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Abstract

The evaluation and compensation of portfolio managers is an important prob-
lem for practitioners. Optimal compensation will induce managers to expend
effort to generate information and to use it appropriately in an informed port-
folio choice. Our general model points the way towards analysis of optimal
performance evaluation and contracting in a rich model. Optimal contract-
ing in the model includes an important role for portfolio restrictions that
are more complex than the sharing rule. The agent’s compensation gives
the agent approximately to a benchmark return plus an incentive fee equal
to a portfolio measure that is approximately the excess of return above the
benchmark. This measure is often used by practitioners but is simpler than
the Jensen measure and other measures commonly recommended in the aca-
demic literature. In addition to the excess return above the fixed benchmark,
the manager is given some additional incentive to take a position that de-
viates from the benchmark to remove an incentive to tend towards being a
“closet indexer.” Efficient contracting involves restrictions on what portfo-
lio strategies can be pursued, and prior communication of the information
gathered.
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1 Introduction

The delegation of portfolio management from an investor to a portfolio man-
ager is one of the most important agency relationships1 in finance, and the
appropriate compensation of portfolio managers is an ongoing topic of debate
among practitioners and regulators. An optimal contract between investor
and portfolio manager should give the manager incentives to expend effort in
gathering information and to make good use of the information in the port-
folio selection process. In a traditional agency problem, the optimal trade-off
between incentives and risk-sharing is obtained by a sharing rule that defines
the contractually specified share of profits to go to the manager. In a portfo-
lio problem, we show that specifying a sharing rule alone does not implement
the optimal contract. We use the revelation principal to show that the op-
timal contract can be implemented by restricting the manager to a menu
of portfolio strategies, one strategy for each possible signal. The restriction
to the menu is similar to restrictions in practice on what portfolio strate-
gies managers are permitted to follow. In some cases, we can obtain a full
theoretical derivation of the optimal contract, while in other cases we derive
numerically a first-order solution which is not guaranteed to be optimal.

Closely related to the issue of contracting with a portfolio manager is the
evaluation of a portfolio manager’s performance, since an evaluation of per-
formance will appear implicitly or explicitly in any nonconstant compensa-
tion. In our analysis, the portfolio manager expends costly effort on research
that generates information, in the form of a signal correlated returns, that
can be used to generate superior performance.2 We analyze optimal con-
tracts in a rich model of security returns and a rich set of portfolio strategies
and contracts, in an ideal case which abstracts from such impediments to
optimal contracting as career concerns.3 We find that optimal contracting
provides the manager with a payoff that is tilted into the outperformance of
the managed portfolio compared to an uninformed benchmark, with impor-

1Stole (1993) has an excellent survey of the agency literature.
2Admittedly, it may not be realistic to assume that portfolio managers have the ability

to outperform the market, since attempts to document consistent superior performance
have failed. However, we need some assumption along these lines if we are going to
rationalize significant fees for active management, and at least some managers and their
clients believe superior performance is possible.

3This paper also abstracts from the usual hierarchical structure of separate management
of different asset classes and any difficulties in preventing the manager from undoing
incentives through private portfolio trades.
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tant portfolio restrictions.
In the traditional agency problem, both the agent’s costly effort and

stochastic factors beyond the agent’s control influence the output of a produc-
tive activity owned by the principal. The principal chooses a compensation
contract for the agent that trades off optimal incentives to expend effort with
the damage to risk-sharing caused by exposing the agent to too much risk
from the factors beyond the agent’s control. Even under the assumption of
risk-neutrality of the principal, this traditional problem is a rich topic for
study and has generated a substantial literature. Our agency problem in
portfolio management differs in several important ways from the traditional
agency problem. First, because the activity that requires effort is gathering
information, the form of the agency problem is different from the outset.
Although the ultimate goal is similar (increasing output versus increasing
portfolio payoff), the signal is important intermediate information that can
be reported by the manager (explicitly or implicitly through a choice from
a menu of portfolio strategies) to improve contracting. A second important
difference is the possibility that the manager might not use the information
as the principal would like. We distinguish the first-best contract (in which
effort choice can be dictated by a social planner), the second-best contract
(in which the agent must be given the incentive to choose the planned effort
level but the information is publicly verifiable), and the third-best contract
(in which the agent must be given proper incentives to choose the effort and
act as intended on the information). Another minor difference between our
analysis and most of the agency literature is that we assume the principal
is risk averse: it is unreasonable to assume risk-neutrality of the principal
in the portfolio context, since a risk-neutral price-taker would derive infinite
benefit from any superior information in a portfolio problem.4

Our formal specification of the model is a bit different from the traditional
approach and for good reason. Traditionally, there is a pool of money that is
invested by the manager who is then paid out of the proceeds in an amount

4By risk-neutrality we mean the original definition, namely that the agent is indiffer-
ent among all payoffs with the same mean. This is different from, for example, linear
von Neumann-Morgenstern preferences over positive wealth with a non-negative wealth
constraint. These preferences are risk averse since getting a positive amount for sure is
preferred to a risky gamble with the same mean and a positive probability of a negative
payoff. Indeed, we can think of these preferences as coming from the concave extended-
real utility function (as concavity is defined by Rockafeller) with u(w) = w for w ≥ 0 and
u(w) = −∞ for w < 0.
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described by a contractually specified sharing rule5. This is appealing, be-
cause it seems at first blush to conform to actual practice. However, implicit
in this traditional approach there are significant restrictions on the possible
types of contracts, and the differences between our general model and more
traditional models of agency in investment do correspond to institutions we
see in practice. Specifically, unlike the usual sharing rule, we find that (1)
the incentive contract depends on a market or benchmark return as well as
the portfolio’s performance, (2) the manager is restricted in what portfo-
lio strategies can be chosen, and (3) the manager should reveal information
about the planned strategy at the start of the period, after performing the
research but before any investment returns are realized. We should empha-
size that these features are not assumptions of our model; rather, our model
is allowed to choose a traditional contract but tells us that a contract with
these features will do better.

Given the rich set of possible institutions (including as examples the three
circumstances we have just listed), how are we to make sure that our model
specification has captured all possible useful institutions? For example, how
do we know a priori we cannot do even better by dividing the money into six
pools, having the manager choose a different portfolio on each, and paying the
manager a nonlinear function of the realizations on all the pools? The answer
is a concept from mechanism design, the revelation principle, which says that
we cannot do better than the best direct mechanism in which you report all
your information subject to contractual guarantees on how that information
will be used. The economic idea is simple: whatever is the ultimate outcome
in equilibrium in a proposed institution, make choices and give ultimate
payoffs that are the same function of the signals and random realizations as
in the institution, substituting reported signals for the actual ones. Because
the original outcome was an equilibrium outcome, the agent will not have
any incentive to misreport the signal. This shows that a direct mechanism
can achieve any outcome that is available in any general institution.

In the present context, here is how the direct mechanism works. First, the
owner of the assets to be managed proposes a contract covering compensation
of the agent, a rule for choosing the investment strategy as a function of
reported signal, compensation of the manager, and planned managerial effort.
(It is really not essential for the investor to make this choice, and it could be

5See for example Ross (1974), Dybvig and Spatt (1986), Zender (1988), and Stoughton
(1993).
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the manager who chooses or the result of a bargaining process. Any of these
devices would select the same efficient frontier of contracts in our model.)
Then, the manager decides whether to participate, and if so, expends effort.
Nature provides the manager with a signal, the quality of which is a function
of the effort expended. The manager reports the signal and based on the
contractual schedule an accountant sets the portfolio policy. Finally, security
returns are realized, the manager is payed according to the contract, and the
remainder of the portfolio payoff goes to the investor. Formally, this game
is solved by having the principal choose the equilibrium subject to a budget
constraint for investment, a participation constraint to ensure the manager
is offered at least the reservation utility, and incentive compatibility of agent
effort and signal reporting (to ensure that the agent has an incentive to do
as the principal plans).

Again, this formal model may seem strange (especially the notion of an-
nouncing the signal and handing the portfolio over to an accountant for
execution), but this is merely a device for finding the optimal institution,
which can then be interpreted in more familiar terms. Once we have solved
the formal model, we then need to turn to the task of interpreting the so-
lution, which is where we obtain our short list of deviations from from the
traditional sharing rule. This interpretation is to some extent a matter of
taste or dictated by what we see in practice, since any formal solution of the
model is consistent with a variety of essentially equivalent institutions. This
is the point at which the issue of performance measurement arises in our
analysis; and we can ask the question of how the optimal contract is related
to traditional or potential performance measures.

Due to the complexity of the manager’s choice problem, we are not able
to prove that there exists a solution to the third-best problem. However, we
provide a numerical solution to the first-order version of the problem. (Since
we cannot prove that the first-order solution is a solution to the original prob-
lem, there is a very real possibility that we do not have the correct solution,
even approximately. Unfortunately, this is the state of our knowledge at this
point in time.) Compared to the known solution of the second-best problem,
the numerical solution of the third-best penalizes the agent for reporting a
signal that is not very informative (i.e., is close to the unconditional mean).
In the second-best, the manager is exposed to more risk than the manager
would prefer, and would choose to underreport the magnitude of signals to
reduce that risk exposure. Penalizing the manager for reporting a relatively
neutral signal (or equivalently rewarding the manager for taking a significant
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position) reverses this incentive. This is different in form but similar in intent
to practitioners’ desire to avoid “closet indexers” who collect fees for active
management but actually choose a portfolio close to the index.

It is useful to mention what our model does not try to do. We do not
worry about adverse selection as studied by Bhattacharya and Pfleiderer,
who appropriately use a screening model rather than an agency model. Our
assumption is that managers do not know themselves how good they are,
and that trying to screen managers by their own confidence levels is not a
good idea. Indeed, we do not want to hire a manager who is very confident
about outperforming the market by 40%/year with essentially no risk, since
we are likely to think such a manager is overconfident and naive about the
functioning of the market. Another example of what our model does not
do is to analyze career concerns, i.e., the effect of the manager’s portfolio
performance on future salaries or funds under management and the impact
this has on incentives. One interpretation of this is that we are analyzing a
manager in the last year before retirement and that there is no way to sell
the manager’s track record. Alternatively, our problem covers the case in
which the career concerns are somehow neutralized. The model in this paper
can be extended to include career concerns, and using the tools developed
here to analyze that problem is a promising extension.

Stoughton (1993) has very similar goals to the current paper. In a model
with costly effort to gather information and a portfolio choice between a
stock and a bond, that analysis considers the optimal linear contract and a
particular quadratic contract. In the linear case, the manager can undo any
incentives in the compensation schedule by choosing a less risky portfolio
than the client might intend, and therefore the performance-based contract
is ineffective. In the quadratic case, there is a sort of limiting result that says
that the contract approaches the first-best as the client becomes less and less
risk averse.

Unfortunately, Stoughton (1993) has some conceptual problems. For the
case of the linear contract in that paper, the model assumes the manager
makes an unconstrained portfolio choice or (supposedly equivalently) what
signal to report. In fact, choosing what signal to report (as in the current
paper) would be more general than the analysis in that paper, since choosing
a portfolio as a function of the signal that does not take on all real values is
a way of enforcing a menu restriction. This can be useful in inducing effort
to gather information by preventing the manager from choosing too safe a
portfolio that would be attractive in the absence of information gathering.
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We can still interpret Stoughton’s linear model as showing the ineffectiveness
of linear contracts in the presence of unlimited portfolio choice, and the
same point is made in a slightly different model of Admati and Pfleiderer
(1997), with the same conceptual problem. Another conceptual problem
with Stoughton (1993) is that for the case of the quadratic contract, the
sense of convergence (small difference in utility) to the first-best as the client
becomes less risk averse is not robust to different utility representations,
since the limit is along a sequence of different utility functions and we are
free to pick a different affine transform for each point along the sequence.
In fact, the difference between the first-best certainty-equivalent and the
certainty-equivalent for the quadratic model converges to a positive constant
as risk aversion increases.6 In this economically relevant sense (which is
invariant to affine transforms), there is no convergence. This is because
even when the client is nearly risk neutral and does not care about noise in
the contract, there still has to be non-vanishing compensation for the risk
borne by the manager (which is greater than first-best in order to induce the
required effort). For the particular quadratic contract under study, there is
also an efficiency loss to not exploiting the rents the manager could obtain
by collecting the market risk premium.

Another related paper is Zender (1988), which provides a number of re-
sults. The Jensen measure is shown to be the optimal linear contract in
a reduced-form model for a mean-variance world in which the expenditure
of costly effort influences the conditionally efficient portfolio in a particular
way. In the same model, it is shown that a Mirrlees (1974) forcing contract
(with a small probability of extreme punishments when the realization is
grossly incompatible with the signal) can get arbitrarily close to the first-
best if we allow for a general nonlinear contract.7 Finally, an interpretation
of the problem in terms of continuous-time agency model of Holmström and
Milgrom (1987) is given. The main weaknesses of Zender (1988) are that the
mapping from effort to efficient portfolio is a black box and that it is un-
clear what underlying model it is a reduced form for, or indeed whether the

6In Stoughton (1993), the agent’s utility is UB(w) = − exp(−bw) and therefore the
certainty equivalent is the inverse of this function CE(u) = − log(−u)/b. Then we can
compute from (29) and (30) in Stoughton (1993) (using also (4)), that the difference in
certainty equivalents for small b is approximately − log(1 − 2aγ2/H)/(2a), which is a
positive constant.

7There would presumably be a Mirrlees (1974) forcing contract in the model of
Stoughton (1993) as well if it were extended to admit general nonlinear contracts.
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the optimal contract in the reduced form is also optimal in the underlying
model. It should be mentioned that Sung (1995) has a nontrivial extension
of Holmstrom and Milgrom (1987) that includes control of variance as well
as mean, and one of the applications of the general result is to a portfolio
agency problem similar the one described in Zender (1988).

2 The General Problem

The general formulation of the problem is as follows. We assume that the
set of states which can be distinguished by security payoffs is complete. Let
ω denote such a state. We will refer to ω as a market state and will denote
by p(ω) the price of a claim which pays a dollar in state ω.

Although market prices incorporate all publicly available information
there is additional information which is costly to obtain but which would aid
in investing because it allows one to make better forecasts of which market
state will be observed in the future. This information is conveyed by a signal
s which is observed by the agent8. The informativeness of the signal depends
on a ∈ [0, 1], the effort expended by the agent in information gathering. We
model this as follows. Let fU (s, ω) and f I(s, ω) be two joint densities9 of
ω and s which we refer to as the uninformative and the informative density
respectively. We assume that both joint densities have the same support and
further that the marginal distributions fs(s) of s and fω(ω) of ω are the same
in both cases. We let fU (s, ω) = fs(s)fω(ω) so that uninformative signals
are independent of market states (hence the term “uninformative”). If the
agent expends effort a ∈ [0, 1] then the joint distribution will be the mixture
distribution

af I(s, ω) + (1− a)fU(s, ω).

The effort level a can be interpreted as the probability of getting a signal

8It is important that the market is NOT complete in signal states. In models in which
investors are allowed to trade across signal states the resulting equilibrium is generally
fully revealing, which would destroy the basic structure which we are trying to capture in
this model.

9The term “density” may be confusing to some. It is not really necessary that ω and
s have densities with respect to Lebesgue measure. In particular, most of the results we
demonstrate in this paper will still hold if ω and s are discrete random variables. In that
case just reinterpret the integrals as being with respect to counting measure on some finite
set of points.
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drawn from the informative joint density f I(s, ω) instead of the uninforma-
tive density fU (s, ω). We assume without loss of generality that under the
informative density s and ω are positively correlated.

Let w0 be the initial value of the portfolio and let UP and UA denote
the principal’s and agent’s von Neumann-Morgenstern utility function for
end-of-period wealth respectively. Let c denote the agent’s cost function for
costly effort, measured in utils, and defined on [0, a) for some a ∈ (0, 1). The
cost function c is strictly increasing and strictly convex and satisfies c′(0) = 0
and c′(a) = ∞. The cost function and utility functions are assumed to be
twice continuously differentiable, and the densities are assumed to be positive
everywhere.

With the above setup the agency problem is to design a contract which
gives the agent the incentive to expend effort (the amount of which is chosen
by the principal) in information gathering. The contract should also give
the agent incentive to use the information obtained in the best way (from
the principal’s standpoint). When people talk about such incentive contracts
they usually have in mind something like the following:

• Agent chooses a portfolio strategy based on private information

• Principal assigns a performance score as a function of the portfolio
return and perhaps a benchmark return as well

• Agent receives the fee associated with the performance measure as stip-
ulated in the contract

But this is only one of many possible mechanisms one could imagine. There
is no guarantee that a restriction to mechanisms of this type would not be
binding and that the contract obtained would not be optimal in the space of
all contracts.

Rather than assuming a particular mechanism we appeal to the revela-
tion principle10 and look at contracts with the property that the manager
truthfully reports the signal. We shall use φ(s, ω) to denote the fee paid to
the agent given reported signal s and market state ω and V (s, ω) to denote
the portfolio payoff to the principal. We make no restrictions on the form
of φ(s, ω) or V (s, ω). The revelation principle tells us that any mechanism
which implements to optimal contract can be expressed in this form. After

10See Green and Laffont (1977), Holmström (1978), and Myerson (1979) for discussion
of the revelation principle
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solving the general problem we shall return to the question of whether the
optimal contract can be implemented by a mechanism of the type described
above.

The general problem then is

Problem 1 Choose φ(s, ω), a, and V (s, ω), to maximize∫ ∫
UP (V (s, ω))(fU (s, ω) + a(f I(s, ω)− fU (s, ω)))dsdω(1)

subject to the agent’s participation constraint11∫ ∫
UA(φ(s, ω))(fU (s, ω) + a(f I(s, ω)− fU(s, ω)))dsdω − c(a) = u0(2)

the budget constraint

(∀s)
∫

Ω
(V (s, ω) + φ(s, ω))p(ω)dω = w0(3)

and incentive compatibility, namely that a′ = a and sR(·) = I(·) maximize∫ ∫
UA(φ(sR(s), ω))(fU (s, ω) + a′(f I(s, ω)− fU (s, ω)))dsdω − c(a′)(4)

where sR(s) is the signal which the manager reports when the true signal
is s and I(·) denotes the identity function. Equation (4) states that of all
reporting strategies the agent optimally chooses truthful signal reporting and
also optimally chooses effort level a.

Note that (4) requires the contract to be incentive compatible in both
effort and signal reporting. The constraint is needed if effort is not directly
observable and if the agent could misreport the signal after having expended
effort. We call a contract First Best if it assumes that neither of these is a
problem. In a first-best world it can be verified by the principal whether the
agent really expended effort a and truly reported the signal obtained. The
first-best contract maximizes (1) subject to (3) and (2).

We will call a contract Second Best if truthful reporting is not assumed to
be a problem. So a second-best contract need only be incentive compatible
for effort.

We refer to the solution of the general problem as the Third Best contract.

11In principle, this could be an inequality constraint. This is without loss of generality
when the utility function is unbounded below (as in our log utility examples). This could
matter if there is a limit how much an agent can be punished (as when there is no inden-
tured servitude or debtor’s prison). Obviously, these are interesting cases, but they are
just not the focus of this paper.
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A Transformed and Specialized Problem

It turns out that it will be convenient in what follows to change choice vari-
ables as in Grossman and Hart (1983). If we define

uA(s, ω) ≡ UA(φ(s, ω))

uP (s, ω) ≡ UP (V (s, ω))

we can rewrite the above problem in an equivalent form in which the choice
variables are uA(s, ω) and uP (s, ω). To write the budget constraint we must
also define inverse utility functions IA and IP and then

φ(s, ω) = IA(uA(s, ω))

and

V (s, ω) = IP(uP (s, ω)).

In order to obtain explicit solutions to these problems we assume that
both principal and agent have log utility so that IA(x) = IP (x) = exp(x).
One way in which this simplifies the problem above is that it allows us to
reduce both the number of choice variables and the number of constraints.
To do this we take the agent’s utilities as given and maximize the objective
subject to the budget constraint to obtain the principal’s indirect utility as

uP (s, ω) = log

(
BP (s)

fω(ω) + a(f I(ω|s)− fω(ω))

p(ω)

)
(5)

where

BP (s) = w0 −
∫

exp(uA(s, ω))p(ω)dω

is the principal’s budget share. Equation (5) can be taken to be an application
of the usual formula for optimal consumption given log utility and complete
markets (in this case conditional on s).

The principal’s expected utility can now be computed as∫
log

(
w0 −

∫
exp(uA(s, ω))p(ω)dω

)
fs(s)ds(6)

+
∫ ∫

log

(
af I(ω|s) + (1−a)fω(ω)

p(ω)

)
(af I(s, ω) + (1−a)fU(s, ω))dsdω
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Note that the second term depends only on effort, a, and not on the agent’s
utilities. Note also that the first term is concave in the agent’s utilities12.

The difficulty with solving for the second-best and third-best contracts
is the incentive compatibility constraint. We can simplify this somewhat by
examining the agent’s problem

Problem 2 Choose a and sR(·) to maximize∫ ∫
uA(sR(s), ω)(fU(s, ω) + a′(f I(s, ω)− fU(s, ω)))dsdω − c(a′).(7)

The first order conditions of this problem are∫ ∫
uA(sR(s), ω)(f I(s, ω)− fU(s, ω))dsdω = c′(a)(8)

and

(∀s)
∫
∂uA(sR(s), ω)

∂sR
(fU (s, ω) + a(f I(s, ω)− fU (s, ω)))dω = 0(9)

Since these must hold for any solution to this problem we may be able to
use them in place of the incentive compatibility constraint. This approach
of using the first order conditions for the agent’s problem in place of the
incentive compatibility constraints in the main problem is called the first
order approach. The difficulty with this approach is that in general it is not
equivalent to solving the original problem. However in the second-best case it
is justified. Note that fU (s, ω)+a(f I(s, ω)−fU(s, ω)) is linear in a and recall
that we have assumed that c(a) is convex. This means that (7) is concave in
a. Hence (8) is both necessary and sufficient for the agent’s choice-of-effort
problem. Hence we are justified in using (8) as the IC constraint in the
second-best problem13. Unfortunately we have no such result for the truth
telling constraint. Nevertheless we shall use (9) as the second IC constraint
in the third best problem.

These changes lead to the following problem

12This means we can ignore the second term when solving the problem of what contract
will implement a particular effort level. Afterward in optimizing over effort levels this
term will of course be necessary

13Rogerson (1985) attributes Holmström (1984) with pointing out the appeal of the
mixture model over the more complex convexity condition of Mirrlees (1976) studied by
Rogerson (1985). See also Grossman and Hart (1983) and Hart and Holmström (1987).
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Problem 3 Choose uA(s, ω) and a to maximize∫
log

(
w0 −

∫
exp(uA(s, ω))p(ω)dω

)
fs(s)ds(10)

+
∫ ∫

log

(
af I(ω|s) + (1−a)fω(ω)

p(ω)

)
(af I(s, ω) + (1−a)fU(s, ω))dsdω

subject to the participation constraint∫ ∫
uA(s, ω)(af I(ω|s) + (1− a)fω(ω))fs(s)dωds − c(a) = u0,(11)

the incentive compatibility of effort∫ ∫
uA(ω, s)(f I(ω|s)− fω(ω))fs(s)dωds = c′(a),(12)

and the incentive compatibility of signal reporting

(∀s)
∫
∂uA(ω, s)

∂s
(af I(ω|s) + (1− a)fω(ω))dω = 0.(13)

Solution of this problem can proceed in two stages. In the first stage we
solve the above problem for a fixed a to find the contract which will induce
the agent to take that effort level. Then we can search over a to find the
optimal effort level. Below we shall show the solution to the first stage for
the first-best, second-best, and third best cases.

3 The First-best Contract

The first-best contract solves Problem 3 neglecting the incentive compatibil-
ity constraints of equations (12) and (13). In a first-best contract we expect
to find that there is optimal risk sharing between the agent and the princi-
pal. This means that the marginal utility of wealth for the agent should be
proportional to the principal’s marginal utility in all states.

The first order condition for uA is

exp(uA(s, ω))p(ω)

BP (s)
= λR(fω(ω) + a(f I(ω|s)− fω(ω)))(14)
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where λR is the Lagrange multiplier on the participation constraint. Multi-
plying both sides by BP (s) and integrating both sides with respect to ω we
obtain

BA(s) = λRB
P (s).

Substituting this into the budget constraint we have that

BP (s) =
w0

1 + λR

from which we obtain

uA(s, ω) = log

(
w0λR

(1 + λR)

fω(ω) + a(f I(ω|s)− fω(ω))

p(ω)

)
(15)

and

uP (s, ω) = log

(
w0

(1 + λR)

fω(ω) + a(f I(ω|s)− fω(ω))

p(ω)

)
.(16)

So in the first-best contract with log utility the optimal contract is a sharing
rule which gives the agent a fixed proportion of the payoff of the portfolio
independent of the signal. So, as expected, optimal risk sharing obtains.

Equation (16) has an interesting interpretation. Suppose that rather than
hiring the agent the principal were to manage their own portfolio but without
the benefit of the information gathering efforts of the manager. The payoff
to the principal would be

w0
fω(ω)

p(ω)
.

Since this portfolio involves no superior information and because it would be
the principal’s optimal portfolio in the absence of the agent we call it the

“benchmark” portfolio. Similarly the quantity fI(ω|s)
p(ω)

can also be interpreted
as the gross return on a portfolio which depends on the agent’s signal. Hence,
in the first-best world both the principal and the agent receive a payoff which
is equal the payoff of an investment of a certain amount in the benchmark
portfolio plus a constant times the excess return of some “informed portfolio”
over the benchmark.
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4 The Second-best Contract

To obtain the second-best contract we solve the same problem as in the first-
best case with the additional constraint (12) which states that the contract
is incentive compatible for effort. The first-order condition for uA(s, ω) is

exp(uA(s, ω))p(ω)

BP (s)
= λR(fω(ω) + a(f I(ω|s)− fω(ω)))(17)

+λa(f
I(ω|s)− fω(ω))

where λa is the Lagrange multiplier on the IC constraint. Proceeding as
before we obtain

uA(s, ω) = log

 w0λR

(1 + λR)

fω(ω) + (a+ λa
λR

)(f I(ω|s)− fω(ω))

p(ω)

(18)

but the expression for the principal’s utility is the same as in the first-best
case. Hence we see that the second-best contract does not exhibit optimal
risk sharing.

Equation (18) is very similar to (15) except that we have a + λa/λR
rather a multiplying the second term. We know λR will be positive because
of the positive marginal utility of wealth. At the optimal a we will have λa
positive as well. This means that the second-best contract gives the agent
more exposure to the excess return portion of the contract. This is what
gives the manager the incentive to expend effort a. It seems crucial that the
manager cannot misreport the signal; if the manager could do so, reporting
a less extreme signal is likely going to undo (to some extent) this artificially
high exposure and it may not be possible for the principal to impose useful
incentives in the contract beyond what is optimal effort in the agent’s own
portfolio.

There is another difference between this contract and the first-best con-
tract which is not apparent at first glance. Notice that the first best contract
is defined for all a ∈ [0, 1]. In general, the optimal a can lie anywhere in that
interval14 but the contract will be of the same form. For the second-best
contract, we must have a + λa/λR ∈ [0, 1]. To see why, let us rewrite the
agent’s payoff from (18) as

w0λR

(1 + λR)

(1− k)fω(ω) + kf I(ω|s)
p(ω)

14Which level of effort is optimal for the problem will depend on c,fI ,fU , and p.
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where k = a+λa/λR. If k > 1 then the agent’s consumption will be negative
in states for which fω(ω) > f I(ω|s). These states represent times in which a
low market state occurs when the agent’s signal would have predicted a high
market state or the converse. But log utility goes to minus infinity at zero
and therefore negative consumption with a positive probability is more than
a large punishment and is in fact infeasible.

As a + λa/λR increases (varying λR to maintain the participation con-
straint), the corresponding value of c′(a) that will satisfy (12) increases. De-
note by c′ the value of c′(a) which satisfies (12) for a+ λa/λR = 1, i.e.

c′ ≡
∫ ∫

log

(
w0λR

(1 + λR)

f I(ω|s)
p(ω)

)
(f I(ω|s)− fω(ω))fs(s)dωds

For effort levels which do not satisfy c′(a) ≤ c′ the second-best can be ap-
proached by a sequence of contracts that look very much like the contract
with a + λa/λR = 1 but with additional punishment in remotely possible
states to obtain incentive compatible effort. Specifically, we have the follow-
ing theorem.

Theorem 1 When c′(a) ≤ c′ the solution of the second-best problem is of
the form (18). For c′(a) > c′ the second-best can be achieved in the limit as
n ↑ ∞ of a sequence of contracts of the form15

uAn (ω, s) ≡ ν0n + log

(
f I(ω|s)
p(ω)

)
− ν1n(ω < −n)(s > n)(19)

for n sufficiently large, where ν1n is chosen to satisfy incentive compatibility
of effort (12) and ν0n is chosen to satisfy the participation constraint (11).

Proof See appendix

We call this a forcing contract but it differs from what is usually meant
by this term. Mirrlees (1974) gave conditions under which the first-best so-
lution to an agency problem can be approached by a sequence of contracts
with larger and larger punishments in a smaller and smaller set of extreme

15By (s > n) we mean the indicator of that condition, i.e.,

(s > n) ≡
{

1 s > n
0 otherwise

.
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states. Mirlees’ forcing contract works when likelihood ratios become un-
bounded in extreme states. Note that the mixing form of the densities we
have assumed precludes this happening: for two interior values of a, the ra-
tio of their likelihoods is always bounded uniformly across ω. For this case
the punishments are chosen to maintain incentives so that each element in
the sequence is feasible. The limiting contract gives the principal at least
as much value as any feasible contract but is not itself feasible because it
provides too little incentive for effort and gives too much utility to the agent.
This can be interpreted as an ε-equilibrium because you can get arbitrarily
close to the second-best with some element along the sequence.

5 The Third-best Contract

The third-best solves Problem 3 with all the constraints. The first order
condition for uA is

exp(uA(s, ω))p(ω)

BP (s)
= λR(fω(ω) + a(f I(ω|s)− fω(ω)))(20)

+λa(f
I(ω|s)− fω(ω))− aλs(s)

∂f I(ω|s)
∂s

−λ′s(s)(af I(ω|s) + (1− a)fω(ω))

where λs(s) is the Lagrange multiplier on the truthful reporting constraint.
In this case we have

BP (s) =
w0

1 + λR − λ′s(s)
fs(s)

and

BA(s) =
w0(λR − λ′s(s)

fs(s)
)

1 + λR − λ′s(s)
fs(s)

.

It does not seem possible to solve for λs(s) analytically. We can, however,
gain insight into this problem by solving the problem numerically for given
choices of c, f I , fU , and p. For the moment we shall take the level of effort
a to be given exogenously. The reason for this is that we wish to compare
the functional forms of the first-best, second-best, and third-best contracts.
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Choosing a optimally in each case would make this comparison more diffi-
cult since in general a different level of effort will be optimal in a first-best
world versus a second-best world versus a third-best world. By specifying a
exogenously we can interpret the differences between the contracts as being
due only to the addition of the IC constraints.

For the “informed” and “uninformed” joint density of ω and s, we assume
joint normality with the same marginals and with and without correlation
ρ > 0. We think of this as a model of market timing, with ω representing
the demeaned log market return in the usual lognormal model over one year.
Then,

fs(s) =
1

σ
√

2π
exp

(
− s2

2σ2

)
,(21)

fω(ω) =
1

σ
√

2π
exp

(
− ω2

2σ2

)
,(22)

f I(ω, s) =
1

2σ2π
√

1− ρ2
exp

(
−(ω2 − 2ρωs + s2)

σ2(1− ρ2)

)
,(23)

and

f I(ω|s) =
1

σ
√

2π(1− ρ2)
exp

(
− (ω − ρs)2

σ2(1− ρ2)

)
.(24)

And, state prices are consistent with Black-Scholes and can be computed as
the discount factor times the risk-neutral probabilities.

p(ω) = e−r
1

σ
√

2π
exp

(
−(ω + µ− r)2

2σ2

)
(25)

In these expressions, r is the riskfree rate, µ is the mean return on the market,
σ is the standard deviation of the market return. Without loss of generality,
the signal s has mean 0 and the same variance as the log of the market return.

We work with discretized versions of f I , fU , and p with N market states
and M signal states. One approach to numerical solution of this problem
would be to solve problem 3 directly as a constrained optimization problem in
N×M variables (the agent’s utility in each market and signal state). However
this approach becomes quite difficult as N and M get large. Instead we adopt
the following approach. Begin by choosing positive constants for the M + 2
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Lagrange multipliers, λR, λa, λs(s1), . . . , λs(sM ). The first order condition
(21) gives us the agent’s utilities as a function of these Lagrange multipliers.
This means that we can view the constraints (11),(12), and (13) as a system
of M + 2 equations in M + 2 unknowns. This can be solved by standard
equation solving routines except that we must impose non-negativity on the
Lagrange multipliers. We accomplish this by letting the routine choose the
exponential of the Lagrange multipliers. This converts the problem into a
system of M+2 equations and M+2 unknowns with no constraints. The only
additional complication is that the first order equation, (21) the derivative
of λs(s). We calculate this by a central difference approximation. Because
of this we choose the initial values of λs(s) to be some “smooth” function of
the signal. For the first-best and second-best problems we can use the same
basic technique with fewer choice variables and fewer equations to solve.

Agent’s Utilities

Signal States

Market States

-2

-1

0

1

2

3

4

5

Figure 1: First-Best Contract

The agent’s utilities from the first best problem are plotted in Figure 1.
This is the same solution we obtained in (15) above. The parameters used
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are µ = 0.15, σ = 0.2, ρ = 0.5, r = 0.05, and w0 = 100. We chose a cost of
effort function such that u0−c(a) = 2 and c′(a) = 0.04 at a = 0.5. This effort
level was chosen because it corresponded to a smooth second-best contract.

Signal States

Market States

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 2: Second Best minus First Best Utility Levels

A visual inspection of the solution to the second and third-best contracts
at these parameter values is not very instructive. However we can gain insight
by examining how the contract changes when we move from first-best to
second-best to third-best. Figure 2 plots the agent’s utilities in the second-
best minus the agent’s utilities in the first-best. Notice that this gives exactly
what we would expect given our analytical solution in equation (18). When
signal and market are both high, f I(ω|s) > fω(ω), so the agent is rewarded
in those states. In the other corners of the distribution, the agent has less
utility than in the first-best case. This provides the incentive to exert effort.

Figure 3 plots the agent’s utilities in the third-best minus the agent’s util-
ities in the second-best. The difference between these two contracts is that
the third-best provides incentives to truthfully report. As noted earlier, an
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Signal States

Market States

-0.0005

0

0.0005

0.001

0.0015
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0.0025

Figure 3: Third Best minus Second Best Utility Levels

agent facing a second-best contract will tend to be overly conservative in re-
porting to undo the extra exposure the second-best contract offers compared
to the first best. Intuitively then we expect that the third-best contract will
offer a reward for reporting more extreme signal states. This is very clearly
the case. It appears in Figure 3 that this incentive is only a function of the
signal state but an examination of the first order conditions for the problem
show that this is not necessarily the case.

If we choose a higher value of c′(a) we obtain a forcing contract as in
Figure 4. Note the punishments in the corner states. Just as in the smooth
case the second-best contract is not third-best. Because the punishments
are concentrated in one state the agent would just misreport that state as
being the one next to it. To make this contract third-best the punishment
must be spread out across signal states in the extreme market states to
maintain truthful reporting. This is the situation you see in figure 5. This
figure corresponds to numerically solving the same problem as in Figure 4
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Figure 4: Second Best: Forcing Case

but imposing the truthful reporting constraints.

6 Institutional Structures

Performance Measurement

Now that we have addressed the solution of the optimal contracting problem
we return to the issue of what mechanisms can achieve this optimum. In
particular we are interested in whether the manager’s compensation can be
expressed as a function of a performance measure which depends only on the
managed portfolio return and the return of some portfolio which does not
depend on the signal. Given the form of the equations (15) and (18) it should
not be surprising that this is indeed the case in the first-best and second-best
cases.
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Figure 5: Third Best: Forcing Case
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Denote the gross return on the managed portfolio (including fees) by

RP =
φ(s, ω) + V (s, ω)

w0
.

In the second-best case this is given by

RP =
fω(ω)

p(ω)
+

(
a+

BPλa

w0

)(
f I(ω|s)
p(ω)

− fω(ω)

p(ω)

)
.

The first-best case is the same but with λa = 0. Let RB = fω(ω)
p(ω)

denote the
gross return on the benchmark portfolio mentioned earlier. Now we can write
fI(ω|s)
p(ω)

as a function of RP and RB such that the agent’s fee can be written

φ(s, ω) = BA
(
RB + k(RP −RB)

)
where

k =
a+ λa

λR

a+ BPλa
w0

=
a+ λa

λR

a+ λa
1+λR

≥ 1

This suggests the following intuitive decomposition into a performance
measure

m = RP −RB

and a fee schedule which is increasing in the performance measure, i.e.
BA(RB + km). This decomposition is, of course, not unique. The fact that
the performance measure is the excess return of the portfolio over a bench-
mark has intuitive appeal. Measuring performance relative to a benchmark
is common practice in the portfolio management industry. Note that in the
first-best case k = 1 so the fee is just a fraction, BA, of the assets under
management.

Portfolio Restrictions

From the discussion above one might assume that the performance measure
and fee schedule suggested is sufficient to implement the optimal contract in
the first-best and second-best case. In fact this is not true. It depends on
the implementation of the portfolio strategy.
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Note that in setting up the model we have not specified who implements
the portfolio strategy. By appealing to the revelation principle and requiring
truthful reporting we have side-stepped this issue. If the agent truthfully
reports the signal then for modeling purposes it doesn’t matter who actually
chooses the portfolio. Both the agent and the principal know the signal and
know what should be done. Therefore either the agent, the principal, or an
impartial third party could be assigned this task (provided implementation
is verifiable). Traditionally, agency models have had the principal choosing
the contract subject to the agent’s approval; we can think of this assumption
as a device that will map out all efficient contracts as we vary the reservation
utility level. Thus, our results should be applicable to any efficient bargaining
mechanism.16

In previous sections we have derived φ(s, ω) which, through the budget
constraint, determines V (s, ω). For each signal state φ(s, ω) + V (s, ω) gives
the the terminal value of the portfolio (before fees) as a function of the
market state. The set of all such functions is not the entire collection of
payoff functions which are available to the agent; this set is much richer.
Hence the optimal contract can be seen as a menu of payoff functions, one
for each signal state. For each payoff function there is a portfolio strategy
which will return that payoff. If the agent picks only from this menu then
the performance measure and fee schedule above will give the appropriate
payment to the manager in each state. If the manager is not constrained
to choose from the menu then there is no guarantee that the performance
measure or fee schedule will provide the correct incentives.

Therefore, to implement an optimal contract there must be a way to re-
strict the set of strategies available to the manager. Previous examinations
of the performance evaluation question in the literature do not restrict how
the manager achieves superior performance. Actual investment guidelines,
on the other hand, are full of such restrictions. Common restrictions for asset
allocation include restrictions on the universe of assets and ranges for propor-
tions in the various assets; while common restrictions for management within
an asset class are limitations on market capitalization or style (growth versus
income) of stocks, credit ratings or durations of bonds, restrictions on use
of derivatives, maximum allocations to a stock or industry, and increasingly

16Mapping out the efficient contracts in this way might not be possible in a more general
model for which agents have important information at the outset, for example about their
own preferences.
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portfolio risk measures such as duration, beta, or tracking error.
Although our model is consistent with the existence of portfolio restric-

tions it is not clear how the restrictions we see in practice are related to the
restrictions arising from our models. Recall that in the second-best case the
agent bears more risk than in the first-best. Hence, the agent’s incentive is
to take on less risky positions. The third-best contract offers explicit rewards
for taking risky positions. So in our model, the restrictions force the man-
ager to choose some curvature (in each signal state, the payoff is a concave
function of the market state); i.e., the manager must choose a contract that
takes a stand about what the market will do and cannot shirk and undertake
low effort—this is related to the point made in Stoughton (1993) and Admati
and Pfleiderer (1997) point about the ineffectiveness of linear contracts given
flexible portfolio choice. This nonlinearity to prevent a neutral prediction is
related to a concern that practitioners have about “closet indexers” who col-
lect a fee for active management but actually track the market very closely.
In practice most portfolio restrictions seem designed to limit the amount of
risk the manager can take on rather than to encourage the manager to take
on risk. Plan sponsors usually try to limit closet indexing by looking at the
track record and portfolio style rather than imposing a priori limits on the
dynamic strategy.17

It seems like an interesting avenue for future research to see how to ra-
tionalize portfolio restrictions to limit risk as seen in practice. One natural
way to do this would be to generalize our model to include career concerns:
a manager may want to take lots of risk this period in order to have a chance
of generating outstanding returns that will increase the manager’s wages or
money under manager in the future. Another reason to limit risk is to guard
against the possibility that the manager has an unreasonably high opinion of
the quality of the information. This would make the most sense in a context
in which the expenditure of effort can be measured another way, for exam-
ple through the evaluation of security analysis performed in the manager’s
investment process.

17Some practitioners seem to think that an active portfolio cannot have too many assets
(by the usual textbook analysis of residual variance as a portfolio becomes more diversi-
fied), but this argument assumes no special information on the part of the manager.
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7 Conclusion

We have proposed a new model of optimal contracting in the agency problem
in delegated portfolio management. We have shown that in a first-best world
with log utility the optimal contract is a linear sharing rule over a portfolio
which is equal to a benchmark portfolio plus an excess return of a portfolio
which depends on the agent’s signal. In a second-best world the contract is
of the same form except that the agent’s payout is more tilted toward the ex-
cess return to give incentives to the agent to work hard. We have also shown
numerical results for the third-best case, which is close to the second-best in
the examples we have examined. These results have been demonstrated in
the context of a realistic return model and the derived performance measure-
ment criterion looks more like the simple benchmark comparisons used by
practitioners than the more elaborate measures (such as the Jensen measure,
Sharpe measure, or various marginal-utility weighted measures). In addition,
the optimal contract includes restrictions on the set of permitted strategies
and also includes prior communication of information. These institutional
features are more similar to practice than other existing agency models in
finance.

We have only just started to tap the potential of this framework to tell
us about agency problems in portfolio management. Although some of the
general results obviously extend to stock selection models as well as the
market timing examples given in this paper, it will be interesting to see the
exact form of the contracts for stock-pickers. Analyzing career concerns will
be an interesting variant: in this case, the current client has to take as given
the manager’s incentives to demonstrate superior performance this period in
order to attract new clients or achieve a larger wage next period. In this case,
there is probably a limit to the extent to which the client can neutralize the
impact of career concerns. On a related note, it seems reasonable to solve
problems for which the manager’s utility function (as well as consumption) is
bounded below, given that the actual economy has restrictions on indentured
servitude.

In the model, we have obtained a lot of mileage from assumptions that
allow us to look at an equivalent formulation in which the manager simply re-
ports information and does not actually manage the money. However, there
are aspects of performance (such as quality of execution) that are not han-
dled adequately in this way. It would be useful to have a fuller exploration of
when the reporting formulation is equivalent and of what happens otherwise.
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Another ambitious extension would include explicitly the two levels of port-
folio management we see in practice, with the separation of responsibilities
for asset allocation across asset classes and management of subportfolios in
each asset class. The ultimate beneficiaries have to create incentives for the
overall manager to hire and compensate the asset class managers, and this
could be modeled as a hierarchy of agency contracts.
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Proof of Theorem 1

Proof The text already explained why the second-best is achieved by a
first-order solution of the form (18) when c′(a) ≤ c′. For c′(a) > c′ let

M∗ = c′(a)−
∫ ∫

log

(
f I(ω|s)
p(ω)

)
(f I(ω|s)− fω(ω))fs(s)dωds,(26)

which is positive by definition of c′, and let

u∗ ≡ û−
∫ ∫

log

(
f I(ω|s)
p(ω)

)
(af I(ω|s) + (1− a)fω(ω))fs(s)dωds(27)

where û = u0 + c(a). Substituting (19) into (12) and (11) and invoking these
definitions, we find that

ν1n =
M∗

− ∫ω<−n ∫s>n(f I(ω|s)− fω(ω))fs(s)dωds
(28)

and

ν0n = u∗ +M∗
∫
ω<−n

∫
s>n(af I(ω|s) + (1− a)fω(ω))fs(s)dωds

−
∫
ω<−n

∫
s>n(f I(ω|s)− fω(ω))fs(s)dωds

(29)

n↑∞−→ u∗ +M∗(1− a),

since f I(ω|s)/fω(ω)→n↑∞ 0 uniformly for ω < −n and s > n. Now consider
the pointwise limit of uAn (ω, s), which is

uA∗ (ω, s) ≡ u∗ +M∗(1− a) + log

(
f I(ω|s)
p(ω)

)
.(30)

It is not hard to show that there is uniform convergence of the correspond-
ing consumption exp(uAn (ω, s)) → exp(uA∗ (ω, s)) (since the ν1 term reduces
consumption towards 0 only in states for which consumption was already
very small), and consequently principal’s utility also converges to that cor-
responding to uA∗ (ω, s) as n ↑ ∞. Note that uA∗ itself is not feasible: it gives
too little incentive for effort and too much utility to the agent.

We have left to show that uA∗ , which has the same value for the principal
as the limit of the sequence uAn , gives the principal at least as much value
as any feasible uA. Let EuP (uA) represent the principal’s expected utility as
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computed by (5) given an agent’s utility pattern uA. Then, we can use con-
cavity of EuP to bound the value for any feasible uA by taking the derivative
at uA∗ :

EuP (uA)(31)

=
∫

log
(
w0 −

∫
p(ω) exp(uA(ω, s))dω

)
fs(s)ds

≤
∫

log
(
w0 −

∫
p(ω) exp(uA∗ (ω, s))dω

)
fs(s)ds

−
∫ ∫

p(ω) exp(uA∗ (ω, s))

w0 −
∫
p(ω) exp(uA∗ (ω, s))dω

(uA(ω, s)− uA∗ (ω, s))fs(s)dωds

= Eup(uA∗ )− exp(u∗ +M∗(1− a))

w0 − exp(u∗ +M∗(1− a))

×
∫ ∫

(uA(ω, s)− uA∗ (ω, s))f I(ω|s)fs(s)dωds

We are done if we can show the integral in the last right-hand expression is
zero. Now (11), (27), (30), and the fact that densities integrate to 1 imply
that ∫ ∫

(uA(ω, s)−uA∗ (ω, s))(af I(ω|s)+(1−a)fω(ω))fs(s)dωds=−M∗(1−a)(32)

and (12), (26), (30), and the fact that densities integrate to 1 imply that∫ ∫
(uA(ω, s)− uA∗ (ω, s))(f I(ω|s)− fω(ω))fs(s)dωds = M∗.(33)

Adding (32) and (1-a) times (33), we get∫ ∫
(uA(ω, s)− uA∗ (ω, s))f I(ω|s)fs(s)dωds = 0,(34)

as was required to complete the proof.
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