; Grossman, 1989). Another line of research focuses on the risk-
sharing component of new derivatives (Detemple and Selden, 1991; Huang and
Wang, 1997).
Although our model can be applied to a variety of settings, the most promising

application may be the long-term effect of innovation on market participation and
the equity premium. Intuition suggests that the price of a diversified portfolio of
assets may be more influenced by risk-sharing than by information asymmetries.
It is not straightforward, however, to capture the price impact of financial inno-
vation in economies with exogenous participation. New risk sharing opportunities
reduce precautionary savings and increase the interest rate, which tends to lower
the price of all assets. Furthermore in standard mean-variance economies, finan-
cial innovation does not affect the relative price of risky assets relative to bonds
(Oh, 1996). We will show that new assets modify the pricing of risk and occa-
sionally reduce the interest rate in CARA-normal economies when participation
is endogenized.

2. A Model of Endogenous Market Participation

We examine an exchange economy with two periods (t = 0, 1) and a single per-
ishable good. The economy is stochastic, and all random variables are defined on
a probability space (Ω,F ,P). During his life, each agent h receives an exogenous
random endowment eh =

¡
eh0 , ẽ

h
¢
, which corresponds for instance to a stochas-

tic labor income. Investors have preferences over consumption streams (ch0 ,ech),
which are represented by a utility function Uh(ch0 ,ech). We thus adopt the two-
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period setup that has widely been used in the financial innovation literature for
its tractability (e.g. Allen and Gale 1994 a, b). We anticipate that our model pro-
vides useful insights on the properties of multiperiod economies with permanent
shocks.5

This paper places no restriction on the set of agents H, which can be finite or
infinite. To provide a uniform treatment, we endow the space H with a measure
µ that satisfies µ (H) = 1. This is equivalent to viewing each element of H as a
type, and the measure µ as a probability distribution over all possible types.
At date t = 0, agents can exchange two types of real securities. First, they can

trade a riskless asset costing π0 = 1/R in date t = 0 and delivering one unit of the
good with certainty at date t = 1. Note that R is the gross interest rate. Second,
there also exist J risky assets (j = 1, ...J) with price πj and random payoff ãj.We
assume for simplicity that all assets are in zero net supply.6 Investors can freely
operate in the bond market but have to pay a fixed entry cost κ in order to invest
in one or more risky assets. This assumption is consistent with complementarities
of learning in trading activities, and the results of the paper easily generalize to
more flexible specifications of the entry cost. Investors are price-takers both in
their entry and portfolio decisions, and there are no constraints on short sales. Let
π denote the vector of risky asset prices, and θh the vector of risky assets bought
(or sold) by investor h. We also consider the dummy variable 1{θh 6=0} equal to 1 if
θh 6= 0, and equal to 0 otherwise. The agent is subject to the budget constraints

ch0 + θh0/R+ π · θh + κ1{θh 6=0} = eh0 ,

c̃h = ẽh + θh0 + ã · θh.
These equations are standard, except for the presence of the entry cost in the
resource constraint at date 0. We determine the optimal choice (ch0 , c̃

h, θh0 , θ
h) by

calculating the consumption-portfolio decision under entry and non-entry. Com-
paring the resulting utility levels yields the optimal participation decision.
Let e0 =

R
H
eh0dµ(h) and ẽ =

R
H
ẽhdµ(h) denote the average income of the

entire population.
5A large body of research shows that transitory shocks can be easily self-insured while persis-

tent shocks have profound pricing and welfare implications in dynamic economies with incom-
plete markets (e.g. Bewley, 1977; Telmer, 1993; Constantinides and Duffie, 1996; Storesletten,
Telmer and Yaron, 1996; Levine and Zame, 2002). The extension of our framework to the
dynamic case, for instance following Calvet (2001), is a promising direction for future research.

6A positive supply of assets could be considered by redefining individual endowment as the
sum of a labor income and an exogenous portfolio of securities. This is a standard convention
in asset pricing theory, as discussed for instance in Magill and Quinzii (1996, ch. 3).
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Definition. A general equilibrium with endogenous participation (GEEP) con-
sists of an interest rate R, a price vector π, and a collection of optimal plans¡
ch0 , c̃

h, θh0 , θ
h
¢
h∈H such that

1. The good market clears in every state:
R
H
(ch0 + κ1{θh 6=0})dµ(h) = e0, andR

H
c̃h (ω) dµ(h) = ẽ (ω) for all ω ∈ Ω.

2. The asset markets clear:
R
H
θhdµ(h) = 0.

Under free participation (κ = 0), the definition coincides with the traditional
concept of general equilibrium under incomplete markets (GEI). With positive
entry costs, a GEEP equilibrium differs from a GEI through two different channels.
First, agents endogenously make their participation decisions, and decide whether
to pay the entry cost. Second, trading activities use some of society’s resources
and thus crowd out private consumption, as seen in the market clearing condition
at date t = 0. This phenomenon, which we call the displacement effect, probably
plays a minor role in actual economies. Extensions of our model could transfer a
fraction of trading fees to certain consumers (such as exchange owners), or seek
to provide a more detailed description of the financial industry.
The existence and constrained efficiency of equilibrium are shown in Appendix

A. In order to analyze the effect of financial innovation on participation and prices,
we now specialize to a tractable class of CARA-normal economies. Investors have
identical utility of the Epstein-Zin type:

U(c0,ec) = −e−χc0 − β[E e−γec]χ/γ,
where γ and χ are positive coefficients. The agent maximizes −e−χc0 − βe−χc1

when she reallocates through time a deterministic income flow. On the other
hand, atemporal risky choices only depend on Ee−γec. When future consumption
is normally distributed, we can rewrite the utility as

−e−χc0 − βe−χ[Eec−γV ar(ec)/2].
The specification corresponds to the standard expected utility when χ = γ.
Individual endowments and the payoffs of risky assets are jointly normal. The

securities generate a linear subspace in the set L2(Ω) of square-integrable random
variables. We assume without loss of generality that the risky assets are centered
and mutually independent: (ã1, .., ãJ) ∼ N (0, I). Let A denote the span of the
risky assets, andA⊥ the subspace orthogonal to all securities (including the bond).
Projections will play an important role in the discussion, and it will be convenient
to denote by x̃V the projection of a random variable x̃ on a subspace V .
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2.1. Individual Entry Decision

We solve the decision problem of an individual trader h by calculating the con-
sumption - portfolio choice under entry and non-entry. Consider the tradable
security m̃A ≡ −(R/γ)PJ

j=1 πjãj, which is determined by risk aversion and mar-
ket prices. We show in Appendix B:

Theorem 1. When participating in the risky asset market, the investor buys

θh,p0 =
R

1 +R

½
eh0 − E ẽh − κ− π · θh,p + ln (Rβ)

χ
+

γ

2

h
V ar(ẽhA

⊥
) + V ar(m̃A)

i¾
units of the bond, and θh,pj = −Cov(ãj, ẽh)− Rπj/γ units of risky asset j. Con-
sumption is then ech,p = E ẽh + θh,p0 + m̃A + ẽhA

⊥
(2.1)

in the second period.

We can infer from (2.1) that the investor exchanges themarketable component ẽhA

of her income risk for the tradable portfolio m̃A, which allows an optimal allocation
of risk and return. Because markets are incomplete, she is also constrained to bear
the undiversifiable income risk ẽhA

⊥
.

Investment in the riskless asset is the sum of two components, which cor-
respond to intertemporal smoothing and the precautionary motive. First, the
agent uses the riskless asset to reallocate her expected income stream between
the two periods. Note that she compensates for any discrepancy between her
subjective discount factor and the interest rate. Second, she saves more when
future prospects are more uncertain. As will be seen in the next section, financial
innovation affects this precautionary component by modifying the riskiness of the
portfolio m̃A and by reducing the undiversifiable income risk ẽhA

⊥
.

The consumption of the non-participating investor is obtained from Theorem
1 by setting A = {0} and κ = 0.

Proposition 1. When not trading risky assets, the investor saves

θh,n0 =
R

1 +R

·
eh0 − E ẽh +

1

χ
ln(Rβ) +

γ

2
V ar

¡
ẽh
¢¸

(2.2)

in the first period, and consumes c̃h,n = ẽh + θh,n0 in the second.
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The non-participating agent bears all the endowment risk in her final consumption.
The precautionary demand for the bond therefore depends on the whole variance
of future income.
The investor makes her participation choice by comparing utility under en-

try and non-entry. In the CARA-normal case, this reduces to maximizing the
certainty equivalent Eech − γV ar(ech)/2. As shown in the appendix, the benefit
of trading risky assets is γV ar

¡
ẽhA − m̃A

¢
/2, while the opportunity cost is κR.

This leads to

Theorem 2. The investor trades risky assets when

γ

2
V ar

¡
ẽhA − m̃A

¢
> κR, (2.3)

and is indifferent between entry and non-entry if the relation holds as an equality.

Relation (2.3) has a simple geometric interpretation in L2(Ω), which is illustrated
in Figure 1. The agent trades risky assets if the distance between her income risk
ẽhA and her optimal portfolio m̃A is larger than

p
2κR/γ. The trader pays the

entry fee only if her initial position is sufficiently different from the optimum, as
is standard in decision problems with adjustment costs.
The theorem has a natural interpretation when all agents have a positive ex-

posure to certain classes of risks. Participants with low exposure to marketable
shocks buy the corresponding assets to earn a risk premium; these agents are called
speculators or investors.7 On the other hand, agents with a high risk exposure will
hedge by selling the corresponding risky assets; these agents are called hedgers or
issuers. The model thus closely matches the type of risk-sharing examined in the
futures literature.

2.2. Equilibrium

Let P ⊆ H denote the set of participants in the risky asset markets. When the
class of indifferent agents has measure zero, we can write

P = ©h ∈ H : γV ar(ẽhA − emA)/2 ≥ κR
ª
. (2.4)

7Massa and Simonov (2002) document empirically the substantial impact of labor income
risk on individual participation. In particular, households are less likely to invest in financial
markets when their income has a higher correlation with a diversified stock portfolio. These
findings are consistent with entry condition (2.3) since the participation benefit can be rewritten
as γ[−2Cov(m̃A; ẽh) + V ar(ẽhA) + V ar(m̃A)]/2.
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Market participants can have different income risk characteristics than the entire
population. We will show in Sections 3 and 4 that this difference is a driving
element of the model.8 While ẽ denotes the mean income in the population, we
define the average endowment among participants as

ẽp =

Z
P
ẽhdµp(h),

where µp is the conditional measure µ/µ (P) if µ (P) > 0, and identically zero
otherwise.
In equilibrium, the common consumption risk m̃A must coincide with the av-

erage tradable income risk of participants:

m̃A = ẽpA. (2.5)

We also establish

Theorem 3. In equilibrium, an asset ã is worth

π(ã) = [E ã− γCov(ẽp, ã)]/R. (2.6)

The interest rate satisfies

lnR = lnR0 + χµ (P)
·
κ+

γ

2

Z
P
V ar

¡
ẽhA − ẽpA

¢
dµp(h)

¸
, (2.7)

where lnR0 = ln (1/β) + χ(E ẽ− e0)− (χγ/2)
R
H
V ar

¡
ẽh
¢
dµ(h).

The participation set and asset prices are thus jointly determined by (2.4)− (2.7).
As in the standard CCAPM, an asset is valuable if it provides a good hedge

against the consumption risk of participants. Since participation is endogenous in
our setup, financial innovation can change the market endowment ẽp, and therefore
the relative price π(ã)/R−1 = E ã − γCov(ẽp, ã) of a risky asset relative to the
bond. The possible effect of financial innovation on the risk premium crucially
relies on the endogeneity of participation, and is one of the main properties of the
model.9

8Heaton and Lucas (2000) show the empirical validity of this distinction.
9When the set of traders is fixed, an increase in the asset span has no effect on the relative

price of a risky asset relative to the bond, as noted in Oh (1996).
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The equilibrium interest rate R is influenced by the two economic effects that
correspond to the last two terms of equation (2.7). First, the interest rate tends
to be higher when more first period resources κµ (P) are absorbed in the en-
try process. The second term of (2.7) corresponds to the precautionary motive.
To illustrate this point, recall that the variance of individual consumption is
V ar(ẽpA) + V ar(ẽhA

⊥
) if an agent participates, and V ar(ẽhA) + V ar(ẽhA

⊥
) other-

wise. Entry reduces on average the variance of consumption byZ
P
V ar

¡
ẽhA
¢
dµp(h)− V ar

¡
ẽpA
¢
=

Z
P
V ar

¡
ẽhA − ẽpA

¢
dµp(h). (2.8)

This term is large when many agents participate or many hedging instruments are
available. The financial markets then permit agents to greatly reduce their risk
exposure, which dampens their precautionary motive, reduces the demand for the
riskless asset, and leads to an increase in the equilibrium interest rate.10

The entry condition (2.3) suggests that a lower entry fee or improved spanning
tends to encourage entry. For instance when the entry cost κ is infinite, no agent
trades risky assets and the equilibrium interest rate equals R0.11 The equilibrium
set of participants, however, may not increase monotonically with the financial
structure. This is because the entry condition (2.3) depends on the endogenous
variables ẽp and R. When new assets are added, a participating agent h may leave
the market because the diversification benefit γV ar(ẽhA − eepA)/2 has dropped or
the opportunity cost has increased. We will provide examples of such behaviors
in Sections 3 and 4.
The effect of financial innovation on the interest rate can be predicted when

ẽp remains constant.

Proposition 2. Financial innovation leads to a higher interest rate when the
mean endowment ẽp is unchanged.

The proof has a straightforward intuition. Financial innovation and a decrease in
the interest rate would both encourage entry and lead, by (2.7), to a higher interest

10This equation is thus consistent with the well-known effect that financial innovation increases
the interest rate when the participation structure is exogenous (Weil, 1992; Elul, 1997; Calvet,
2001).
11More generally, let κmax(A) denote the essential supremum of (γ/2R0)V ar

¡
ẽhA

¢
in the

population. It is easy to show that when κ ≥ κmax(A), the economy has a unique equilibrium,
in which no agent trades risky assets. On the other hand if κ < κmax(A), any equilibrium has
a non-negligible set of participants.
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rate - a contradiction. Thus if the participants’ average endowment does not vary,
existing asset prices necessarily decrease with financial innovation. Changes in ẽp

thus play a crucial role in determining the impact of financial innovation on asset
prices. To better understand this role, we now introduce a factor model of risk
exposure.

3. Economies with a Unique Risk Factor

We consider in this section a class of economies with a unique risk factor ε̃. The
participation structure and interest rate are determined by the intersection of two
curves, which respectively correspond to the entry condition and the market clear-
ing of the bond. We derive the comparative statics of the economy and develop
intuition on the risk premium that will be useful for the multifactor analysis of
Section 4.
We specify the endowment of each investor h as

ẽh = E ẽh + ϕhε̃, (3.1)

and call ϕh the individual loading.12 The factor ε̃ is a macroeconomic shock that
linearly affects all incomes. The model is tractable when the factor and the asset
payoffs are jointly normal. Without loss of generality, we assume that ε̃ has a
standard distribution N (0, 1), and that the average loading ϕ̄ = RR ϕdµ(ϕ) in the
population is non negative.
When financial markets are incomplete, existing securities span only partially

the common shock. The projection of ε̃ on the asset span, ε̃A =
PJ

i=1Cov(ε̃
A,eaj)eaj,

is called the tradable component of the factor. The corresponding variance

α = V ar(ε̃A)

is a useful index of market completeness, which quantifies the fraction of the risk
ε̃ that is directly insurable. Since ε̃ has unit variance, the completeness index α is
contained between 0 and 1. The values α = 0 and α = 1 respectively correspond
to the absence of risky assets (A = {0}) and the full marketability of the shock
(ε̃ ∈ A). Intermediate values of α arise when agents can only trade the bond
and a risky asset imperfectly correlated with the aggregate shock. The portfolio
ε̃A and the completeness index α have direct empirical interpretations. We can

12Purely idiosyncratic shocks are ruled out in this section for expositional simplicity.
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calculate ε̃A by regressing the factor ε̃ on the asset payoffs. The corresponding
determination coefficient R2 is then an estimate of the completeness index α.
The one-factor model discussed in this section has a natural interpretation

when the factor represents GDP or a market risk that is not directly tradable on
organized exchanges (Roll, 1977; Athanasoulis and Shiller, 2000). New assets then
help market participants hedge more closely the risk ε̃, and thus imply an increase
in the completeness index α. Similarly, macroeconomic variables such as GDP are
observed with measurement errors and lags. Improvements in national accounting
can lead to more precise hedging instruments and a corresponding increase in α.
The distribution of the loading ϕ in the population is specified by a measure

µ on the real line. To clarify the intuition, we assume that the measure µ has a
continuous density f(ϕ), whose support is the nonnegative interval [0,∞).13 The
parameters α and κ are also taken to be non-degenerate, in the sense that α > 0
and 0 < κ <∞.14

We easily infer from Section 2 the equilibrium conditions. Let ϕp denote the
average loading of participants:

ϕp =

Z
P
ϕdµp(ϕ). (3.2)

Market entrants have average income ẽp = E ẽp+ϕp(ε̃A+ε̃A
⊥
), and their individual

consumption satisfies ech = Eech + ϕp ε̃A + ẽhA
⊥
.

As seen in Theorem 1, the marketable consumption risk ϕp ε̃A is identical for all
participants. Consider an asset ea, π(ea) > 0, that positively covaries with the
factor. The endogenous loading ϕp controls the covariance between the security
and individual consumption, Cov(ech,ea) = ϕpCov(ε̃,ea), and therefore the pricing
of risk. Let eRa = ea/π(ea) denote the random (gross) return on the asset. By
Theorem 3, the relative risk premium satisfies

E eRa −R

R
=

γϕpCov(ea, ε̃)
Eea− γϕpCov(ea, ε̃) .

We will show that financial innovation can reduce the consumption loading ϕp

and thus diminish the risk premium of preexisting securities.

13The theorems of this section are in fact proved for densities f(ϕ) with arbitrary unbounded
supports.
14Degenerate values of α and κ are discussed in Appendix B.

14



We now turn to the equations that determine the interest rate and the partic-
ipation set. The equilibrium of the bond market implies

lnR = lnR0 + χµ(P)
h
κ+

αγ

2
V arP(ϕ)

i
, (3.3)

where V arP(ϕ) =
R
P(ϕ − ϕp)2dµp(ϕ) denotes the variance of the participants’

loadings. By Theorem 2, an agent enters if the diversification benefit αγ(ϕ−ϕp)2/2
is larger than the opportunity cost κR. As a result, the participation set

P = (−∞, ϕp − Λ] ∪ [ϕp + Λ,+∞) (3.4)

is the union of two half-lines that are equidistant from ϕp by length

Λ =
p
2κR/(αγ). (3.5)

Agents ϕ ≥ ϕp + Λ are hedgers who trade risky assets to reduce their exposure.
Conversely, agents with loadings ϕ ≤ ϕp − Λ are speculators who increase their
consumption risk in order to earn a higher return. An equilibrium is thus a triplet
(R,Λ, ϕp) satisfying equations (3.2)− (3.5).
The equilibrium calculation is simplified by the following observation. Equa-

tions (3.2) and (3.4) impose that ϕp is both the average loading and the center
of symmetry of the participation set P. In the Appendix, we show that this
restriction implies

Property 1. For any Λ ≥ 0, there exists a unique ϕp(Λ) satisfying equations
(3.2) and (3.4).

We can now define PΛ as the participation set (−∞;ϕp(Λ)−Λ] ∪ [ϕp(Λ)+Λ; +∞)
corresponding to a given length Λ. It is easy to show

Property 2. The participation set PΛ decreases with the length parameter: PΛ0 ⊆
PΛ for all Λ ≤ Λ0.

Since the sets {PΛ;Λ ≥ 0} are nested, the length parameter Λ provides a precise
ordering of the participation structure. A high value of Λ corresponds to a small
set PΛ and thus a low participation rate µ(PΛ).
To develop intuition on the risk premium, consider the simpler model in which

the interest rate R is exogenous. The formula Λ =
p
2κR/(αγ) then expresses

the participation parameter as a function of exogenous quantities only. A higher

15



completeness index α reduces Λ and thus increases the participation set PΛ. The
implied movement in the loading ϕp then controls changes in pricing of risk.

Property 3. When the loading density verifies the skewness condition

f(ϕp − Λ) > f(ϕp + Λ), (3.6)

the average loading ϕp(Λ) locally increases with Λ.

Figure 2 illustrates the mechanism underlying this key result. When Λ decreases,
the skewness of the loading density implies that more agents enter to the left
(speculators) than to the right (hedgers) of ϕp, which pushes down the average
consumption loading ϕp. A majority of the new entrants seeks to buy the factor’s
marketable component ε̃A, bid up its price, and thus drive down the risk premium.
The fixed interest rate setup thus illustrates the role of the loading density f(ϕ)
on the comparative statics of asset prices.
The equilibrium analysis requires more care in the full-fledged model in which

the interest rate is endogenous. Properties 1 and 2 imply that in the (Λ, R) plane,
an equilibrium corresponds to the intersection of the two curves:

R1(Λ) = αγΛ2/(2κ), (3.7)

R2(Λ) = R0 exp{χµ(PΛ) [κ+ αγ(V arPΛϕ)/2]}. (3.8)

The functions express respectively the entry decision and the equilibrium of the
bond market. We observe that R1(Λ) is increasing and quadratic, while R2(Λ)
monotonically decreases with Λ (by Property 2). This helps establish

Theorem 4. There exists a unique equilibrium.

Figure 3 illustrates the geometric determination of equilibrium, and helps to an-
alyze the effect of financial innovation. An increase in α pushes up both curves
in the figure, implying a higher interest rate and an ambiguous change in the
participation parameter Λ.

Theorem 5. The riskless rate R increases with financial innovation. As the
completeness index α increases from 0 to 1, the set of participants P has two
possible behaviors. It is either monotonically increasing; or there exists α∗ ∈ (0, 1)
such that P increases on [0, α∗] and decreases on [α∗, 1].
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The two behaviors are illustrated in Figure 4. The ambiguous effect of financial
innovation on market participation has a simple intuition. On one hand, a higher
α increases the diversification benefit αγ(ϕh − ϕp)2/2 of trading risky assets and
encourages entry. On the other hand, new assets reduce the precautionary motive
and increase the interest rate, thus discouraging participation. In empirical set-
tings, we expect that the favorable effect of improved diversification, which stems
from risk aversion, will tend to dominate.
The change in participation depends on the sensitivity of curves R1 and R2 to

the innovation parameter α. Let ηX,α = d lnX/d lnα denote the elasticity of an
endogenous quantity X. We infer from equation (3.7) that

ηΛ,α = (ηR,α − 1)/2.
Financial innovation increases the set of participants (ηΛ,α < 0) if it only has
a weak impact on the interest rate (ηR,α < 1). In addition, we observe that
the elasticity of R2(Λ) with respect to α increases with the dispersion of the
participants’ loadings V arPΛϕ. When traders have very heterogeneous incomes,
financial innovation allows agents to greatly reduce their average consumption
risk, as shown by (2.8). As a result, new assets have a strong impact on the
individual precautionary motive and the equilibrium interest rate. This explains
why participation is non-monotonic in Figure 4 for the loading density with the
highest variance. Furthermore since the participation sets PΛ are nested, financial
innovation cannot induce simultaneous entry and exit in the one-factor case.
The effect of innovation on the risk premium is easily examined. Consistent

with Figure 2, we show

Proposition 3. The relative risk premium locally decreases with financial inno-
vation if ηΛ,α [f(ϕp − Λ)− f(ϕp + Λ)] < 0.

This local result is analogous to condition (3.6) derived in the exogenous interest
rate case, but now controls for changes in the participation parameter Λ.
The one-factor model may help explain a number of features that have char-

acterized financial markets in the past three decades. New financial instruments
encouraged investors to participate in financial markets, which led to a reduction
in the precautionary motive and in the covariance between stockholder consump-
tion and the aggregate shock. These two effects in turn increased the interest rate
and reduced the risk premium.15 Note that this argument is consistent with earlier

15As shown in Appendix B, a higher entry cost implies a higher risk premium under condition
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empirical findings. Mankiw and Zeldes (1991) thus show that the consumption of
stockholders tends to be more correlated with the market than the consumption of
non-stockholders. As financial innovation leads more people to enter the market,
the risk premium falls. We leave the empirical exploration of this mechanism to
further research.
In this section, financial innovation consisted of providing a better hedge

against a common risk factor. In practice, however, households and firms face
multiple sources of income shocks, and innovation often permits to hedge classes
of risk that had been previously uninsurable. For this reason, we now examine a
multifactor model of risk.

4. Multifactor Economies

We now consider an economy with a finite number of risk factors (ε̃1, .., ε̃L), which
correspond to macroeconomic or sectoral shocks affecting individual income. For
instance, ε̃1 could be an aggregate risk, and ε̃2, .., ε̃L industry or firm-specific
shocks. We specify the income of each investor h as

ẽh = E ẽh +
LX
c=1

ϕh
c ε̃c, (4.1)

and denote by ϕh = (ϕh
1 , ..., ϕ

h
L) the vector of individual loadings. The model is

tractable when the risk factors and the asset payoffs are jointly normal. Without
loss of generality, we normalize the factors to have unit variances and no mu-
tual correlation: (ε̃1, .., ε̃L) ∼ N (0, I) . The distribution of factor loadings in the
population is specified by a continuous density f (ϕ) on RL.
The factors may not be fully tradable when financial markets are incom-

plete. As in the previous section, it is useful to consider their projections ε̃Ac =PJ
j=1Cov (ε̃c, ãj) ãj on the asset span. We interpret ε̃

A
c as the marketable com-

ponent of factor c, which can be estimated by regressing ε̃c on the asset payoffs.
We conveniently stack the projected factors in a vector ε̃A = (ε̃A1 , .., ε̃

A
L). The

covariance matrix
ΣA = V ar

¡
ε̃A
¢

is a generalized index of market completeness, whose diagonal coefficients αc =
V ar

¡
ε̃Ac
¢
quantify the insurable fraction of each factor.

(3.6). Like models with exogenously restricted participation (e.g. Basak and Cuoco, 1998), our
framework thus helps explain the equity premium puzzle.
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We assume for simplicity that the projected factors are mutually uncorrelated:
Cov(ε̃Ac , ε̃

A
k ) = 0 for all distinct c and k. In the next subsections, this hypothesis

will make it more striking that the improved marketability of factor c affects the
risk premium on an uncorrelated component ε̃Ak . The covariance matrix is then
diagonal:

ΣA =

 α1
. . .

αL

 ,
with coefficients αc = V ar

¡
ε̃Ac
¢
contained between 0 and 1. We note that ΣA is

equal to zero when there are no assets, and to the identity matrix when markets
are complete.
The equilibrium calculation follows directly from Section 2. By (4.1), the mean

endowment of participants satisfies

ẽp = E ẽp +
LX
c=1

ϕp
c ε̃c, (4.2)

where ϕp
c represents the traders’ average exposure to factor c. The equilibrium of

financial markets implies the relations

π(ã) = [E ã− γCov(ẽp, ã)]/R (4.3)

and

lnR = lnR0 + χµ(P)
"
κ+

γ

2

LX
i=1

αiV arP(ϕi)

#
, (4.4)

where lnR0 = ln(1/β)+χ(Eee−e0)− (γχ/2)PL
i=1 E(ϕ2i ). These equations suggest

that when the utility coefficients γ and χ−1 are large, financial innovation generates
both substantial variations in the pricing of risk and small movements in the
interest rate.
The entry condition (2.3) implies the participation set

P =
(
ϕ :

γ

2

LX
c=1

αc(ϕc − ϕp
c)
2 ≥ κR

)
. (4.5)

When all the coefficients αc are strictly positive, the participants are located
outside an ellipsoid centered at ϕp = (ϕp

1, .., ϕ
p
L).

16 The lengths Λc =
p
2κR/(αcγ)

16The participants are located outside a cylinder when some coefficients αc are equal to zero.
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of the ellipsoid along each axis depend on the completeness index αc and the
endogenous interest rate. We show in Appendix C:

Theorem 6. There exists a unique equilibrium.

The proof begins by establishing that the lengths Λ = (Λ1, ..,ΛL) define a unique
participation set PΛ. In contrast to the one-factor case, however, PΛ can move in
more than one direction and thus need not be decreasing as a set in each compo-
nent Λc. The market clearing of the bond uniquely determines the interest rate R
and the lengths Λc =

p
2κR/(αcγ). The proof also provides a simple algorithm

for the numerical computation of equilibrium. We now examine the comparative
statics of participation and asset prices with respect to financial innovation.

4.1. Financial Innovation and the Risk Premium

The one-factor model shows that financial innovation can reduce the risk premium
of securities correlated with the aggregate shock. In a multifactor economy, the
improved marketability of a given factor can also have pricing effects on uncor-
related sectors. Consider for instance an economy with two factors ε̃1 and ε̃2.
The random variable eε1 is an aggregate shock to which all investors are positively
exposed, while the idiosyncratic risk eε2 is purely distributional. Let ã = Eea+ ε̃A1 ,
π(ã) > 0, denote an asset or stock that is only correlated with the aggregate
factor.17 By equation (4.3), the stock has relative risk premium

E eRa −R

R
=

γϕp
1α1

Eea− γϕp
1α1

. (4.6)

Consider how the premium is affected by an increase in the completeness index α2.
If participation were exogenous, the consumption loading ϕp

1 would be a constant
parameter, and the improved spanning of the idiosyncratic shock ε̃2 would not
affect the risk premium (4.6). In our model, however, innovation can affect the
consumption loading ϕp

1 and the premium (4.6) even though the stock ã and the
idiosyncratic risk ε̃2 are statistically independent.
Consider for example an economy in which a single risky asset ã is initially

traded (α2 = 0). By (4.5), non-participants have loadings ϕ1 that are close to the

17While the assets are assumed to be in zero net supply, we easily reinterpret the model
in terms of equity by viewing endowment as the sum of a labor income and an exogenous
endowment of stocks.
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market average: |ϕ1 − ϕp
1| ≤

p
2κR/(α1γ). When the index α2 increases, some

of these agents become willing to pay the entry cost because their exposure ϕ2 is
sufficiently different from the average loading ϕp

2. The new participants also trade
the stock ã to achieve an optimal level of diversification. The risk premium on ã
thus declines if a majority of the new entrants have low exposure to the aggregate
shock (ϕ1 < ϕp

1) and increase the demand for the stock. We expect this logic to
hold when the distribution of ϕ1 is skewed towards the origin, consistent with the
intuition developed in the one-factor case.
A simple simulation of the cross-sectoral effect is presented in Figure 5. We

assume for simplicity that exposures to the aggregate and idiosyncratic risks
are independent in the population. The cross-sectional loading density is then
f(ϕ1, ϕ2) = f1(ϕ1)f2(ϕ2). This hypothesis makes it perhaps more surprising that
increased marketability of the idiosyncratic risk modifies the equity premium. We
specify f2(ϕ2) to be symmetric around zero, which implies that ϕ

p
2 = 0 in equilib-

rium. We discuss the choice of parameters in Appendix C. The stock is an asset
of the form ea = x + eεA1 . We select the weighting coefficient x to obtain a risk
premium E eRa−R equal to 7% before the introduction of new contracts (α2 = 0).
In the absence of a futures market, the net interest rate R equals 1% and the
standard deviation of the stock return is [V ar( eRa)]

1/2 = 15%, implying an initial
Sharpe ratio of about 1/2.
When α2 increases from 0 to 1, the risk premium on the stock declines from

7% to 4.5%. Providing insurance against the idiosyncratic shock substantially
decreases the risk premium through changes in participation. Consistent with
empirical evidence, the standard deviation of the stock return is almost constant
at 15%.18 We observe that most of the decline in the risk premium occurs when the
hedging coefficient α2 increases from 0 to 0.5. The value α2 = 0.5 also yields values
for participation (60%) and the real net interest rate (2.5%) that are reasonable
for the current US economy. This suggests that the cross-sectoral effects induced
by financial innovation may be quantitatively significant.19 We leave to further

18Campbell, Lettau, Malkiel and Xu (2001) document that the volatility of stock market
indices have been stationary over the past century.
19An increase in α2 reduces the idiosyncratic or background risk of all participants. When

utilities are isoelastic (or more generally exhibit decreasing absolute risk aversion), the reduction
in background risk increases the demand for the stock and thus further reduces the risk premium
(Kimball, 1990; Gollier, 1999). We anticipate that this additional channel substantially amplifies
the pricing effect of financial innovation in more general setups. Heaton and Lucas (1999, pp.
237-239) make a similar argument in their insightful paper. Their framework, however, only
considers a unique risk factor and asset, and therefore does not permit the distinction between
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research the full empirical assessment of this mechanism.

4.2. Differential Effects and Participation Turnover

We now explore three additional consequences of innovation in the multifactor
model: differential changes in sectoral risk premia, simultaneous entry and exit,
and a possible reduction of the interest rate.
The previous simulations assumed that the loading density f2(ϕ2) is symmetric

around zero. Participants insure the marketable component of the idiosyncratic
shock at no cost, and an asset correlated only with eε2 yields no risk premium
(ϕp

2 = 0). We now examine an economy in which the loading density f2(ϕ2)
has a positive support and is skewed towards the origin. The risks eε1 and eε2 are
then independent sources of aggregate uncertainty that yield positive and possibly
distinct premia. Financial innovation can differentially affect asset prices across
sectors, and thus have rich effects on the cross-section of expected returns.
The comparative statics analysis of Figure 2 easily extends to the two-factor

case. We consider a financial structure with completeness indices α1 and α2, and
assume for simplicity that interest rate R is exogenous. The ellipse delimiting
the participation set is illustrated by a solid line in Figure 6A. It is centered at
ϕp and has length Λc =

p
2κR/(αcγ) along each axis. Consider an increase in

the second index from α2 to α02. Since the interest is fixed, the limiting boundary
in the new equilibrium has the same horizontal length Λ1 but a shorter vertical
length Λ02. We represent the intermediate ellipse centered at ϕ

p with lengths Λ1
and Λ02 in dotted lines. Agents in the shaded area have smaller average loadings
than ϕp

1 and ϕ
p
2, and thus tend to push the new equilibrium set towards the origin.

Because these agents are more spread out vertically than horizontally, the induced
movement in ϕp tends to be stronger along the vertical axis, i.e. in the direction of
innovation. The increased marketability of the shock eε2 may thus predominantly
influence the risk premium in the second sector.
The new set of participants is delimited by the ellipse centered at ϕp

new with
lengths Λ1 and Λ02, as illustrated in Figure 6B. Financial innovation induces si-
multaneous entry and exit. Agents in the shaded area are initially out of the
market. When the new asset is introduced, these agents face lower hedging costs
and decide to participate. Agents in the dashed area, on the other hand, are

background risk and aggregate shock. We anticipate that their numerical results would be
strengthened by the simultaneous reduction of trader exposure to the aggregate and idiosyncratic
risks considered in this paper.
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initially investing in financial assets. Lower risk premia reduce the profitability
of their investments and result in their leaving the market. The possibility of
simultaneous entry and exit is thus an attractive feature of the multifactor model,
which is expected to be applicable in a variety of contexts.20

The differential effect is illustrated in Figure 7 on a numerical example. The
marginal densities of the factor loadings are identical log-normals. The initial
economy has hedging coefficients α1 = α2 = α. We assume that the interest
rate is endogenous and consider two fixed assets eac = xc + eεAc (c = 1, 2) with a
risk premium of 7%. The symmetry of the economy imposes that x1 = x2 = x.
As α2 increases from α to 1, both risk premia fall and the effect is stronger for
the second asset. The results of the figure are almost unchanged when the net
interest rate is exogenously set at 2%. The differential effect is an important
feature of the multifactor economy. It distinguishes the introduction of sector-
specific securities from changes affecting all security markets, such as a reduction
in taxes or transaction costs. In future work, this property may prove useful in
explaining empirical findings on the price impact of financial innovation.21

Multifactor economies also imply novel results for the comparative statics of
the interest rate. As discussed in Section 2, the introduction of new assets increases
risk-sharing opportunities and weakens the precautionary demand for savings. In
models with exogenous participation, this leads to a higher equilibrium interest
rate under many specifications, including CARA-normal (Weil, 1992; Elul, 1997;
Calvet 2001). The Appendix establishes that when participation is endogenous,

Proposition 4. The interest rate locally decreases with financial innovation in
some multifactor economies.

This result has a simple geometric intuition. When new assets are introduced, the
movement of ϕp pushes the ellipse towards a region containing a large number of
participants. In some economies, this effect is sufficiently strong to reduce overall
participation and the interest rate.

5. Conclusion

This paper develops a tractable asset pricing model with incomplete markets and
endogenous participation. Agents receive heterogeneous random incomes deter-
20Participation tunover is discussed in this subsection for expositional convenience. It also

arises when the distribution of ϕ2 is symmetric, as shown in the proof of Proposition 4.
21See Allen and Gale (1994a) for a review of this literature.
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mined by a finite number of risk factors. They can borrow or lend freely, but must
pay a fixed entry cost to invest in risky assets. Security prices and the participa-
tion set are jointly determined in equilibrium. The introduction of non-redundant
assets encourages investors to participate in financial markets for hedging and
diversification purposes. Under plausible conditions on the cross-sectional dis-
tribution of risk, the new entrants reduce the covariance between dividends and
trader consumption, which induces a reduction in the risk premium.
This logic is easily demonstrated in a simple one-factor model. Financial

innovation also has cross-sectoral effects in economies with multiple sources of
risk. When a factor becomes tradable, new agents are drawn to the market in
order to manage their risk exposure. Under complementarities of learning or
increasing returns to trading activities, the new agents also trade in preexisting
markets and can modify the risk premia of securities uncorrelated to the factor.
This mechanism differentially affects distinct sectors of the economy and thus may
have a rich impact on the cross-section of expected returns. Simultaneous entry
and exit is another attractive feature of the multifactor model, which is expected
to be applicable in a variety of contexts.
This paper suggests several directions for empirical research. Future work

could assess the contribution of financial innovation to the decline of the equity
premium in the past few decades. Participation changes may also help explain
the pricing effects of new derivatives reported in the empirical literature. From
a policy perspective, the mechanisms examined in this paper provide useful in-
sights on current debates in public and international economics. When countries
face fixed costs to financial integration, the model implies that the creation of
new markets can have profound pricing, participation and welfare consequences.
An extension of this work could investigate the political economy of the macro
markets advocated by Shiller and others. Further research may also evaluate gov-
ernment policies affecting asset creation and participation costs, such as financial
regulation, taxes, and social security reform.
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6. Appendix A - Existence and Efficiency of Equilibrium

This Appendix establishes the existence and constrained efficiency of general equi-
librium with endogenous participation.
We prove existence for a standard convex economy, in which the state space

is finite Ω = {1, .., S} and individuals consume non-negative amounts in every
state. Assume that the utility function Uh of every agent is continuous, strongly
monotonic and strictly quasi-concave on the non-negative orthant RS+1

+ . At prices
where agents are indifferent between entry (θh 6= 0) and non-entry (θh = 0), indi-
vidual demand consists of two distinct points, which may lead to discontinuities
in aggregate demand. This difficulty can be solved by making the following con-
vexifying hypothesis. There is a finite number of individual types h = 1, .., H, and
a continuum of agents in each type. We can then show

Theorem A.1. There exists a GEEP equilibrium.

Under standard conditions (Aumann, 1966), this result extends to any economy
with a continuum of agents.
As in the GEI case, equilibrium allocations are usually Pareto inefficient be-

cause the absence of certain markets induces incomplete risk-sharing. With two
periods and a single good, however, GEI allocations are known to satisfy a limited
or constrained form of efficiency. No social planner can improve the utility of all
agents when income transfers are constrained to belong to the asset span. This
limited form of efficiency easily generalizes to our setting by taking into account
the entry fee.

Definition. An allocation (ch0 , c̃
h)h∈H is called feasible if and only if

1. For all h, there exists (θh0 , θ
h) ∈ R×RJ such that c̃h = ẽh + θh0 + ã · θh

2.
R
(ch0 + κ1{θh 6=0})dµ(h) = e0, and

R
c̃h (ω) dµ(h) = ẽ (ω) for all ω ∈ Ω.

We can then introduce

Definition. A feasible allocation (ch0 , c̃
h)h∈H is called constrained Pareto-efficient

if no other feasible allocation makes all agents strictly better off.

We show that any equilibrium allocation is constrained Pareto-efficient.
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Theorem A.2. An equilibrium allocation is constrained Pareto-efficient.

The theorem implies that the introduction of a new asset cannot make all agents
worse off.

6.1. Proof of Theorem A.1

We base our argument on the existence proof provided by Hens (1991) for the
standard GEI case.

Individual Excess Demand
Given p0 > 0 and a vector (π0, π) of asset prices, it is convenient to define q =
(p0, π0, π) and the budget set

bBh (q) =

(
(c0, θ0, θ)

¯̄̄̄
¯ p0(c0 + κ1{θh 6=0}) + π0θ0 + π · θ ≤ p0e

h
0

ẽh + θ0 + ã · θ ≥ 0

)
.

The no-arbitrage set

Q =

½
(p0, π0, π) ∈ R++ ×RJ+1

¯̄̄̄
there exists Λ ∈ RS

++ such that
πj = Λ.aj for all j = 0, .., J

¾
.

is an open convex cone of RJ+2, and it is useful to consider its closure

Q =

½
(p0, π0, π) ∈ R+ ×RJ+1

¯̄̄̄
there exists Λ ∈ RS

+ such that
πj = Λ.aj for all j = 0, .., J

¾
.

Given q ∈ Q, we can calculate the optimal excess demands Zhp(q) ≡ [chp0 (q) +
κ − eh0 , θ

hp
0 (q), θ

hp(q)] and Zhn(q) ≡ [chn0 (q) − eh0 , θ
hn
0 (q), 0] of a participating and

non-participating agent of type h. Given a participation decision d ∈ {p, n},
the excess demand function Zhd(q) is continuous, homogeneous of degree 0, and
satisfies Walras’ law. We can then define the excess demand correspondence

Zh(q) =

 Zhp(q) if V h
£
Zhp(q)

¤
> V h

£
Zhn(q)

¤
Zhn(q) if V h

£
Zhp(q)

¤
< V h

£
Zhn(q)

¤
[Zhp(q), Zhn(q)] if V h

£
Zhp(q)

¤
= V h

£
Zhn(q)

¤ ,
where V h(z) denotes the utility Uh(c0, eeh + θ0 + ea.θ) associated to a vector z =
[c0+κ1{θ 6=0}−eh0 , θ0, θ]. We observe that Zh(q) is homogeneous of degree 0, upper
hemi-continuous and satisfies Walras’ law.
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Consider a vector q ∈ Q\Q, q 6= 0, and a sequence {qn}∞n=1 of elements of Q
converging to q. We want to show that inf{kzk ; z ∈ Zh(qn)}→ +∞. Proceed by
contradiction and assume that there exists a bounded sequence {znk}∞k=0, znk ∈
Zh(qnk) for all k. The sequence {znk}∞k=0 has then a cluster point z. Without
loss of generality, it is convenient to henceforth neglect subsequence notation and
directly assume that zn → z. Given x ∈ bBh(q), we know that x is the limit of a
sequence {xn}, xn ∈ bBh(qn). Since xn ∈ bBh(qn), we know that V h(xn) ≤ V h(zn)

for all n. Letting n go to infinity, we infer that V h(x) ≤ V h(z) for all x ∈ bBh(q),
which is absurd. This establishes that inf{kzk ; z ∈ Zh(qn)}→∞ as n→∞. We

can also consider the matrices M = [a0, .., aJ ] and N =

·
1

M

¸
, and show by

a similar argument that inf{kzk ; z ∈ NZh(qn)}→∞ as n→∞. Moreover since
consumption is non-negative, the set NZh(qn) ≥ −eh is bounded below.
Market Excess Demand
We now define the market excess demand

Z(q) ≡
HX
h=1

µ(h)Zh(q).

The correspondence Z(q) is upper hemi-continuous, convex and compact-valued,
homogeneous of degree 0 and satisfies Walras’ law: q.Z(q) ≡ 0. Moreover consider
an arbitrary vector bq ∈ Q and a sequence {qn}∞n=1 of elements of Q converging to
a vector q ∈ Q\Q, q 6= 0. Since each NZh(qn) is bounded below, we infer that
NZ(qn) is bounded below and inf{kzk ; z ∈ NZ(qn)}→∞. The absence of arbi-
trage implies that bq = N|bΛ for some bΛ ∈ RS+1

++ . Since inf{kzk ; z ∈ NZ(qn)} →
∞, we infer that bq.Z(qn) = bΛ.NZ(qn) > 0 for n large enough. We then conclude
by standard arguments (Debreu, 1956; Grandmont, 1977; Hens, 1991) that there
exists an equilibrium price.

6.2. Proof of Theorem A.2

Assume that there exists a feasible allocation (dh0 , edh)h∈H such that Uh(dh0 ,
edh) >

Uh(ch0 , c̃
h) for all h. We know that for all h, there exists (ηh0 , η

h) such that edh =
ẽh + ηh0 + ã · ηh. Since (dh0 , edh) is strictly preferred to (ch0 , c̃h), it must be that
dh0 + π0η

h
0 + π · ηh + κ1{ηh 6=0} > eh0 . We aggregate across consumers:

R
ηh0dµ = 0,R

ηhdµ = 0 and
R
(dh0 + κ1{ηh 6=0})dµ > e0, which contradicts feasibility.
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7. Appendix B - CARA-Normal Economies (General Case
and One Factor)

7.1. Proof of Theorems 1 and 2

The decision problem of a participant consists of maximizing

−e−χc0 − β
n
Ee−γ[eeh+ea.θ+R(eh0−c0−π.θ−κ)]oχ/γ

with respect to the unconstrained variables c0 and θ. For any choice of these
variables, the random consumption c̃ has a normal distribution with mean Eeeh +
R(eh0 − c0−π.θ−κ) and variance V ar(eehA⊥)+V ar(eehA+ea.θ).With the notation
u(c) = −e−χc, the objective function reduces to

u(c0) + βu[Ec̃− γV ar(c̃)/2],

or equivalently

u(c0) + βu(D −Rc0) exp
£
χR(π.θ + κ) + χγV ar(eehA + ea.θ)/2¤ ,

where D = Eeeh +Reh0 − γV ar(eehA⊥)/2 is exogenous to the agent.
The utility maximization problem is decomposed in two steps. First, the

optimal portfolio θh minimizes the quadratic function

R (π.θ + κ) + γV ar(eehA + ea.θ)/2.
The first order condition implies that θh,pj = −Cov(ãj, ẽh)−Rπj/γ. The optimal
portfolio has random payoff ea.θh,p = −ẽhA+ m̃A, where m̃A = −(R/γ)PJ

j=1 πjãj.
Second, the initial consumption c0 is chosen to maximize

u(c0) + βu(D −Rc0) exp
£
χR (π.θh,p + κ) + χγV ar(emA)/2

¤
. (7.1)

The first order condition u0(c0) = βRu0(D−Rc0) exp
£
χR (π.θh,p + κ) + χγV ar(emA)/2

¤
can be rewritten c0 = − ln(βR)/χ+D−Rc0− [R(π.θh+κ)+γV ar(emA)/2], which
implies

ch,p0 =
1

1 +R

½
R(eh0 − κ− π.θh,p) + E ẽh − 1

χ
ln (Rβ)− γ

2
V ar(ech)¾ .

We then deduce θh,p0 from the budget constraint.
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Similarly, a non-participant maximizes the function

u(c0) + βu(D −Rc0) exp
£
χγV ar(eehA)/2¤ . (7.2)

Comparing the functional forms (7.1) and (7.2), we infer that participation is
optimal if

γV ar(eehA)/2 ≥ R (π.θh,p + κ) + γV ar(emA)/2.

This is equivalent to γV ar(eehA − emA)/2 ≥ κR.

7.2. Proof of Theorem 3

We obtain the price of risky assets by averaging θh,pj across participating agents.
The mean demand

R
H
θh0dµ(h) for the riskless asset is

R

1 +R

·
e0 − Eẽ+ χ−1 ln(Rβ) + γ

2

R
H
V ar

¡
ẽh
¢
dµ(h)

−κµ(P) + γ
2
µ(P)V ar ¡ẽpA¢− γ

2

R
P V ar

¡
ẽhA
¢
dµ(h)

¸
.

In equilibrium, mean demand is zero and the interest rate therefore satisfies (2.7).

7.3. Proof of Proposition 2

Financial innovation increases the assets span to A0 ⊃ A, A0 6= A. The space A0

can be decomposed in two orthogonal subspaces A and B = A⊥∩A0. By definition,
R0 and P 0 solve the system½ P 0=©h : γ

2

£
V ar

¡
ẽhA − ẽA

¢
+ V ar

¡
ẽhB − ẽB

¢¤
> R0κ

ª
lnR0 = lnR0 + χµ (P 0)κ+ χγ

2

R
P0
£
V ar

¡
ẽhA − ẽA

¢
+ V ar

¡
ẽhB − ẽB

¢¤
dµ(h).

Assume that R0 < R. The first equation implies P ⊆ P 0, and we infer from the
second equation that R0 ≥ R, a contradiction.

7.4. Degenerate Cases of the One-Factor Economy

We begin by analyzing the special cases α = 0 and/or κ = 0. When assets have
no correlation with the risk factor (α = 0), the participation set is empty under
costly entry, and indeterminate under free entry. In either case, the risk premium
is zero and the interest rate is uniquely determined: R = R0. When the com-
pleteness index is positive (α > 0) and the entry cost is positive and finite, we
infer from Proposition 1 and Assumption 3 that the set of participants and non-
participants both have a positive measure: 0 < µ(P) < 1, 22 implying R > R0 in
22If everyone participates, ϕp = ϕ and αγ(ϕh − ϕ)2/2 ≥ κR for almost every agent h, which

leads to a contradiction since the density f is strictly positive on every neighborhood of ϕ.
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any equilibrium. Finally, there are no participants (P = ∅) when the entry cost
is infinite.

7.5. Proof of Properties 1-3

Consider the function

G(ϕp,Λ) =

Z ϕp−Λ

−∞
(ϕ− ϕp)dµ+

Z +∞

ϕp+Λ

(ϕ− ϕp)dµ

with domain R× [0,+∞). For every fixed Λ ≥ 0, the partial function GΛ(ϕp) =
G(ϕp,Λ) is continuous, strictly decreasing, and satisfies limϕp→−∞GΛ(ϕp) = +∞,
limϕp→+∞GΛ(ϕp) = −∞. The equation GΛ(ϕp) = 0 has therefore a unique
solution, which is denoted by ϕp(Λ). It is then convenient to define the set
PΛ = {ϕ : |ϕ− ϕp(Λ)| ≥ Λ}.
We infer from the Implicit Function Theorem that the function ϕp(Λ) is dif-

ferentiable. Let ∆(Λ) = f [ϕp(Λ) +Λ]− f [ϕp(Λ)−Λ] and ∇(Λ) = f [ϕp(Λ) +Λ] +
f [ϕp(Λ)−Λ].We observe that ∂G/∂ϕp = −Λ∇−µ(P) < 0, ∂G/∂Λ = −Λ∆, and
therefore

dϕp

dΛ
= − Λ∆(Λ)

Λ∇(Λ) + µ(PΛ)
.

The sign of dϕp/dΛ thus depends on the value of the density f at the endpoints
ϕp − Λ and ϕp + Λ. Since

¯̄
dϕp/dΛ

¯̄ ≤ Λ∇/[Λ∇ + µ(PΛ)] ≤ 1, the functions
ϕp(Λ) − Λ and ϕp(Λ) + Λ are respectively decreasing and increasing in Λ. We
conclude that the set PΛ is (weakly) decreasing in Λ.

7.6. Proof of Theorem 4

The existence of equilibrium was established in Appendix A for a standard econ-
omy with a finite state space and non-negative consumption sets. We now prove
that in the one-factor CARA-normal case, equilibrium exists and is unique.
Consider the functions H0(Λ) = µ(PΛ) and H1(Λ) = µ(PΛ)(V arPΛϕ). The

monotonicity of PΛ implies that H0(Λ) is decreasing in Λ. Similarly, the function

H1(Λ) =

Z ϕp−Λ

−∞
(ϕ− ϕp)

2f(ϕ)dϕ+

Z +∞

ϕp+Λ

(ϕ− ϕp)
2f(ϕ)dϕ

has derivative Λ2
h
f(ϕp − Λ)

d(ϕp−Λ)
dΛ

− f(ϕp + Λ)
d(ϕp+Λ)

dΛ

i
+
R
P 2(ϕ − ϕp)f(ϕ)dϕ,

or
dH1

dΛ
= Λ2

dH0

dΛ
< 0.
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It is thus decreasing in Λ.
In equilibrium, R and Λ are determined by the system (3.7) − (3.8). We ob-

serve that R1 is strictly increasing, R2 is decreasing, R2(0) > R0 > R1(0) = 0,
and R1(+∞) = +∞. The difference function R1(Λ)− R2(Λ) is therefore strictly
increasing and maps [0,+∞) onto [−R2(0),+∞). There thus exists a unique equi-
librium.

7.7. Proof of Theorem 5

The equilibrium (R,Λ) is determined by the system½
κR− αγΛ2/2 = 0,
lnR− lnR0 − κχH0(Λ)− αχγH1(Λ)/2 = 0.

The corresponding Jacobian matrix is

J =

µ
κ −αγΛ

R−1 J22

¶
(7.3)

where J22 = −κχH 0
0(Λ) − αχγH 0

1(Λ)/2 = −χκ(1 + R)H 0
0(Λ) > 0. We infer that

det J > 0.
We now infer from Cramer’s rule the effect of financial innovation on the

interest rate:
dR

dα
= − 1

det J

¯̄̄̄ −γΛ2/2 −αγΛ
−χγH1(Λ)/2 J22

¯̄̄̄
> 0. (7.4)

Financial innovation therefore increases the interest rate. We similarly infer

dΛ

dα
= − 1

det J

¯̄̄̄
κ −γΛ2/2

R−1 −χγH1(Λ)/2

¯̄̄̄
= −(κ/α) [1− αχγµ(P)(V arPϕ)/2] /det J, (7.5)

which has an ambiguous sign. The global behavior of Λ is established by a single
crossing argument. We know that Λ0(α) has the same sign as αχγH1[Λ(α)]− 1 ≡
G(α) − 1. Since G(0) = 0, the function Λ(α) is decreasing on a neighborhood of
α = 0. We observe that

G0(α) = χγH1[Λ(α)] + αχγΛ0(α)H 0
1[Λ(α)].

Thus if α satisfies G(α) = 1, we know that Λ0(α) = 0 and G0(α) = χγH1[Λ(α)] >
0. The equation G(α) = 1 has thus at most one solution on (0, 1].
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7.8. Proof of Proposition 3

The chain rule implies that
dϕp

dα
=

dϕp

dΛ

dΛ

dα
has the same sign as ηΛ,α[f(ϕ

p + Λ)− f(ϕp − Λ)].

7.9. Effect of the Entry Fee

We can similarly analyze the effect of the transaction cost κ. We note that

dR

dκ
= − 1

det J

¯̄̄̄
R −αγΛ

−χH0(Λ) J22

¯̄̄̄
has the sign of αχγΛµ(PΛ)−RJ22, while

dΛ

dκ
= − 1

det J

¯̄̄̄
κ R

R−1 −χH0(Λ)

¯̄̄̄
> 0.

This implies that the mass of participants decreases with the transaction cost κ.
Finally, dϕp/dκ has the sign of f(ϕp + Λ)− f(ϕp − Λ).

8. Appendix C - Multifactor Economies

8.1. Proof of Theorem 6

For every ϕp ∈ RL and Λ = (Λ1, ..,ΛL) ∈ RL
++, consider the set

P(ϕp,Λ) =

(
ϕ :

LX
i=1

µ
ϕi − ϕp

i

Λi

¶2
≥ 1

)
. (8.1)

The boundary of this set is an ellipsoid. An equilibrium consists of ϕp,Λ, and R
satisfying Z

P(ϕp,Λ)
(ϕ− ϕp)dµ(ϕ) = 0, (8.2)

Λc =
p
2κR/αcγ, (1 ≤ c ≤ L),

and the market clearing condition

lnR = lnR0 + χ

Z
P(ϕp,Λ)

"
κ+

γ

2

LX
i=1

αi(ϕi − ϕp
i )
2

#
dµ(ϕ). (8.3)
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The analysis is simplified by

Fact C.1. For any Λ ∈ RL
++, the equation

R
P(ϕp;Λ)(ϕ−ϕp)dµ(ϕ) = 0 has a unique

solution ϕp ∈ RL.

Proof. The equation can be conveniently rewritten as a convex optimization
problem. More specifically, consider

k(ϕ;ϕp,Λ) =

"
LX
i=1

µ
ϕi − ϕp

i

Λi

¶2
− 1
#
1P(ϕp,Λ)(ϕ),

where 1P(ϕp,Λ) denotes the indicator function of P(ϕp,Λ). Since k(ϕ;ϕp,Λ) is con-
vex in ϕp and the measure µ has an unbounded support, the function

K(ϕp,Λ) =
1

2

Z
RL

k(ϕ;ϕp,Λ)dµ(ϕ) =
1

2

Z
P(ϕp,Λ)

"
LX
i=1

µ
ϕi − ϕp

i

Λi

¶2
− 1
#
dµ(ϕ).

is strictly convex in ϕp. A vector ϕp thus minimizes K(ϕp,Λ) on RL if and only
if ∂K/∂ϕp(ϕp,Λ) = 0, which coincides with (8.2). It is therefore equivalent for
a vector ϕp to minimize K(ϕp,Λ) or to be the center of mass of P(ϕp,Λ). This
observation is very useful for the numerical calculation of equilibrium. From a
theoretical standpoint, note that the function K(ϕp,Λ) is strictly convex on RL

and diverges to +∞ as kϕpk → +∞. This implies that the function K(ϕp,Λ)
reaches a minimum at a unique point ϕp. ¥

Let ϕp
Λ denote the unique solution to (8.2), and PΛ the corresponding partic-

ipation set. Fact C.1 allows us to rewrite the equilibrium system as an equation
of a unique variable, the interest rate R. For every R > 0, consider the lengths
Λc(R) =

p
2κR/(αcγ), (1 ≤ c ≤ L), and the vector Λ(R) = [Λ1(R), ...,ΛL(R)]. It

is then natural to define the continuous functions ϕp
Λ(R) and PΛ(R), which will be

henceforth denoted ϕp(R) and P(R) for simplicity. We also consider the function

z(R) = lnR0 + χ

Z
P(R)

(
κ+

γ

2

LX
i=1

αi [ϕi − ϕp
i (R)]

2

)
dµ(ϕ). (8.4)

The market clearing of the bond imposes that

z(R) = lnR.
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An equilibrium exists and is unique when the function z(R) is (weakly) decreasing.
We can indeed establish

Fact C.2. The function z(R) is decreasing in R.

Proof. We show this property by differentiating z(R) with respect to the interest
rate. Note that on the boundary ofP(R), the integrand κ+γ

2

PL
i=1 αi [ϕi − ϕp

i (R)]
2

takes the constant value κ(1 +R). The chain rule therefore implies

z0(R) = χκ(1 +R)
dµ[P(R)]

dR
− χγ

Z
P(R)

(
LX
i=1

αi [ϕi − ϕp
i (R)]

dϕp
i (R)

dR

)
dµ(ϕ).

(8.5)
The second term is zero because ϕp is the center of mass. Thus,

z0(R) = χκ(1 +R)
dµ[P(R)]

dR
. (8.6)

This expression is non-positive by Fact C.3 below. ¥

Fact C.3. The mass of participants µ[P(R)] is a decreasing function of R.

Proof. The discussion proceeds in two steps. We first show that the property
holds when indifferent agents are located on a sphere. We then extend the result
to arbitrary ellipsoids.
Consider economies such that αc = 1 for all c. The boundary of a participation

set P(R) is a sphere, which is denoted S(R). Given two positive numbers R and
δ, δ < R, we seek to show that

µ[P(R)] ≤ µ[P(R− δ)]. (8.7)

The inequality is trivially satisfied when P(R) ⊆ P(R− δ). We now focus on the
case P(R) Ã P(R− δ). Since the indifference sets S(R) and S(R− δ) are spheres,
their intersection is contained in a hyperplane H:

S(R) ∩ S(R− δ) ⊂ H.

Without loss of generality, we choose the axes so that the hyperplane H is de-
scribed by the equation ϕ1 = 0, and the center of gravity ϕ

p(R) = (x, 0 . . . 0) has
a positive first coordinate x. It is straightforward to show that ϕp(R − δ) has
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coordinates (y, 0 . . . 0), where y < x.23 We denote by P− = P(R)\P(R−δ) the set
of participants lost in moving from R to R− δ, by P+ = P(R− δ)\P(R) the set
of gained participants, and by PC = P(R) ∩ P(R − δ) the common intersection.
Figure C1 illustrates these definitions. The subset P− is contained in the half-
space ϕ1 < 0, and the subset P+ in the half-space ϕ1 > 0. Since P(R) = P− ∪PC

and P(R− δ) = P+ ∪ PC , we infer thatZ
P−

ϕ1dµ(ϕ) +

Z
PC

ϕ1dµ(ϕ) = x µ(P− ∪ PC),Z
P+

ϕ1dµ(ϕ) +

Z
PC

ϕ1dµ(ϕ) = y µ(P+ ∪ PC).

Substracting these equalities impliesZ
P+

ϕ1dµ(ϕ)−
Z
P−

ϕ1dµ(ϕ) = y µ(P+ ∪ PC)− x µ(P− ∪ PC).

The left-hand side of the equation is positive because P+ is contained in the half-
space ϕ1 > 0 and P− is contained in the half-space ϕ1 < 0. This implies the
inequality: y µ(P+ ∪ PC) ≥ x µ(P− ∪ PC). Since x > y, we infer that

x µ(P+ ∪ PC) ≥ y µ(P+ ∪ PC) ≥ x µ(P− ∪ PC),

and conclude that inequality (8.7) holds in the spherical case.
When the coefficients αc are arbitrary, a linear change of variables allows us to

return to the spherical case we just examined. Thus, consider the linear rescaling
ϕ∗c = Φc(ϕ) = ϕc

√
αc, and the corresponding measure µ∗ = µ ◦ Φ−1. Note that

this transformation does not involve a particular choice of R. For every R > 0,
the rescaled set P∗(R) = Φ[P(R)] has a spherical boundary centered around
ϕ∗p(R) = Φ[ϕp(R)]:

P∗(R) =
(
ϕ :

γ

2

LX
c=1

[ϕ∗c − ϕ∗pc (R)]
2 ≥ κR

)
.

Furthermore, the condition
R
P(R)[ϕ− ϕp(R)]dµ(ϕ) = 0 implies that ϕ∗p(R) is the

center of gravity of P∗(R). We then conclude from the previous paragraph that
the function µ[P(R)] = µ∗[P∗(R)] is decreasing in R. ¥
23The condition P(R) Ã P(R − ε) implies that y − Λ1(R − ε) < x − Λ1(R) and thus y <

x+ Λ1(R− ε)− Λ1(R) < x.
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8.2. Numerical Simulation

This subsection presents the parameterization used in the example of Figure 5.
We begin by introducing a microeconomic structure that relates the loading den-
sity f1(ϕ1) to aggregate volatility and the distribution of income. The random
endowment of an agent is specified as

eeh = eh0(1 + σ1eε1) + ϕh
2eε2.

The individual loading ϕh
1 = σ1e

h
0 > 0 is therefore proportional to expected in-

come.24 The aggregate endowment in period 1 satisfies

ee = e0(1 + σ1eε1).
Without loss of generality, mean income is normalized to unity: e0 = 1.
We specify the cross-sectional distribution of income to be lognormal: ln eh0 ∼

N (µz, σ2z). Since mean income is normalized to 1, the parameters µz and σ2z satisfy
the restriction µz + σ2z/2 = 0. We choose µz = −0.25, which corresponds to a
reasonable Gini coefficient of 0.4. The standard deviation of aggregate income
growth σ1 is set at 0.04. Since ϕh

1 = σ1e
h
0 , the loading density f1(ϕ1) is now fully

specified.
The loading density f2(ϕ2) is assumed to be a centered GaussianN (0, σ22) with

standard deviation σ2 = 0.10. The discount factor is β = 0.96. Since e0 = 1, the
utility coefficients γ and χ−1 coincide with relative risk aversion and the elasticity
of intertemporal substitution at the mean endowment point. We choose γ = 10
and χ−1 = 2. The quantity κ is the fraction of mean income used in the entry
process, and is set equal to κ = 0.8%.
The aggregate shock is partially tradable. We choose the corresponding com-

pleteness index to be α1 = 0.5, which is roughly consistent with the correlation
between the NYSE value-weighted stock return and the permanent aggregate la-
bor income shock reported in Campbell, Cocco, Gomes and Maenhout (2001).
The stock is a traded asset of the form ea = x+eεA1 .We select the weighting coeffi-
cient x to obtain a risk premium E eRa−R equal to 7% before the introduction of
new contracts (α2 = 0). The net interest rate R is equal to 1% and the standard
deviation of the stock return is [V ar( eRa)]

1/2 = 15%, implying a Sharpe ratio of
about 1/2. These numbers are roughly consistent with historical data (e.g. Mehra
and Prescott, 1985; Campbell, Lettau, Malkiel and Xu, 2001).

24We assume for simplicity that there is no expected growth between the two periods.

36



8.3. Proof of Proposition 4

We provide an example in an economy with two uncorrelated factors (ε1, ε2) and a
finite number of types. Letting δ = 0.01, we consider ϕA = (−2, 0), ϕB = (1+δ, 0),
ϕC = (2, 0), ϕ− = (0,−1 + δ) and ϕ+ = (0, 1 − δ), with respective weights
mA = mB = 1/5, mC = 1/10, m+ = m− = 1/4. The other parameters of the
economy are γ = χ = 0.7, κ = 0.3, e0 = Eee = 1, α2 = 0.9.
A straightforward extension of Theorem 7 implies that a unique equilibrium

exists for any given value of α1. When α1 = 0.55, we check that the participation
set contains all the agents of type A,C,+ and −. The fraction of participants is
4/5 and the net rate is approximately 7.9%.
On the other hand when α1 = 0.9, the participation set contains all the agents

of type A,B,C. The participation rate has now fallen to 1/2 and the net interest
rate is now approximately 5.7%.
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Figure 1: Geometry of the Entry Condition
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Figure 2: Effect on Participation of a Decrease in Λ
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Figure 3: Equilibrium of the One-Factor Economy
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Figure 4: Effect of Financial Innovation on Market Participation.  The cross-
sectional loading distribution is log-normal: ln(ϕ) ~ N(0, σ2).  The solid curve 
corresponds to σ = 0.8, and the dashed curve to σ = 1.  Τhe other parameters of the 
economy are: γ = c = 1, κ = 1 and β = 1.
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Figure 5: Comparative Statics in a Two-Factor Economy.  Individual labor income 
is exposed to an aggregate shock ε1 and an idiosyncratic risk ε2.  The aggregate shock 
is partially insurable (α1 = 0.5).  The idiosyncratic risk is uncorrelated to the existing
asset when α2 = 0 and is fully insurable when α2 = 1.  The other parameters of the 
economy are β = 0.96, γ = 10, c = 0.5, κ = 0.8%, σ1 = 4% and σ2 = 10%.
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Figure 6: Effect of an Increase in α2 on Participation. Initial participants are located outside the 
large ellipse of Panel A. When α2 increases, the boundary shrinks vertically (small ellipse), and 
new entrants move the average loadings from ϕp to ϕp

new. The new participation set is delimited 
by the small ellipse of Panel B. The dotted area contains the new entrants, and the dashed area the 
agents who left the markets. 
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Figure 7: Differential Effects of Financial Innovation.  The cross-sectional loading 
density is the product: f(ϕ1, ϕ2) = g(ϕ1) g(ϕ2), where the function g is the density of a 
log-normal variable Z: lnZ ~ N(-3.5, 1).  The other parameters of the economy are:   
α1 =  0.2, γ = 10, c = 0.5, β = 0.96 and κ = 0.8%.
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Figure C1: Geometry of the Participation Sets
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