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ABSTRACT

We analyze the impact of verifiability on how signals about agents are used to mitigate adverse

selection. We show that if signals are verifiable the observed practice of collecting information about

agents before contracting is inferior to writing contingent contracts. This holds regardless of the

agent’s risk aversion, bounded penalties, or investigation costs. In fact, with risk-neutral agents, a

principal can get first-best utility with contingent contracts. We further show that even unverifiable

signals can be gainfully used in contingent contracts by removing a principal’s incentives to distort

signals or by removing an agent’s incentives to demand verification.
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1 Introduction

Verifiability is an important attribute of accounting data. APB Statement No. 4 states: “Veri-

fiable financial accounting information provides results that would be substantially duplicated by

independent measurers using the same measurement methods” (paragraph 90). We model account-

ing data as a noisy signal about an agent’s type in an adverse-selection setting and analyze how

verifiability affects the data’s use in contracts. Adverse selection is a common situation in which

an agent (he) knows his type, which the principal (she) cannot observe when offering contracts.1

Verifiability is typically not analyzed in these settings because it is often implicitly assumed that

an agent’s report of an unverifiable signal adds no information beyond the agent’s report of his

type.2 This is indeed true when an agent generates the signal and can freely manipulate it.

There are many adverse selection settings, however, where a principal or a third party generates

the signal. For example, a bank can check a borrower’s credit, and regulators can audit a defense

contractor or a public utility to verify their claims of costs. We show that these settings offer a

richer set of possibilities of using signals, especially unverifiable signals.

We start by pointing out the simplest way in which principals use unverifiable signals – to

update their priors before offering contracts. Venture capitalists routinely interview an inventor

before investing, and banks assess an applicant’s creditworthiness before offering a loan. We call

this ex-ante investigation (see Figure 1a). Since ex-ante investigation is commonly used, it is the

benchmark for other alternatives. Ex-ante investigation also seems to be the optimal policy because

the principal is “armed” with information before negotiating with the agent.

We then examine contracts in which the principal and the agent commit to a menu of contracts,

and then the signal is generated to pick a contract from this menu. We call this ex-post investigation

(see Figure 1b). Ex-post investigation appears infeasible with unverifiable signals because the agent

will not trust the signal generated by the principal or will dispute the signal anyway if it contradicts

his earlier reports. Even if the signal is verifiable, ex-post investigation appears inferior because

the principal gets the signal later than in ex-ante investigation. We refute these seemingly intuitive

arguments.

1For example, see analyses of the value of communication [Melumad and Reichelstein (1987) and Fellingham
and Young (1990)] participative budgeting [Demski and Feltham (1978), Baiman and Evans (1983), Kirby, Reichel-
stein, Sen and Paik (1991), and Kanodia (1993)], public utilities regulation [Baron and Myerson (1982)], defense
procurement [Reichelstein (1992)], and auditors’ legal liability [Melumad and Thoman (1990)]. Our setting differs
from informed-principal settings [Demski and Sappington (1991) and Myerson (1983)] in which the principal knows
something about the agent’s type that the agent does not know.

2Verifiability has been examined in settings in which the agent has no private information when contracting
[Hermalin and Katz (1991), Demski and Sappington (1993), Dunne and Loewenstein (1995), and Arya and Glover
(1996)]. The signal indicates the agent’s effort after contracting or the production function [Cremer and Khalil (1992),
Baiman and Sivaramakrishnan (1991), and Christensen and Feltham (1997)].
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Our contribution lies in formulating a simple model that provides three insights into how ver-

ifiability determines investigation policy.3 First, in contrast to the popular perception, we show

that ex-post investigation strictly dominates ex-ante investigation when signals are verifiable, i.e.,

the principal is better off not getting signals before contracting. This is not because ex-post in-

vestigation lowers expected investigation costs via probabilistic investigation. In fact, investigation

costs have no effect. In ex-post investigation, eliciting the truth is cheaper because the agent does

not know the signal when signing the contract. In contrast, in ex-ante investigation the agent can

infer the signal from the contracts offered, which reduces the signal’s effectiveness in eliciting the

truth. This holds regardless of the agent’s risk aversion. With risk-neutral agents, the principal

can achieve the first-best utility with ex-post investigation.

Second, we point out that ex-ante investigation can be used with unverifiable signals, while

ex-post investigation requires verifiable signals, as it creates a potential conflict when the signal

contradicts the agent. The principal thus may prefer a noisy but verifiable signal if it allows ex-post

investigation. This captures one aspect of the relevance versus reliability trade-off in accounting.

Third, we show two modified ex-post contracts that can use even unverifiable signals. If the

agent does not “trust” the signal generated by the principal, the principal can make the signal

credible by designing contracts that make herself indifferent to the signal. We show that this

modification dominates ex-ante investigation. Alternatively, if the agent trusts the signal generated

by a neutral third party, but still demands verification when the signal contradicts him, the principal

can make the agent indifferent to the signal and yet do better than ex-ante investigation. The trick

lies in making only an honest agent indifferent to the signal.

We conclude by speculating on the popularity of ex-ante investigation in spite of its theoretical

inferiority. Ex-ante investigation is simpler because a principal observes the signal first and need

not design contracts for other signal realizations. Ex-post investigation requires the complete menu

of contracts. In addition, ex-ante investigation, being similar to dominant-strategy implementation,

does not require common knowledge of beliefs, information structure, and rationality, which the

ex-post investigation, being similar to Bayesian-Nash implementation, requires.

Section 2 describes the basic model. Section 3 describes ex-ante investigation, the benchmark

against which contingent contracts are compared. Section 4 proves that ex-post investigation is

optimal and can achieve first-best utility with risk-neutral agents. Section 5 proposes two new mod-

ifications to ex-post investigation to use unverifiable signals. Section 6 describes the implications

of our analysis and concludes the paper.

3Ex-ante investigation is infeasible if the signal concerns the agent’s actions taken after contracting or is reported
by the agent only after contracting. These settings cover most of the prior literature.
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2 Model

We model a risk-neutral principal who specifies the production level (X) and compensation (R)

for an agent who knows his productivity (type), which is either θL or θH . One can also view X

as the interest rate and R as the magnitude of a loan, or X as the premium and R as the amount

of insurance coverage. The principal can neither observe the agent’s type nor infer it from the

output. The agent’s utility is U(R), where U ′ > 0, U ′′ ≤ 0. His reservation utility is assumed to be

0 without loss of generality.

The agent can produce X with certainty by incurring a disutility D(X, θ). D is strictly increas-

ing and strictly convex in X and strictly decreasing in θ; i.e., a low-type agent is less productive

than a high-type agent [Dx(·, ·) > 0, Dxx(·, ·) > 0, and D(X, θL) > D(X, θH) ∀ X]. The agent’s in-

difference curves satisfy the single-crossing property. Specifically, the marginal disutility is strictly

decreasing in θ [Dx(X, θL) > Dx(X, θH) ∀ X]. To avoid corner solutions, we assume Dx(0, ·) = 0.

We also assume strictly convex disutility so that the agent’s indifference curves are convex. To

understand how contracts depend on a principal’s priors about an agent’s type, we briefly examine

the first-best and second-best solutions when the principal has no signals about the agent.

First-best: If the principal could observe the agent’s type, she would specify (Xj , Rj), where j is

the agent’s type, and solve the following problem:

EP =
∑
j=L,H

prob[θ = θj ]EP [θ = θj ]

where EP [θ = θj ] ≡ max
Xj ,Rj

(Xj −Rj)

s.t. U(Rj)−D(Xj , θj) ≥ 0, (IRj)

The principal offers FBL to the low-type agent where her indifference curve is tangent to his

reservation utility curve (figure 2, curve 1). Similarly, the high-type agent’s contract is FBH

(figure 2, curve 5).

Second-best: If the principal cannot observe the agent’s type and offers FBH and FBL, then

the high-type agent will claim to be a low-type agent. The principal therefore solves the following

program to induce the agent to reveal his type (Myerson, 1979):

EP ≡ max
Xj ,Rj

∑
j=L,H

prob[θ = θj ](Xj −Rj)

s.t. U(Rj)−D(Xj , θj) ≥ 0 ∀j (IRj)

U(Rj)−D(Xj , θj) ≥ U(R̂)−D(X̂, θj) ̂ 6= j ∀j (ICj)
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If the principal offers FBL (figure 2) to the low-type agent, then to satisfy ICH she must offer

the high-type agent a point on or above his indifference curve passing through FBL; for optimality,

the principal would pick the point at which her indifference curve is tangent to the high-type agent’s

indifference curve. The principal can squeeze the high-type agent by moving his contract closer to

FBH , but then she would have to move the low-type agent’s contract away from FBL (towards

the origin). The principal trades off deviating from the low-type agent’s first-best against deviating

from the high-type agent’s first-best and offers SBL and SBH (figure 2, curve 3). As shown by the

lemma below, the higher her prior that the agent is a low-type agent (prob[θ = θL]), the less she

deviates from the low-type agent’s first-best.

Lemma 1

1. XL is strictly increasing in prob[θ = θL].

2. RL is strictly increasing in prob[θ = θL].

3. XH is decreasing (strictly if U ′′ < 0) in prob[θ = θL].

4. RH is increasing (strictly if Dxx > 0) in prob[θ = θL].

Proof: See the Appendix.

3 Getting Signals Before Contracting: The Benchmark Case

Principals often acquire signals about the agents to update their priors. For example, investors

analyze financial statements before investing, employers interview employees before hiring, and

banks check credit before giving a loan. We call this ex-ante investigation and use it as the

benchmark against which we compare other ways of using signals. Suppose the principal can

get a noisy signal Sε{SL, SH} that is positively correlated with the agent’s type θ such that

prob[S=SL|θ=θL] = prob[S=SH |θ=θH ] = p, where p is the signal’s informativeness [0.5 < p < 1].

In ex-ante investigation, after observing a low signal the principal offers the two contracts

shown by the upper branch of Figure 1a. The output and compensation are denoted by Xij and

Rij , where i refers to the signal and j refers to the agent’s type. The agent’s choice depends on

his type. Similarly, after observing a high signal, the principal offers the two contracts shown by

the lower branch of Figure 1a. In this program, the principal sees the signal and offers a contract

based on the updated priors.

(insert Figure 1 about here.)
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Ex-Ante Investigation – ProgramEx−Ante: Let EP[S = Si] be the principal’s expected profit

conditional on S = Si. She solves:

EP [S = Si] ≡ max
Xij ,Rij

∑
j=L,H

prob[θ = θj |S = Si](Xij −Rij)

s.t. (U(Rij)−D(Xij , θj)) ≥ 0 ∀j (IRij)

(U(Rij)−D(Xij , θj)) ≥ (U(Ri̂)−D(Xi̂, θj)) ̂ 6= j ∀j (ICij)

The principal’s unconditional expected profit is EP =
∑

i=L,H

{prob[S = Si]EP [S = Si]}. Constraints

IRij and ICij are respectively the individual rationality and incentive compatibility constraint for

a j-type agent when the signal is Si. The contract for each signal realization is similar to the

second-best contract except that the principal’s priors are updated by the signal. As the following

lemma shows, a low signal raises the probability that the agent is a low-type agent and moves the

low-type agent’s contract closer to his first best.

Lemma 2

1. XLL > XHL, RLL > RHL.

2. XLH < XHH if U ′′ < 0 or XLH = XHH if U ′′ = 0.

3. RLH > RHH if Dxx > 0 or RLH = RHH if Dxx = 0.

Proof: Follows from lemma 1 as prob[θ = θL|Si = SL] > prob[θ = θL|Si = SH ]

(insert Figure 2 about here.)

On observing SL (figure 2, curve 2), the principal offers (XLL, RLL) and (XLH , RLH). The

low-type agent prefers (XLL, RLL) while the high-type agent is indifferent and is assumed to pick

(XLH , RLH). This contract is similar to the second best, except that it is closer to low-type agent’s

first-best and further away from the high-type agent’s first-best because SL raises the probability

that the agent is a low- type agent. Similarly, on observing SH (figure 2, curve 4), the principal

offers (XHL, RHL) and (XHH , RHH), which are closer to the high-type agent’s first-best contract.

4 Writing Contingent Contracts

Instead of investigating before contracting, the principal can offer contracts that are contingent

on the signal observed ex post, i.e., after the agent signs a contract but before he works. In ex-

post investigation (Figure 1b), each contingent contract, shown by a grey rectangle, is a set of
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two output-compensation pairs. The agent chooses a set. The actual output-compensation pair is

determined by the realized signal. The important issue here is that the agent can neither observe

nor infer the signal when choosing contracts and cannot quit after the signal is realized. The

principal solves the following program:

Ex-Post Investigation – ProgramEx−Post−1

EP ≡ max
Xij ,Rij

∑
j=L,H

∑
i=L,H

{prob[S = Si|, θ = θj ](Xij −Rij)}

s.t.
∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥ 0 ∀j (IRj)∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥∑
i=L,H

{prob[S = Si|θ = θj ](U(Ri̂)−D(Xi̂, θj))} ̂ 6= j ∀j (ICj)

Once ex-post investigation is formulated, its weak dominance over ex-ante investigation is easy

to see. In ProgramEx−Ante, the constraints must be satisfied separately for every realization of

the signal, but in ProgramEx−Post−1 they need to be satisfied only in an expected sense. (The

constraint IRj in ProgramEx−Post−1 is an expectation of the constraints IRij in ProgramEx−Ante.

This extends to ICj as well.) The added flexibility can only benefit the principal.4 We now highlight

two effects that make ex-post investigation strictly dominate ex-ante investigation. These effects

form the basis of our results about unverifiable signals later in the paper.

4.1 The Incentive Effect

The incentive effect arises because in ex-post investigation the individual rationality constraints

need to be met only in an expected sense. This effect is easiest to see for a risk-neutral agent. The

next proposition shows that for a risk-neutral agent the incentive effect not only makes contingent

contracts better than ex-ante investigation, it permits the principal to achieve first-best utility.

Proposition 1 For a risk-neutral agent, the principal’s utility in ProgramEx−Post−1 equals her

first-best utility, while her utility in ProgramEx−Ante is strictly less.

Proof: See the Appendix.

4This relates to the multi-agent literature [Demski and Sappington (1984), Demski, Sappington and Spiller (1988),
and Rajan (1992)], where an agent’s report serves as a signal about another agent’s type. In sequential reporting
(similar to ProgramEx−Ante), truth-telling must be a dominant strategy, while in simultaneous reporting (similar
to ProgramEx−Post−1) truth-telling need only be a Bayesian-Nash equilibrium. Since dominant strategy constraints
are stricter, the result obtains.
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In ProgramEx−Ante, the IR constraints need to be satisfied for each signal, so in Figure 2 both

(L,L) and (H,L) must lie on or above the low-type agent’s reservation utility curve (curve 1), and

(L,H) and (H,H) must lie on or above the high-type agent’s reservation utility curve (curve 5). In

ProgramEx−Post−1, the IR constraints need to be satisfied only in an expected sense, so in Figure

3 the principal can deviate from the solution to ProgramEx−Ante because now only the expected

utility of (L,L) and (H,L) must lie on or above curve 1. This allows her to penalize the low-type

agent if the signal contradicts his report (H,L) and reward him otherwise (L,L).

(insert Figure 3 about here.)

Since the signal is positively correlated with the agent’s true type, the probability of a reward

(L,L) is higher for a low-type agent than for a high-type agent who claims to be a low-type agent.

By increasing the distance between (L,L) and (H,L), the principal can reduce the high-type agent’s

rents while giving the reservation utility to the low-type agent. In fact, for risk-neutral agents the

principal can eliminate the high-type agent’s rents and achieve first best.5 We refer to this as the

incentive effect of ProgramEx−Post−1. In other words, ProgramEx−Post−1 imposes a lottery on

the agent whose odds depend on the agent’s type; a zero expected value lottery for the low-type

agent has a negative expected value for the high-type agent, which allows the principal to use the

lottery to separate the two types. Since risk-neutral agents demand no risk premium for facing the

lottery, the principal can achieve first-best utility.

Since the ex-post investigation penalizes the agent if the signal contradicts him, it seems that

the first best is infeasible if the compensation (R) must be positive.6 The principal can, however,

achieve first-best utility as long as the agent’s total utility can be made sufficiently negative when

the signal contradicts him. As the appendix shows, the more informative the signal or the greater

the difference in productivity, the lower the needed divergence between compensation levels in the

two states of the lottery. The compensation needs to be negative to achieve first-best only when

the signal is relatively uninformative or when the difference in productivity of the two agents is

5Proposition 1 relates to two strands in the literature. First, Kerschbamer (1994) shows that in the Demski,
Sappington and Spiller (1988) model with risk-neutral agents the principal can costlessly replace Bayesian-Nash IC
constraints with dominant-strategy IC constraints. Proposition 1 shows that this is not true for the IR constraints.
The Bayesian-Nash IR constraints allow the principal to achieve first best, and the dominant- strategy IR constraints
do not. We thank an anonymous referee for elucidating this point. Second, the result relates to Cremer and McLean
(1988), who show that if risk-neutral bidders have correlated private values the seller can extract all the surplus from
the bidders.

6For example, in an auction similar to the one in Cremer and McLean (1988), Demougin and Garvie (1991) show
that the seller cannot extract the entire surplus if the penalties that can be imposed on the risk-neutral bidders are
bounded.
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high. Even if first-best utility is not achievable due to bounded penalties, it is easy to see that

ex-post investigation still strictly dominates ex-ante investigation when the agent is risk-neutral.

Risk-averse agents demand a risk premium for bearing the risk imposed by these incentives,

which makes first-best infeasible.7 It is unclear whether the incentive effect can make ex-post in-

vestigation strictly superior, let alone achieve first-best, when agents are risk averse. The insurance

effect discussed next, however, ensures the strict superiority of ex-post investigation when agents

are risk averse.

4.2 The Insurance Effect

The insurance effect exists because in ex-post investigation the incentive compatibility constraints

need to be met only in an expected sense while in ex-ante investigation they need to be met for

each signal.

Proposition 2 With a risk-averse agent, the principal would strictly prefer to investigate later

even if the penalties that can be imposed on the agent are bounded (R ≥ 0).

(Expected Profit)ProgramEx−Post−1
> (Expected Profit)ProgramEx−Ante

Proof: See the Appendix.8

(insert Figure 4 about here.)

Figure 4 and the proof of Proposition 2 for a risk-averse agent illustrate the insurance effect.

Since in ProgramEx−Ante the IC constraints need to be satisfied for each signal, a high-type agent’s

contract for a given signal must lie on the high-type agent’s indifference curve passing through the

low-type agent’s contract for that signal. The flexibility of ProgramEx−Post−1 allows the principal

to eliminate the high-type agent’s risk by equating (H,H) and (L,H) while keeping the high-type

agent’s expected utility unchanged. Now the high-type agent does not demand a risk premium.

Bounded penalties do not eliminate this effect because both agents get positive compensation. The

insurance effect also holds if U(R) −D(X, θ) ≥ 0 because both agents get non-negative utility in

every state of the signal.

7A related result is in Robert (1991), who extends Cremer and McLean (1988) to risk-averse bidders and shows
that the seller can no longer capture the entire surplus.

8This shows that replacing Bayesian-Nash IC constraints with dominant-strategy IC constraints is not costless
with risk-averse agents, as it is with risk-neutral agents in Kerschbamer (1994).
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Note that the superiority of ex-post investigation is not based on the possibility of proba-

bilistic investigation. In ex-ante investigation, the principal always investigates, by definition.

In contrast, ex-post investigation permits probabilistic investigation. Our results are based on

ProgramEx−Post−1, in which the probability of investigation is constrained to be 1. Allowing

probabilistic investigation increases principal’s flexibility and can only make her better off.

A combination of the incentive and insurance effects makes ex-post investigation, i.e., not getting

the signal earlier, optimal for the principal regardless of the agent’s risk aversion.

4.3 The Impact of Verifiability

The popularity of ex-ante investigation is surprising given its theoretical inferiority to ex-post

investigation. Is this merely suboptimal behavior, or is it driven by something else? We show that

verifiability plays a key role in the popularity of ex-ante investigation.

ProgramEx−Ante obviates the need for verification. The principal gets the signal before con-

tracting. Although the contracts reflect the principal’s updated priors, they are not contingent on

a signal to be observed later. The principal therefore has no reason to manipulate the signal, and

the agent has no opportunity to demand verification.

In contrast, as shown by figure 3, ProgramEx−Post−1 needs a verifiable signal. The principal’s

utility if the signal is high exceeds her utility if the signal is low. (The principal’s utility increases

in the southeast direction.) Both types of agents prefer a low signal. This difference in preferences

creates a demand for verification in ProgramEx−Post−1.

Since ex-post investigation is more effective than ex-ante investigation, principals may prefer a

noisier but verifiable signal to a more accurate but unverifiable signal. For example, banks routinely

exclude financial statement items that they consider difficult to verify. The IRS also frequently uses

the cash method over the accrual method because cash flows are easier to verify.

Ex-post investigation appears infeasible with unverifiable signals. To the contrary, we now show

that we can modify ex-post investigation to permit the use of unverifiable signals.

5 Using Unverifiable Information in Contingent Contracts

We turn to two modifications to ex-post investigation that allow the use of unverifiable signals. In

the first setting, examined in Section 5.1, the signal is unverifiable because the principal observes

it privately. For example, it could be the principal’s subjective opinion based on an interview.

We show that the principal can use such a signal in contingent contracts by ensuring that she has

incentives to reveal the signal truthfully. In the second setting, examined in Section 5.2, the signal
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is produced by a neutral third party but is unverifiable. We show that the principal can use such

a signal by removing the agent’s incentives to demand verification.

5.1 Committing to Honest Disclosure

As discussed in Section 4.3, in ProgramEx−Post−1 the principal has an incentive to misrepresent

the signal. The agent will therefore not trust the signal, especially because he commits before the

principal reveals the signal. (If the principal were to reveal the signal before asking the agent to

commit, we would be back to ex-ante investigation.) ProgramEx−Post−1 thus requires a verifiable

signal. It seems, therefore, that a signal that is privately observed by the principal cannot be used

ex post. We show that a principal can still use the private signal ex post by making her report

credible via two constraints (PIj) that make her indifferent to reporting either signal.

ProgramEx−Post−2:

EP ≡ max
Xij ,Rij

∑
j=L,H

∑
i=L,H

{prob[S = Si|, θ = θj ](Xij −Rij)}

s.t.∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥ 0 ∀j (IRj)∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥∑
i=L,H

{prob[S = Si|θ = θj ](U(Ri̂)−D(Xi̂, θj))} ̂ 6= j ∀j (ICj)

XLj −RLj = XHj −RHj ∀j (PIj)

If the solution of ProgramEx−Ante were feasible under ProgramEx−Post−2, the weak dominance of

ProgramEx−Post−2 over ProgramEx−Ante would have been assured. This is, however, not the case.

Suppose in ProgramEx−Post−2 the agent is offered the contracts in ProgramEx−Ante. If the agent

reveals his type to be low, the principal has an incentive to report the signal as low to minimize

the distortion in the low-type agent’s contract from his first-best. Similarly, if the agent reveals

his type to be high, the principal has an incentive to report the signal as high. This makes the

contracts in ProgramEx−Ante violate the PI constraints in ProgramEx−Post−2.

Equalizing the principal’s payoffs across the two signal realizations eliminates her incentives to

misreport a signal, but does it render the information useless? In other words, is the principal’s

utility in ProgramEx−Post−2 the same as that in the second-best contract in which information

is not used at all? No, because the second-best contract has four implicit constraints, XLj =

XHj = Xj and RLj = RHj = Rj ,∀j, but ProgramEx−Post−1 has only two constraints, XLj −
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RLj = XHj − RHj , ∀j.9 Figure 5 shows the solution to ProgramEx−Post−2; (XHL, RHL) and

(XLL, RLL) are constrained to lie on the principal’s indifference curve. For incentive compatibility,

the expected utility of (XHL, RHL) and (XLL, RLL) to the high-type agent equals his expected

utility for (XHH , RHH) and (XLH , RLH). [(XHH , RHH) now equals (XLH , RLH) because they

must now be on the same indifference line for the principal.]

(insert Figure 5 about here.)

Eliminating the need for verification in ex-post investigation is worthwhile only if it makes ex-

post investigation better than ex-ante investigation. The following proposition shows that this is

indeed the case.

Proposition 3 For a risk-neutral agent, ProgramEx−Post−2 strictly dominates ProgramEx−Ante.10

Proof: See the Appendix.

Figure 5 explains the intuition behind this result. We show that the principal can profitably

deviate from the ex-ante contract while meeting the constraints of ProgramEx−Post−2. Suppose

the principal offers the following contract to the low-type agent: X̂HL = XHL, X̂LL = XLL,

R̂HL < RHL, and R̂LL > RLL, such that
(
X̂LL, R̂LL

)
and

(
X̂HL, R̂HL

)
are on the same indifference

curve of the principal (a 45 degree line) and the low-type agent’s expected utility is unchanged [in

the figure p ∗ b = (1 − p) ∗ a]. The principal can now offer X̂HH = XHH and R̂LH = R̂HH =

pRHH + (1− p)RLH − γ where γ = p ∗ a − (1 − p)b. Since p ∗ b = (1 − p) ∗ a, γ = (2p−1)a
p , which

is positive because p > 1
2 . The principal therefore reduces the high-type agent’s rents by offering a

fair lottery to the low-type agent that has a negative expected value to the high-type agent. The

principal is now indifferent to the realization of the signal for both types of agents.

5.2 Making the Agent Indifferent

The previous section showed that a principal can use a signal that she observes privately by removing

incentives to misrepresent the signal. This section shows that a principal can use an unverifiable

signal that is generated by a neutral third party by making the agent indifferent to the signal. In

ProgramEx−Post−1, the low-type agent has an incentive to contest the high signal realization (see

9The agent is not indifferent to the signal. Constraints that make both the principal and the agent indifferent to
the signal render the signal useless.

10Numerical examples showing the validity of the proposition for a risk-averse agent are available upon request.
Although we have no formal proof for a risk-averse agent, we have no counterexamples either.
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figure 3). ProgramEx−Post−3 imposes indifference constraints IDj on ProgramEx−Post−1to remove

an agent’s incentives to ask for verification. Note that, in contrast to the previous section, now

the principal is not indifferent to the signal. This is not an issue because a third party, not the

principal, reports the signal.

ProgramEx−Post−3 :

EP ≡ max
Xij ,Rij

∑
j=L,H

∑
i=L,H

{prob[S = Si|, θ = θj ](Xij −Rij)}

s.t.
∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥ 0 ∀j (IRj)∑
i=L,H

{prob[S = Si|θ = θj ](U(Rij)−D(Xij , θj))} ≥∑
i=L,H

{prob[S = Si|θ = θj ](U(Ri̂)−D(Xi̂, θj))} ̂ 6= j ∀j (ICj)

U(RLj)−D(XLj , θj) = U(RHj)−D(XHj , θj) ∀j (IDj)

Do the indifference constraints render the signal useless? The proposition below shows that not

only are these contracts better than second-best, they always dominate ex-ante investigation.

If the solution of ProgramEx−Ante is feasible under ProgramEx−Post−3, then the weak domi-

nance of ProgramEx−Post−3 over ProgramEx−Ante is assured. This is, however, not the case be-

cause the high-type agent is not indifferent to the signal realization if the contracts in ProgramEx−ante

were offered in ProgramEx−Post−3. The high-type agent will prefer the signal to be low.

Proposition 4 ProgramEx−Post−3 dominates ProgramEx−Ante. For a risk-averse agent, the

dominance is strict.

Proof: See the Appendix.

Making an agent indifferent to the signal after he reports his type still lowers the cost of

eliciting truth from the agent because the principal makes only an honest agent indifferent. It

dominates ProgramEx−Ante because of the insurance effect discussed in section 4.2 (see Figure 4).

Consider how ProgramEx−Post−3 allows the principal to deviate from ProgramEx−Ante to improve

her utility. The indifference constraints require the contracts for each type of agent to lie on the

same indifference curve for both signal realizations. This already holds for the low-type agent in

ProgramEx−Ante. ProgramEx−Post−3 allows the principal to move the high-type agent’s contracts

to the same indifference curve while ensuring that the high-type agent gets the same expected

utility. Since the high-type agent faces no risk, the principal need not pay him a risk premium,

which benefits her.
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We have analyzed a broad spectrum of contracts that highlight the crucial role of verifiability.

In spite of our results, we rarely observe the above schemes. The next section discusses some of

the possible reasons.

6 Summary and Implications

We study the impact of verifiability in an adverse selection setting in which accounting data are

a noisy signal about an agent’s type. The issue of verifiability has not been examined in adverse

selection settings previously because the signal, if any, is assumed to be generated by the agent. If

an agent generates an unverifiable signal about his type the signal is merely another report of his

type. We examine settings that allow a rich analysis of verifiability because the principal or a third

party generates the signal.

We make three contributions about how the commonly observed method of gathering infor-

mation before contracting (ex-ante investigation) compares with other ways of using signals as

the verifiability of the signal changes. First, using a simple model we show that, contrary to the

popular perception, with verifiable signals ex-post investigation strictly dominates ex-ante investi-

gation. All the usual suspects – bounded penalties, investigation costs, probabilistic investigation,

informativeness of the signal, and the agent’s risk aversion – do not affect this dominance, which

arises because eliciting the truth is cheaper if the agent does know the signal when signing the

contract. In fact, ex-post investigation permits first-best when agents are risk neutral. Second, we

present a clear example of the relevance versus reliability trade-off in accounting by showing that

a principal may prefer a noisy but verifiable signal because it makes ex-post investigation more

effective. Third, we show that ex-post investigation is effective even with unverifiable signals. If

the principal generates the signal, she can use the signal by ensuring that she is indifferent to its

realization. If a third party generates the signal, the principal can make an honest agent indifferent

to the signal.

We now speculate on why ex-ante investigation remains popular. Ex-ante investigation requires

specifying contracts only for the observed signal. In contrast, ex-post investigation requires speci-

fying the contracts for all signal realizations. Designing ex-ante contracts is thus less costly. The

implementation literature provides further clues. Ex-ante investigation is a dominant-strategy im-

plementation, as the agent is induced to tell the truth for every state of the signal, while ex-post

investigation is a Bayesian-Nash implementation, as truth-telling is the agent’s best response given

his beliefs about the signal and requires common knowledge of the information structure, prior

beliefs, and rationality. This is considered to be too demanding relative to the dominant-strategy
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implementation (Ledyard, 1986) Ex-ante investigation is thus “easy” and “robust.”

The discussion above suggests that ex-post investigation is more likely under the following

conditions. First, when signals are verifiable, e.g., firms hire employees on the condition that

they will produce proof of the degrees that they claim to have. Second, when the principal can

penalize the agent, e.g., government agencies such as the IRS audit tax returns after they are filed.

Third, when investigation costs are high because ex-post investigation allows lowering expected

investigation costs by investigating with probability less than one. Fourth, when the number of

possible signal realizations is small because the cost of specifying the menu of contracts is lower.

Fifth, when a principal interacts with agents frequently because the cost of designing ex-post

contracts can be spread over a larger set of contracts.

Our analysis of verifiability also speaks to how detailed accounting disclosures should be. If

financial statements are to include information that is difficult to verify, then parties that wish

to use the more effective contingent contracts would prefer that such information be disclosed

separately so that they can exclude it from their contracts. For example, disclosing the details of the

assets enables banks to exclude intangible assets from computations of net worth in debt covenants.

Disaggregated disclosure may be necessary from a contracting perspective even if aggregate numbers

alone are sufficient for assessing stock prices.
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Appendix

Proof of Lemma 1: Let prob[θ = θL] = m. Let (Xj , Rj) be the optimal contract for probability

m and (X̂j , R̂j) be the optimal contract for probability m+δm, where δm > 0 and sufficiently small.

To show: X̂L > XL, R̂L > RL, X̂H ≤ XH, and R̂H ≥ RH .

Let us now study the solution at m. It is well known that IRH and ICL are non-binding, IRL and

ICH are binding, and the following equalities hold.

U ′(RH) = Dx(XH , θH) (1)

(1− Dx(XL, θL)
U ′(RL)

) =
(1−m)

mDx(XH , θH)
[Dx(XL, θL)−Dx(XL, θH)] (2)

By using the implicit function theorem on the first-order conditions and using the binding con-

straints, it can be shown that X, R are continuous and differentiable in m. We will now study the

solution at m+ δm. Assume the following relations:

X̂L = XL + ε

R̂L = RL + γ

X̂H = XH − β

R̂H = RH + α

Taylor expansion of IRL at m+ δm implies: γ = Dx(XL,θL)
U ′(RL) ε.

Taylor expansion of ICH at m + δm,and substitution for the derivatives from Equation 1 and

Equation 2 implies:

α+ β = [Dx(XL,θL)−Dx(XL,θH)
Dx(XH ,θH) ]ε.

Since (X̂j , R̂j) are optimal atm+δm, the following must be true: EP (X̂j , R̂j ,m+δm)−EP (Xj , Rj ,m+

δm) > 0 or, by substitution,

ε [(m+ δm)[1− Dx(XL, θL)
U ′(RL)

]− (1−m− δm)[
Dx(XL, θL)−Dx(XL, θH)

Dx(XH , θH)
]] > 0

Substitution from equation 2 gives,

ε {Dx(XL, θL)−Dx(XL, θH)
Dx(XH , θH)

}[(m+ δm
m

)(1−m)− (1−m− δm)] > 0

We know from the single crossing property that Dx(XL, θL)−Dx(XL, θH) > 0.
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We can also see that [(m+δm
m )(1 −m) − (1 −m − δm)] = δm

m > 0. Thus, for (X,R) to be optimal,

ε > 0, which implies the following:

• X̂L > XL.

• γ > 0, hence R̂L > RL.

• (α + β) > 0(using the single-crossing property). Taylor expansion of Equation 1 gives

αU ′′(RH) = −βDxx(XH , θH), which further implies,

– if U ′′ = 0, then β = 0 and α > 0.

– if Dxx = 0, then α = 0 and β > 0

(Both U ′′ and Dxx cannot be zero by assumption of convex indifference curves.)

Hence, X̂H ≤ XH and R̂H ≥ RH .

Lemma 3 ProgramEx−Ante is equivalent to ProgramCombined−Ex−Ante below.

This lemma transforms the objective function of ProgramEx−Ante to make it comparable with

ProgramEx−Post−1.

ProgramCombined−Ex−Ante

EP ≡ maxXij ,Rij
∑

j=L,H

∑
i=L,H{prob[S = Si, θ = θj ](Xij −Rij)}

s.t. U(Rij)−D(Xij , θj) ≥ 0 ∀i, j (IRij)

U(Rij)−D(Xij , θj) ≥ U(Ri̂)−D(Xi̂, θj) ̂ 6= j ∀i, j (ICij)

Note that the objective function of this program is the same as that of ProgramEx−Post−1.

Proof: The principal’s expected profit in ProgramEx−Ante is

EP =
∑
i=L,H

{prob[S = Si] EP [S = Si]},

where EP [S = Si] is the maximized expected profit if the signal produced by the information

system is S = Si, subject to the four constraints [IRij,ICij for j=L,H]. The constrained problem for

Si = SL is independent of the problem for Si = SH ; i.e., the constraints and the objective function

have no common choice variables. We can thus equivalently maximize the objective function given

by EP, subject to all eight constraints [IRij,ICij for i,j=L,H], because it is a linear combination

of EP [S = SL] and EP [S = SH ] with strictly positive weights. By using Bayes’ rule, EP can be

written as the objective function of ProgramCombined−Ex−Ante.
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For the remainder of the appendix we use ProgramEx−Ante to mean ProgramCombined−Ex−Ante.

The objective functions of ProgramEx−Ante and ProgramEx−Post−1 have the same form.

Proof of Proposition 1

We show that the principal can induce the same production as the first-best solution and make

the same expected payments as in the first-best solution.

Let
(
XFB
H , RFBH

)
and

(
XFB
L , RFBL

)
be the first-best solution. Consider

(
X̂ij , R̂ij

)
for i, j ∈

{L,H} as a solution to ProgramEx−Post−1, where

X̂LH = X̂HH = XFB
H

X̂LL = X̂HL = XFB
L

To highlight that this result is due to relaxation of IR constraints alone, we assume that the IC

constraints are the same as the ex-ante program and relax the IR constraints. We need to prove

that there exist R̂ij for i, j ∈ {L,H} such that the following constraints are satisfied.

R̂HH −D(XFB
H , θH) ≥ R̂HL −D(XFB

L , θH) (ICHH)

R̂LH −D(XFB
H , θH) ≥ R̂LL −D(XFB

L , θH) (ICLH)

R̂LL −D(XFB
L , θL) ≥ R̂LH −D(XFB

H , θL) (ICLL)

R̂HL −D(XFB
L , θL) ≥ R̂HH −D(XFB

H , θL) (ICHL)

pR̂HH + (1− p)R̂LH ≥ D(XFB
H , θH) (IRH)

pR̂LL + (1− p)R̂HL ≥ D(XFB
L , θL) (IRL)

We solve for R̂ij assuming that the ICHH, ICLH, IRH and IRL are binding and show that the

solution satisfies ICLL and ICHL. The binding constraints imply the following:

R̂LH = D(XFB
H , θH) +

p

(2p− 1)
(
D(XFB

L , θL)−D(XFB
L , θH)

)
R̂HH = D(XFB

H , θH)− (1− p)
(2p− 1)

(
D(XFB

L , θL)−D(XFB
L , θH)

)
R̂LL =

pD(XFB
L , θL)− (1− p)D(XFB

L , θH)
(2p− 1)

R̂HL =
pD(XFB

L , θH)− (1− p)D(XFB
L , θL)

(2p− 1)
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By substitution (ICLL) is satisfied if

D(XFB
H , θL)−D(XFB

L , θL) ≥ D(XFB
H , θH)−D(XFB

L , θH)

⇔ D(XFB
L , θL) +

∫ XFB
H

XFB
L

DX (t, θL) dt−D(XFB
L , θL) ≥ D(XFB

L , θH) +
∫ XFB

H

XFB
L

DX (t, θH) dt−D(XFB
L , θH)

⇔
∫ XFB

H

XFB
L

DX (t, θL) dt ≥
∫ XFB

H

XFB
L

DX (t, θH) dt

Given that XFB
H > XFB

L , the last inequality is implied by the assumed single-crossing property

[DX (t, θL) > DX (t, θH)∀X]. Similarly, it can be shown that (ICHl) is also satisfied by the above

solution. We have shown that the principal can implement XH > XL and keep both IR constraints

binding. Her expected profits will be maximized at the first best output levels. Also note that,

R̂LL − R̂HL =
D(XFB

L , θL)−D(XFB
L , θH)

(2p− 1)

The numerator of RHS > 0 because the high-type agent is more productive. The denominator

of RHS > 0 because p > 1
2 . A feasible solution thus has R̂LL > R̂HL. The difference between the

compensation levels increases as the difference between the productivity of the two types increases

or the informativeness of the signal (p) decreases. Also note that since D(XFB
L , θH) < D(XFB

L , θL),

R̂HL can be less than 0. We thus have shown that by just relaxing the IR constraints a feasible

solution exists where the first-best production level is achieved and risk-neutral agents get no rents,

so the principal gets her first-best level of utility.

Proof of Proposition 2: The proof is based on taking suitable deviations from the optimal

solution in ProgramEx−Ante and showing that such deviations are feasible in ProgramEx−Post−1

and lead to a strict improvement in the principal’s expected utility. Let X̂ij , R̂ij be optimal

in ProgramEx−Ante. By Lemma 3, the objective function of ProgramEx−Post−1 evaluated at

X̂ij , R̂ij is equal to that of ProgramEx−Ante. The IR constraints of ProgramEx−Post−1 are also

satisfied at X̂ij , R̂ij, since IRjProgramEx−Post =
∑

i=L,H prob[S = Si|θ = θj ]IRijProgramEx−Ante . The

same is true for the IC constraints. Thus, all contracts in ProgramEx−Ante are also feasible in

ProgramEx−Post−1. This proves weak dominance. Strict dominance is proved below.

Let m = prob[θ = θL]. We conjecture a contract for ProgramEx−Post−1by equating Xij , RiL

to X̂ij , R̂iL for i = L,H and RLH = R̂LH − ε, RHH = R̂HH + ε( (1−p)
p ) U

′(R̂LH)

U ′(R̂HH)
for ε > 0 and

sufficiently small. We show that this conjectured deviation is feasible and strictly improves the

principal’s expected profit as compared to ProgramEx−Ante.
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The variables in IRL, the LHS of ICL, and the RHS of ICH of ProgramEx−Post−1are unchanged.

Using Taylor’s expansion, it can be shown that the conjectured deviation has zero net change on

IRH and the LHS of ICH and strictly reduces the RHS of ICL. Thus, all the constraints are

satisfied and expected profit changes by (1 − m)(1 − p)[1 − U ′(R̂LH)

U ′(R̂HH)
]ε, which is strictly positive

because U ′(R̂LH)

U ′(R̂HH)
< 1, from Lemma 2, for a strictly risk-averse agent and a strictly convex disutility

function.

The above deviations are feasible even if there are lower bounds on R. We know from Lemma 2

that R̂LH > R̂HH . The deviations are feasible (R ≥ 0) because they decrease R̂LH (which is higher)

and increase R̂HH .

Thus, the agent’s utility over wealth is kept constant and the payments are moved closer to-

gether; because of concavity of U(.), this increases the principal’s expected profits. Note that each of

the IR constraints in ProgramEx−Ante are still met. The insurance effect thus arises from relaxing

the IC constraints alone.

Proof of Proposition 3:

With a risk-neutral agent, let the optimal solution to the ex-ante program be (Xij , Rij) for

i, j ∈ {L,H}. We need to show that there exist
(
X̂ij , R̂ij

)
that satisfy ProgramEx−Post−2 and make

the principal better off. Using Equation (1) and the fact that U ′ (·) is constant for the risk-neutral

agent, we know that XLH = XHH = XH . Suppose the principal considers the following solution

to ProgramEx−Post−2. The production levels are unchanged; i.e., X̂LL = XLL, X̂HL = XHL,

X̂LH = XH , and X̂HH = XH . The agent’s compensation, however, is changed as follows:

R̂HH = R̂LH = pRHH + (1− p)RLH − γ

R̂LL = X̂LL − φL

R̂HL = X̂HL − φL

where:

φL = p (XLL −RLL) + (1− p) (XHL −RHL)

γ = a small positive number restricted later.

We need to check whether
(
X̂ij , R̂ij

)
satisfies the constraints of ProgramEx−Post−2. Since

X̂HH = X̂LH and R̂HH = R̂LH , PIH is trivially satisfied. PIL is also satisfied by construction

because X̂LL − R̂LL = φL = X̂HL − R̂HL.
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To check IRL, substitute φL = p (XLL −RLL) + (1− p) (XHL −RHL), in the expression below:

p
(
R̂LL −D

(
X̂LL, θL

))
+ (1− p)

(
R̂HL −D

(
X̂HL, θL

))
= p (XLL − φL −D (XLL, θL)) + (1− p) (XHL − φL −D (XHL, θL))

= pXLL + (1− p)XHL − φL − pD (XLL, θL)− (1− p)D (XHL, θL)

= pRLL + (1− p)RHL − pD (XLL, θL)− (1− p)D (XHL, θL)

= p (RLL −D (XLL, θL)) + (1− p) (RHL −D (XHL, θL))

= p ∗ LHS of IRLL in Ex-ante + (1− p) ∗ LHS of IRHL in Ex-ante = 0

To check IRH , note that

(1− p)
(
R̂LH −D

(
X̂LH , θH

))
+ p

(
R̂HH −D

(
X̂HH , θH

))
= pRHH + (1− p)RLH − γ − (1− p)D (XLH , θH)− pD (XHH , θH)

= (1− p) (RLH −D (XLH , θH)) + p (RHH −D (XHH , θH))− γ

= (1− p) ∗ IRLH in Ex-ante + p ∗ IRHH in Ex-ante− γ

Since RLH > RHH (Lemma 1.4), XLH = XHH (a consequence of risk-neutrality discussed above),

and the IR constraints for the high-type agent are not binding in ProgramEx−Ante, there exists

γ > 0 such that IRH in ProgramEx−Post−2 is not violated.

ICL is satisfied as we have fixed the low-type agent’s utility and reduced the high-type agent’s

utility.

To check ICH , we substitute for
(
X̂ij , R̂ij

)
and show:

(1− p)
(
R̂LH −D

(
X̂LH , θH

))
+ p

(
R̂HH −D

(
X̂HH , θH

))
≥ (1− p)

(
R̂LL −D

(
X̂LL, θH

))
+ p

(
R̂HL −D

(
X̂HH , θH

))
(1− p) (RLH −D (XLH , θH)) + p (RHH −D (XHH , θH))− γ

≥ (1− p) (XLL − φL −D (XLL, θH)) + p (XHL − φL −D (XHL, θH))

= (1− p)XLL + pXHL − φL − (1− p)D (XLL, θH)− pD (XHL, θH)

= (1− p)XLL + pXHL − p (XLL −RLL)− (1− p) (XHL −RHL)
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− (1− p)D (XLL, θH)− pD (XHL, θH)

= (1− 2p)XLL − (1− 2p)XHL + pRLL + (1− p)RHL

+ (1− p) (RLL −D (XLL, θH)) + p (RHL −D (XHL, θH))− (1− p)RLL − pRHL

= (1− p) (RLL −D (XLL, θH)) + p (RHL −D (XHL, θH))

− (2p− 1) [(XLL −RLL)− (XHL −RHL)]

ICHH and ICLH of the ex-ante program ensure that ICH is satisfied as long as:

γ < (2p− 1) [(XLL −RLL)− (XHL −RHL)]

The RHS of the expression above is positive because the principal moves the contract closer to

the low-type agent’s first best when a low signal is observed. The principal’s utility from a low-

type agent when a low signal is observed (XLL −RLL) is more than the principal’s utility from a

low-type agent when a high-signal is observed (XHL −RHL). Thus, picking a gamma that is the

minimum of (2p − 1) [(XLL −RLL)− (XHL −RHL)] and the high-type agent’s rent (the slack in

IRH) will ensure that all constraints are satisfied and the expected payment to the high-type agent

is reduced by a positive γ. The overall increase in the principal’s expected utility =γ ∗ prob[θ = θL]

Proof of Proposition 4: Let X̂ij , R̂ij be optimal in ProgramEx−Ante. It is obvious that X̂ij

and R̂ij satisfy the IR and IC constraints of ProgramEx−Post−3. Constraint IDL(for the low-

type agent) is also satisfied because in ProgramEx−Ante both the LHS of IRLL and the LHS of

IRHL are equal to zero. Let U(R̂LH) − D(X̂LH , θH) = KL and U(R̂HH) − D(X̂HH , θH) = KH .

We know from Lemma 2 that KL > KH . Let RLH = R̂LH − α and RHH = R̂HH + β so that

U(RLH)−D(X̂LH , θH) = U(RHH)−D(X̂HH , θH) = K = (1− p)KL + pKH . IRL, IRH , ICH , and

the LHS of ICL in ProgramEx−Post−3 are unchanged. Since the RHS of ICL puts greater weight

(p) on the number that is being reduced (RLH), it is also reduced, so the ICL is also met. Since

the agent is risk-averse and RLH > RHH, the deviation suggested reduces the risk imposed on the

agent and allows the principal to improve her utility.
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low-type's contract when the principal observes a low signal.

The high-type's indi�erence curve passing through the

low-type's contract when the principal observes a high signal.

(XHH ; RHH)
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n
(R
)

(X̂HL; R̂HL) = (XHL; RHL)

(XLH ; RLH)

(X̂LH ; R̂LH)(X̂HH ; R̂HH)

(X̂LL; R̂LL) = (XLL; RLL)

(Xij ; Rij): Output-compensation pair for signal i and agent j in ProgramEx�Ante

(X̂ij ; R̂ij): Output-compensation pair for signal i and agent j in ProgramEx�Post�1

Figure 4

ProgramEx�Post�1 Dominates ProgramEx�Ante for a Risk-Averse Agent
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(X̂LH ; R̂LH) = (X̂HH ; R̂HH)

(Xij ; Rij): Output-compensation pair for signal i and agent j in ProgramEx�Ante

(X̂ij ; R̂ij): Output-compensation pair for signal i and agent j in ProgramEx�Post�2

a

p � b = (1� p) � a

The principal's indi�erence curve.

Output in Dollars (X)

(XLL; RLL)

(X̂HL; R̂HL)
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m
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o
n
(R
)

(XHH ; RHH)

(XHL; RHL)

(X̂LL; R̂LL)

(XLH ; RLH)

The high-type's indi�erence curve passing through the

low-type's contract when the principal observes a high signal.

The high-type's indi�erence curve passing through the

low-type's contract when the principal observes a low signal.

Figure 5

ProgramEx�Post�2 Dominates ProgramEx�Ante for a Risk-Neutral Agent
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