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Abstract

There are many different missing data methods used by classification
tree algorithms, but few studies have been done comparing their appropri-
ateness and performance. This paper provides both analytic and Monte
Carlo evidence regarding the effectiveness of six popular missing data
methods for classification trees. We show that in the context of classifi-
cation trees, the relationship between the missingness and the dependent
variable, rather than the standard missingness classification approach of
Little and Rubin (2002) (missing completely at random (MCAR), miss-
ing at random (MAR) and not missing at random (NMAR)), is the most
helpful criterion to distinguish different missing data methods. We make
recommendations as to the best method to use in various situations. The
paper concludes with discussion of a real data set related to predicting
bankruptcy of a firm.

Keywords: C4.5, CART, Classification tree, rpart, Separate class.

1 CLASSIFICATION TREES AND THE
PROBLEM OF MISSING DATA

Classification trees are a supervised learning method appropriate for data
where the dependent variable is categorical. The predictors can be either cat-
egorical or continuous. The simple methodology behind classification trees is
to recursively split data based upon the predictors that best distinguish the
dependent variable classes. There are, of course, many subtleties, such as the
choice of criterion function used to pick the best split variable, stopping rules,
pruning rules, and so on. Details about classification trees can be found in vari-
ous references, e.g. Breiman, Friedman, Olshen, and Stone (1998) and Quinlan
(1993).

Like most statistics or machine learning methods, “base form” classification
trees are designed assuming that data are complete. However, missing data is a
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very common problem, and for this reason classification trees have to, and do,
have ways of dealing with missing data in the predictors (in supervised learning,
an observation with missing response value has no information about the un-
derlying relationship, and must be omitted). Although there are many different
ways of dealing with missing data in classification trees, there are few studies in
the literature about the appropriateness and performance of these missing data
methods. In this paper, we compare many popular missing data methods in a
systematic way in order to provide understanding of their appropriateness and
performance. Assuming there are missing values in the training set, we show
that the relative performance of different missing data methods depends on two
factors, whether or not the testing set contains missing values and whether or
not the missingness depends on the target variable. As will be detailed later, the
first factor reveals that the missingness is part of the data generating process
and can be helpful when it exists in both the training phase and the testing
phase. So far as we are aware, this fact has been largely ignored. The second
factor argues against the blind use of the MCAR, MAR and NMAR of Little
and Rubin (2002), which has been shown to be helpful with likelihood-based or
Bayesian analysis.

Section 2 gives a brief introduction to the previous research on this topic.
This is followed by discussion of the design of this study in Section 3 and findings
in Section 4. Application to a bankruptcy prediction problem is given in Section
5. We conclude with discussion of these results and future work in Section 6.

2 PREVIOUS RESEARCH

There are few studies of missing data and classification trees in the literature.
Liu, White, Thompson, and Bramer (1997) gave a general description of the
problem, but did not discuss solutions. Saar-Tsechansky and Provost (2006)
discussed various missing data methods in classifications trees and proposed
a cost-sensitive approach to the missing data problem for the scenario when
missing data occur only at the testing phase, which is different from the problem
studied here (where missing values occur in the training phase).

Kim and Yates (2003) conducted a simulation study of seven popular miss-
ing value methods but did not find any dominant method. Feelders (1999) did
a comparative experiment on the performance of surrogate split and imputa-
tion and found the imputation methods to work better. (These methods are
described more fully in the next section.) Batista and Monard (2003) com-
pared four different missing data methods, and found that 10 nearest neighbor
imputation outperformed other methods in most cases. In the context of cost
sensitive classification trees, Zhang, Qin, Ling, and Sheng (2005) studied four
different missing data methods based on their performances on five data sets
with artificially generated random missing values. They concluded that the in-
ternal node method (the decision rules for the observations with the next split



variable missing will be made at the (internal) node) is better than the other
three methods examined.

Weaknesses of all of these studies are that they were all based on only a few
data sets, and missingness was independent of all of the data (missing completely
at random, using the nomenclature of Little and Rubin, 2002). The study
described in the next section addresses these issues by allowing for different
data sets and different missingness mechanisms. We provide both analytical
results for simple situations and Monte Carlo comparisons for more complex
ones.

3 THE DESIGN OF THE STUDY

There are essentially two stages of applying classification trees, the learning
phase where the historical data (training set) are used to construct the tree,
and the testing phase where the tree is applied to testing data. This study
deals with the scenario where missing data occur in the training set, while the
testing set may be either complete or incomplete. Our results show that the
relative performances of different missing data methods are different depending
on whether or not the testing set contains missing values.

Accuracy, calculated as the percentage of correctly classified observations, is
usually used to measure the performance of classification trees. Since it can be
affected by both the data structure (some data are intrinsically easier to classify
than others) and by the missing data, this is not necessarily a good measure for
the impact of missing data. In this study, we define a measure called relative
accuracy (RelAcc), calculated as

Accuracy with missing data

Reldce = Accuracy with complete data’

This can be thought of as a standardized accuracy, as RelAcc measures the
accuracy achievable with missing values relative to that with complete data.

The recursive nature of classification trees makes them almost impossible
to analyze analytically in the general case beyond 2x2 tables (where there is
only one binary predictor and a binary target variable). On the other hand,
trees built on 2x2 tables can be considered as degenerate classification trees,
as a classification tree is built (recursively) as a hierarchy of these degenerate
trees. Therefore, analyzing 2x2 tables can have important implications for
more general cases. In this study, we start with analysis of 2x2 tables. We then
build on this using simulations, where the factors that might have impacts on
performance are incrementally added, in order to see the effect of each factor.
The factors include variation in both the data generating process (DGP) and
the missing data generating process (MGP), the number and type of predictors
in the data, and the number of predictors that contain missing values.

This study examines six different missing data methods: probabilistic split,
complete case method, grand mode/mean imputation, separate class, surrogate



split, and complete variable. Probabilistic split is the default method of C4.5
(Quinlan, 1993). In the training phase, observations with values observed on
the split variable are split first. The ones with missing values are then put into
each of the child nodes with a weight given as the proportion of non-missing
instances in the child. In the testing phase, an observation with a missing value
on a split variable will be associated with all of the children using probabilities,
which are the weights recorded in the training phase. The complete case method
deletes all observations that contain missing values in any of the predictors in the
training phase. If the testing set also contains missing values, complete case is
not applicable and thus some other method has to be used. In the simulations,
we use C4.5 to realize the complete case method. In the training phase, we
manually delete all of the observations with missing values and then run C4.5
on the pre-processed complete data. In the testing phase, the default missing
data method, probabilistic split, is used. Grand mode imputation imputes the
missing value with the grand mode of that variable if it is categorical. Grand
mean is used if the variable is continuous. The separate class method treats
the missing values as a new class (category) of the predictor. Surrogate split
is the default method of CART (realized using rpart in this study; Breiman
et al., 1998 and Therneau and Atkinson, 1997). It finds and uses a surrogate
variable (or several surrogates in order) within a node if the variable for the next
split contains missing values. In the testing phase, if a split variable contains
missing values, the surrogate variables in the training phase are used instead.
The complete variable method simply deletes all variables that contain missing
values.

4 THE EFFECTIVENESS OF MISSING
DATA METHODS

This study covers the situations where missing data occur in the training
phase. There are, however, still two different scenarios: when missing data
do not occur in the testing phase and when missing data occur in the testing
phase. If the testing set is complete, then the purpose of the classification tree
in the training phase is to uncover the true DGP. In this case, the existence of
missing values in the training phase is a only a problem, since they obscure the
underlying DGP. However, if the testing set also contains missing values, then
the missingness is part of the data and the MGP becomes an essential part of
the DGP. This, of course, requires the assumption that the MGP (as well as the
DGP) is the same in both the training phase and the testing phase. These two
different scenarios can be exemplified as in Example 1.

Example 1. Consider a public historical bankruptcy data set, which contains
missing values due to various reasons, such as (for example) certain companies
failing to submit their financial statements. There are two users of the data, A
and B, who are both interested in predicting if company C is going to bankrupt.



However, A is the CEO of company C, and thus has all the financial information
about his own company, while B is an outside analyst who has to rely on the
public information about company C' that may have some information missing.

In this example, missing values in the historical data are only a problem to
A since they hinder his ability to learn about the underlying relationship (DGP)
between the financial figures and bankruptcy. However, missingness may not
necessarily be a problem to B if, for example, historically, companies that fail
to report some key items tend to go bankrupt, since if company C fails to report
those key figures that is a strong indicator of potential bankruptcy.

As will be seen, under these two different scenarios, the relative performances
of the missing data methods are different.

In this section, we first present analytical results, assuming there is no de-
viation from the underling true DGP/MGP (that is, the data reflect exactly
the underlying DGP/MGP) and also assuming there are enough data so that
the impact of stopping rules and pruning can be ignored. Proofs to the theo-
rems can be found in the Appendix. Some of these results are for 2x2 tables
only, but as will be seen, they have general implications when added factors
are included. The usefulness of these results is that they allow examination of
“consistency”-type results, in the sense that they reflect expected performance
when the sample size is very large.

4.1 Analytical results

Theorem 1. If the MGP is conditionally independent of Y given X, then the
tree built on the data containing missing values gives the same set of rules as
the tree built on the complete data set.

Theorem 2. If the partition of the data defined by the tree built on the incom-
plete data is not changed from the one defined by the tree built on the complete
data, the loss in accuracy when the testing set is complete is bounded above by
Py, where Py is the missing rate, defined as the percentage of observations
that contain missing values.

Theorem 3. If the partition of the data defined by the tree built on the incom-
plete data is not changed from the one defined by the tree built on the complete

data, the relative accuracy when the testing set is complete is bounded below by
1— Py
RelACCmin = m,

where Py is the missing rate.

Theorem 4. In a 2x 2 data table, if the MGP is independent of either Y or X,
given the other variable, then the following results hold for probabilistic split.

1. If X is not informative in terms of classification, i.e. the majority classes
of Y for different X wvalues are the same, then probabilistic split will give
the same rule as the one that would be obtained from complete data;



2. If probabilistic split shows that X is informative in terms of classification,
i.e. the majority classes of Y for different X wvalues are different, then it
finds the same rule as the one that would be obtained from complete data;

3. The absolute accuracy when the testing set is complete is bounded below by
0.5. Since the complete data accuracy is at most 1, the relative accuracy
18 also bounded below by 0.5.

Theorem 5. If the MGP is independent of Y, given X, then the same re-
sults hold for mode imputation as for probabilistic split under the conditions of
Theorem 4.

Theorems 1, 2 and 3 (for the complete case method) are true for general
data sets. Theorems 4 and 5 are for 2x2 tables only but they imply that
probabilistic split and mode imputation have advantages over the complete case
method, which can have very poor performance (as shown later in Figure 1).

With 2x2 tables, the complete variable method will always have a higher
than 0.5 accuracy since by ignoring the only predictor, we will always classify all
of the data to the overall majority class and achieve at least 0.5 accuracy. This
is not readily generalizable, however, given that deleting the whole variable is an
extreme measure. Simulations will show the performance of complete variable
method in more general cases.

Surrogate split is not applicable with 2x2 tables because there are no other
predictors. For 2x2 table problems with a complete testing set, separate class
is essentially the same as the complete case method, because as long as the
data are split according to the predictor (and it is very likely that this will
be so), the separate class method builds separate rules for the observations
with missing values; when the testing set is complete, the rules that are used
in the testing phase are exactly the ones built on the complete observations.
This, however, is less likely to be true when there are more predictors and/or
continuous predictors, because the extra class for the missingness will affect the
information gain and thus result in a different tree if the separate class method
is used. This difference, as will be seen, tends to have a favorable impact on the
accuracy performance.

When the testing set also contains missing values, the following theorem
holds.

Theorem 6. In 2x2 data tables, if missing values occur in both the training
set and the testing set, then the separate class method has the best performance.

Theorem 6 makes a fairly strong statement in the simple situation, and it will
be seen to be strongly indicative of the results in more general cases. Its proof
also can be found in the Appendix.

The analytical results shows that the complete case method has the best
(perfect) expected performance when the test set is complete and the miss-
ingness does not depend on the target variable. The results also imply that



probabilistic split and mode imputation may have a better performance when
the conditions of Theorems 4 and 5 are satisfied. When the test set is incom-
plete, separate class is expected to have the best performance. To verify these
results and extend the understanding of the performance of different missing
data methods to general cases, we carry out two types of Monte Carlo simula-
tions. In the next section, we do a Monte Carlo simulation of the DGP/MGPs
of 2x2 tables. In this simple case, the expected tree performance can be worked
out given the DGP/MGP and the simulations can be used to verify the de-
rived analytical results. In the following section, we carry out large scale Monte
Carlo simulations of data sets with more predictors and continuous predictors.
In these simulations, data sets are generated according to the randomly gener-
ated DGP/MGPs, so random deviations from the true DGP/MGP are present,
allowing examination of the effects of this random variation.

4.2 Monte Carlo Simulations for 2x2 tables

4.2.1 A brief description of the simulations

A 2x2 table with missing values has only eight cells as shown in Table 1, where
M =0 if X is observed and M =1 if X is missing.

M[X|Y P

0]0|0|PM=0X=0,Y=0)
001 |[P(M=0X=0Y=1)
01 |0|P(M=0X=1Y=0)
0 1|1 |PM=0X=1Y=1)
1[0[0|PM=1,X=0,Y =0)
101 |PM=1,X=0,Y=1)
1[1]0|PM=1,X=1Y=0)
111 [PM=1LX=1Y=1)

Table 1: The 8 cells of a 2 x 2 table with missing values

There is one constraint, that the sum of the probabilities has to be one.
Therefore, this table is determined by seven parameters, but which seven to
use is arbitrary. To illustrate the true DGP and MGP, the following seven
parameters are used:

=0)
2. P(Y =0|X =0)

1. P(X
(
3. P(Y =0/X =1)
4. P(M =0|X =0,Y =0)
(M

5 P(M=0X=0Y=1)
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Figure 1: Scatter plot and the corresponding quantile plot of the complete
testing set Rel Acc vs. missing rate of the complete case method when the MGP
is dependent on the target variable. Each point in the scatter plot represents
the result on one of the simulated data tables.

6. P(M=0|X=1,Y =0)
7. P(M=0X=1Y =1)

With only one binary predictor, the tree has at most one split. If we assume
that the sample size is large enough, then the deviation from the true parameters
and the pre-stopping/post-pruning features of the tree can be ignored, and the
expected performance of the classification trees can be derived. In this way, the
analytic results of Section 4.1 can be confirmed and extended. In this simulation,
sets of the seven parameters are generated repeatedly using uniform[0,1]7, and
the relative accuracy of each missing data method on each parameter set is
determined. For each missingness pattern (four patterns in total: missingness
depending on neither X nor Y, depending on one of them, and depending on
both), one million sets of the parameters are generated.

4.2.2 Results of the simulations

Figure 1 confirms the lower bound calculated in Theorem 3. The plot on the left
is a scatter plot of relative accuracy versus missing rate for each Monte Carlo
replication for the complete case method when the MGP depends on the target
variable. The graph on the right in Figure 1 is the quantile version of the scatter
plot on the left. The lines shown in the quantile plot are the theoretical lower
bound, the 10th, 20th, 30th, 40th and 50th percentile lines from the lowest to
the highest. Higher percentile lines are the same as the 50th percentile (median)
line, which is already the horizontal line at RelAcc = 1. The percentile lines are
constructed by connecting the corresponding percentiles in a moving window
of data from the left to the right. Due to space limitations, we do not show
quantile plots of other missing data methods and/or under different scenarios,
but in all of the other plots, the quantile lines are all higher (the quantile plot
in Figure 1 shows the worst case scenario). Those plots show that the missing
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Figure 2: Scatter plot of the probabilistic split and mode imputation meth-
ods under the conditions of Theorem 4 and 5. Each point in the scatter plot
represents the result on one of the simulated data tables.
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Figure 3: Scatter plot of the separate class method with incomplete testing set
when the MGP is dependent on the target variable. Each point in the scatter
plot represents the result on one of the simulated data tables.

data problem, when the missingness rate is not too high, may not be as serious
as we might have thought. For example, when 40% of the observations contain
missing data, 80% of the time the expected relative accuracy is higher than
90%, and 90% of the time the expected relative accuracy is higher than 80%.

Figure 2 shows the lower bounds calculated in Theorems 4 and 5. As can
be seen, that bound is apparently not tight even when the missingness rate is
fairly large, again implying that the effects of missingness on the tree are not
necessarily large.

Figure 3 shows the scatter plot and the corresponding quantile plot of the
performance of the separate class method with incomplete testing set when the
MGP is dependent on the target variable. The quantiles shown are from the
10th to the 90th percentile with increment 10 percent. We can see that a fairly
large percentage of the time relative accuracy is larger than one. This means
that separate class can gain from the missingness. Our simulations show that
other methods can also gain from the missingness, but not as frequently as the



separate class method and the gains are in general not as large. We follow up
on this surprising behavior in more detail in the next section, but the simple
explanation is that since missingness depends on the target variable, the tree
algorithm can use the presence of missing data in an observation to improve
prediction of the target for that observation.

The Monte Carlo results imply that when the testing set is complete, the tree
algorithm can never gain from the presence of missing data. When missingness
does not depend on the target variable and the sample size is large enough, the
complete case method can uncover the exact DGP and thus there is no loss
due to missingness. When missingness depends on the target variable, however,
the complete case method tends to have the worst performance. The other two
methods, probabilistic split and mode imputation, have similar performance to
each other and there is no clear winner. When the testing set also contains
missing values, the separate class method is the clear winner as it always has
a better performance than or equally as good as that of the other methods. In
this situation, probabilistic split has the worst performance. Moreover, when
the missingness depends on the target variable, many times the algorithms can
use this fact in splitting, thereby improving on performance compared to when
there is complete data. The separate class method is especially effective in
gaining from the missingness in this way.

4.3 Monte Carlo simulations of more general data sets
4.3.1 The design of the simulations

The pseudo-code Algorithm 1 outlines the constructions of the simulations
in this section. Sets of DGP/MGPs are simulated in order to cover a wide
range of different structured data sets so that a generalizable inference from
this simulation is possible. For the same set of DGP/MGP, several different
sample sizes are simulated to see any possible learning curve effect, since it has
been shown by Perlich, Provost, and Simonoff (2003) that sample size is an
important factor to investigate in any machine learning study.

In this study, the conditional relationship among the categorical variables
is modelled using a logit function including all of the two-way interactions, but
without any higher order interactions. Note that since the two most important
variables, the target variable and the missingness, are both binary variables,
this logistic formulation is not restrictive, since any relationships among the
variables can be represented as a logit function, although perhaps involving
higher order interactions.

When defining the DGP, we achieve simplification by choosing a priori the
factors that might interact with the missing data. These factors then are gen-
erated randomly so as to cover a wide range of data sets that are of interest.

The factors used are the following:

1. The conditional distribution of the other X's given the X subject to missing
values.
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Algorithm 1 Simulation

1: repeat

2:  Randomly generate a set of DGP parameters

3:  Randomly generate a set of MGP parameters

4:  for each sample size n€{10,100,1000,10000, (100000 if running time al-

lows)} do

5: According to the DGP, generate a data set of size n. This will be the
complete training set. Also, according to the DGP, generate a data set
of the maximum size 10000 (or 100,000 if running time allows), which
will be the complete testing set.

6: According to the MGP, create missing values in the training set and
save these in new files as the training sets with missing values. Also,
create missing values in the complete testing set and save these in new
files as the testing sets with missing values.
for All of the different tree algorithms do

8: Run the tree algorithm on the training sets (complete or with missing
values) and test on the testing set (complete or with missing values).
9: Calculate the RelAcc values.
10: end for

11:  end for
12: until 5000 iterations of DGP/MGPs have been completed

2. The conditional distribution of Y given the X subject to missing values.
3. The conditional distribution of Y given all of the other Xs.

Given these factors, the full data set is generated according to the following
steps:

1. Determine the number, Kj, of Xs that are subject to missing values.
Define the distribution of X§ € X, for each i = 1... K{ by randomly gen-
erating P(X{=0) when simulating binary predictors or using uniform|0,1]
when simulating continuous predictors.

2. Determine two numbers K; and K5, where K; is the number of Xs that
are related to Xy and K» the number of Xs that are independent of Xj.
We divide the Xs into these two groups because only those that are related
to Xy may have a substitute effect when X has missing values (only those
that are related to Xy may help to recover some information lost due to
the presence of missing values).

3. When simulating binary predictors, for each X in the K; group, say X;
where j = 1...K;, randomly generate P(X; = 1|Xy). This is done
through a logit function

eﬁ(ﬁrﬁlg

P, = 1X) =
650+51&+ 1
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We use & to represent the augmented Xy vector which also includes all
the two way interactions between Xj € Xj.

By using the logit function, we are able to record the strength of the
relationship between the variables through the 3s. (s are generated in the
ranges (0,0.2), (0.2,1) and (1,2). The three ranges are classified as weak,
medium and strong, respectively. In the simulations, a range is picked
first then a [ is generated uniformly in that range. Or in another words,
the ranges are uniformly generated and fs then are uniformly generated
given the range.

When simulating continuous predictors, each X in the K group, say Xj,
where j = 1... K, is made correlated to one (randomly selected) missing
predictor, call it XJ. We first randomly generate a correlation, say p.
Then we generate X; as

1 X3
3 (U + 01)
J12Vi (5F)
where U is uniform (0,1) and Voj is the variance of Xg. It can be easily
shown that the correlation between X; and Xj is p. Since we control
p < 0.9 in our simulation, X is limited within roughly the range (0, 1.5),

which is about the same as the other Xs that are uniform(0,1), and the
standard deviation of X is similar to that of the other Xs.

. Randomly generate P(X) if the predictors are binary or use uniform(0,1)
for all the X;s in the Ky group.

. We now generate the parameters for Y, the target variable. Interaction
effects of those X's that are not subject to missing values are not included
because they do not interact with missing values. Moreover, we also ignore
higher order (3 or more) interactions.

. The complete data are then generated sequentially following the order of
Xo, Xs in K; group, Xs in Ky group, and Y.

The missingness is generated in a similar fashion, since the missingness is

a binary variable indicating missing or not. Again, a logit function is used to
define the conditional probability of the missingness given all of the variables.
Only the two-way interactions involving either X§ € X, or Y are included, since
other two-way interactions are not of interest and higher order interactions are
ignored. The set of parameters are generated first and then the complete data
and the missing values are generated accordingly.

The following simulations were carried out. Two different scenarios of the

last four simulations were done. The first scenario is that the six complete
predictors are all independent of the missing ones and the second scenario is that
three of the six complete predictors are related to the missing ones. Therefore,
ten simulations were done in total.
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1. 2x2 tables, missing values occur in the only predictor.

2. Up to seven binary predictors, missing values occur in only one predictor.
3. Eight binary predictors, missing values occur in two of them.

4. Twelve binary predictors, missing values occur in six of them.

5. Eight continuous predictors, missing values occur in two of them.

6. Twelve continuous predictors, missing values occur in six of them.

4.3.2 Comparing the full data performance of C4.5 and rpart

C4.5 is used to realize five of the six missing data methods, namely, complete
case only, probabilistic split, separate class, imputation and complete variable
only. These methods are always comparable. However, surrogate split is carried
using rpart, which makes it less comparable to the other methods because of
differences between rpart and C4.5 other than the missing data methods. To
remedy this problem, we tuned the rpart parameters so that it gives balanced
results compared to C4.5 (i.e. C4.5 has better performance for roughly equal
percentage of times as rpart has better performance).

When the data structure is relatively simple, rpart and C4.5 gave the same
result most of the time. With 2x2 tables, C4.5 and rpart almost always give the
same complete data result. With up to seven binary predictors, rpart can be
tuned so that in most cases (over 75% of the time), it gives the same complete
data results as C4.5.

It becomes more difficult to do this, however, as the number of predictors
increases and/or continuous predictors are included. The percentage of times
that the two have the same performance can be as low as 3.1%. The compa-
rability of rpart and C4.5 will be an issue when making comparisons between
surrogate split to the other missing data methods in the next section.

4.3.3 Comparing training set accuracy and testing set accuracy

Before analyzing the performance of the missing data methods, we first analyze
the effect of different data structures (strong signal vs. weak signal) on the
performance of the trees, as well as on the performance of the missing data
methods. In the simulations with all binary variables, not surprisingly, the in
sample performance is better than the out of sample performance most of the
time. This difference becomes smaller as the sample size grows, as the deviation
from the DGP is reduced by the increased sample size.

This relationship is clearest when C4.5 and rpart have the same complete
data performance. When they have different complete data performances, the
difference between the training set accuracy and the testing set accuracy does
not get as small as the sample size increases. This is so probably because only
when the signal in the DGP is strong and the noise is relatively low do C4.5 and
rpart pick up precisely the same signal, and thus have the same complete data
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performance. The low noise can be effectively overcome with increased sample
size. On the other hand, when the signal is low and the noise relatively strong,
C4.5 and rpart tend to disagree on what the pattern is, and the strong noise
cannot be effectively reduced with increased sample size. This proposition is
clearer in the results from simulations with continuous predictors, as shown in
Table 2. With continuous predictors, only when the signal is very strong are
C4.5 and rpart able to have the same complete data performance. Further, only
when this is true do the training set accuracy and testing set accuracy get closer
as sample size grows.

The pattern in the relative accuracies, however, is reversed in general, as
shown in Table 3. This is so because missingness is the only added factor to the
training set accuracy, while in the case of testing set accuracy, it is in addition to
the already existing deviation of the testing set from the true DGP. The effects
of the missingness and the deviation from true DGP are not purely additive.
Therefore, from a relative point of view, the harm done by the missingness to
the testing set accuracy is less than that to the training set accuracy. Thus
the relative training set accuracy tends to be lower than the relative testing set
accuracy.

The only exception is for the separate class method (and grand mean im-
putation method with continuous predictors, for reasons explained later) with
incomplete testing set. In this scenario, the separate class method explicitly
treats the MGP as part of the DGP and can often gain from the missingness.
Therefore, when deviation from the true DGP (including the MGP) exists, it
tends to hurt more. Therefore, relative training set accuracy is higher than
relative testing set accuracy for the separate class method.

The reversed relationship of the relative accuracies does not hold in the simu-
lations with continuous predictors when C4.5 and rpart have the same complete
data performance. That is, in this case, the relative training set accuracies
tend to be higher than the corresponding relative testing set accuracies. This
is presumably because in this case, the signal in the data set is so strong that
missingness hurts less than does the deviation from the DGP/MGP.

4.3.4 Comparing different missing data methods: relative accuracies

Several patterns emerge from the simulations. First, the complete case method
is most likely to have the worst performance, no doubt because of the loss of
information in dropping observations.

Consistent with the earlier analytical results and the simulated DGP/MGPs,
it is obvious in the simulations that the dependence relationship between the
missingness and the target variable is the most informative factor in differenti-
ating different missing data methods, and thus is most helpful in determining
the appropriateness of the methods. That is, Little and Rubin’s categorization
of missing completely at random (MCAR), missing at random (MAR) and not
missing at random (NMAR) (which is based upon the dependence relationship
between the missingness and missing values, and does not distinguish the de-
pendence of the missingness on Xs and Y') is not helpful in this context. These
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1. When C4.5 has better in sample complete data performance

Method Complete testing set | Incomplete testing set
Sample size n= | 100 | 1000 | 10000 || 100 | 1000 | 10000
C4.5 complete 100.0 | 99.9 | 99.8 - - -
Prob.Split 86.6 | 87.7 | 88.2 | 86.6 | 87.5 87.5
Comp.Case 51.0 | 58.0 | 61.7 || 51.0 | 57.9 61.7
Sep.class 89.4 | 90.4 | 90.0 | 954 | 97.7 99.0
Grand mode imp. | 93.6 | 94.6 | 94.7 96.2 | 98.2 99.3
Surr. Split 98.4 | 97.0 | 98.2 | 98.6 | 97.3 98.9
DeleteX 83.8 | 85.3 | 86.5 - - -
RPART complete | 99.5 | 98.6 | 99.5 - - -

2. When C4.5 and rpart have the same in sample complete data performance

Method Complete testing set || Incomplete testing set
Sample size n= | 100 | 1000 | 10000 || 100 | 1000 | 10000
C4.5 complete 93.8 | 57.9 50.7 - - -
Prob.Split 80.9 | 55.3 50.4 80.9 | 55.2 50.3
Comp.Case 59.8 | 58.6 54.5 59.9 | 58.8 54.3
Sep.class 85.7 | 63.2 54.7 90.2 | 72.9 69.0
Grand mode imp. | 89.2 | 69.3 60.9 90.4 | 73.3 69.7
Surr. Split 93.9 | 70.5 59.9 94.2 | 70.8 60.4
DeleteX 80.1 | 53.9 50.5 - - -
RPART complete | 93.8 | 57.9 50.7 - - -

3. When C4.5 has worse in sample complete data performance

Method Complete testing set || Incomplete testing set
Sample size n= | 100 | 1000 | 10000 || 100 | 1000 | 10000
C4.5 complete 76.4 | 79.7 83.8 - - -
Prob.Split 72.4 | 67.1 66.4 72.4 | 67.1 66.3
Comp.Case 52.0 | 57.3 56.3 52.0 | 57.3 56.3
Sep.class 777 | 74.1 72.0 84.7 | 83.7 84.2
Grand mode imp. | 82.3 | 80.5 78.8 85.4 | 84.7 85.6
Surr. Split 96.5 | 93.7 93.2 96.9 | 93.9 93.9
DeleteX 68.1 | 66.1 65.2 - - -
RPART complete | 99.7 | 99.5 99.6 - - -

Table 2: Comparing training set accuracy and new data accuracy. The entries
are the percentages of the Monte Carlo replications where training set accuracy
is greater than new data set accuracy. Shown in the table are the results from
simulations with twelve continuous predictors and six of them subject to missing
values.
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1. When C4.5 has better complete data performance

Method Complete testing set
Sample size n= 100 1000 10000

Prob.Split 47/13/94.1 | 1.1 /0.1/987 | 0.2/0.0/99.8
Comp.Case 1.6 /0.0/984 | 0.7/0.0/99.3 | 0.2/0.0/99.8
Sep.class 76/05/91.9 | 28 /0.1 /97.1 | 0.7/0.0/99.3
Grand mean imp. | 10.4 /0.6 / 83.9 | 54/0.0/945 | 1.9 /0.0 /98.1
Surr. Split 30.3/9.6/60.0 189 /34 /777 | 68/0.8/924
DeleteX 86 /15/8.9 | 1.1 /03/98.6 | 0.0/0.0/100.0
Method Incomplete testing set

Prob.Split 58/10/932 | 1.4/0.1/985 | 0.2/0.0/99.8
Comp.Case 1.6 /0.0/984 | 0.6/00/994 | 0.2/0.0/99.8
Sep.class 285 /04 /711 1222/01 /778 | 114 /0.0 / 88.6
Grand mean imp. | 37.9 /04 / 61.7 | 41.8 /0.0 / 58.2 | 40.2 / 0.0 / 59.7
Surr. Split 39.0/81/53.0]309/32/659|230/08/76.2

2. When C4.5 and RPART have the same complete data performance

Method Complete testing set

Prob.Split 7.0 /40.5 /525 | 2.7 /86.5/10.9 1.0/96.9 /2.1

Comp.Case 6.7 /26.1/67.2 | 285 /41.3 /30.3 | 28.0/51.5/20.5
Sep.class 15.5 /35.1 /49.4 | 27.7 / 56.1 / 16.3 | 22.8 / 66.2 / 11.0
Grand mean imp. | 19.9 / 35.2 / 44.9 | 34.1 /53.2 /12.7 | 31.7 /612 /7.1
Surr. Split 24.5 /352 /40.3 | 30.0/609/9.0 | 228 /74.1 /3.1
DeleteX 89 /413 /498 | 1.4/87.0/116 | 05/97.6 /1.9

Method Incomplete testing set

Prob.Split 7.7 /392 /531 | 27 /863 /11.0 1.1/96.9 /2.0

Comp.Case 6.6 /26.1 /673 | 29.0/41.3/29.7 | 28.7 /51.5 /19.7
Sep.class 26.9 /33.9/39.1 | 37.7 /534 /89 | 382 /596 /22
Grand mean imp. | 31.0 / 33.8 / 35.2 | 40.8 /52.3 /6.9 | 40.1 /588 /1.1
Surr. Split 279 /334 /387 | 31.5/608 /7.7 | 238 /741 /2.1

3. When C4.5 has worse complete data performance

Method Complete testing set

Prob.Split 150 /51.8 /332 | 68 /43.6 /496 | 5.7 /29.3/ 65.0
Comp.Case 12.7 /322 /551 | 14.7 / 21.6 / 63.7 | 11.0 / 15.2 / 73.8
Sep.class 345 /305 /350 | 220 /27.6 / 405 | 14.8 / 20.2 / 65.0
Grand mean imp. | 40.8 / 29.7 / 29.5 | 31.2 / 26.3 / 42.5 | 22.7 / 18.4 / 58.9
Surr. Split 204 /55 /741 | 155/ 1.7/827 | 9.3/0.1/90.6

DeleteX 657603 /332 | 327469 /499 | 2.8 /31.3 /653
Method Incomplete testing set

Prob.Split 166 /50.8 / 32.6 | 7.5 /433 /49.2 | 6.1 /292 ] 64.7
Comp.Case 12.7 /32,2 /55.1 | 14.8 /21.6 / 63.6 | 11.1 / 15.2 / 73.7
Sep.class 48.6 /29.8 /21.6 | 41.9 / 26.6 / 31.5 | 38.4 / 18.7 / 42.9
Grand mean imp. | 52.9 /29.2 / 17.9 | 49.3 / 25.9 / 24.8 | 48.3 / 18.2 / 33.5
Surr. Split 27.1 /4.4 / 68.5 21.6 /1.4 /76.9 16.4 / 0.1 / 83.6
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Table 3: Comparing relative training set accuracy and relative new data ac-
curacy. The entries are the percentages of the Monte Carlo replications where
relative training set accuracy is greater than/equal to/less than relative new
data accuracy. Shown in the table are results from simulations with twelve
continuous predictors and six of them subject to missing values.




Winning pet of each method Winning pct of each method Winning pet of each method

Winning pet of each method

Figure 4: A summary of the order of six missing data method in terms of
the relative complete training set accuracy (tested on the complete training set
itself). The Y axis is the percentage of times each method is the best (can be tied
with other methods). Shown are the results when C4.5 and rpart have the same
in sample complete data performance, with twelve continuous predictors and six
of them subject to missing values. The three digits indicate if the missingness is
dependent on the missing values, on other predictors and on the target variable,
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Figure 5: A summary of the order of six missing data method in terms of the
relative incomplete training set accuracy (tested on the incomplete training set
itself). The Y axis is the percentage of times each method is the best (can be tied
with other methods). Shown are the results when C4.5 and rpart have the same
in sample complete data performance, with twelve continuous predictors and six
of them subject to missing values. The three digits indicate if the missingness is
dependent on the missing values, on other predictors and on the target variable,
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Figure 6: A summary of the order of six missing data method in terms of the
relative complete new testing set accuracy (tested on a new complete testing
set). The Y axis is the percentage of times each method is the best (can be tied
with other methods). Shown are the results when C4.5 and rpart have the same
in sample complete data performance, with twelve continuous predictors and six
of them subject to missing values. The three digits indicate if the missingness is
dependent on the missing values, on other predictors and on the target variable,
respectively, with 0 meaning independent and 1 meaning dependent.
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Figure 7: A summary of the order of six missing data method in terms of the
relative incomplete new testing set accuracy (tested on a new incomplete testing
set). The Y axis is the percentage of times each method is the best (can be tied
with other methods). Shown are the results when C4.5 and rpart have the same
in sample complete data performance, with twelve continuous predictors and six
of them subject to missing values. The three digits indicate if the missingness is
dependent on the missing values, on other predictors and on the target variable,
respectively, with 0 meaning independent and 1 meaning dependent.
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patterns can be clearly seen in Figures 4 to 7 (these figures refer to the case
with twelve continuous predictors, six of which are subject to missing values,
but results for other situations were broadly similar). In the pictures, the three
digits indicate if the missingness is dependent on the missing values, on other
predictors and on the target variable, respectively, with 0 meaning independent
and 1 meaning dependent. Hence, the left column in the pictures shows the
results when the missingness is independent of the target variable and the right
column shows the results when the missingness is dependent on the target vari-
able. We can see that there are clear difference between the two columns, but
within each column there is essentially no difference.

Another clear observation is that the relative performance of all of the miss-
ing data methods is very different depending on whether or not there are missing
values in the testing set. This is detailed in the summary later.

In the following, we first summarize the results when the training set (either
the original complete training set or the one containing missing values) is used
in the testing phase. These results show the effect of the missing data on the
classification trees’ ability to find patterns in the original training data. Also, by
treating the pattern in the training data as the “true” DGP/MGP, these results
can be thought of as a bridge between expected performance (where is no devia-
tion from true DGP/MGP) and the real life situation (where deviation from the
true DGP/MGP exists in both the training set and the testing set). We then
summarize the results when a new testing set is used (either complete or with
missing values). These results have direct implications in terms of the predic-
tive ability of trees when applied to new data. Technically, the only difference
between using the training set as the testing set and using a newly generated
testing set is the existence of the deviation from the underlying DGP/MGP
when a new testing set is used. The deviation from the true DGP/MGP is a
potential confounding factor, but by making comparisons between the results of
these two situations, its impact can be isolated and this will help us gain a more
solid understanding of the effect of the missing data and other factors. As will
be seen, the impact of the deviation is in general not important. That is, the
patterns in the results are fairly consistent whether the training set or a new
data set is used as the testing set. Therefore, the patterns can be attributed to
the missing values.

Using the training set as testing set :

1. Complete training set (ref. Figure 4):

o Missingness does not depend on the target variable:
In theory, the complete case method can eventually recover the
DGP if the missingness does not depend on the target variable
and there are no missing data in the testing set. However, sim-
ulations show that this requires a very large sample size. In the
simulations, even when there are only eight binary predictors
(implying 2% = 256 cells if the data are partitioned to the finest
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level) and with sample size 10,000 (giving roughly 40 observa-
tions per cell), the complete case method has the worst perfor-
mance. The relative performance of the complete case method
gets even worse with more predictors or continuous predictors.
Since there are no missing data in the testing set, the rules built
by the separate class method and applied in the testing phase are
only the ones based on complete observations. However, at the
training phase, with the extra class in the data, the information
gain calculated by the separate class method and the complete
case method are different. This may lead to different trees, and
thus these two methods will not have same performance. The
simulations show that the separate class method tends to have
better performance than the complete case method when the
sample size is small. Their performances becomes more similar
as the sample size gets large.

The complete variable method consistently has the second worst
performance. The difference in performance from other meth-
ods is relatively smaller when there are more predictors or with
continuous predictors, which makes intuitive sense, since in those
cases, the loss due to deleting the missing variable(s) is relatively
smaller.

When rpart and C4.5 have the same complete data performance,
surrogate split has the best performance. Its advantage over the
other methods is larger when the number of predictors increases.
This is probably because the algorithm is more likely to find a
good surrogate when there are more predictors to choose from,
and thus surrogate split is more likely to perform better.

The relative performances of all of the other methods are the
same with or without surrogate split in the picture. When all of
the predictors are binary, the imputation method has the second
best performance, but the edge over the other methods is small.
However, with continuous predictors, all of the methods except
for the complete case method (the worst) have very similar per-
formance. The performance of all of the missing data methods
becomes more similar as sample size grows.

Missingness depends on the target variable:

In this case, probabilistic split appears to have the best per-
formance. This is consistent with the simulated 2x2 table re-
sults. When the predictors are continuous, the complete vari-
able method has a comparable performance. This is probably
because it is not too difficult to pick up the lost information in
the deleted predictor from the remaining continuous predictors
(in the simulation, there are always three remaining predictors
that are correlated with the deleted one(s)). When surrogate
split is comparable (i.e. rpart and C4.5 have the same complete
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data performance), its performance is slightly worse than that of
probabilistic split.

As was noted earlier, separate class should have similar behavior
as the complete case method. Not surprisingly, in the simula-
tions, the separate class method has the second worst perfor-
mance, only better than the complete case method.

2. Incomplete training set (ref. Figure 5):

e Missingness depends on the target variable:
Consistent with previous analysis, when the missingness depends
on the target variable, it is obvious that the separate class method
is the dominantly best performer. This is especially true with
binary predictors.
When the predictors are continuous, the imputation method is
comparable to separate class and sometimes even better. This
is because when the predictor is continuous, the imputed mean
is likely to be different from the existing values and effectively
creates a “separate class”. The fact that this “separate class”
is reasonably in line with the data, unlike the very large (or
small) value used in the separate class method, probably gives
it an advantage over the separate class method. This is not the
case for mode imputation with categorical predictors, because
the imputed mode is one of the existing categories and not a
“separate class”.

o Missingness does not depend on the target variable:
The same pattern holds even if the missingness does not depend
on the target variable. This is presumably due to the fact that
the training set itself is used as the testing set. In this case,
even though the missingness and the target variable are indeed
independent, they are likely to have some relationship in the
training set just by chance alone. The separate class method
can pick up this “relationship” in the training set. Even though
the “relationship” is just random fluctuation, it still exists in the
testing set (since the testing set is the training set), and therefore
the separate class method can benefit from it.
The complete case method, the complete variable method and
probabilistic split have the worst performance. Probabilistic split
attempts to mix the observations with missing values into the
complete ones, and as a result does not use the “information” in
the missingness effectively. However, the performance of all of
the missing data methods becomes more similar as sample size
grows.

Using a new data set as testing set :

As we have mentioned, by using a newly generated data set as the testing
set, random deviation from the underlying DGP/MGP is introduced into
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the simulation. It turns out that the impact of the deviation is generally
small, and the patterns in the results are similar to those when the training
set is used as the testing set. In the following summary, we will omit the
detailed explanation when it is the same as when the training set is used
as the testing set.

1. Complete new data (ref. Figure 6):

o Missingness does not depend on the target variable:
The complete case method can only recover the DGP with a very
large average sample size when the missingness is independent
of the target variable. When the complete data performance of
rpart is comparable, surrogate split does not seem to have an
advantage over other methods; its better complete training set
performance is likely due to over fitting of the original data.
There is no clear winner when the predictors are binary. The
complete variable method and the separate class method seem
to be a little worse than the others. When the predictors are
continuous, however, probabilistic split seems to be the best. The
complete variable method has the second best performance and
is comparable to probabilistic split with continuous predictors,
presumably for the same reason as when the training set is used
as the testing set (that the remaining continuous predictors can
compensate for the lost information in the deleted ones). The
performance of all of the missing data methods becomes more
similar as the sample size grows.
o Missingness depends on the target variable:

Similar to the complete training set case, when the missingness
depends on the target variable probabilistic split seems to be the
best. The complete variable method has the second best perfor-
mance and is comparable to probabilistic split with continuous
predictors, presumably for the same reason as given before (that
the remaining continuous predictors can compensate for the lost
information in the deleted ones).

2. Incomplete new data (ref. Figure 7):

e Missingness depends on the target variable:

The separate class method is the obvious dominant one when
the missingness depends on the target variable. When predictors
are continuous, the imputation method no longer has compara-
ble performance. The reason is that the imputed mean in the
training set is likely to be different from the imputed mean in
the testing set, and the pattern for this “separate class” learned
from the training set is not helpful in the testing phase. This re-
inforces that the creation of a “separate class” that is predictive
for the target variable is the key aspect in the gains in predictive
power.
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o Missingness does not depend on the target variable:

When the missingness does not depend on the target variable, the
results are almost identical to the situation with complete new
testing set. That is, there is no clear winner when the predictors
are binary, but if the predictors are continuous then probabilis-
tic split and the complete variable method seem to have the best
performance. In this case, there is no information about the tar-
get variable in the missingness, and therefore the mix-in strategy
of probabilistic split and the “ignore-it” strategy of the complete
variable method may be slightly better than trying to force the
gain out of the no-information missingness (as in separate class).
The performance of all of the missing data methods becomes
more similar as sample size grows.

Surrogate split has a slightly better in sample performance compared to
predictive performance when the predictors are binary and there are complete
predictors that are strongly related to the missing ones, but otherwise its perfor-
mance is unrelated to the strength of the association between the variable with
missing data and the other predictors. This might seem surprising (since an
uncorrelated surrogate would seem to have less success “replacing” the missing
variable), but since surrogate split works operates at the level of each node a
global measure of the strength between the predictors (e.g. correlation) might
not be a good indicator of its expected performance. Another possible explana-
tion is that the sample size at each node is too small for surrogate split to work
efficiently even when it would be expected to be effective.

5 A REAL DATA EXAMPLE

We now present a real data example. In this example, we try to predict a
company’s bankruptcy status given its key financial statement items. The data
are annual financial statement data and the predictions are sequential. That
is, we build the tree on one year’s data and then test its performance on the
following year’s data. For example, we build a tree on 1987’s data and test its
performance on 1988’s data, then build a tree on 1988’s data and test it on 1989
data, and so on.

The data are retrieved from Compustat North America (a database of U.S.
and Canadian fundamental and market information on more than 24,000 active
and inactive publicly held companies). Following Altman and Sabato (2005),
twelve variables from the data base are used as potential predictors: Current
Assets, Current Liabilities, Assets, Sales, Operating Income Before Deprecia-
tion, Retained Earnings, Net Income, Operating Income After Depreciation,
Working Capital, Liabilities, Stockholder’s Equity and year. The target vari-
able, bankruptcy status, is determined using two footnote variables, the footnote

25



for Sales and the footnote for Assets. Companies with remarks corresponding
to “Reflects the adoption of fresh-start accounting upon emerging from Chap-
ter 11 bankruptcy” or “Company in bankruptcy or liquidation” are marked as
bankruptcy. The data include all active companies, and span 19 years from
1987 to 2005. There are 177560 observations in the original retrieved data, but
76504 of the observations have no data except for the company identifications,
and are removed from the data set, resulting in 99056 observations. There are
19238 observations containing missing values and there are 56820 missing data
values.

According to the results in Section 4, there are two criteria that differentiate
the performance of different missing data methods, i.e. whether or not there are
missing values in the testing set and whether or not the missingness depends on
the target variable. In the bankruptcy data, there are missing values in every
year’s data, and thus missing values in each testing data set. To assess the
dependence of the missingness on the target variable, the following test is carried
out. First, define twelve new binary missingness indicators corresponding to
the original twelve predictors. The indicators take on value 1 if the original
variable is missing and 0 if the original value is observed for that observation.
We then build a tree for each year’s data using the indicators as the predictors
and the original target variable, the bankruptcy status as the target variable.
From 1987 to 2000, the tree makes no split, indicating the target variable is
not strongly related to the indicators (that is, missingness does not seem to
carry enough information about the bankruptcy status). From 2001 to 2005,
the classification tree consistently splits on the missingness indicators of Sales
and Retained Earnings. This indicates that the missingness of these predictors
has clear information about the target variable in these years, and the MGP
across the years is fairly consistent in missingness in sales and retained earnings
being related to bankruptcy status.

Given these observations and the fact that the sample sizes are fairly large,
we would make the following propositions based on our earlier conclusions. First,
from 1988 to 2001 (since the tree tested on 2001 data is built on 2000 data),
different missing data methods should have similar performance, with no clear
winners. However, from year 2002 to year 2005, the separate class method
should have the best performance. The actual relative performance of different
missing data methods is shown in Figure 8. Since surrogate split is realized
using rpart while probabilistic split is realized using C4.5, we run all of the other
methods using both rpart and C4.5 so that we can compare both surrogate split
and probabilistic split with all of the other methods. In Figure 8, the plots on
the left are the results from rpart, which include all of the missing data methods
except for probabilistic split. The plots on the right are the results from C4.5,
which include all of the missing data methods except for surrogate split. The
performances of methods common to both plots are slightly different because
of differences between C4.5 and rpart in splitting and pruning rules. Both the
accuracy and the true positive rates are shown. Since the number of actual
bankruptcy cases in the data is small, the accuracy is always very high. The
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true positive rate is defined as

TP — Number of correctly predicted bankruptcy cases

Actual number of bankruptcy cases

The graphs in the first and the second rows are for accuracies, with the first row
for the first time period from 1988 to 2001 and the second row for the second
time period from 2002 to 2005. The graphs in the third and the fourth rows are
for true positive rates, with the third row for the first time period from 1988
to 2001 and the fourth row for the second time period from 2002 to 2005. It is
apparent that in the first time period, there are no clear winners. However, in
the second time period, separate class almost always has the best performance,
in line with expectations.

6 CONCLUSION AND FUTURE STUDY

We have shown that depending on the testing set (whether or not it contains
missing values), different missingness patterns in predictor variables (does or
does not depend on the target variable) can have a strong effect on the effec-
tiveness of classification trees. That is, the two most important criteria that
differentiate the performance of different missing data methods are whether or
not the testing set is complete and whether or not the missingness depends on
the target variable. The analytical results and simulations imply the following.
1. Deleting the observations that contain missing values is in general not a
good approach. The only exception is when the sample size is very large
relative to the number of predictors (at least larger than 40 observations
per leaf node) and the missingness is independent of the target variable and
also the testing set is complete. In this case, by using only the complete
cases, the tree is expected to recover the underlying DGP.

If the sample size is large but not enough for the complete case method to
perform as expected, imputation and separate class tend to have better
performance than the other methods. But as the sample size decreases, the
relative performance of these two methods deteriorates and the advantage
shifts to probabilistic split.

2. When the missingness is independent of the target variable and there isn’t
a very large sample size, or if the missingness is dependent on the target
variable and the testing set is complete, then probabilistic split is a good
choice. If there is a large number of predictors and the completely observed
ones can pick up the information in the ones containing missing values,
then ignoring the missing predictors may also be a good idea.

3. When the missingness is dependent on the target variable and the test-
ing set also contain missing values, then treating the missing values as a
separate class is clearly the best method.
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Accuracy

True Positive Rate

True Positive Rate

Figure 8: The relative performance of all of the missing data methods on the
bankruptcy data. The left column are methods using rpart (includes all of the
methods except for probabilistic split) and the right column are methods using
C4.5 (includes all of the methods except for surrogate split). The top row are
performances in terms of accuracy while the bottom row are in terms of true
positive rate.
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Classification trees are designed for the situation where the target variable
is categorical, not just binary; it would be interesting to see how these results
carry over to that situation. Tree-based methodologies for the situation with a
numerical target have also been developed (i.e. regression trees), and the prob-
lems of missing data occur in that context also. A weakness of the simulations is
that the DGP and MGP are specified by the researcher; further analysis of real
data, where the DGP and MGP occur naturally, is needed. Given the results
here, it could be expected in each of these cases that a key aspect of tree algo-
rithm effectiveness would be whether missingness depends on the target, rather
than the MAR/MCAR/NMAR structure of the missingness.

7 APPENDIX: PROOFS OF THE
THEOREMS

The relative accuracy (RelAcc) when there are missing values in the train-
ing set but not in the testing set can be summarized into Table 4, where T'
is the threshold value (an observation will be classified as class 0 if the pre-
dicted probability for it to be 0 is greater than T'). The value of T reflects
the misclassification cost. It is taken as 0.5 reflecting a equal misclassification
cost. In Table 4, the columns show different rules given by the classification
trees when there are missing values and the rows show actual DGP’s. The
entries are the RelAccs under different scenarios. For example, all the entries
on the diagonal are one’s because the rules given by the classification trees
when there are missing values are the same as the true DGP’s and thus the
accuracy achieved by the trees are the same with or without the missing val-
ues and thus RelAcc = 1. Cell of row 1 and column 2 shows that if the true
DGP is P(Y =0|X =0) > T and P(Y = 0|X = 1) > T but the classifica-
tion tree gives rule P(Y = 0|X =0) > T and P(Y = 0|X = 1) < T when
there are missing values, i.e. P(Y = 0|X = 0,with missing value) > T and
P(Y = 0|X = lwith missing value) < T, then the relative accuracy is dter-
mined to be

P(X=0,Y=0+PX=1Y=1)
P(Y =0) '

Proof of Theorem 1 : The expected performance of the complete case method
when the missingness does not depend on the target variable and the test-
ing set is complete.

Proof. If only the complete cases are used, if P(Y|A =0,X) = P(Y|X),
then only the diagonal in Table 4 can be achieved, and thus there is no loss
in accuracy. A is the case-wise missingness indicator which equals 1 if the
observation contains missing values in one or more of the predictors or 0
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P(Y=0|X=0, with MissingData) >T >T
P(Y=0|X=1, with MissingData) >T <T
P(Y=0|X=0) P(Y=0|X=1)
P(X=0,Y=0)+P(X=1,Y=1)
>T >T : 1 ) P(Y=0)
P(Y=0
>T <T P(X:O,Y:O()+P()X:1,Y:1) : )1 : :
P(Y=0 P(X=0,Y=0)+P(X=1,Y=1
<T >T P(X=0,Y=1)+P(X=1,Y=0) | P(X=0,Y=1)+P(X=1,Y=0)
P(Y=0) P(X=0,Y=0)+P(X=1,Y=1)
<T <T P(Y=1) P(Y=1)
P(Y=0|X=0, with MissingData) <T <T
P(Y=0|X=1, with MissingData) >T <T
P(Y=0|X=0) P(Y=0|X=1)
P(X=0,Y=1)+P(X=1,Y=0) P(Y=1)
- - ( ShEaal ) =1
P(X=0,Y=1)+P(X=1,Y=0 P(Y=1
>T <T P(X=0,Y=0)+P(X=1,Y=1) | P(X=0,Y=0)+P(X=1,Y=1)
_ P(Y=1)
<=T >T 1 P(X=0,Y =1)1 P(X=1,Y=0)
P(X=0,Y=1)+P(X=1,Y=0)
<T <T PV =1) 1

Table 4: Rel Acc of tree built on data with missing values and tested on complete
data set when there is no variation from true DGP

if the observation does not contain missing values in any of the predictors.
Y is the target variable and X is the vector of the predictors.

This condition will be satisfied if and only if the MGP is conditionally
independent of Y given X, i.e. P(A=0|X,Y)=P(A=0|X).

1 . LL:”
P(A=0IX)Y)=

P(A=0,XY)
P(X.Y)

_ P(Y|A=0,X)P(A=0,X)

P(X,Y)

_P(Y|X)P(A=0.X)

PY|X)

P(X)

—P(A = 0]X)

2. LL<:77
P(Y[A=0X)=

P(A=0,X.Y)
P(A=0,X)

_ P(A=0|X,Y)P(X.Y)

P

(A=0,X)

P(A=0|X)P(X.Y)

= PA=0X)P(X)
_P(X.Y)

T PX)

=P(Y|X)

O

Proof of Theorem 2 and 3 : The expected performance of the complete case
method when the missingness depends on the target variable and the

testing set is complete.
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We first observe the following lemmas.

Lemma 1. For the partition defined by the tree built on the complete
data (and not changed by missing values), let the k' section contains P*
percentage of data and within the partition, the majority class have the
percentage Pf%j, (Then we have Z,If:l P* = 1. The full data set accuracy,

i.e. the accuracy achievable with the full data set, is Y., PP~ ..)

mj-*
The rule for the k' section will be classifying it as the majority class of
the section. The impact of missing data on its rule is to either leave it
unchanged or make it classify the data as the minority class instead of the
magjority class.

The smallest missing rate needed in k' section to change the rule is P(A =
11k) = QPflj—l, where A is defined as in Theorem 1, i.e. it is the case-wise
indicator, which takes value 1 if the observation contains missing value or
0 otherwise. If the rule is changed the loss in accuracy within that section
is 2PF; — 1.

Proof. We assume the partition of the data is not changed by the missing
values. The structure of the trees need not to be the same because different
trees may lead to the same partition of data.

For any k, to make the rule of the k*" section change, we need to observe
more minority class cases than the majority ones within that section. To
achieve this in the most efficient way, we only make the majority ones
missing. Originally, there are P,’flj majorities and 1 — Pf@j minorities.
Only when there are P/jU» -(1- Prﬁj) = 2P7’f”» — 1 majorities missing, it
will become less than the minorities. So this is the smallest missing rate
we need to make the rule change.

After the rule is changed, only 1 — P¥

mj
be correctly classified. Therefore, the loss in accuracy is Pfflj -(1- Plfw-) =
2Py —1.

of the data, i.e. the minorities, will

O

Lemma 2. For a given data set and the partition defined by the tree
built on the full data set (which is not changed by the missing values), the
largest loss in accuracy is ), 2P1§1j — 1. The smallest missing rate needed

to achieve it is also Y, 2Pk — 1.

Proof. The largest loss is achieved if and only if the rules are changed in
every section of data in the partition. The result then follows from Lemma
1.

O

Lemma 3. For a certain missing rate, say Py, the largest effect it can
have on the classification accuracy of any data that won’t be split is P,
itself.
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In this case, the data set has its majority percentage Pp,; = %(1 + Pn).

Proof. Similar to the proof of Lemma 1, for missing values to have an
impact on the classification rule, it has to switch the order status of the
majority and minority. To achieve this, it has to be that P,; — (1 —
P.;) < P,,. We know that once the rule is changed, the loss in accuracy
is Pyj — (1 — Pp;). Therefore, the largest loss is P, when the equality
holds. In this case, we have P,,; = %(1 + P,).

O
We now prove Theorem 2.

Proof. For any data set, once it is partitioned and the partition is not
changed by missing values, the rules in different sections of data are inde-
pendent of each other, so we can look at them separately.

Suppose the data are partitioned into K segments, in which some contain
missing data and the others do not. Let K be the set of sections whose
rules are changed by missing data and K7 be the set of all other sections.
Also let the k*" segment (k= 1...K) contain proportion P* of the data.
We have Z,f;l Pk =1.
Conditionally, let the k' segment (k € Kp) contains PX of missing data.
Then we have

Z Pk PR < P,

ke Ko

For the k" segment (k € K;), by Lemma 3, the largest possible loss in
accuracy is P and it occurs if and only if Pk = (14 Pp). Therefore,
the possible loss for the whole data set is

> PPt < Py,
ke Ko

the largest loss being achieved when the equality holds. In that case, the
rules in all of the categories that contain missing values are changed and
the maximum loss is P,,.

O
We now prove Theorem 3.

Proof. Assuming the partitions of data are not changed by the missing
values, we have
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Zzlle P,flek - ZkeKO (loss in accuracy in k" segment)
K k
Zk:l ‘ijf)]C
Y ke K, (loss in accuracy in kth segment)

S P Pt

mj

RelAce =

=1

> kex, (loss in accuracy in kth segment)

ZkGKo PTI;Lij + ZkGKl Pflfljpk

This is an increasing function of ), . P,’flek in the denominator, which
is independent of other factors; setting it to zero maximize the relative
accuracy, so

> kek, (loss in accuracy in k" segment)
a k  pk
Ek:EKo PmJP

RelAce < 1

Denote the numerator ), - (loss in accuracy in kth segment) as a. Now,
from the proof of Theorem 2, the numerator a < P,, and the denominator
> keKo Pfflek = 1(1+a). So,

a
RelAce < 1— ——
%(1+a)

This is a decreasing function of a and subject to a < P,,. Therefore, the
minimum RelAcc is achieved when a = P,,. This gives us

Pr,

RelAce < 1— ——m———
1+P,)

—
|

I

e

H
+
3

O

Proof of Theorem 4 : Some properties of the probabilistic split when the
missingness does not depend on both the predictor and the target variable.

Proof. 1. Part 1
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e If the MGP is independent of YV given X, i.e. P(M|X,Y) =
P(M|X) then P(Y|M,X) = P(Y|X) by the proof of Theorem
1.

The rules given by probabilistic split when there are missing
values are as follows:

P(Y =0|X =0, Prob_split)

= HY:mM:Osz( =0)+P(Y =0|M = 1)P(M

= PY=0X=0PM=0)+PY =0M=1)PM=1)

= PY =0X=0)PM=0)+(P ( =0,X=0/M=1)
+P(Y =0,X=1M =1))P(M =1)

= P(Y =0|X =0)P(M (D+(( —0[M=1,X =0)P(X
+PY =0M=1,X=1)P(X=1M=1))P(M =1)

=1)

=0|M =1)

= P(Y =0|X =0)P(M =0) + (P(Y = 0|X = 0)P(X =0|M = 1)

+P(Y =0|X =1)P(X =1|M = 1))P(M =1)

= P(Y =0|X =0)P(M =0)+P(Y =0|X = 0)P(M =1, X =0)

+P(Y =0|X = 1)P(M =1,X=1)

= PY=0X=0)(P(M=0)+P(M=1,X=0))
+PY =0X=1)PM=1,X=1)
and following the similar route, we can get
P(Y =0|X =1, Prob_split)

= PY=0X=1)(P(M=0)+PM=1,X=1))
+P(Y =0X =0)P(M =1,X =0).

Notice that
PM=0)+PM=1,X=1)+PM=1,X=0)=

Therefore, both P(Y = 0|X = 0, Prob_split) andP(Y = 0|X =
1, Prob_split) are weighted averages of P(Y = 0|X = 0) and
P(Y =0|X =1).
It follows that if both P(Y = 0|X =0) and P(Y = 0|X = 1) are
greater (less) than 0.5, then both P(Y = 0|X = 0, Prob_split)
and P(Y = 0|X = 1, Prob_split) are also greater (less) than 0.5.
o If the MGP is independent of X given Y, without loss of gener-
ality, we prove the case when P(Y = 0|X =0) > T = 0.5 and
P(Y =0[X =1)>T = 0.5.

P(Y =0|X =0, Prob_split)
P(M=0,X=0,Y =0)

- ’ P(M =0)+ P(Y =0|M =1)P(M

P(M =0,X =0)

_ P(M=0|X=0,Y =0)P(X =0,Y = 0)P(M = 0)
B P(M =0,X =0) +P(M
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P(M =0]Y =0)P(X =0,Y = 0)P(M = 0)
P(M =0,X =0)
+P(M=1,X=0,Y =0)+P(M=1,X =1,Y =0)
P(M =0]Y =0)P(Y =0|X = 0)P(M = 0)
P(M =0,X =0)
+P(M=1,X=0Y =0)P(Y =0)+ P(M =1,X = 1|Y = 0)P(Y = 0)
P(M =0]Y = 0)P(Y = 0|X = 0)P(M =0)
P(M =0,X =0)
+P(M = 1Y = 0)P(X = 0]Y = 0)P(Y
+P(M =1|Y =0)P(X =1|Y = 0)P(Y
P(M =0]Y = 0)P(Y = 0|X = 0)P(M =0)
P(M =0,X =0)
+P(M =1|Y = 0)P(Y = 0|X = 0)P(X
+P(M =1[Y =0)P(Y = 0|X = 1)P(X =
P(M =0]Y = 0)P(M = 0)
P(M =0,X =0)
+P(M =1y =0)P(X =0) + P(M = 1|Y = 0)P(X =1))
P(M = 0]Y = 0)P(M = 0)
= T P(M =0,X =0)
> T(P(M=0[Y =0)+ P(M=1]Y =0))
=T

0)
0)

0)
1)

> T

+P(M =1y =0))

similarly, we have P(Y = 0|X = 0, Prob_split) > T.
2. Part 2
e If the MGP is independent of Y given X, then from the proof of
part 1,
P(Y = 0|X = 0, Prob_split)
= PY=0X=0)(P(M=0)+P(M=1,X=0))
+PY =0 X=1)PM=1,X=1)

and

P(Y =0|X =1, Prob_split)
= PY=0X=1)(P(IM=0)+PM=1,X=1))
+P(Y =0|X =0)P(M =1, X =0).

Taking the difference, we get

P(Y =0|X =0, Prob_split) — P(Y = 0|X = 1, Prob_split)
= PY=0X=0)(P(M=0)+P(M=1,X=0))
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+PY =0|X =1)P(M =1,X =1)

—[P(Y =0|X = 1)(P(M =0)+ P(M =1,X = 1))
+P(Y =0|X =0)P(M =1,X =0)]

P(Y =0|X =0)P(M =0) — P(Y =0|X = 1)P(M =0)
(P(Y =0|X =0) — P(Y =0|X =1))P(M = 0).

Without loss of generality, assume P(Y = 0|X = 0, Prob_split) >
T and P(Y = 0|X = 1, Prob_split) < T. It then follows that
P(Y =0|X =0) > P(Y =0|X = 1). There are three possibili-

ties:

(a) P(Y =0|X =0)>T > P(Y = 0|X =1)

(b) T>PY =0X=0)>PY=0X=1)

() P(Y =0|X =0) > P(Y =0|X =1) > T

Conditions (b) and (c) are not possible because in these two
cases, X is actually not informative and by Part 1, probabilistic
split will show they are not informative. Therefore, it holds that
PY=0X=0)>T>PY=0X=1).

If the MGP is independent of X given Y, i.e. P(M|X,Y) =
P(M|Y), we have

P(Y =0|X =0, Prob_split)
P(M=0,X=0,Y =0)
P(M =0,X =0)

P(M =0|X =0,Y = 0)P(X =0,Y = 0)P(M = 0)

P(M =0)+P(Y =0|M =1)P(M =1)

P(M=0X=0Y=0P(X=0Y=0+P(M=0X=0Y=1)PX=0Y=1
+P(Y =0|M =1)P(M = 1)
P(M =0]Y =0)P(X =0,Y = 0)P(M = 0)
P(M =0]Y =0)P(X =0,Y =0) + P(M =0]Y = )P(X =0,Y = 1)
+P(Y =0|M =1)P(M = 1)
P(M =0|Y =0)P(Y = 0|X = 0)P(M = 0)
P(M =0]Y =0)P(Y =0[X =0)+ P(M =0]Y = 1)P(Y = 1|X =0)
+P(Y =0|M = 1)P(M = 1),

and following the same route, we have

P(Y =0|X =1, Prob_split)

P(M = 0]Y = 0)P(Y = 0|X = 1)P(M = 0)
P(M=0]Y =0)P(Y =0/ X =1) + P(M =0]Y = )P(Y = 1|X = 1)
YP(Y = 0|M = 1)P(M = 1).

Therefore,

P(Y =0|X =0, Prob_split) — P(Y = 0|X = 1, Prob_split)
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P(M =0[Y =0)P(Y =0|X = 0)P(M = 0)
P(M =0]Y =0)P(Y =0[X =0)+ P(M =0]Y = 1)P(Y = 1|X =0)
P(M =0Y =0)P(Y =0|X = 1)P(M = 0)
P(M=0Y =0)P(Y =0 X =1)+ P(M =0Y = )P(Y = 1|X =1)
= [P(Y =0/X =0)P(M =0]Y =0)P(Y =0|X =1)
+P(Y =0/X =0)P(M =0]Y = 1)P(Y =1|X =1)
—P(Y =0|X = 1)P(M =0]Y = 0)P(Y =0/X = 0)

P(M =0[Y = 0)P(M = 0)
D1 D,
P(M =0[Y =1)P(M =0]Y = 0)P(M = 0)

—P(Y =0|X =1)P(M =0]Y = 1)P(Y = 1|X = 0)]

= [P(Y=0]X =0) - P(Y =0|X = 1)] ——

= [PY=0X=0)—PY =0X=1)]K
where
Dy =PM=0]Y =0)P(Y =0/X =0)+P(M =0]Y =1)P(Y =1|X =0),

Dy =PM=0Y=0PY=0X=0)+P(M=0Y=1)PY=1X=1)
and

P(M =0[Y = 1)P(M = 0|Y = 0)P(M = 0)
D1 D, ‘

K =

Since K is always positive as long as there are different Y values
observed, we can see that the probabilistic split preserves the
order of the conditional probability of YV given X.
Now, without loss of generality, assume P(Y = 0|X = 0, Prob_split) >
T and P(Y = 0|X =1, Prob_split) < T. It follows that P(Y =
0)X = 0) > P(Y = 0|X = 1) because probabilistic split pre-
serves the correct order. There are three possibilities:
(a) PY =0 X=0)>T>PY=0X=1)
(b)) T>PY =0X=0)>PY=0X=1)
(¢) PY=0X=0)>PY=0X=1)>T
Conditions (b) and (c) are not possible because in these two
cases, X is actually not informative and by the earlier result in
Part 1, probabilistic split will show they are not informative.
Therefore, it holds that P(Y =0|X =0) > T > P(Y =0|X =
1).
3. Part 3
The results of Part 1 and Part 2 lead to the simplification of Table 4
into Table 5.

Without loss of generality, we provide the proof only for the case
when P(Y =0/X =0) >T and P(Y =0/X =1) <T but P(Y =
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Simplified >T >T | <=T <=T
possibilities >T <=T | >T <=T
Full data
>T >T 1 — — —
_ P(Y=0) P(Y=1)
>T <=T P(X=0,Y=0)+P(X=1,Y=1) 1 - P(X=0,Y=0)+P(X=1,Y=1)
_ P(Y=0) P(Y=1)
<=T >T | px=oy=0+P(X=1.y=0) — 1 P(X=0,Y=1)1 P(X=1,Y=0)

Table 5: RelAcc with a 2x2 table of probabilistic split when the missingness is
independent of either X or Y or both

0|X = 0,prob_split) > T and P(Y = 0|X = 1,prob_split) > T,
where RelAcc is
P(Y =0)
P(X=0Y=0+P(X=1Y=1)
It suffices to show that P(Y =0) > 0.5
e If M is independent of Y given X,

P(Y =0)
= PX=0Y=0+P(X=1Y=0)
= PM=0,X=0,Y=0)+PM=1,X=0,Y=0)
+P(Y =0|X =1)P(X =1)
= PY=0M=0,X=0PM=0,X=0)
+PY =0M=1,X=0P(M=1,X=0)+P(Y =0X =1)P(X =1)
=l PY=0X=0PM=0,X=0)+PY =0X=0PM=1,X=0)
+P(Y =0|X =1)P(X =1)
> PY=0X=0PM=1,X=0)+PY =0X=1)PM=0,X=0)
+P(Y =0|X =1)P(X =1)
= PY=0X=1)(PM=0)+P(M=1,X=1))
+P(Y =0/X =0)P(M =1,X =0)
= P(Y =0|X = 1, prob_split)
> 05

RelAcc =

where 1 follows because P(Y|M,X) = P(Y|X) and 2 follows
because P(Y = 0|X =0) >T > P(Y = 0|X = 1). Therefore,

P(Y =0)
P(X=0,Y=0)+P(X =1,Y =1)

e If M is independent of X given Y,

>P(Y =0)>0.5

P(Y =0)=P(M=0,Y =0)+ P(M =1,Y =0)
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and by assumption,

P(Y =0|X = 1,prob_split)
— P(Y=0M=0,X=1)P(M=0)+P(M=1Y =0)
> 0.5
If P(M =0,Y =0) > P(Y = 0[M = 0,X = 1)P(M = 0), then
PY =0) > P(Y = 0|X = 1,prob_split) > 0.5, it suffices to
show

P(M=0,Y =0)>P(Y =0/M =0,X =1)P(M =0).

By the earlier results in Part 2, probabilistic split preserves the
order of conditional probabilities of Y given X when the miss-
ingness is conditionally independent of X given Y, i.e., in this
case, since

P(Y =0X=0)>T>P(Y =0|X =1)

we have

P(Y =0|X =0, Prob_split) — P(Y = 0|X = 1, Prob_split)
= P(Y =0M=0,X=0)P(M=0)+PY =0|M=1)P(M = 1)
—(P(Y=0M=0,X=1)P(M=0)+PY =0M=1)P(M =1))
= (P(Y=0/M=0,X=0)—P(Y =0[M=0,X = 1))P(M = 0)
> 0.
That is, P(Y = 0|M = 0,X = 0) > P(Y = 0|M = 0,X = 1).
We then have
P(Y =0[M =0,X =0)>P(Y =0|M=0,X =1)
= P(Y =0M=0,X=0)P(M=0,X =0)
>P(Y =0|M =0,X =1)P(M =0,X =0)
P(M=0,X=0,Y=0)>P(Y =0/M=0,X=1)P(M=0,X =0)
P(M=0,X=0Y=0)+P(M=0,X=1Y =0)
SP(Y=0M=0X=1)P(M=0,X=0)+P(M=0,X=1,Y =0)
= P(M=0,Y =0)
>PY =0M=0X=1)PM=0X=0)+P(Y =0M=0X=1)P(M=0,X
P(M=0Y=0)>P(Y =0M=0,X =1)(P(M=0,X =0)+P(M=0,X =1)
P(M=0,Y =0)>P(Y =0|M =0,X =1)P(M = 0)

oy

4l

O

Proof of Theorem 5 : Some properties of the mode imputation when the
missingness does not depend on the target variable.
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Proof. Without loss of generality, we assume that P(X = 0|M = 0) >
P(X = 1|M = 0), i.e. there are more X=0 cases observed than X=1
ones. As a result, all of the missing X values will be labelled as X=0,
the observed mode. Then the decision rules when the mode imputation is
used can be written as

P(Y =0|X =0, Imp)
P(M=0,X=0Y=0)+PM=1Y =0)
P(M=0,X=0)+P(M=1)
PM=0,X=0Y=0+PM=1,X=0Y=0+PM=1,X=1Y=0)
P(M=0,X=0)+P(M=1)

B HX—OY—)+H =1,X=1Y =0)

B PX=0+PM=1,X=1)

_ P(X —OY—)+P(—mM:LX:an:LX:U
N PX=0+PM=1,X=1)

PY=0X=0PX=0)+PY=0X=1)PM=1,X=1)
PX=0)+P(M=1,X=1)
P(Y =0|X =1, Imp)
= PY=0M=0,X=1)
= PY=0X=1)

1. Notice that P(Y = 0|X = 0,Imp) is a weighted average of P(Y =
0]X = 0) and P(Y = 0|/X = 1). Therefore, if they are both larger
(or smaller) than 0.5, P(Y = 0|X = 0,Imp) will also be, and thus
it gives the same rule as P(Y = 0|X = 0). Moreover, P(Y = 0|X =
1,Imp) = P(Y = 0|X = 1), so it also gives the correct rule.

2. Suppose

P(Y =0|X =0,Imp) > 0.5
P(Y =0|X =1,Tmp) < 0.5,

then P(Y = 0|X = 1) = P(Y = 0|X = 1,Imp) < 0.5, which is
always correct. Moreover, notice that P(Y = 0|X = 0,Imp) is a
weighted average of P(Y = 0|X = 0) and P(Y = 0|X = 1). Since
P(Y =0|X =0,Imp) > 0.5 and P(Y = 0|X = 1) < 0.5, we must
have P(Y = 0|X = 0) > 0.5. Therefore, P(Y = 0|X = 0, Imp) gives
the correct rule.

3. Again the possibilities simplify to Table 5. Without loss of generality,
we prove the situation when both P(Y = 0|X = 0, Imp) and P(Y =
0|X =1, Imp) are greater than 0.5, that is

P(Y =0|X =0,Imp)
P(Y =0/X =0)P(X =0)+ P(Y =0|X =1)P(M =1,X = 1)
PX=0+P(M=1,X =1)
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> 0.5

P(Y =0|X =1, Imp)
= PY=0X=1)
> 0.5

Under the assumption that P(X = 0|M = 0) > P(X = 1|M = 0),
the missing values have an effect only if P(Y = 0|X = 0) < 0.5
and P(Y = 0|X = 1) > 0.5. In this case, the relative accuracy is
P(XZO}YL()};;O()X:LY:O). This is the cell of the 3" row and the 1%
column in Table 5.

But,
PY =0)
P(X=0,Y=1)+PX=1Y=0)
> P =0)
= PX=0Y=0+PX=1Y=0)

>1 05(P(X=0)+P(M=1,X=1))—P(Y =0|X =1)P(M =1,X = 1)

+

ol
>
Il

~
Il

= 05(PX=0+PM=1,X=1)+PY =0X=1)(P(X=1)-P(M=1,X =1))
= 05(1-PM=0,X=1)+PY=0X=1)PM=0,X=1)

= 05-05P(M=0,X=1)+PY =0X=1)PM=0,X=1)

>2 0.5-05P(M=0,X=1))+05P(M =0,X =1)

> 05

Where 1 follows because

P(Y =0|X =0, Imp)
P(Y =0|X = 0)P(X =0) + P(Y =0|X = )P(M =1, X = 1)
PX=0)+P(M=1,X =1)

> 0.5
and by rearranging the terms,

P(Y =0|X = 0)P(X =0)
= P(X=0,Y =0)
> 05(P(X=0)+P(M=1,X=1)-PY =0X=1)PM=1,X =1),

where 2 follows because P(Y=0|X=1)=P(Y=0|X=1,Imp)>0.5.

O

Proof of Theorem 6 : The dominance of the separate class method when
there are missing values in both the training set and the testing set and
the missingness depends on the target variable.
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Proof. When there are missing data in X in both the training set and the
testing set, the finest partition of the data will be X =0, X =1 and X
is missing. The best rule we can derive is to classify the majority class in
each of these three partitions. This is achieved by using the separate class
method.

O
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