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MUTUAL FUND SURVIVORSHIP

ABSTRACT

This paper offers a comprehensive study of survivorship issues, in the context of mutual fund
research, using the mutual fund data set of Carhart (1997).  We find that funds in our sample
disappear primarily because of multi-year poor performance.  Then we demonstrate analytically that
this survival rule typically causes the survivor bias in average performance to increase in the length
of the sample period, though it is possible to construct counterexamples.  In the data, we find a
strong positive relation between the survivor bias in average performance and sample period length.
The bias is economically small at 17 basis points per annum for one-year samples, but a significantly
larger one percent per annum for samples longer than fifteen years.  We also find evidence of
performance persistence in our sample and, consistent with the presence of a multi-period survival
rule, we find that the persistence is weakened by survivorship bias.  Finally, we explain how the
relation between performance and fund characteristics can be affected by the use of a survivor-only
sample and show that the magnitudes of the biases in the slope coefficients are large for fund size,
expenses, turnover and load fees in our sample.  Because survivorship issues are relevant for many
data sets used in finance, the analysis in this paper has potential applications in areas of financial
economics beyond just mutual fund research. 
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Survivorship bias affects almost every mutual fund study.  Most commercially available

mutual fund data sets include only funds currently in operation, and many commonly used research

methodologies impose additional selection biases.  With the exception of a few recent papers,

however, researchers frequently ignore selection biases altogether or argue that their effect is

insignificant.  This attitude is unfortunate, as selection-bias issues pervade almost all empirical

studies of panel and time-series data sets.

This paper offers a comprehensive study of survivorship issues, in the context of mutual fund

research.  We examine how survivorship bias affects mutual fund studies both theoretically and

empirically.  We study the effect of survivorship on three types of mutual fund studies: (1) estimates

of average performance, (2) tests of performance persistence, and (3) cross-section estimates of the

relation between performance and fund attributes.  The analysis divides survivorship bias into the

separate but related issues of survivor bias and look-ahead bias, an important distinction rarely

acknowledged in the literature.  Our results indicate that survivorship bias substantially alters the

inferences from mutual fund studies, but that the effects vary across test type, form of survivorship

bias, and sample period length.  Because survivorship issues are relevant for many data sets used in

finance, the analysis in this paper has potential applications in areas of financial economics beyond

just mutual fund research.

A number of recent papers have addressed issues in mutual fund survivorship.  Brown,

Goetzmann, Ibbotson and Ross (1992) and Carpenter and Lynch (1999) study the effects of

survivorship bias on tests of performance persistence using simulation and calibration.  Grinblatt and

Titman (1989) and Wermers (1997) study the effect of survivorship bias on a database of underlying

stock holdings.  Malkiel (1995) estimates the effects of survivorship bias in Lipper Analytical
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Service�s database.  Brown and Goetzmann (1995) estimate survivor biases in their ten-year sample

of mutual fund returns and find that nonsurvivors underperform the average fund in each of their last

three years.  Finally, Elton, Gruber and Blake (1996) study survivorship issues in the cohort of larger

funds listed in the 1977 issue of Wiesenberger�s Investment Companies.

Our study contributes to the existing mutual fund literature in several ways.  First, it carefully

distinguishes between survivor bias and look-ahead bias, particularly in the context of persistence

tests where the distinction is most applicable.  Second, the paper carefully analyzes how the survival

rule affects the average performance bias in survivor-only samples.  Third, the paper considers the

impact of survivor bias on cross-sectional regressions of performance on fund characteristics,

providing a framework for assessing the direction and magnitude of any biases in the coefficients.

 Finally, the paper measures the effects of survivorship bias in common mutual fund tests using the

data set  of Carhart (1997).  This data set is one of the most complete mutual fund data sets available

and is virtually free of survivorship bias. 

Our results suggest that nonsurvivors in the U.S. mutual fund industry disappear primarily

because of multi-year underperformance.  A probit analysis confirms the predictive ability of lagged

performance, even in the presence of the most recent year�s performance. We show that a survival

criterion based on multi-year performance (a multi-period survival rule) typically causes survivor-

biased estimates of average performance to increase in the time-length of the sample, but at an ever

decreasing rate.  In our sample, we measure the bias in annual return at 17 basis points for one-year

samples, 43 basis points for five-year samples, and approximately one percent for data sets longer

than fifteen years.  At the same time, it is possible to construct examples in which the bias in average

performance is not increasing as a function of the sample period length. Our analysis provides a
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warning to researchers that a multi-period survival rule can have unexpected consequences for

estimates of average performance in a survivor-only sample.

We next examine empirically the impact of survivor bias on persistence tests, and find that

the bias attenuates performance persistence relative to the full sample.  The downward bias in the

persistence measures induced by using both look-ahead biased and survivor biased samples is

understandable given the multi-period nature of the survival rule (see Brown, Goetzmann, Ibbotson

and Ross, 1992, Grinblatt and Titman, 1989, and Carpenter and Lynch, 1999).  However, our paper

is the first to demonstrate empirically that a multi-period survival rule can attenuate persistence in

these samples despite any heterogeneity in performance volatility across funds in the sample. With

persistence in the full sample, the attenuation in the persistence is found to be much larger for the

survivor-only sample than the look-ahead biased sample. 

Finally, we explain how survivor-only conditioning can affect the cross-sectional relations

obtained between fund performance and fund characteristics.  In particular, for the cross-sectional

slope coefficient to be biased in the survivor-only sample, the fund characteristic in question must

affect the survivor bias in performance.  In fact, the direction and magnitude of the characteristic�s

impact on the performance bias determine the direction and magnitude of the slope coefficient bias.

We  then estimate the slope coefficient biases for commonly-used fund characteristics when using

both the survivor-only sample of U.S. mutual funds and the full sample.  We find that the magnitude

of these biases can be large and their directions can be explained using the intuition we develop.

Section 1 presents definitions while Section 2 describes the U.S. mutual fund data set.

Section 3 characterizes survivors relative to non-survivors and quantifies the survival rule.  Section

4 considers the impact of using a survivor-only sample on average performance measures, both
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theoretically and empirically.  Section 5 examines the bias in persistence measures induced by using

survivor-only or look-ahead biased samples.  Finally, section 6 examines the impact of survivor bias

on cross-sectional regressions, and section 7 concludes.

1.  Definitions

A. Selection bias definitions

To mitigate potential confusion, we define some important terms used in this study.  Survival

rules refer to the criteria which cause funds to disappear from the data set.  A one-period survival

rule means that only funds with current period returns greater than some threshold are observed at

the end of the period.  A multiple-period survival rule means that funds appear in the data set only

if their past n-period return exceeds some threshold.

Fund disappearance, or attrition, can lead to two distinct but related  problems, survivor bias

and look-ahead bias.  Survivor bias is the effect of including in the sample only the funds extant at

the end of the sample period.  Look-ahead bias is the effect of requiring funds to survive some

minimum length of time by trimming funds that perish during a look-ahead period.  The survivor-

biased sample trims not only these funds but also funds that perish between the end of the particular

look-ahead period and the end of the sample period.  Consequently, the survivor-biased sample can

be thought of as imposing a look-ahead bias whose look-ahead period is larger for ranking periods

that occur earlier in the sample. Survivor bias is solely a property of a data set, whereas look-ahead

bias usually results from a test methodology imposing a survival condition.  The distinction between

these two biases is not always acknowledged in the literature.  Some studies consider data sets free

of survivor bias but then impose look-ahead-biased methodologies.  
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An example of a survivor-biased sample is Morningstar OnDisc, which reports performance

since January 1976 only for funds still existing at the end of the sample period.  In principle,

correcting for survivor bias is simply an issue of data collection, although in practice the missing

data are often not completely obtainable.

In contrast, the common performance persistence test methodology of regressing future n-

period performance on a measure of past performance suffers from an n-period look-ahead bias,

since the test conditions on survival for another n periods beyond the evaluation date.  Some degree

of look-ahead bias is inherent in any test of performance persistence that requires a balanced future

and past performance sample.1    An important issue is how the effects of look-ahead bias vary with

the nature of the survival rule, particularly for persistence tests, and the theory sections provide some

discussion of this issue.  However, the empirical work, by construction, can only characterize the

look-ahead bias induced by the survival rule actually in effect in the U.S. mutual fund industry.

Mitigation of look-ahead bias requires minimizing the look-ahead period, the time period over which

future performance is measured.  The methodology we use in the persistence tests below requires

looking forward only one month.

B. Averaging Method

Since a mutual fund sample is a panel data set, a method of aggregation across funds and time

must be chosen.  One approach is to pool all of the time-series and cross-section observations.  Due

to significant recent growth in the number of funds, this method skews results towards relations in

the final few years of the sample. A second approach calculates statistics on the individual funds,

then averages cross-sectionally.  This approach gives the same weight to all funds, irrespective of
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history length.  A third approach, frequently employed in the mutual fund literature, calculates

statistics cross-sectionally for each time period and then averages these estimates through time.  We

rely primarily on this third approach for aggregation.

C. Performance measurement

We employ two methods of performance measurement.  The first method simply subtracts

from fund returns the equal-weight average return on all funds with the same objective in that period.

We call this the �group-adjusted� performance measure.  When funds change objectives, they move

to a new group-adjusted measure.  Brown and Goetzmann (1997) document that some funds game

their stated objectives to improve their relative performance, so we reconstruct the annual series of

stated objectives to remove short-term objective �flips.�  In our data set, the change in benchmark

increases prior-year�s group-adjusted performance an average of only 61 basis points (t-statistic of

1.63), considerably less than the 9.8% reported by Brown and Goetzmann.

The second performance measure is the time-series regression intercept from asset pricing

models, commonly called �alphas� after Jensen�s (1968) work.  We use two such models: the Capital

Asset Pricing Model (CAPM) derived by Sharpe (1964) and Lintner (1965), and the 4-factor model

of Carhart (1997).  For the CAPM, we use Fama and French�s (1993) market proxy, updated to 1995.

The 4-factor model uses Fama and French�s (1993) 3-factor model plus an additional factor

capturing Jegadeesh and Titman�s (1993) one-year momentum anomaly.  The model is

rit � αiT � biT RMRFt � siT SMBt � hiT HMLt � piT PR1YRt � eit (1)

where rit is the return of asset i in excess of the one-month T-bill return, RMRF is the excess return

on a value-weighted aggregate market proxy, and SMB, HML, and PR1YR are returns on value-
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weighted, zero-investment, factor-mimicking portfolios for size, book-to-market equity, and one-year

momentum in stock returns. Carhart (1997) describes the 4-factor model in greater detail and finds

it prices passively-managed portfolios formed on size, book-to-market equity and one-year return

momentum considerably better than the CAPM or Fama and French’s (1993) 3-factor model.  We

use the 4-factor model in addition to the CAPM in an effort to adjust fund performance for well-

known regularities in stock returns.  Finally, Carhart (1995) finds that dynamic performance

measurement models like Ferson and Schadt (1994) do not substantially alter his performance

estimates.

2.  Data

Our database covers all known diversified equity mutual funds monthly from January 1962

to December 1995 and excludes sector funds, international funds, and balanced funds.  Moreover,

the data are virtually free of survivor bias.  We obtain data on surviving funds and for funds that

disappear after 1989 from Micropal/Investment Company Data, Inc. (ICDI.)  For all other

nonsurviving funds, the data are collected from FundScope Magazine, United and Babson Reports,

Wiesenberger’s Investment Companies, the Wall Street Journal, and ICDI’s past printed reports.  We

partition the sample into three primary investment objectives using Wiesenberger and ICDI

classifications: aggressive growth, growth and income, and long-term growth.  All funds in the

sample start as general equity funds in one of these three objectives.  Funds frequently change

objectives during the sample but we never drop a fund once in the sample.  

The data set includes monthly returns and annual attributes.  Return series are as complete

as can practically be obtained, but do not include final partial-month returns on merged funds as in
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Elton, Gruber, and Blake (1996).  Of the 725 nonsurviving funds, we obtain the date of merger,

liquidation, or reorganization for 475 funds from ICDI, Wiesenberger Investment Companies,

FundScope Magazine and Investment Dealer�s Digest.  Within the sample of funds with known

termination dates, the return series end within one week of the termination date for 330 funds.  Of

the remaining 145 funds, 32 do not include the final partial- or full-month return, 20 do not include

the final two- to three-month return, 81 do not include the final four- to twelve-month return, and

12 funds are missing more than one year�s returns.  Of the 250 nonsurviving funds without exact

termination dates, we do not observe any returns on 53 funds, often because they are too small to

appear in any published sources.

While our sample does not include a number of nonsurviving fund returns, the bias induced

by the last few omitted returns is probably quite small.  Since mergers and liquidations need

shareholder approval, these reorganizations require at least several months to complete, and probably

closer to four to six months.  Thus, missing final returns probably do not differ substantially from

the prior observed returns on these funds.  The evidence from Elton, Gruber and Blake�s (1996)

sample supports this conclusion:  Marty Gruber, in a personal communication, indicates that the final

partial-month return on merged funds does not significantly differ from the average nonsurvivor�s

return.  Of greater concern is the 250 funds without exact termination dates, particularly the 53

without any return data.   Since these 53 are likely non-survivors, the lack of any return data imparts

a survivorship bias to the measures obtained for the full sample.  As a consequence, comparisons of

the full sample to the survivor-only sample are likely to understate the effects of survivor-only

conditioning for the U.S. mutual fund industry.

The sample differs from Carhart (1997) in two primary ways.  First, we deal with multiple
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share class funds differently.  Multiple share class funds divide a common pool of assets into share

classes with differing distribution costs.  Whereas Carhart (1997) treats each share class as a separate

fund, the sample in this paper includes only the original share class for each fund.  For fund size, we

use the sum of the total net assets over all share classes.  This treatment of multiple share class funds

eliminates 62 funds from Carhart (1997).  Second, we  extend the data set two years to 1995 and

remove several duplicate and improperly categorized funds from Carhart (1997).  This adds 194 new

funds and removes 28 funds.

Table 1 reports annual summary statistics on the data set as well as time-series averages over

the complete period.  Our sample includes a total of 2,071 diversified equity funds, 1,346 of them

still operating as of December 31, 1995.  In an average year, the sample includes 545 funds with

average total net assets (TNA) of $179.5 million and average expenses of 1.19 percent per year. 

To measure net additions and withdrawals, we also measure Flow as:

Flowit �
TNAit � (1�Rit)TNAit�1 � MGTNAit

Avg Monthly (TNAit�1 ,TNAit)
, (2)

where MGTNAit is the increase in fund i�s assets in period t due to merger and the denominator is

the average monthly total net assets of fund i from t-1 to t.  Flow is similar to Sirri and Tufano�s

(1992) flow measure except that it adjusts for TNA changes due to merger, and it uses average

monthly assets instead of beginning assets.  On average, the typical fund receives net inflows of 7.0

percent per year as measured by Flow.

In addition, funds trade 82.5 percent of the value of their assets (Mturn) in an average year.

Since reported turnover is the minimum of purchases and sales over average TNA, we obtain Mturn

by adding to reported turnover one-half of the absolute value of Flow.  Also, over the full sample,

average maximum load fees are 7.05 percent, and 59.8 percent of funds charge them in a given year.
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Maximum load is the total of the maximum initial, rear and deferred sales charges, as a percentage

of assets invested.

In an average year, we find that 3.6 percent of funds disappear.  Of this total, 2.2 percent per

year disappear due to merger and 1.0 percent disappear because of liquidation.  By contrast, Elton,

Gruber, and Blake (1996) find an attrition rate of only 2.3 percent in their sample.  However, Elton

et al. (1996) study only a single cohort of funds, so each year�s sample requires funds to have

survived some time in the past.  In the subsamples grouped by investment objective, aggressive

growth funds perish at an annual rate of 4.5 percent, which is statistically significantly larger than

2.9 percent for long term growth and 3.3 percent for growth and income funds.  In addition, unlike

Elton et al. (1996), we find that the annual attrition  rate is significantly negatively related to the

previous year�s market return, with a t-statistic of -2.30.

The annual summary statistics indicate substantial variation in mutual fund properties

through time.  For example, the rate at which assets enter and leave the industry varies, with

alternating periods of high growth/low disappearance rates and low growth/high disappearance rates.

In addition, the nominal size of funds, TNA, and average expense ratio mostly increase over the 34-

year period, while both the load fees and the proportion of funds charging load fees decrease.  

Table 1 also demonstrates that the equity mutual funds in our sample earned reported returns

approximately 0.6 percent per year below the value-weighted CRSP index, occasionally under or

over performing the CRSP index by as much as 9 percent per year.  Reported returns are net of all

operating expenses (expense ratios) and security-level transactions costs, but do not include sales

charges.  Perhaps more surprising, funds only hold 83.2 percent of their portfolios in common stocks

in an average year.  In the remainder of their portfolios, funds hold 10.2 percent in cash and 6.6
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percent in preferred stocks and bonds.

While our sample is probably the most complete survivor-bias-free mutual fund database

available, Brown and Goetzmann (1995), Elton, Gruber and Blake (1996), Grinblatt and Titman

(1989), Malkiel (1995), and Wermers (1996) study related mutual fund databases.  Elton et al. follow

the cohort of funds listed in Wiesenberger�s 1977 volume from 1976 until 1993, constructing

complete return histories up to the date of merger for funds with assets greater than $15 million.  By

contrast, our sample includes all funds between 1962 and 1995, adding new funds as they appear.

Grinblatt and Titman (1989) and Wermers (1996) use quarterly data on the mutual funds�

underlying stock holdings since 1975 from CDA/Spectrum to estimate returns gross of transactions

costs and expense ratios.  Wermers� data set therefore permits a more detailed analysis of investment

strategies and gross investment performance than ours.  However, the CDA data do not permit return

calculations on nonsurvivors in their final periods before disappearance.  The data set studied by

Brown and Goetzmann (1995) is similar to ours, except that it covers only the period from 1977 to

1988 and uses annual returns estimated from Wiesenberger�s Investment Companies.  Finally,

Malkiel�s (1995) data set uses quarterly returns from 1971 to 1991, obtained from Lipper Analytical

Services. 

3.  Characterizing Attrition in the Data

This section examines the properties of surviving and nonsurviving mutual funds and gives

evidence on the cause of fund disappearance.

A. Properties of Surviving and Nonsurviving Mutual Funds

Table 2 compares the performance, size, expense ratios, and turnover of surviving and
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nonsurviving mutual funds.  Not surprisingly, nonsurviving funds exhibit considerably poorer

performance than surviving funds.  After estimating the group-adjusted and 4-factor model

performance on individual funds over their complete return series, we calculate the cross-sectional

average of these estimates for survivors and nonsurvivors.  By these measures, nonsurviving funds

underperform survivors by 31 to 36 basis points per month, or about 4 percent per year.

Also not unexpectedly, nonsurviving funds are smaller and have higher expense ratios and

turnover than surviving funds.  Table 2 contains measures of relative size, expenses, turnover, and

money flow for various groups of funds.  We measure relative size, Relative TNA, for a given group

as follows.  For each year in the sample, we first compute the ratio of each fund�s TNA to the

average TNA for the entire sample in that year, and then we calculate the group average of this ratio

for that year.  Then, we take the time series average of these annual group averages to obtain  the

Relative TNA measure for the group.  Relative expense ratio and turnover (Mturn) are measured

analogously.  To measure relative flow, we use the difference in Flow instead of the ratio, again

taking the time-series average of annual cross-sectional averages.  By these measures, surviving

funds are approximately 45 percent larger than the average fund and growing faster by 1.2 percent

per year, while nonsurviving funds are less than one-third the size of the average fund and shrinking.

Similarly, surviving funds have expense ratios about 11 percent lower than average, while

nonsurvivors charge expenses 23 percent above average.  Nonsurviving funds also trade about 15

percent more than the average fund, while survivors trade about 4 percent less.  These results are

consistent with those of Brown and Goetzmann (1995) and Malkiel (1995), who also document the

higher expenses and smaller size of nonsurvivors.

We subdivide the defunct mutual fund sample by reason for disappearance into four broad
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categories: (1) mergers, (2) liquidations, (3) other self-selected reasons, and (4) not self-selected or

unknown reasons.  Table 2 shows that about 58 percent of all defunct funds disappear because of

merger and 36 percent disappear due to liquidation.  A further two percent vanish through other self-

selected means, usually at the fund manager�s request for removal.

Approximately five percent of nonsurviving funds depart for unknown reasons or are dropped

from the sample by the database manager, not the fund itself.  Sixteen of these are tax-free exchange

(TFE) funds.  TFEs permitted a tax-free exchange of an investor�s stock portfolio for shares in the

fund, allowing investors to defer capital gains recognition.2  Congress withdrew this tax loophole

in 1967 and these funds disappeared from our sources in the same year.  Five funds are dropped from

the sample because they are variable annuity investment vehicles, and the reason for disappearance

is unknown for fifteen funds.

While all nonsurviving fund groups underperform, liquidated funds exhibit the worst relative

performance and the smallest size and highest expense ratios. Liquidated funds are only five percent

of the average fund�s size and have expenses and turnover 85 percent and 53 percent higher than the

average fund, respectively.  In contrast, funds that subsequently merge earn performance similar to

the average nonsurvivor.  Not surprisingly, merged funds are larger and have lower expense ratios

than the typical nonsurviving fund.

Funds disappearing for reasons other than merger or liquidation mostly underperform as well.

However, the performance on split, variable annuity and tax-free exchange funds are not abnormally

negative.  Performance is significantly negative for funds voluntarily removing themselves from the

sample, funds reorganizing to have closed-end status, and funds disappearing for unknown reasons.

These findings are not surprising.  Since Sirri and Tufano (1992) and others show that investors
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respond to past performance, poorly-performing funds may stem the tide in negative flows by

changing to closed-end or removing themselves from commercial mutual-fund-ranking services.

In Table 3, we measure factor loadings and performance on equal-weighted portfolios of

mutual funds, as in Carhart (1997).  The portfolios that include nonsurviving funds keep them in the

equal-weighted average until they disappear and then readjust the portfolio weights appropriately.3

This procedure mitigates look-ahead bias.  Table 3 shows that the equal-weighted portfolio of all

mutual funds underperforms by five basis points per month relative to the CAPM and 15 basis points

relative to the 4-factor model.  The 4-factor model estimate amounts to a sizeable underperformance

of 1.8 percent per year. As in Carhart (1997), the significant difference in performance estimates

between the CAPM and 4-factor model is due to mutual funds holding smaller, lower book-to-

market and higher momentum stocks which increases their average return over the sample period

by a net of 10 basis points per month.

The performance of the portfolios of survivors and nonsurvivors is considerably different.

Survivors achieve abnormal performance of +3 basis point per month relative to the CAPM, and -7

basis points relative to the 4-factor model.  Nonsurvivors, however, earn CAPM and 4-factor model

performance measures of -24 and -33 basis points per month, respectively.   In our sample, the

overall survivor bias in average performance does not depend on the performance measurement

model.  The difference between estimates of performance using survivors only and estimates using

the complete sample are 8 basis points per month, using either the simple return, CAPM, or 4-factor

model estimates of survivor bias over the complete time period.   From the 4-factor loadings, we

infer that relative to nonsurvivors, surviving funds have a less negative exposure to high book-to-

market stocks, less positive exposure to small stocks, and similar exposures to the market and to the
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momentum factor.

The survivor bias does differ significantly across fund objective groupings.  In annual returns,

aggressive growth survivors outperform all aggressive growth funds by 1.9 percent per year.  For

growth and income and long-term growth funds, the biases are 0.4 and 1.1 percent, respectively. In

summary, omitting nonsurvivors from estimates of average performance downwardly biases factor-

model-adjusted mutual fund performance by approximately one percent per year.  This applies only

to the complete sample period; in the Section 4, we measure survivor bias in annual return estimates

for other sample period lengths.

B. Evidence on the Survival rule

We now address the question of whether funds disappear primarily because of a single poor

return, a single-period survival rule, or because of a sequence of poor returns, a multi-period survival

rule.  

B. 1. Performance Prior to Disappearance for Non-survivors

This subsection examines the relative performance of nonsurviving funds in their final five

years of existence.  Figure 1 suggests that nonsurvivors underperform throughout their last five years

of existence, but especially in their final year.  The figure presents the annual group-adjusted

performance on an equal-weight portfolio of nonsurviving funds in each of their last five years.4

This performance is gross of expense ratios in order to remove the effect of declining fund size on

performance.  The figure suggests that most nonsurvivors disappear after underperforming for

multiple years, and perhaps also that some funds disappear after only one particularly poor final year

return.  However, the portfolio average does not directly reveal the distribution of individual fund
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performance.

The evidence in Table 4 shows that multiple-period performance dominates the selection

process.  The table reports the proportion of all nonsurviving funds with group-adjusted performance

below various performance fractiles of all funds.  In their final twelve months, 62 percent of

nonsurvivors report performance below the median, and 24.8 percent report performance in the

bottom decile of all funds.  Similarly, over their last five years, almost 80 percent are below the

median, 33 percent in the bottom decile, and 21 percent fall in the bottom 5 percent.  In addition to

the large proportion of individual funds that underperform over their final five years, the relative

performance of nonsurviving funds worsens as the performance measurement periods lengthens.

This indicates that most funds vanish after underperforming for several years; if funds disappeared

after only a single poor return, the relative performance of nonsurviving funds would increase as the

performance measurement period lengthened.  However, there is also evidence that funds sometimes

disappear after only one poor return.  Relatively more funds appear in the bottom one percent

performance fractile for their last year than their last two to five years.

B. 2. Probit Analysis of Disappearance Predictors for Non-survivors

To establish the statistical significance of lagged returns as predictors of fund disappearance,

we fit a probit model similar to that of Brown and Goetzmann (1995).  For each year y from 1965

to 1994, we collect all funds alive at the end of y, and set the variable DIE to zero if the fund

disappears before the end of y+1, and one otherwise.  To predict the value of DIE, we use variables

that describe relative fund size, past performance, and new money flow.  We calculate the relative

size of the fund at the end of y, E_TNAy, as the log of the fund�s size divided by the average size of
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funds of its type at the end of y.  We include the fund�s group-adjusted return for years y-4 to y,

E_RETy-4 to E_RETy, to capture the effects of past performance.  Finally, the variables E_NMy-4 to

E_NMy are included to capture the effects of the relative new money invested in the fund in each of

the last five years.  For a given year, this variable is defined to be a fund�s new money divided by

the average new money for funds of its type that year.  Consistent with Brown and Goetzmann

(1995), new money is calculated as the percentage change in a fund�s total net asset value, net of

fund return.  To avoid throwing out funds that disappear within five years of inception, and

consequently do not have data for some of the lags, we set E_RETy-L  and E_NMy-L to zero if one of

them does not exist for lag L, and set the indicator variable MISSy-L  to one.  Otherwise, we set

MISSy-L  to zero.  So there are sixteen explanatory variables in all: relative size, five lags of relative

returns, five lags of relative new money, and five dummies.

Results for an unconstrained version of the model are reported in Table 5.  Negative

coefficients indicate that the probability of disappearance decreases as that variable increases.  The

results are broadly consistent with those of Brown and Goetzmann (1995).  The likelihood of

disappearing goes up as size goes down, as recent and lagged relative returns go down, and as

relative new money goes down, though this last relation is generally not statistically significant.

We test three hypotheses using log likelihood ratio tests and report the results in the last three

rows of Table 5.  The first test is whether the lagged returns matter at all, that is, whether the

coefficients on E_RETy-4 through E_RETy-1 are all equal to zero.  The log likelihood ratio has a p-

value less than 0.001 so the null that the lagged returns do not enter is rejected.  The second test is

whether the lagged returns enter identically, that is, whether the coefficients on E_RETy-4 through

E_RETy-1 are all equal.  The resulting test statistic is 5.06, which is below the 90% rejection level,
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so the null that the lagged returns enter identically is not rejected.  The third test is whether the

coefficient on E_RETy is the same as the average coefficient on the other four lags.  The test statistic

of 4.19 exceeds the 95% cutoff of 3.84 for one degree of freedom, so the null is rejected.  

Taken together, the results of the hypothesis tests indicate that a multi-period survival rule

is applicable (since the first null is rejected), that the coefficients on the four lagged returns are the

same (since the second null is not rejected), and that the coefficient on the year-y return variable is

significantly larger in magnitude than the coefficient on the lagged return variables (since the third

null is rejected).  These results suggest that single period and multi-period survival rules operate

simultaneously in the U.S. mutual fund industry.

4.  Survivor Bias Effects on Estimates of Average Performance

This section examines the properties of the bias in estimates of average performance created

by eliminating nonsurvivors from mutual fund samples using either a single or multi-period survival

rule.  Focusing on the time-series average of the sample�s cross-section mean performance each

period, subsection A shows that the bias induced by a single-period survival rule is invariant to

sample length, and then provides compelling intuition for why the bias induced by a multi-period

rule is typically increasing with sample length.  Section B then presents an example that illustrates

why the multi-period rule does not always create a bias that is increasing in the sample length.

Section C simulates biases for m-period survival rules and different sample lengths using sample

growth rates and fund attrition rates that match those in the U.S. mutual fund data.  The simulation

shows that when m > 1, the survivorship bias grows with the length of the sample period, consistent

with the intuition presented in subsection A.  Finally, subsection D examines the relation between
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the average performance bias and sample period length empirically.  We find that the relation is

positive, which suggests that a multi-period survival rule operates in the U.S. mutual fund industry.

A. Theory

Every period, each mutual fund in existence generates a performance measure.  For

convenience, we shall call the periods years, though they could be any length of time, and the

performance measures returns, though they could be any measure of performance, such as factor-

model-adjusted returns or group-adjusted returns.  An m-year survival rule causes fund

disappearance, m � {1, 2, 3, ...}.  That is, each year, funds at least m years old disappear through

liquidation or merger if the sum of their returns over the preceding m years falls below a threshold

b.  Younger funds do not disappear.  In addition, fund returns are cross-sectionally and

intertemporally independent and identically distributed with mean µ.5  Let g �0 be the annual growth

rate of the number of funds in the mutual fund industry.

Consider a survivor-only sample of funds for a k-year sample period.  This is the set of all

funds in existence prior to the end of the sample period that survive the selection process in every

year from their date of inception to the end of the sample period.  Notice that the sample includes

newer funds with fewer than k periods of performance, who survive until the end of the sample

period.  Define the survivor-biased  estimate of average performance as the time-series average of

the yearly equal-weight cross-sectional mean returns of these funds.  Notice that, by assumption, b,

g, µ, and the variance of fund return are all independent of k.

Proposition 1: If a single-year survival rule causes fund disappearance (i.e., m=1), the bias in the
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average performance estimate for the whole sample is independent of the length of the sample

period, k.

Proof: In any year of any sample period, the bias in the estimate of average performance of surviving

funds is

E R |R > b � µ (3)

which is independent of k.  Q.E.D.

Now suppose a multi-year survival rule determines fund survival (i.e., m>1).  Consider the

collection of funds that survive through some time T.  Each of these funds survives performance cuts

from the time it is m-years old until time T.  Let  be the conditioning statement associated withCt

the time t performance cut:

Ct � [ ( �
t

τ�t�m�1
Rτ) > b ], (4)

and let  be the one-period return conditioned on a set of j+1 consecutive performance cuts withµi,j

the last cut occurring i-1 periods after the return:

µi,j�E[Rt�1�i|Ct�j,...,Ct]. (5)

When thinking about the conditional mean of a given period�s return, we define a cut whose return

window includes the given return as a direct cut and one whose window does not as an indirect cut.

The conditional mean in (5) imposes a direct cut only when j �0 and j+m>i>0.  If this condition does

not hold for a given i and j,  only involves indirect cuts, and so must be equal to µ.6µi,j

Conditional on surviving through time T, the mean time-t return of each fund that is j years

old at time T is =  .    These age-j funds have returns from timeE[Rt|CT�j�m,CT�j�m�1,...,CT] µT�1�t,j�m

T+1-j to T, and so only funds that are at least T-t+1 years old at T  have a return at time t.  It follows

that the cross-sectional mean time T+1-τ  return of funds that survive through time T is



21

µT
T�1�τ �

�
J

j�τ
�w T

j,T µτ,j�m

�
J

j�τ
�w T

j,T

(6)

where J is the age of the oldest funds alive at T and  is the fraction of time-T survivors (after the�w T
j,T

time-T cut) that are j years old at time T.  As τ increases, the time period becomes earlier, and

increasingly younger cohorts are omitted from the summation.  Finally, the survivor-biased estimate

of average performance across the k-period sample ending at T is

µ̄T
k �

�
T
t�T�k�1 µT

t

k
. (7)

We are interested in characterizing the behavior of   as a function of k.µ̄T
k

Before we proceed, a few comments are in order.  It might seem that indirect cuts should not

affect a conditional mean return.  In particular, when calculating conditional means for , it mightRt

seem that conditions associated with cuts before time t and after time t+m-1 can be disregarded.

However, in general, this is not the case, as our example in subsection B below demonstrates.  For

example, even though  and  are independent,  is not equal to , becauseRt Ct�1 E[Rt|Ct�1,Ct] E[Rt|Ct]

of the dependence between  and .   Nevertheless, imposing an additional direct cut tends toCt Ct�1

have a much greater effect on the conditional mean than imposing an additional cut that is indirect.

To pursue the implications of this idea, we ignore the impact of indirect cuts for now and let µτ

denote any conditional mean of  which imposes exactly τ direct cuts.  Note that τ can range fromRt

1 to m since m is the maximum number of m-period cuts that can include a given single-period

return.  We also use µτ to denote the set of conditional means ( � s) with exactly τ direct cuts. Withµi,j

this notation, the cross-sectional mean time-(T+1-τ)  return of funds that survive through time T can

be written as follows for J�2m:
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µT
T�1�τ � κ

T
T�1�τ [ �

m�1

j�τ
�w T

j,T µ � �
m�1�τ

j�m
�w T

j,T µj�(m�1) � �
J

j�m�τ
�w T

j,T µτ ], τ � 1, 2, ... , m�1

� κT
T�1�τ [ � �

m�1�τ

j�τ
�w T

j,T µj�(τ�1) � �
J

j�m�τ
�w T

j,T µm ], τ � m, ... , J�m

� κT
T�1�τ [ � �

J

j�τ
�w T

j,T µj�(τ�1) ], τ � J�m�1, ... , J

(8)

where

κT
T�1�τ �

1

�
J

j�τ
�w T

j,T
(9)

is a scaling factor to ensure that the weights of the various time-T cohorts born prior to T+1-τ sum

to one.  

Intuition suggests that the conditional mean of  is increasing in the number of direct cuts:Rt

in other words, µτ is increasing in τ.  Equation (8) can be used to understand why this intuition

implies a survivorship-biased k-period sample mean  that is increasing in k.   Since the sampleµ̄T
k

mean    is obtained by averaging   terms from τ=1 to τ=k, increasing the sample periodµ̄T
k µT

T�1�τ

length from k to k+1 involves adding   to the set of terms used to calculate the sampleµT
T�1�(k�1)

mean.  Thus, it is enough to explain why    is typically larger than the average of   µT
T�1�(k�1) µT

T�1�k

...   for any k.  µT
T

The first line of equation (8) suggests that the cross-sectional mean   increases as τµT
T�1�τ

increases from 1 to m. For any given τ�m,  is an average of µ,µ1,...,µτ because when the timeµT
T�1�τ

period, t, is τ-1 periods from time T,  the maximum number of cuts that can include  is τ.  SinceRt

µτ is increasing in τ, this average increases in τ, because the relative weights on the µ,µ1,...,µτ are

unchanged as we go from τ to τ+1. For τ beyond m but not too close to J,  is an average ofµT
T�1�τ

µ1,...,µm.   It follows that, for any k beyond m but not too close to J,   >>  >>...>> .µT
T�1�(k�1) µT

T�1�m µT
T
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Thus, for any k not too close to J,  is likely to be greater than   and so increasing theµT
T�1�(k�1) µ̄T

k

sample length from k to k+1 increases the sample mean.

The following proposition formalizes this intuition using a set of assumptions guaranteeing

that  is increasing in k.  Before introducing the proposition, a little more notation is needed.   Let µ̄T
k wj,t

be the fraction of funds with a time-t return that are age j at time t.  Let xi denote survival

probabilities conditional on survival in previous periods: xi� for i>0,pr {Ct | Ct�1,..., Ct�i}

x0� , and xi �1 for i<0. pr {Ct}

It follows immediately from these definitions that  can be recovered from usingwj�1,t wj,t�1

the xi:

wj�1,t � wj,t�1

xj�m

1�g
, j � 1, 2,...

� 1 � �
J�T�t

i�2
wi,t, j � 0.

(10)

where the oldest fund at time t is J-T+t years old.  Moreover, the  can be recovered from �w T
j,T wj,T

using the following relation:

�w T
j,T �

wj,T xj�m

�
J

i�1
wi,T xi�m

, j � 1, 2,..., J.
(11)

We are now ready for the proposition:

Proposition 2: If an m-year survival rule causes fund disappearance, m>1, and

1)  the conditional mean of  only depends on and is strictly increasing in the number of directRt

cuts: for any given τ = 1,2,...m,  all elements of µτ are the same, and µ<µ1<µ2<...<µm;

2)  the probability of surviving a cut is the same irrespective of the number of cuts already

survived: xi = x for any i�0; 
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3)  the mutual fund industry is in a steady-state:  =   for all j and any t and τ;wj,t wj,τ

then the bias in the average performance estimate for the whole sample is increasing in the length

of the sample period, k.

Proof: Start with a k-period sample ending at time T .  Its survivorship-biased mean is .  Inµ̄T
k

general, we can increase the sample period length k by adding a year to the end of the sample period

( ) or by adding a year to the beginning of the sample period ( ).  With the fund industry inµ̄T�1
k�1 µ̄T

k�1

a steady-state, these are equivalent and so for expositional convenience, we consider the case of

adding a year to the beginning of the sample period .  Also note that in a steady-state, the industry

must have a countably infinite number of cohorts of funds sorted by age (fund-age cohorts).  

The definition of a steady-state together with (10) and (11) can be used to obtain the

following expression for   as a function of  :�w T
j�1,T �w T

j,T

�w T
j,T � �w T

j�1,T
xj�m

1�g
, j � 2, 3,... . (12)

Using the assumption that xj-m = x for any j-m �0 together with (12) allows us to write  in the�w T
j,T

following way:

�w T
j,T � �w T

1,T
1

1�g

j�1
, j � 1, 2,...,m�1,

� �w T
i,T

x
1�g

j�i
j, i�m.

(13)

Substituting this expression into (8), which holds exactly because of assumption 1), gives the

following expressions for the cross-sectional survivorship-biased mean for time T+1-τ:

µT
T�1�τ �

�w T
1,T �

m�1

j�τ

1
(1�g)j�1

µ � �
m�1�τ

j�m

x j�(m�1)

(1�g)j�1
µj�(m�1) � �

�

j�m�τ

x j�(m�1)

(1�g)j�1
µτ

�w T
1,T �

m�1

j�τ

1
(1�g)j�1

� �
m�1�τ

j�m

x j�(m�1)

(1�g)j�1
� �

�

j�m�τ

x j�(m�1)

(1�g)j�1

(14)

for τ = 1, 2, ..., m-1; and,
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µT
T�1�τ �

�w T
τ�1,T �

m

j�1

x
1�g

j
µj � �

�

j�m�1

x
1�g

j
µm

�w T
τ�1,T �

�

j�1

x
1�g

j
(15)

for τ > m-1.  Under the assumption that the µi are increasing in i, it follows from (14) that  isµT
T�1�τ

increasing in τ for τ = 1, 2, ..., m.  Moreover, equation (15) shows that  is constant for τ �m.µT
T�1�τ

Thus,  must be increasing in k for all k.µ̄T
k

Q.E.D.

This proof demonstrates exactly the intuition driving both the proposition and the fact that

the result can be expected to hold more generally.  It does so by characterizing the cross-sectional

mean as a function of the number of periods until time T.  Moving back in time from T, the cross-

sectional mean increases for the first m periods, at which point it reaches a steady-state value and

becomes invariant to moving further back in the sample.  Increasing k adds to the number of these

steady-state means relative to the m means at the end of the sample which are all lower than the

steady-state mean.  Consequently, the greater weight on the steady-state means increases the sample

average.  More  generally, the m means at the end of the sample can be expected to be lower than

earlier means since these returns in the last m periods are subjected to fewer direct cuts than earlier

returns in the sample.  Hence,  is larger than  given the assumptions of the proposition andµ̄T
k�1 µ̄T

k

is typically larger in more general settings.7 

At the same time, none of the three assumptions holds in general, and it is possible to

construct examples in which the sample mean is no longer increasing in the sample length.   Most

important, indirect cuts to  can affect the conditional mean of .  Moreover, although direct cutsRt Rt

are generally expected to increase the conditional mean of , indirect cuts can actually reduce thisRt
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conditional mean.  Roughly speaking, the reason for this is that, when direct cuts to  have alreadyRt

been applied, the lower part of the distribution of  has already been eliminated.  ImposingRt

incremental indirect cuts to can then eliminate return paths that involve mainly good realizationsRt

of , reducing its conditional mean.  An example of this effect is provided in the next section.Rt

Another complication is that funds of different ages disappear at different rates, causing the

weights of the different aged cohorts to change over time.  Funds younger than m at time t do not

disappear at time t while funds aged j disappear at rate 1- .  Typically,  is varying as axj�m xj�m

function of j for all j�m.  Recalling that , it makes sense that  isxi � pr {Ct | Ct�1,..., Ct�i} xi

changing as i goes from 0 to m-1 since each additional cut overlaps with Ct .  However, even though

cuts prior to  do not overlap with ,  also varies as a function of i for i>m-1.  For such anCt�m�1 Ct xi

, the cuts  still affect the probability of , despite the lack of overlap, because of theirxi Ct�i,...,Ct�m Ct

interaction with the cuts , which do overlap with .Ct�m�1,...,Ct�1 Ct

Finally, if the assumption of a steady state is relaxed, it matters whether the sample length

is increased by adding a year to the end of the sample period ( ) or by adding a year to theµ̄T�1
k�1

beginning of the sample period ( ). In particular, if we increase the sample period length byµ̄T
k�1

adding a year to the beginning of the sample period, the cross-sectional mean  is added into theµT
T�k

time series average.  With a maximum fund age at time T that is finite, the cross-sectional

survivorship-biased mean for time T+1-k ( )  may start declining in k for k sufficiently large,µT
T�1�k

since the earliest periods of the industry have only very young funds whose early-period returns have

very few direct cuts. At the extreme, there are only one-year-old funds in the first period of the

industry�s existence, and those that survive until T have a first period return subjected to only one

direct cut.  Thus,   may be hump-shaped as a function of k, rather than increasing.µ̄T
k
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The next two subsections present an example which shows that the survivorship bias in

average performance can decrease in the sample period length and a simulation of survivorship

biases in an industry calibrated to match that of U.S. mutual funds.

B. Counterexample

Using the formulas developed in the previous subsection, Table 6 presents two examples in

which m = 2, a fund�s return  can take on the values 1 (win) or -1 (loss) with equal probability.Rt

The critical return level is b = -1.5, so a fund disappears after two straight losses.   The fund industry

has a continuum of funds with independent returns.  Panel A lists the survival rates  whilex0,..,x4

Panel B gives a matrix of conditional mean returns, the �s, for j ranging from 0 to 4. The exampleµi,j

on the right, labeled Counterexample, uses the actual survival rates and conditional means obtained

from the assumed return generating process and survival rule.  The example on the left, labeled

Proposition 2 example, fixes all the conditional survival probabilities (x1, x2,...) equal to the

unconditional survival probability, x0, and sets conditional means with the same number of direct

cuts equal. Any conditional mean with one direct cut is set equal to  while any conditionalE[Rt|Ct]

mean with two direct cuts is set equal to . E[Rt�1|Ct,Ct�1]

The right-hand side of Panel A shows that for the assumed return generating process and

survival rule, a fund�s survival probability depends on the number of previous periods survived.

Similarly, the right-hand side of Panel B shows that conditional mean returns with the same number

of direct cuts are not always the same.  As the left-hand side shows, conditional means with just one

direct cut, (elements of µ1), lie in the first row and along the main diagonal of the matrix.  In the

Counterexample, on the right-hand side, we observe variation in conditional means going across the
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first row and down the main diagonal.  Similarly, the remaining conditional means in the matrix have

two direct cuts (i.e., are elements of µ2), and we see considerable variation across these means on

the right-hand side as well.8  At the same time, the intuition that the conditional means are increasing

in the number of direct cuts is also borne out by the Counterexample.  An examination of the right-

hand side of Panel B shows that, for this return generating process and survival rule, the smallest

conditional mean with 2 direct cuts (0.385) is still larger than the largest conditional mean with only

one such cut (0.333).   

We can use the Counterexample to demonstrate precisely how indirect performance cuts can

reduce conditional mean returns.  Consider a sequence of four returns R1, R2, R3 and R4 and the three

associated performance cuts C2, C3, and C4. Our focus is on the conditional mean of R2.  For this

return, C2, C3 are direct cuts while C4 is an indirect cut.   Applying the two direct cuts gives us E[R2|

C2, C3 ], which corresponds to µ2,1 = 0.6 from the Counterexample in Panel B.  Notice that applying

C3 eliminates any path with R2 and R3 both equal to -1. If we then add the indirect cut C4 , we obtain

E[R2| C2, C3,C4] = µ3,2 = 0.5 from the Counterexample in Panel B.  Adding the indirect cut reduces

the conditional mean of R2.  To see why, recall that C4 cuts paths with both R3 and R4 equal to -1.

But after the application of the direct cuts C2, and especially C3, the only paths left with R3 equal to

-1 must have R2 equal to 1.  Thus, adding the indirect cut C4 only removes paths with R2 equal to 1,

which must reduce the conditional mean of R2.  Similar intuition can be applied to R3 in the five

return sequence R1, R2, R3, R4 and R5 to explain the drop in the conditional mean from 0.5 to 0.385

going from µ2,2 to µ3,3.

The Proposition 2 example is designed to satisfy the three assumptions of the proposition,

so the cohort weights at time T reported in Panels C (prior to the time-T cut) and D (just after the
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time-T cut) are chosen to be the steady-state weights.  The definition of a steady-state together with

(10) are used to obtain the time-T steady-state weight for 1-year-olds before the time-T cut ( ).w1,T

As a result, the 1-year-old weights are the same for all possible T values, both before and after the

cut.  Under the Proposition 2 assumptions, the precise distribution of funds aged 2 and older at time-

1 does not affect the cross-sectional mean calculations and so for ease of exposition, 2-year-olds get

all the weight not assigned to the 1-year-olds.  For the Counterexample, 50% of the funds are 1 year

old at time 1 before the time-1 cut while the remaining 50% are 3 years old.    

 Panel E reports a matrix of cross-sectional means: the element in row t, column T, is the

cross-sectional mean time-t return for the sample of time-T survivors, .  For each example, theµT
t

elements of Panel E are obtained from the elements of Panels B and D using equation (6).  The last

panel, F, lists time series averages of the cross-sectional means for all possible subperiods in the

four-year history of this mutual fund industry.  The element in row t, column T, is the survivor-

biased time-series average mean return for the subperiod starting in year t and ending in year T.

Moving across a row of the matrix in Panel F of Table 6 means increasing the sample period length

by adding a year to the end of the sample period.  Moving up a column means increasing the sample

period length by adding a year to the beginning of the sample period.  

Since the assumptions of Proposition 2 hold for the left-hand-side example, we see that the

only determinant of the time series averages in Panel F is the length of the sample period.  Moreover,

the average is increasing in the sample length.  Consistent with the proof of the proposition, the left-

hand side of Panel E shows that the cross-sectional mean increases rolling back in time from T, and

reaches a steady-state value m-1 periods prior to time T: for example, when T=4, the cross-sectional

mean increases going from time 4 (0.250) to time 3 (0.533) and remains at this steady-state value
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for all earlier points in time.

In the Counterexample, non-monotonicities are apparent in both directions.  For example,

in the top row, adding a year to the end of the sample running from time 1 to time 2 reduces the

average return estimate from 0.337 to 0.335.  In the third column, adding a year to the start of the

sample running from time 2 to time 3 reduces the average return estimate from 0.360 to 0.335.  So

while it matters whether the sample is extended forward or backward, it is possible to obtain non-

monotonicities in the sample average by extending the sample in either direction.  

There are two main sources of these non-monotonicities.  The first is the variation in

conditional means with the same number of direct cuts.  In particular, Panel B shows that with 4

conditioning statements (j=3), there is a substantial dip in the conditional mean,

, as the return is moved back in time by increasing i.   This dip occurs at i=3µi,j�E[Rt�1�i|Ct�j,...,Ct]

even though the number of direct cuts remains at 2 as  i goes from 2 to 4.  The second source is the

large weight that the Counterexample assigns to 1-year-olds at time 1.  As discussed above, the time-

1 return for these 1-year-old funds is subject to only one direct cut, and so the large weight for these

funds at time 1 drags down the survivorship-biased time-1 cross-sectional mean.  This causes the

observed hump-shaped pattern in the sample average as periods are added to the start of the sample

(by moving up a column).  

That both sources are playing a role is confirmed by the following unreported results.  First,

we replace the conditional mean matrix for the Counterexample with that for the Proposition 2

example and find that non-monotonicities remain.  Second, the time-1 fund weights are modified

so that all the funds are 2-years old.  This modification eliminates the hump-shape discussed above,

but again, non-monotonicities are still present.
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C. Calibration

The counterexample above demonstrates some of the counterintuitive effects of increasing

the length of the sample period.  However, the most important effect is driven by the fact that a

return near the end of the survivorship-biased sample is conditioned on fewer direct cuts than other

returns in the sample.  Because of this, average performance estimates are typically lower in the last

(m-1) periods than the rest of the survivorship-biased sample and the time-series  mean is increasing

in the sample period length.  To illustrate how this main effect typically swamps the counterintuitive

effects in more realistic settings, we generate a mutual fund history designed to match the U.S.

mutual fund industry.  In particular, for each  m � {1, 2, 3, 4, 5, 10} we simulate values for the

conditional means  and the survival rates  assuming that returns  are normally distributed withµi,j xj Rt

mean zero and standard deviation 5%.  We set the growth rate in the industry equal to 5.5% to match

the growth rate in the data.  The choice of the critical return value b determines the average attrition

rate for the sample.  We choose this critical level in one of two ways.  The first way, used in Panel

A of Table 7, allows b to vary across m in such a way as to maintain a sample average attrition rate

of 3.5%, the average annual attrition rate in the data.  The second way, used in Panels B and C of

Table 7, fixes  at -9.06%, which makes the sample average attrition rate for the case m = 1b/ m

equal to 3.5%.  For larger values of m, this choice of b leads to lower sample average attrition rates.

We make two assumptions about the starting composition of the industry.  Panels A and B assume

that all funds are m years old at time 1 while Panel C assumes they are all only 1 year old.  For a

given subperiod length of k in the 34-year history, we compute average performance measures for

survivor-only samples using the simulated conditional mean returns and attrition rates, according to

the formulas supplied above.  Finally, for each given sample period length k, we average the
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performance estimate across all possible subperiods of length k.   Table 7 reports this average (in

percentage) for k = 1, 2, 3, 4, 5, 10, and 30, and the change in this average (in basis points) for k

going from 30 to 31, 31 to 32, 32 to 33 and 33 to 34.

Consistent with Proposition 1, all three panels show that the survivorship bias in the average

performance is constant across k for m = 1.  Turning to the cases with m>1, the first two panels of

Table 7, which have only m-year-olds at time 1, show that the bias uniformly increases in sample

period length k for m > 1.  In contrast, Panel C only has 1-year olds at time 1, and the intuition

described earlier causes the sample average as a function of k to start declining for k close to 34.

Even so, Panel C shows that the decline is very small in magnitude, with the largest decline for a 1-

year increase in k of 0.04 basis points.  This result is not surprising since the cross-sectional mean

for the incremental year associated with a sample size increase has only a small impact on the sample

average when the sample size is large.  To summarize, these calibration results suggest that the

counterintuitive effects of increasing the sample period length illustrated in the binomial example

above are not likely to play an important role in the U.S. mutual fund industry.

D. Evidence

We now measure the bias in average performance estimates due to survivor bias as a function

of the sample period length.  Our objective is to obtain a rough rule of thumb on appropriate

corrections for researchers using survivor-biased U.S. equity mutual fund samples.  As shown above,

the bias in average performance estimates depends on the length of the sample period if a multi-

period performance survival rule is in effect.  Further, the results in Section 3 demonstrate that funds

disappear primarily due to multiple-year performance.  In our data set, we find a strong positive
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relation between survivor bias and sample time length, as predicted by the theory and calibration

above.

We consider all the possible survivor-biased samples that might be assembled from our

database over the 1962 to 1995 period.  For example, a researcher might assemble a five-year sample

in 1972 or a ten-year sample in 1985.  For each sample period length k, we consider all the possible

(usually overlapping) annual return samples, and estimate the bias in average annual return induced

by including only survivors.  We report the average survivor bias across all possible k-year samples

for various sample lengths.  We also calculate correlation-adjusted standard errors assuming

independent and identically distributed annual returns.9

Table 8 shows that survivor bias strongly increases in the sample time length.  For a survivor-

biased sample of only one year, the bias in average return is only 17 basis points, whereas the bias

is 43 basis points per year for survivor-biased samples of five years.  For samples greater than fifteen

years, the hypothesis that survivor bias is one percent per year is not rejected.  So consistent with the

calibration results in the previous subsection, the bias is an increasing concave function of sample

length that is virtually flat at sufficiently long sample lengths.  Interestingly, over the complete 34-

year period, the survivor-biased sample outperforms the value-weighted CRSP index by 0.5 percent

per year while the unbiased sample underperforms the index by 0.6 percent annually.

Figure 2 plots the survivor bias in average performance estimates over all sample time

lengths.  The figure suggests that survivor bias levels off at about one percent per year for intervals

of around fifteen years or longer.  Thus, while there is no single rule of thumb on the magnitude of

survivor bias, for time periods of fifteen years or longer, one percent is probably a good

approximation of the bias in mean annual return estimates.  
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5.  Survivor and Look-Ahead Bias Effects on Estimates of Persistence in Performance

A. Theory

Brown, Goetzmann, Ibbotson and Ross (1992) and Carpenter and Lynch (1999) provide a

detailed theoretical analysis of the effect of survivorship bias and look-ahead bias on estimates of

persistence in mutual fund performance, where persistence is defined as a positive relation between

performance in an initial ranking period and a subsequent evaluation period.  Brown et al. (1992)

show that if mutual funds returns are independently distributed with the same mean but differing

variances and if a single-period survival rule causes fund disappearance, then tests on surviving

samples show spurious persistence.  Conditional on making the cut, higher volatility funds have

higher means.  Thus, in a sample of survivors, first (ranking) period winners tend to be high volatility

funds.  The same high volatility funds tend to win in the second (evaluation) period.  Brown, et al.

(1992)  also demonstrate a spurious reversal effect.  In the absence of cross-sectional dispersion in

volatility and in the presence of a multi-period survival rule, survivorship bias causes spurious

reversals instead of persistence in performance.  A multi-period survival rule removes loser-losers

in greater proportion than winner-losers, loser-winners, or winner-winners, leaving the sample more

heavily weighted toward reversers. Grinblatt and Titman (1992) make a similar argument.  Carpenter

and Lynch (1999) study these effects when both cross-sectional dispersion in fund volatility and a

multi-period survival rule are present.  In simulations of typical persistence tests on samples of funds

calibrated to match U.S. mutual fund data, they find that although the spurious persistence effect

stemming from cross-sectional dispersion in volatility is always at work, the reversal effect tends to

dominate when the multiple-period survival rule is in force. 
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While the spurious persistence and reversal effects are present in both look-ahead biased and

survivor-biased samples to some degree, Carpenter and Lynch (1999) distinguish the effects of the

look-ahead and survivorship biases. They show that the additional cut associated with the survivor-

biased sample has offsetting effects on persistence measures.  On one hand, the incremental cut of

funds that perish after the look-ahead period tends to remove high volatility funds, reducing the

cross-sectional dispersion of volatility in the sample, and therefore reducing the spurious persistence.

On the other hand, with a multi-period survival rule, the incremental cut can also reduce the spurious

reversal effect. As they explain it, we can consider three periods, the ranking period, the evaluation

period, and the period after that.  The incremental cut of the survivor-biased sample removes funds

that survive the first two periods but perish in the third.  These tend to have a performance pattern

good-bad-bad or bad-good-bad.  Funds that win in both the first two periods are too strong to perish

in the third.  Funds that lose in the first two periods are already eliminated from the look-ahead

biased sample.  In this way, the incremental cut tends to remove reversers.  Which of these various

effects dominates in the data depends on the nature of real survival rules and the degree of cross-

sectional dispersion in volatility.  We examine the impact of look-ahead bias and survivor-bias on

persistence measures empirically below.

B. Evidence

This section studies the effect of survivor and look-ahead bias on the persistence tests of

Hendricks, Patel and Zeckhauser (1993) and Carhart (1997) in our sample of U.S. mutual funds.  As

discussed earlier, this empirical section can only characterize these biases for a particular survival

rule, namely the one in effect for the U.S. mutual fund industry.  
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Annually, we form ten equal-weighted portfolios of mutual funds sorted on a lagged

performance measure.  We hold the portfolios for one year, then re-form them.  This yields a time-

series of monthly returns on each decile portfolio over the complete time period, 1962 to 1995, less

the initial performance estimation period.  The performance measures are one-year return, five-year

return, and three-year estimates of alpha from the 4-factor model.   Funds disappearing during the

ranking period are not used to determine the performance deciles, but if a fund disappears during the

evaluation period, its returns are included in the decile performance averages right up until the time

the fund disappears.  

It is worth taking a few sentences to compare the look-ahead bias associated with this method

to that associated with the �follow the money� approach of Elton, Gruber and Blake (1996a and b)

and Gruber (1996).  Exploiting the fact that almost all disappearing funds are merged with other

funds, the �follow the money� approach generates a return series for each fund in the sample by

using a disappearing fund�s returns up until the time of its disappearance and the merging fund�s

returns thereafter.  Given a sample with complete fund return histories except for any partial month

just prior to disappearance, both the Carhart (1997) and the �follow the money� approach induce at

most, a one month look-ahead bias in the evaluation period returns.   The reason is that both methods

include all nonsurvivor returns up until the time of disappearance in the calculation of evaluation

period performance.10  

At the same time, the methods impose different conditioning in the ranking period.  In

particular, a fund that disappears during the ranking period would be eliminated in the Carhart (1997)

approach, but would be included in the portfolio formation stage in the �follow the money�

approach.  One might regard this feature of the Carhart (1997) methodology as a form of look-ahead
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bias in the ranking period.  However, when fund returns are independent through time, the absence

of any look-ahead bias in the measurement of evaluation period performance implies the absence of

any bias in the methodology�s persistence measure, irrespective of the look-ahead bias associated

with ranking period performance.  The lack of any look-ahead bias in the evaluation period means

that the distribution of evaluation period performance is not truncated.  Therefore, the evaluation

period performances of funds in winner and loser groups are all equal to the unconditional fund-

performance mean, irrespective of exactly how the winner and loser groups are formed.

Consequently, the Carhart (1997) approach used here and the �follow the money� approach can both

be regarded as being virtually free of look-ahead bias. 

The results in Table 9 suggest that survivor bias attenuates the evidence of persistence in

mutual fund performance.  Panel A reports persistence test statistics using the complete sample.

Consistent with Carhart (1997), the portfolios demonstrate strong persistence in mean return, most

of which is explained by the 4-factor model and expense ratios.  For the portfolios sorted on one-year

return, the post-formation spread in monthly returns between deciles 1 and 10 is a sizeable and

statistically significant 63 basis points per month.  The 4-factor model explains all but 24 basis

points per month of this spread, and this remainder is insignificantly different from zero.  The

difference in average annual expense ratios of 52 basis points between deciles 1 and 10 explains a

further 4 basis points of this spread in performance on these portfolios.  With a p-value of 14.8

percent, the Spearman rank ordering test also fails to reject the hypothesis that the 4-factor alphas

are randomly ordered.  The results for the lagged five-year return and 4-factor alpha portfolios offer

similar conclusions on performance persistence, except that the 4-factor model explains smaller

amounts of the measured persistence in expected return.



38

The evidence favoring persistence in mutual fund returns is weaker in the sample of

survivors.  Panel B, which repeats the tests of Panel A using the survivor-biased sample of funds,

shows that spreads in mean return and 4-factor model performance shrink considerably relative to

the complete sample, and the statistical significance diminishes as well.  In some cases, an

econometrician using the survivor-biased sample may incorrectly reject persistence.  Evidently,

excluding nonsurvivors attenuates persistence because nonsurvivors consistently underperform.

While the 4-factor alphas are somewhat higher for all portfolios in the survivor-biased sample, decile

10�s performance is especially increased, amounting to approximately 20 basis points per month.

Panel C examines the effect of look-ahead bias separately from the effect of survivor bias.

These tests use the full sample of survivors and nonsurvivors, but require that funds survive a look-

ahead period after portfolio formation that is equal in length to the ranking period.  That is, the

lagged one-year results include only funds surviving a full year after sorting on the previous-year�s

return, and the lagged five-year sample requires survival for an additional five years after sorting.

This is the bias simulated by Brown, Goetzmann, Ibbotson and Ross (1992).

Although the results are still downwardly biased, the look-ahead biased tests in Panel C do

not impact the results from persistence tests as much as survivor bias does.  Using the look-ahead

biased sample changes the inference only for the five-year returns-sorted portfolios, the longest look-

ahead period.  The downward bias in the persistence measure induced by using both look-ahead

biased and survivor biased samples relative to the full sample is understandable given the multi-

period nature of the survival rule documented earlier. 

Finally, we undertake Hendricks, Patel and Zeckhauser�s (1996) test for spurious persistence
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due to survivorship.  Hendricks et al. (1996) show that when performance is categorized finely, the

relation between pre- and post-period rankings will be J-shaped in a survivor-biased sample or using

a look-ahead biased methodology.  They devise a regression test for this convexity, which we employ

in our survivor- and look-ahead-biased samples.  Under the hypothesis that performance persists

spuriously due to survivorship, the HPZ J-shape t-statistic should be reliably negative.  Moreover,

Carpenter and Lynch (1999) present simulation evidence that the HPZ J-shape t-statistic is rarely

reliably positive unless performance is truly persistent.  Given this result, our finding that the HPZ

J-shape t-statistics are all positive and often significant in our survivor-biased and look-ahead-biased

samples supports the conclusion that U.S. mutual funds exhibit true persistence.

6.  Effects of Survivor Bias on Cross-Section Tests

In this section, we demonstrate that survivor bias can affect estimates of the cross-sectional

relations between fund performance and fund characteristics, but only when the fund characteristics

in question affect the bias in performance induced by survivor-only conditioning.  We also show that

these effects can be substantial when using our survivor-biased sample of U.S. mutual funds and

some fund characteristics that are commonly used in such cross-sectional regressions.

A. Theory 

This subsection establishes the link between survivor bias and cross-sectional regressions of

performance on fund characteristics.   Consider the following cross-sectional regression of time-t

performance on a fund characteristic:

αit � at � bt qit � �it (16)
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where αit is an individual fund performance estimate and qit is a fund characteristic.  This regression

implies the following expression for expected fund-i performance conditional on the value of the

characteristic for fund i:
E[αit| qit] � at � bt qit (17)

which is linear in qit.  We next need to quantify the bias in the estimate of bt induced by a

requirement that fund i survives until the end of the sample, a condition we denote by SiT, where T

is the end of the sample period.  This bias can depend on qit.  For simplicity we assume that any such

dependence is linear:

E[αit|SiT,qit] � E[αit |qit] � ct � dt qit. (18)

This bias is analogous to that in the conditional µij�s introduced in section 4, except here we are

allowing the possibility that the return distribution and the survival rule can depend on fund

characteristics.  Adding these two expressions together gives an expression for the expected fund-i

performance conditional on the fund-i value of the characteristic and  the survival of fund i until the

end of the sample:

E[αit| SiT, qit] � (at � ct) � (bt � dt) qit (19)

which is also linear in qit.  Given this expression, it follows that when the cross-sectional regression

in (16) is run using the survivor-only sample, the intercept and slope become (at + ct) and (bt + dt)

respectively.11  

Consequently, the expression for the survivor bias in mean performance (18) determines the

bias imparted to the cross-sectional regression coefficients.  Moreover, the sign and magnitude of

the coefficient relating the survivor bias in performance to the fund characteristic, dt, determines the

sign and magnitude of the survivor bias in the slope coefficient in the cross-sectional regression.  In

particular, if the survivor bias in performance does not vary with the fund characteristic, qit, then the
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slope coefficient in the cross-sectional regression is unaffected by the use of the survivor-only

sample rather than the full sample. 

B. Evidence

It is worth examining whether the magnitude of the bias in the cross-sectional regressions

described above can be large for a survivor-biased sample of U.S. mutual funds.  The cross-section

methodology follows Carhart (1997).  As in Fama and MacBeth (1973), we estimate the cross-

sectional relation in (16) each month, then average the coefficient estimates across the complete

sample period.  To mitigate look-ahead bias, we estimate αit as a one-month abnormal return from

the 4-factor model, where the 4-factor model loadings are estimated over the prior three years.  We

consider expense ratio, turnover, modified turnover (Mturn), ln(TNA), and maximum load fees as

explanatory variables.  As in Carhart (1997), ln(TNA) and load fees are lagged one year. 

We report the results from these tests for the full and survivor-only samples in Table 10 and

find that using the survivor-only sample causes the slope coefficients to go from being positive to

negative on fund size ln(TNA), and to become less negative on all the other characteristics.  The

magnitude of the bias can be large.  For example, the slope on ln(TNA) goes from being 0.16 in the

full sample to -0.03 in the survivor-only sample.

The directions of these induced biases can be explained using the intuition described in the

previous subsection.  In particular, for a given fund characteristic, the direction and magnitude of the

bias in the slope coefficient is determined by the impact of the characteristic on the survivor bias in

performance.  The results of the probit analyses in section 3 and in Brown and Goetzmann (1995)

can be used to infer the impact of the characteristics on the survivor bias in performance.  From
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Table 4, we see that the probability of disappearance is negatively related to fund size, holding

performance fixed.  This suggests that the bias in performance induced by survival is likely to be

decreasing in fund size (a negative dt).  Based on the analysis above, this implies a lower slope

coefficient on fund size, which is exactly what Table 10 finds.  

An analogous argument that exploits the probit results in Brown and Goetzmann (1995), can

be used to explain other results in Table 10.  They find that an expense variable has a positive impact

on the probability of disappearance, again holding performance fixed.  Since turnover is highly

correlated with expenses, it is likely that a turnover variable would also enter such a probit

positively.   This suggests a positive impact for both these variables on the bias in performance

induced by survival, which implies that using the survivor-only sample imparts a positive bias to the

slope coefficient for these variables.  

7.  Summary and Conclusions

Using Carhart�s (1997) sample of U.S. mutual funds, we find that funds disappear primarily

because of poor multi-year performance, rather than a single poor annual return.  We demonstrate

both analytically and empirically that this survival rule typically causes the bias in estimates of

average annual return to increase in the sample length.  In our sample, the bias is economically small

at 17 basis points for one-year samples, but a significantly larger one percent for samples longer than

fifteen years.  At the same time, we show that it is possible to construct examples in which the

average performance bias is not increasing as a function of the sample length.

In tests of mutual fund performance persistence using U.S. data, both survivor-only and look-

ahead conditioning weaken the evidence of persistence.  This sometimes results in rejections of
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persistence when the evidence is statistically significant in the full sample. This result is consistent

with the use of a multi-period survival rule in the U.S. mutual fund industry. However, the evidence

favoring persistence does not necessarily support the existence of skilled or informed portfolio

managers;  Carhart (1997) shows that persistence is mostly explained by investment expenses.

Finally, we explain how the relation between performance and fund characteristics can be affected

by the use of a survivor-only sample and show that the magnitudes of the biases in the slope

coefficients are large for fund size, expenses, turnover and load fees in our sample. 

This paper attempts to provide a comprehensive analysis of survivorship issues in mutual

fund studies.  We document a few rules of thumb for incorporating the effects of survivorship, but

also provide a warning that the nature of the biases imparted can be quite complicated, especially

since the fund industry appears to use a multi-period survival rule.  

More generally, researchers forced to use survivor-only samples need to consider carefully

the likely impact of using such samples on the test statistics of interest.  It would seem that finance

researchers are often in this position.  For example, Goetzmann and Jorion (1999) document how

equity market disappearance is conditioned upon a downward drift in performance over time, which

suggests that survivorship biases induced by a multi-period survival rule are likely to be a problem

for empirical studies using international data.  Our work suggests that both the nature of the survival

rule and the sample period length are likely to be important when attempting to characterize

survivorship biases.

In particular, many areas of finance run cross-sectional regressions with performance as the

independent variable.  Our study cautions that the use of a survivor-only sample may seriously bias

such regressions.  For example, researchers often relate cross-country differences in equity-market
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performance to cross-country differences in equity-market characteristics.  Our study warns that data

unavailability for failed equity markets can have important ramifications for such cross-country

comparisons, particularly if the characteristics in question affect the survival rule applied to a given

equity market.

One final point is worth making.  While the researcher may have little choice as to the data

set, the researcher does get to choose the methodologies employed on the data set.  Our paper

stresses the importance of choosing  methodologies that are free of selection bias.
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1. We thank Will Goetzmann for this clarification.

2. Exchange was the only method of acquiring shares in these funds, although shares were

redeemable for cash.

3. We obtain only annual returns on many nonsurvivors.  Excluding these funds from our

monthly portfolio returns upwardly biases performance estimates.  To mitigate this potential bias,

we compare the average annual return on all funds to those with only monthly returns.  If they

differ for any year, we add one-twelfth of this difference equally to all months of that year (using

continuously compounded returns.)  The difference in mean annual return is typically less than

20 basis points.

4. When a fund�s termination date is unknown, we assume the fund terminates in the month

after its last return observation in our sample.

5. The �group-adjusted� measure employed above exhibits cross-correlations by

construction. However, if the sizes of the groups are large enough, these cross-correlations are

likely to be small.

6. Also note that  since for a fixed number of consecutive conditioningµi,j�µj�m�1�i,j

statements, all that matters for the conditional one-period return is its position relative to the

statements, with time going forward or backward.

7. This intuition also applies to the methodology requiring funds to be in existence from the

start of the sample period until the end to be included in the sample. With this methodology, new

funds are not added to the sample. Consequently, sample funds receive m direct cuts in all

ENDNOTES
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periods except the last (m-1) periods and possibly the first (m-1), depending on the fund-age

distribution at the start of the sample.  Increasing the sample period length by extending the

ending date increases the number of periods with m direct cuts, and so can be expected to

increase the sample�s average performance.

8. Notice that incremental conditions can actually decrease the conditional mean of . Rt�1�i

Moving across a row in this matrix (increasing j) means adding conditions associated with an

incremental performance cut, but does not necessarily increase µi,j. 

9. We assume the database is compiled one year after the last year of the database which

simplifies the categorization of survivors and nonsurvivors.  The standard error is calculated as

, where n is the sample time length in years, T is the1
T�n�1

2�
n�1

i�1

i
n

2
� T�2(n�1)

1
2std(R)

number of samples in the database, and std(R) is the standard deviation in annual returns.

10. It is worth noting that the Elton, Gruber and Blake sample includes partial-month returns

just prior to disappearance, whereas our sample does not.  However, this is a data difference

rather than a methodology difference.

11. One complication that we ignore here is that ct and dt are likely to depend on i.



Table 1
Mutual Fund Database Annual Summary Statistics, 1962 to 1995

Annual cross-sectional averages from 1962 to 1995.   Total funds are the total number of funds at the beginning of the year and new funds are
funds started during that year.  Merg is the number of funds that merged, Liq is the number of funds that liquidated and Oth is the number of
funds that disappeared for a reason other than merger or liquidation.  Attrition rate is the number of disappearing funds divided by the total
number of funds at the beginning of the year.  TNA is total net assets, Exp ratio is the total annual management and administrative expenses
divided by average TNA.  Mturn is modified turnover and represents reported turnover plus 0.5 times the absolute value of Flow.  Flow is the
percentage change in TNA adjusted for investment return and mergers.  Maximum load is the total of maximum front-end, rear-end, and deferred
sales charges as a percentage of the investment.  Percent stock is the proportion of total net assets invested in equity securities.  EW fund return is
the equally-weighted average annual mutual fund return and CRSP return is the value-weighted average annual return on all NYSE, AMEX, and
NASDAQ stocks in the CRSP database.

Year
Beg
Total
Funds

New
Funds

Disappearing
Funds

Attrition
Rate
(%/yr)

Avg
TNA
($ mil)

Avg
Exp
Ratio
(%/yr)

Avg
Mturn
(%/yr)

Avg
Flow
(%/yr)

Percent
with
Load

Avg
Total
Load

Percent
Common
Stock

EW
Fund
Return

CRSP
ReturnMerg Liq Oth

1962 213 16 1 0.5% 72.0 0.82% NA  9.8% 82.9% 7.70 86.9% -15.8% -10.3%
1963 228 13 2 5 1 3.5% 82.0 0.94% NA  0.4% 80.7% 7.73 88.4% 18.4% 20.9%
1964 233 12 2 2 1.7% 95.1 0.82% NA  5.5% 80.5% 7.76 89.0% 12.4% 16.3%
1965 241 21 1 0.4% 110.0 0.84% NA  6.7% 78.0% 7.80 88.1% 23.0% 14.4%
1966 261 26 3 2 1.9% 101.0 0.84% 72.6% 11.4% 78.4% 7.91 84.4% -5.8% -8.7%
1967 282 40 2 3 1.8% 121.7 0.89% 75.1% 14.0% 77.9% 7.86 84.2% 36.7% 28.6%
1968 316 66 1 0.3% 135.1 0.95% 81.4% 27.8% 78.4% 7.96 81.5% 16.3% 14.1%
1969 382 94 3 0.8% 100.2 1.04% 86.6% 20.8% 76.7% 8.10 80.6% -14.1% -10.8%
1970 473 68 8 12 3 4.9% 83.3 1.19% 89.5% 10.4% 74.5% 8.06 81.5% -9.4% 0.1%
1971 517 39 6 14 2 4.3% 93.2 1.38% 87.6% 5.5% 71.6% 8.04 85.5% 19.8% 16.2%
1972 535 19 12 19 5.8% 102.7 1.27% 79.5% 1.4% 66.9% 8.10 87.1% 10.8% 17.3%
1973 523 11 26 8 3 7.1% 81.8 1.26% 67.1% -1.0% 66.2% 8.10 82.2% -24.5% -18.8%
1974 497 3 23 10 2 7.0% 62.3 1.36% 57.7% 1.0% 65.7% 8.11 78.1% -24.9% -27.8%



Table 1 - continued

Year
Beg
Total
Funds

New
Funds

Disappearing
Funds

Attrition
Rate
(%/yr)

Avg
TNA
($ mil)

Avg
Exp
Ratio
(%/yr)

Avg
Mturn
(%/yr)

Avg
Flow
(%/yr)

Percent
with
Load

Avg
Total
Load

Percent
Common
Stock

EW
Fund
Return

CRSP
ReturnMerg Liq Oth

1975 465 4 31 9 8.6% 86.4 1.41% 59.7% -1.5% 64.5% 8.11 83.4% 33.6% 37.4%
1976 429 7 19 5 10 7.9% 98.8 1.27% 65.1% -10.5% 63.7% 7.90 87.5% 24.9% 26.8%
1977 402 15 18 5 1 6.0% 89.3 1.31% 53.7% -6.8% 59.7% 7.77 82.1% 2.3% -3.0%
1978 393 11 21 4 3 7.1% 88.5 1.32% 71.3% -8.5% 57.4% 7.69 82.7% 11.2% 8.5%
1979 376 6 6 4 3 3.5% 101.1 1.28% 71.4% -10.5% 55.3% 7.67 83.6% 30.0% 24.4%
1980 369 18 5 2 1 2.2% 124.5 1.21% 84.2% -3.9% 53.6% 7.69 84.4% 32.2% 33.2%
1981 379 17 9 3 3.2% 116.4 1.17% 77.5% -0.5% 51.1% 7.68 79.1% -1.2% -4.0%
1982 384 34 9 2 2.9% 141.3 1.29% 90.6% 7.6% 48.8% 7.64 81.6% 25.9% 20.4%
1983 407 52 2 2 1.0% 177.3 1.15% 97.9% 17.2% 46.2% 7.50 82.9% 19.6% 22.7%
1984 455 52 2 2 3 1.5% 171.5 1.12% 85.6% 7.8% 44.0% 7.36 80.7% -1.4% 3.3%
1985 500 91 1 2 4 1.4% 203.5 1.17% 97.5% 12.0% 42.7% 7.12 81.6% 26.8% 31.4%
1986 584 100 2 3 1 1.0% 218.5 1.20% 96.9% 18.8% 44.0% 6.53 80.9% 13.3% 15.6%
1987 678 116 3 3 0.9% 206.8 1.28% 104.7% 12.2% 45.1% 6.06 80.8% 0.8% 1.8%
1988 788 86 10 8 3 2.7% 203.6 1.41% 87.4% -1.4% 45.5% 5.64 78.9% 14.3% 17.6%
1989 853 57 20 12 5 4.3% 254.2 1.39% 83.5% 4.1% 46.2% 5.42 80.1% 23.5% 28.5%
1990 873 83 18 18 3 4.5% 232.1 1.42% 101.2% 2.4% 48.1% 5.07 79.2% -6.0% -6.0%
1991 917 88 28 17 2 5.1% 332.3 1.32% NA  15.1% 46.9% 4.96 82.0% 34.5% 33.6%
1992 958 159 34 11 11 5.8% 389.8 1.36% 91.3% 21.5% 52.0% 4.74 82.0% 8.3% 9.0%
1993 1061 178 25 12 6 4.1% 466.4 1.31% 93.1% 22.2% 49.2% 4.78 83.3% 13.0% 11.3%
1994 1196 217 23 19 1 3.6% 478.0 1.31% 83.5% 12.3% 45.7% 4.61 87.1% -1.7% -0.6%
1995 1370 55 47 36 12 6.9% 681.0 1.30% 99.3% 14.7% 45.3% 4.62 88.6% 30.4% 35.7%
Mean 545.2 55 13 8 4 3.6% 179.5 1.19% 82.5% 7.0% 59.8% 7.052 83.2% 11.1% 11.7%
Std 287.2 52 12 7 3 2.4% 137.8 0.19% 13.3% 9.7% 13.6% 1.234 3.0% 16.9% 16.3%



Table 2
Properties of Surviving and Nonsurviving Mutual Funds

Average performance and attributes of individual mutual funds by survival category.  Survivors are those funds still operating December 31,
1995 and nonsurvivors are funds disappearing before this date.  Group-adjusted performance is the time-series average of the difference between
a fund's return and the average return on all other funds with the same declared fund objective over the fund's complete history.  4-factor alpha is
the intercept from a time-series regression of a fund's excess returns on the 4-factor model factor-mimicking portfolios over the fund's complete
history. Relative TNA for a given group is calculated as follows.  For each year in the sample, the ratio of each fund�s TNA to the average TNA
for the entire sample in that year is averaged across funds in the group.  Then, the time series average of these annual group averages gives the
Relative TNA measure for the group.  Relative expense ratio and Mturn are calculated in the same manner. To obtain Relative Flow for a group,
we use the difference in Flow instead of the ratio, again taking the time-series average of annual cross-sectional within-group averages, where
Flow measures the change in TNA adjusted for investment returns and fund mergers.

Group Number
of Funds

Cross-Sectional Average
Abnormal Monthly Performance

Relative
TNA

Relative
Exp

Relative
Mturn

Relative
Flow

Group  Adjusted 4-Factor Alpha
By current status

Survivors 1,346 0.10% -0.03% 1.45 0.89 0.96 1.2%
Nonsurvivors 725 -0.26% -0.34% 0.28 1.23 1.15 -4.7%

Nonsurvivors by reason for disappearance
Merged with another fund 417 -0.19% -0.29% 0.32 1.13 1.14 -4.6%
Liquidated 258 -0.45% -0.54% 0.05 1.85 1.53 -4.0%
Other, self-selected

Removed at fund request 11 -0.10% -0.25%
Changed to closed-end fund 2 -0.86% -0.64%
Split into multiple funds 1 0.26% 0.09%

14 -0.0018 -0.0028 0.34 1.19 0.77 -0.1%
Other, not self-selected

Tax-Free Exchange Fund 16 0.23% NA  
Variable Annuity 5 -0.07% 0.04%
Unknown 15 -0.14% -0.33%

36 0.03% NA  0.52 1.16 0.75 -1.9%



Table 3
Performance of Equal-weight Mutual Fund Portfolios by Survival Category and Fund Objective

Performance of equal-weighted portfolios of mutual funds by survival and objective category from 1962 to 1995.   RMRF, SMB, and HML are
Fama and French's (1993) market proxy and factor-mimicking portfolios for size and book-to-market equity.  PR1YR is a factor-mimicking
portfolio for one-year return momentum.  The t-statistics are in parentheses.

Portfolio Mean
Monthly
Return

Standard
Deviation

CAPM 4-Factor model
Adjuste
d R-
square

Loadings on Adjusted
R-square

Alpha Beta Alpha RMRF SMB HML PR1YR

All funds  0.93%  4.36% -0.05%  0.97  0.938  -0.15%  0.89  0.33  -0.06  0.09  0.978

(-0.96) (76.91) (-4.17) (105.65) (25.66) (-4.36) (9.09)

By current status
All survivors 1.00% 4.31%  0.03%  0.97 0.952  -0.07%  0.90  0.29  -0.05  0.09 0.984

(0.56) (84.23) (-2.34) (117.57) (26.21) (-4.62) (10.87)
All nonsurvivors 0.74% 4.38% -0.24%  0.97 0.917  -0.33%  0.88  0.37  -0.07  0.09 0.966

(-3.65) (63.12) (-7.42) (74.96) (21.05) (-3.11) (6.30)
Survivors - all funds  0.08%  0.25%  0.08%  -0.01  0.009  0.08%  0.00  -0.04  0.01  0.00  0.208

(6.39) (-2.12) (6.52) (0.59) (-9.14) (2.85) (0.05)

By fund objective
Aggressive growth 1.04% 5.16% -0.01%  1.11 0.863  -0.16%  0.94  0.61  -0.16  0.18 0.965

(-0.06) (47.66) (-3.06) (69.62) (31.33) (-6.80) (11.20)
Growth and income 0.89% 3.68% -0.02%  0.84 0.967  -0.12%  0.82  0.13  0.08  0.04 0.978

(-0.54) (109.46) (-3.92) (113.44) (11.27) (5.39) (4.87)
Long-term growth 0.92% 4.41% -0.07%  0.99 0.951  -0.13%  0.91  0.28  -0.10  0.09 0.981

(-1.43) (83.31) (-3.99) (105.18) (21.35) (-6.47) (8.25)



Table 4
Relative Performance of Nonsurviving Mutual Funds in their Final Years

Proportions of nonsurviving funds with group-adjusted performance below various performance fractiles of all funds in their final 60 months of
operation and the number of nonsurviving funds included in each estimate.  Returns are measured over the final 12-, 24-, 36-, 48-, and 60-month
periods prior to fund termination, not the final calendar years.

Performance 
Group

Group adjusted Performance
Last year Last 2 years Last 3 years Last 4 years Last 5 years

Bottom 50% 62.0% 69.1% 75.1% 79.0% 76.8%
Bottom 10% 24.8% 29.8% 32.8% 32.4% 33.0%
Bottom 5% 15.7% 20.4% 21.7% 20.3% 20.8%
Bottom 1% 6.3% 4.8% 5.6% 5.4% 5.9%

Number of Funds 637 598 531 463 409



Table 5
Probit Model of Fund Disappearance

Estimates of probit models that give the probability that a fund disappears in year y+1 as a function of
information from years y-4 through y.  A positive coefficient indicates that the probability of
disappearance goes down as that variable goes up. E_TNAy is the log of the fund�s total net assets at the
end of y divided by the average total net assets of other funds of its type.  E_RETt is the fund�s group-
adjusted return in year t.  E_NMt is the new money invested in the fund in year t minus the average new
money that year of funds of its type. If there is insufficient data in year t to calculate either E_RETt or
E_NMt, then both variables are set to 0 and MISSt is set to 1.  Otherwise, MISSt is 0.  The number of
observations is 16777 and the number of fund deaths is 598.  The only requirement for a fund�s year y to
be included in the regressions is that E_TNAy be available for that fund.  Results for two probits are
reported.  The first allows each of the four lagged return variables to enter separately while the second
forces the coefficient on each to be the same (the E_RETLAG coefficient).  P-values for significant
difference from zero are to the right, and the results of hypothesis tests using the log likelihood ratio are
reported at the bottom.  

Independent Variable Coefficient p-value
Intercept -2.348 0.000
E_TNAy -0.165 0.000
E_RETy -1.564 0.000
E_RETy-1 -1.311 0.000
E_RETy-2 -1.130 0.000
E_RETy-3 -0.441 0.132
E_RETy-4 -0.962 0.004
E_NMy -0.001 0.602
E_NMy-1 -0.008 0.218
E_NMy-2 -0.004 0.519
E_NMy-3 -0.011 0.180
E_NMy-4 -0.014 0.131
MISSy 0.083 0.213
MISSy-1 0.054 0.507
MISSy-2 -0.117 0.176
MISSy-3 -0.015 0.872
MISSy-4 0.192 0.010
Hypothesis df χ2 Value p-value
E_RETy-1 = E_RETy-2 = E_RETy-3 = E_RETy-4 = 0 4 64.37 0.000
E_RETy-1 = E_RETy-2 = E_RETy-3 = E_RETy-4 3 5.06 0.167
(E_RETy-1+E_RETy-2+E_RETy-3+E_RETy-4) /4  = E_RETy  1 4.19 0.041



Table 6
Survivor Bias Examples: Proposition 2 and a Counterexample  

Two survivor bias examples.  The table presents two examples in which m = 2, a fund�s return  can takeRt
on the values 1 or -1 with equal probability, and the critical return level is b = -1.5.  The fund economy has
a continuum of funds with independent returns.  The Counterexample (on the right-hand side) uses the actual
attrition rates, , and conditional means, the �s, obtained from the assumed generating process forx0, x1,... µi,j
fund returns.  The Proposition 2 example (on the left-hand side) fixes all the conditional survival
probabilities (x1, x2,...) equal to the unconditional survival probability, x0, and sets conditional means with
the same number of direct cuts equal. Any conditional mean with one direct cut is set equal to  whileE[Rt|Ct]
any conditional mean with two direct cuts is set equal to .  E[Rt�1|Ct,Ct�1]

Proposition 2 Example Counterexample

Panel A: Survival rate at t conditioned on j periods of prior survival, xj

j 0 1 2 3 4 0 1 2 3 4

0.750 0.750 0.750 0.750 0.750 0.750 0.833 0.800 0.812 0.808

Panel B: Conditional mean return at time t+1-i, with j+1 cuts, the last at time t, µi,j�E[Rt�1�i|Ct�j,...,Ct]

i j 0 1 2 3 4 0 1 2 3 4

1 0.333 0.333 0.333 0.333 0.333 0.333 0.200 0.250 0.231 0.238

2 0.333 0.600 0.600 0.600 0.600 0.333 0.600 0.500 0.538 0.524

3 0.333 0.600 0.600 0.600 0.200 0.500 0.385 0.429

4 0.333 0.600 0.600 0.250 0.538 0.429

5 0.333 0.600 0.231 0.524

6 0.333 0.238

Panel C: Fraction of funds at time T that are  j years old  prior to the time-T cut, wj,T

j T 1 2 3 4 1 2 3 4

1 0.200 0.200 0.200 0.200 0.500 0.083 0.208 0.146

2 0.800 0.200 0.200 0.200 0.000 0.500 0.083 0.208

3 0.600 0.150 0.150 0.500 0.000 0.375 0.062

4 0.450 0.112 0.417 0.000 0.312

5 0.338 0.333 0.000

6 0.271



Table 6 - continued

Proposition 2 Example Counterexample

Panel D: Fraction of time-T survivors (after the time-T cut) that are j years old, �w T
j,T

j T 1 2 3 4 1 2 3 4

1 0.250 0.250 0.250 0.250 0.545 0.105 0.244 0.177

2 0.750 0.188 0.188 0.188 0.000 0.474 0.073 0.190

3 0.562 0.141 0.141 0.455 0.000 0.366 0.063

4 0.422 0.105 0.421 0.000 0.304

5 0.316 0.317 0.000

6 0.266

Panel E: Cross-sectional mean time-t return for the sample of time-T survivors,  (the elements of Panel EµT
t

are obtained from the elements of Panels B and D using equation (6))  

t T 1 2 3 4 1 2 3 4

1 0.250 0.533 0.533 0.533 0.091 0.412 0.286 0.333

2 0.250 0.533 0.533 0.263 0.548 0.440

3 0.250 0.533 0.171 0.477

4 0.250 0.215

Panel F: Average mean return for a sample starting at t and surviving until T,  (sample length is T+1-t)µ̄T
T�1�t

t T 1 2 3 4 1 2 3 4

1 0.250 0.392 0.439 0.462 0.091 0.337 0.335 0.366

2 0.250 0.392 0.439 0.263 0.360 0.377

3 0.250 0.392 0.171 0.346

4 0.250 0.215



Table 7
Survivor Bias in Average Performance as a Function of the Sample Period Length: Calibration to the U.S. Mutual Fund Industry 

Survivor bias in average performance as a function the sample period length k for a return generation process calibrated to the U.S. mutual fund
industry.  For each m-period attrition rule, m � {1, 2, 3, 4, 5, 10}, we simulate values for the conditional means  and the attrition rates  assumingµi,j xj
that returns  are normally distributed with mean zero and standard deviation 5%.  We set the growth rate in the industry equal to 5.5% to matchRt
the growth rate in the data. and choose the cutoff return level, b, in one of two ways.  The first way, used in Panel A of Table 7, allows b to vary across
m in such a way as to maintain a sample average attrition rate of 3.5%, the average annual attrition rate in the data.  The second way, used in Panels
B and C of Table 7, fixes  at -9.06%, which makes the sample average attrition rate for the case m = 1 equal to 3.5%.  For larger values of m,b/ m
this choice of b leads to lower sample average attrition rates.  We make two assumptions about the starting composition of the industry.  Panels A
and B assume that all funds are m years old at time 1 while Panel C assumes they are all only 1 year old.  For a given subperiod length of k in the 34-
year history, we compute average performance measures for survivor-only samples using the simulated conditional mean returns and attrition rates.
 Finally, for each given sample period length k, we average the performance estimate across all possible subperiods of length k.  This average is
reported (in percentage) for k = 1, 2, 3, 4, 5, 10, and 30, while the change in this average is reported (in basis points) for k going from 30 to 31, 31
to 32, 32 to 33 and 33 to 34.

Panel A: Mutual fund industry consists of 100% m-year-olds at time 1.  Scaled cutoff    is chosen so that the average death rate is 3.5%.b/ m

m Bias (in %) for Sample Length of: Change in Bias (in bp) increasing  Sample
Length from:

 Deathb/ m
Rate
(in %)1 2 3 4 5 10 30 30 to 31 31 to 32 32 to 33 33 to 34

1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 3.5
2 0.29 0.42 0.45 0.47 0.48 0.50 0.51 0.03 0.03 0.04 0.09 -8.45 3.5
3 0.24 0.35 0.45 0.49 0.51 0.55 0.58 0.06 0.06 0.09 0.19 -7.80 3.5
4 0.22 0.30 0.39 0.48 0.51 0.58 0.63 0.09 0.10 0.15 0.29 -7.18 3.5
5 0.20 0.27 0.34 0.41 0.50 0.60 0.66 0.12 0.14 0.21 0.39 -6.59 3.5
10 0.14 0.18 0.21 0.25 0.29 0.53 0.73 0.35 0.40 0.52 0.91 -4.03 3.5



Table 7 - continued

Panel B: Mutual fund industry consists of 100% m-year-olds at time 1.  Scaled cutoff    is fixed so that the average death rate for m=1 is 3.5%.b/ m

m Bias (in %) for Sample Length of: Change in Bias (in bp) increasing  Sample
Length from:

 Deathb/ m
Rate
(in %)1 2 3 4 5 10 30 30 to 31 31 to 32 32 to 33 33 to 34

1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 3.5
2 0.23 0.34 0.37 0.38 0.39 0.41 0.42 0.02 0.02 0.03 0.07 -9.06 2.7
3 0.16 0.23 0.31 0.33 0.35 0.38 0.40 0.04 0.04 0.06 0.12 -9.06 2.2
4 0.12 0.17 0.22 0.28 0.30 0.34 0.37 0.06 0.06 0.09 0.15 -9.06 1.8
5 0.10 0.14 0.17 0.21 0.25 0.31 0.34 0.07 0.09 0.11 0.17 -9.06 1.5
10 0.05 0.06 0.07 0.09 0.10 0.18 0.25 0.15 0.16 0.18 0.23 -9.06 0.8

Panel C: Mutual fund industry consists of 100% 1-year-olds at time 1.  Scaled cutoff    is fixed so that the average death rate for m=1 is 3.5%.b/ m

m Bias (in %) for Sample Length of: Change in Bias (in bp)  increasing 
Sample Length from:

 Deathb/ m
Rate
(in %)1 2 3 4 5 10 30 30 to 31 31 to 32 32 to 33 33 to 34

1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 3.5
2 0.23 0.34 0.37 0.38 0.39 0.41 0.42 0.01 0.00 -0.02 -0.04 -9.06 2.7
3 0.15 0.23 0.30 0.33 0.34 0.38 0.40 0.02 0.01 -0.01 -0.03 -9.06 2.1
4 0.11 0.16 0.21 0.27 0.29 0.34 0.37 0.03 0.01 0.01 -0.02 -9.06 1.6
5 0.09 0.12 0.16 0.20 0.25 0.30 0.34 0.04 0.03 0.02 -0.00 -9.06 1.3
10 0.03 0.05 0.06 0.07 0.09 0.17 0.24 0.09 0.08 0.07 0.05 -9.06 0.6



Table 8
Estimates of Survivor Bias in Average Performance as a Function of the Mutual Fund Sample Period Length

Mean annual return estimates from a survivor-biased sample and from a complete sample and the implied survivor bias.  The table averages all
possible biased and unbiased samples of a given sample period length that might be assembled from our database over the 1962 to 1995 period.
Survivor bias is the difference between the mean annual return estimates in the two samples.  The table also reports correlation-adjusted standard errors
in the estimate of survivor bias, assuming independent and identically distributed annual returns.

Sample Mean Annual Return Estimate
Time Length Number Survivor-biased Unbiased Survivor Standard
(years) of Samples Sample Sample Bias Error
1 34 11.17% 11.00% 0.17% 0.02%
5 30 11.51% 11.08% 0.43% 0.02%
10 25 11.51% 10.80% 0.71% 0.02%
15 20 12.17% 11.25% 0.91% 0.02%
20 15 12.30% 11.25% 1.04% 0.03%
25 10 11.91% 10.80% 1.10% 0.06%
30 5 12.27% 11.08% 1.19% 0.12%
34 1 12.15% 10.91% 1.24% 0.33%



Table 9
The Effects of Survivorship on Persistence Tests

Persistence measures for full, survivor-biased, and look-ahead-biased samples.  Mutual funds are sorted on January 1 each year into decile portfolios
based on a lagged performance measure.  The performance measures are 1-year return, 5-year return and 4-factor alpha measured over the prior 3
years. The portfolios are equal-weighted monthly so the weights are readjusted whenever a fund disappears.  Funds with the highest lagged
performance measure comprise decile 1 and funds with the lowest comprise decile 10.  The Spearman nonparametric test measures the correlation
in rank ordering of post-formation portfolio performance measures.  Here the null hypothesis is that the performance measures are randomly ordered.
The t-statistic on the HPZ J-shape measures the convexity in the relation between pre- and post-formation portfolio ranks.  A reliably negative t-
statistic is consistent with spurious performance persistence due to survivorship.

Decile 1-10 Decile 1-10
Spread Monthly 4-Factor Model Alphas Spread
Mean Spearman Monthly Monthly HPZ

Portfolio Sorting Monthly Decile 1-10 Test Expense Turnover J-shape
Variable Return t-stat Decile 1 Decile 10 Spread t-stat p-value Ratios (Mturn) t-stat
A.  Full Sample
1-Year Returns 0.63% 4.52 -0.13% -0.37% 0.24% 1.79 0.148 -0.04% 0.4%
5-Year Returns 0.23% 2.09 -0.10% -0.34% 0.24% 2.06 0.025 -0.06% -0.2%
3-Year 4-Factor Alpha 0.36% 5.04 -0.01% -0.36% 0.36% 4.60 0.000 -0.04% -1.0%
B.  Survivor-Biased Sample
1-Year Returns 0.52% 3.93 -0.05% -0.15% 0.10% 0.84 0.204 -0.01% 1.7% 1.74 
5-Year Returns 0.18% 1.85 -0.07% -0.19% 0.12% 1.15 0.027 -0.04% 1.0% 1.48 
3-Year 4-Factor Alpha 0.19% 2.66 0.01% -0.17% 0.18% 2.30 0.000 -0.02% -0.4% 2.40 
C.  Look-Ahead Biased Sample
1-Year Returns 0.62% 4.44 -0.14% -0.36% 0.21% 1.60 0.174 -0.04% 0.4% 1.76 
5-Year Returns 0.20% 1.84 -0.11% -0.29% 0.17% 1.34 0.052 -0.04% 0.3% 0.38 
3-Year 4-Factor Alpha 0.34% 4.73 0.00% -0.34% 0.33% 4.07 0.000 -0.03% -0.7% 1.80 



Table 10
The Effects of Survivorship on Cross-Section Regressions

Estimated univariate cross-sectional regressions for each month from July 1966 to December 1995. The
dependent variable is the monthly residual, net of expenses, from the 4-factor model, where the factor
loadings are estimated on the prior 3 years of monthly returns.  The independent variables are expense ratio,
turnover, modified turnover (Mturn), the natural log of TNA lagged one year, and maximum load fees lagged
one year.  Expense ratio is management, administrative, and 12b-1 expenses divided by average TNA.  TNA
is total net assets.  Turnover is the minimum of purchases and sales divided by average TNA.  Modified
turnover represents reported turnover plus 0.5 times the absolute value of percentage change in portfolio
TNA adjusted for investment returns and mergers.  Maximum load is the sum of maximum front-end, back-
end and deferred sales charges.   All estimates are annualized by multiplying the monthly estimates by 12.
The reported estimates are time-series averages of monthly cross-sectional regression slope estimates as in
Fama and MacBeth (1973).  The t-statistics are on the time-series means of the coefficients. 

Full Survivor-biased
Sample Sample

Independent Variables Estimates Estimates
(coefficients x 100) (t-statistic) (t-statistic)

Expense Ratio (t) -1.36 -0.80 
(-4.88) (-2.69)

Turnover (t) -1.36 -1.14 
(-3.57) (-2.70)

Modified Turnover (t) (Mturn) -1.06 -0.85 
(-2.87) (-2.11)

ln TNA (t-1) 0.16 -0.03 
(2.39) (-0.41)

Maximum Load (t-1) -0.06 -0.01 
(-2.44) (-0.54)



FIGURE LEGENDS

Figure 1.  Final 5-Year Performance on Non-survivors.  The figure presents the average annual
group-adjusted performance, gross of expense ratios, on nonsurviving funds in each of their five
years prior to termination.  Group-adjusted performance is the difference between the fund�s return
and the equal-weighted portfolio of all funds with the same objective in that period.  The dotted lines
represent two-standard-error boundaries.

Figure 2.  Survivor Bias as a Function of the Sample Time Length.  The figure reports the bias in
average annual return estimates when using a survivor-biased sample instead of the complete, as a
function of the time-length of the sample.  The bias is the average over all possible samples of a
given time length that might be assembled from our database over the 1962-1995 period.  The dotted
lines represent two-standard error boundaries in the average bias.
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Figure 2.  Survivor Bias as a Function of the Sample Time Length
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