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This paper demonstrates that "social network collaborative filtering" (SNCF), 
wherein user-selected like-minded alters are used to make predictions, can rival 
traditional user-to-user collaborative filtering (CF) in predictive accuracy. Us-
ing a unique data set from an online community where users rated items and 
also created social networking links specifically intended to represent like-
minded “allies,” we use SNCF and traditional CF to predict ratings by net-
worked users. We find that SNCF using generic "friend" alters is moderately 
worse than the better CF techniques, but outperforms benchmarks such as by-
item or by-user average rating; generic friends often are not like-minded.  
However, SNCF using "ally" alters is competitive with CF. These results are 
significant because SNCF is tremendously more computationally efficient than 
traditional user-user CF and may be implemented in large-scale web commerce 
and social networking communities.  It is notoriously difficult to distinguish the 
contributions of social influence (where allies influence users) and "social” 
selection (where users are simply effective at selecting like-minded people as 
their allies).  Nonetheless, comparing similarity over time, we do show no evi-
dence of strong social influence among allies or friends. 
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1. INTRODUCTION  

One of the main challenges faced by providers of goods and information in the 
Internet age is to enable users to find relevant items, when the number of items is 
too large to support traditional browsing. This challenge arises in e-commerce 
websites as well as sites where the items are shared freely and the provider de-
rives other benefits from increasing user visits and satisfaction. This latter cate-
gory includes a range of online community, discussion, and social networking 
sites. 

Recommender systems are thus relevant in a wide range of online settings. When 
the number of items and users is large, on the order of thousands or millions, col-
laborative filtering (CF) methods are a popular choice because they take advan-
tage of the plentiful data on user activity without having to perform a detailed 
content-based analysis on the items (e.g. [Goldberg et al. 1992, Resnick et al. 
1994, Adomavicius and Tuzhilin 2005]). Since web technologies can easily allow 
providers to present a different set of recommendations for each user, user-user 
CF is particularly relevant. This form of CF tailors its recommendations to spe-
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cific users by examining the behavior of algorithmically identified like-minded 
"alters" (sometimes called "neighbors" in the literature) and basing its sugges-
tions on the alters' past behavior. 

However, computational cost remains a difficult hurdle in user-user CF because 
of the time required to identify the best alters from among the thousands or mil-
lions of candidates. Indeed, while CF is a popular choice for large Internet re-
commenders such as Amazon, Yahoo, and Netflix, these systems use item-to-
item filtering only [Sarwar et al. 2000, Linden et al. 2003, Mull 2006, Bennett 
2006] primarily because user-to-user algorithms are too computationally expen-
sive (e.g., [Linden et al. 2003]). Although clustering methods designed to auto-
matically identify groups of similar users have been combined with CF in a num-
ber of ways (e.g., [Anglade et al. 2007, Koren 2008], these methods do not sig-
nificantly improve the cost problem and to our knowledge are not in use in indus-
try.  

The recent rise of online social networking provides a new source of similarity 
data for recommender systems, in the form of explicit user-generated connections 
linking pairs of users. Social networking has undergone a phenomenal rise in 
popularity since its inception in 2002 to the point that some 55% of U.S. teenag-
ers, and as many as 90% of students at some U.S. colleges participate to some 
degree, most of them at least once per day [Lenhart and Madden 2007, Ellison et 
al. 2006]. Even among older people, social networking is gaining traction, and 
demographic and business trends indicate that its popularity and reach will only 
continue to increase (e.g., [Richtel 2007]). 

Social networking links are used to facilitate communication and to allow users 
to stay updated on their alters' recent activities, ideas and opinions. The most 
common type of link by far is the "friend" link, a rather vague reciprocal connec-
tion that correlates only weakly to the traditional concept of friendship [Boyd 
2006]. In this paper, we also examine “ally” links, which users established spe-
cifically when they shared opinions, preferences, or taste within a given context. 
These links are particularly relevant to recommender systems, as we show. 

Since Internet social networking has attained mainstream popularity, it is now 
more than reasonable to consider how social networking ties might impact re-
commender systems. Indeed, retailers such as  Amazon and Ebay have recently 
added relatively successful social networking features to their websites [Amazon 
Friends 2008, Ebay Neighborhoods 2008], providing evidence that Internet users 
will engage in social networking within a specific commercial setting. In these 
settings, the social network helps users select items to purchase. In other in-
stances such as last.fm [BBC 2003], the goal is to enhance users’ enjoyment of 
the site’s content. Meanwhile, social networking giants Myspace and Facebook 
have ventured into the world of eCommerce with some success as well [Bustos 
2007, Olsen 2006].   

In spite of these developments, there has been little academic work on the subject 
to date. Previous work has centered on techniques for inferring a social network 
from existing copurchase or corating data (e.g. [Kautz et al. 1997, Perugini et al. 
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2005]). Applications of these include alleviation of the sparseness (cold-start) 
problem [Huang et al. 2004] and the study of the spread of recommendations 
over a network [Mirza et al. 2003, Leskovec et al. 2007]. The propagation of trust 
through implicit [Papagelis et al. 2005, Weng et al. 2006]  and explicit [Massa 
and Avesani 2004, Golbeck 2006] connections has also been studied. The results 
show the better performance especially in cold-start situations. However, it re-
mains unclear how to successfully elicit trust evaluation from users in large-scale 
online systems, and a trust network may not be as easily generated as modern on-
line social networks. 

Given an existing social network, the simplest way to apply it to collaborative 
filtering is to replace the algorithmically selected alters of traditional CF by user-
selected social network alters. In doing this, the computationally intensive step of 
identifying like-minded alters is removed from the CF algorithm, thereby reduc-
ing the complexity from O(N2+NM) to O(1) for a system of N users and M items 
(the number of social networking alters is generally bounded by a constant much 
smaller than N or M for realistic systems—very rarely exceeding 100 or 200 
[Golder et al. 2007]). This procedure, called "social network collaborative filter-
ing," was proposed by Zheng et al. [2007]. In this preliminary study, the data 
were rather sparse and SNCF on the few friends links was outperformed by tradi-
tional CF in predicting which user would purchase which item. 

This paper presents an empirical study of social network collaborative filtering 
(SNCF) using a comprehensive data set of 1.2 million votes (ratings) and 25,000 
social networking links from Essembly.com. This site invited users (i) to vote on 
each other’s user-generated resolves, expressing four levels of agreement or dis-
agreement, and (ii) to form social networking links. The Essembly social network 
is notable because users created both "friends" links and "allies" links, this latter 
a type of preference link implying like-mindedness. Other than this special link 
type, however, Essembly is strikingly similar to other online communities in its 
patterns of user activity [Wilkinson 2008] and social (friends) network structure 
[Hogg et al. 2008], suggesting that it is representative of online communities in 
general.  

We show that SNCF using friends links improves on simple benchmarks such as 
by-user and by-item average, and performs as well as naïve forms of traditional 
CF, although not as well as other forms. This result is perhaps not surprising be-
cause friends tend to share similarities only to a limited degree [McPherson et al. 
2001]. However, since SNCF is so computationally efficient, a friends approach 
represents a reasonable alternative to traditional CF in some situations.  

We also show that when ally links are used in SNCF, it is competitive with even 
the best simple CF methods, and outperforms most CF.  This is a significant re-
sult from a practical standpoint, for reasons of computational complexity and 
because of the popularity of online social networking.  

We supplement these results with a comparison of the similarities of Essembly 
friends and allies, in terms of their voting histories. The results show that allies 
are significantly more similar than friends, particularly allies who are not also 
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friends (both links are allowed between any pair of users). Conversely, friends 
who are not allies are significantly less similar than friends in general. This sug-
gests that the notion of friendship confounds like-mindedness with other com-
patibilities and that discerning the like-mindedness in particular can lead to im-
proved predictions. 

Our experimental results also raise interesting questions about why user-selected 
alters were equally or more predictive than algorithm-identified CF alters, which 
unfortunately we cannot answer with the data available. Previous work on the 
correlation of behavior between linked entities has identified two types of cause: 
social influence effects, where peers affect each others' decisions after they are 
linked, and selection effects, where users establish links based on homophily 
[Manski 1993]. In our context, selection effects might account for allies being 
more predictive than CF alters because of subtleties of human relationships that 
are not detectable in ratings data alone. We note that Essembly allows users to 
personalize their home pages and post comments, which might cast light on sub-
tle aspects of their personalities.  We perform a simple analysis of the Essembly 
data, based on how the similarity of connected pairs changed though time, which 
shows no evidence of social influence. 

2. METHODS 

This section describes the various collaborative filtering methods we employ in 
exploring the relationship between alters selected by algorithm and by user. CF 
and SNCF methods have “parameters,” the setting of which can affect the results, 
and it is not clear a priori or based on prior research exactly which settings are 
optimal for a given domain.  Therefore when drawing conclusions based on 
comparisons of CF methods, we assess several different variations in an effort to 
establish a more robust comparison.      

The two main CF parameters we consider are: (i) which similarity measure to use 
in weighting (potential) alters’ previous ratings, and (ii) how many alters to con-
sider; we also consider (iii) the distance/error measure used to assess the result 
(see e.g. [Anh 2008, Sarwar et al. 2001]).  

2.1. Collaborative filtering 

CF is one of the most popular and most-studied techniques for recommender sys-
tems. Using only the past interactive information between users and items, such 
as ratings or purchases, CF can estimate ratings for the items that have not been 
seen by a user, or probabilities associated with a potential purchase. Based on the 
estimations, the system can present to users the items they are most likely to be 
interested in. As described in the introduction, CF of one sort or another is ap-
plied in many real world settings, such as Amazon, Netflix and Last.fm. The goal 
of these systems includes both increased sales and increased user satisfaction. 

In our study, we focus on rating-based, user-to-user CF, where the goal is to pre-
dict the value for a rating variable rij quantifying user i’s opinion of the item j; for 
example, how much user i likes item j, or agrees with item j. The rating variable r 
usually takes integer or real values within a certain range. Given a set of users 
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and items and rating records, the input of the problem can be formulated as an M 
X N rating matrix R associated with M users and N items. The cell rij corresponds 
to the rating cast by user i on item j. The rating recommendation problem then is 
predicting rating r in the unfilled cells in matrix R based on the values in the 
filled cells.  

User-based CF algorithms first construct a M X M user similarity matrix W. The 
similarity score wst between user s and user t is calculated based on associated the 
rating vectors, i.e. the sth and tth row vector in matrix R. There are various ways to 
measure similarity, discussed in the next section, which vary in effectiveness 
from system to system. A high similarity score wst indicates that user s and user t 
may have similar preferences since they have previously rated products in a simi-
lar way. In the calculation, the multiplication of matrix W with R implements the 
above idea and generates the predicted rating scores in the rating matrix R.  One 
modification to this procedure that we will return to is to modify the similarity 
matrix by zeroing out low scores; for example, in direct analogy to a k-nearest 
neighbor algorithm for non-parametric estimation, in CF one may set all but the 
top-k scores to zero. 

2.1.1. Similarity measures: 

As we describe above, the calculated similarity between users’ rating vectors de-
termines the weighting in aggregating other users’ ratings on the item of interest. 
In the literature, various metrics have been proposed [Breese et al. 1998, Her-
locker et al. 1999], including mean absolute distance (MAD), mean squared dis-
tance (MSD), Pearson’s correlation (COR), which measures the linear correlation 
between two vectors of ratings, and cosine similarity (COS), which looks at the 
angle between two vectors of ratings, where a smaller angle is regarded as imply-
ing greater similarity. In a recent study, Ahn [2008] identified some anomalies of 
above measures when there are a small number of common ratings. He proposed 
a new measure called proximity-impact-popularity (PIP) in order to fix the iden-
tified problems, and showed it to be comparable with other in normal situations 
and better in difficult situations. Although the comparison of different similarity 
measures is not our focus, we present results for all in order that the conclusions 
are not based on a poor arbitrary choice.2  

 
2 Note that estimating the predictive performance of the best similarity measure is more complex 
than just looking in our results at the performance of the method that performed best, because of the 
bias inherent in such a multiple comparison procedure [Jensen & Cohen 2000].  Although it is not 
relevant for our comparisons, if one wanted to estimate the performance of the best method, the 
best method should be selected based on one set of data, and the performance estimated on a differ-
ent set of data (as with nested cross-validation).  
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2.1.2. Number of alters 

Alters are defined as a set of users who previously had ratings on an item which 
is the one the predicted rating is given to. It is sometimes called neighbor in the 
literature. With additional cost, a subset of alters could be selected to improve the 
prediction by setting a threshold or using the best k alters. Herlocker et al.  [1999] 
observed that the performance increased initially and decreased later as more and 
more ratings are used.  

In this paper, we intended to compare CF with SNCF in reasonably fair settings 
and the optimization of CF is not the focus of our study. Therefore, we imple-
mented two variants of CF in terms of alter selection. One is the full set of alters. 
The other is a subset that contains the same number of alter as SNCF in a predic-
tion, denoted as k-CF in the paper. 

2.1.3. Significance weighting 

Since most similarity measures don’t account for the number of common ratings 
when calculating the distance between rating vectors, it is desirable to assign dif-
ferent confidence weights to them [Herlocker et al. 1999]. In our implementation, 
if two users have fewer than 10 commonly rated items, we applied a significance 
weight of n/10. If there were more than 10 co-rated items, then a significance 
weight of 1 is applied. 

2.1.4. Producing and accessing predictions 

There are two basic ways to combine alters’ ratings into a prediction. One way is 
to compute the weighted average of the alters’ ratings, using the similarity as the 
weight. This method assumes all users rate based on the same distribution. The 
other is to first compute the average deviation of an alter’s rating from that alter’s 
mean rating, where the mean rating is taken over all ratings by the alter. The pre-
diction is then the predicting item’s own mean rating adjusted by the average de-
viation-from-mean from alters. This second way is naturally suitable for the cor-
relation based similarity measures. We mainly used the weighted average method 
in our study. The deviation method is only used for correlation similarity. 

We adopted two standard error evaluation methods: unless otherwise indicated 
we compare based on the mean absolute error (MAE); we also present results for 
mean squared error (MSE). 

2.2. Social network collaborative filtering 

Instead of generating predictions based on algorithmically calculated “like-
minded” users in CF, SNCF predicts ratings based on user self-selected friends. 
A weighted average of ratings from SNCF alters (a subset of friends who also 
rated the predicting item) becomes the predicted rating. We implemented the 
simplest the version of SNCF with equal weights, which avoids the expensive 
similarity calculation. We also implemented SNCF with unequal weights, de-
noted w-SNCF, in which the SNCF alters are weighted using the similarity 
measures described above for CF. 
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3. EXPERIMENTAL SETUP 

In this section we describe the data and the basic structure of the analyses used 
for the results presented next. 

3.1. Data 

For this study we used a comprehensive data set of all activity on the Essembly 
website, www.essembly.com, from its inception in August 2005 until December 
12, 2006 (the date of data capture). This website provides a forum in which users 
posted “resolves” and other users voted on them. Example resolves include 
statements such as “All speech -- even the most offensive -- should be protected 
under the First Amendment,” or “Animals do not have rights. People who are 
mentally handicapped, and unborn babies, do.” Voting is on a four point scale, 
with the options being “strong agree,” “lean agree,” “lean disagree,” and “strong 
disagree.” 

Users also participate in social networking, forming both “friend” and “ally” 
links.3  Link formation is by user choice only, and was reciprocal (i.e., both users 
had to consent to form the link). Links allow users to see their alters’ votes and 
also facilitate communication.  

As of our date of data collection, the website had 5,358 users who participated in 
both voting and the social networks. These users had created 24,953 resolves and 
cast 1.24 million votes on these resolves. In agreement with the system used in-
ternally in Essembly [Chan 2007] we denoted these votes by the integers 4, 3, 2, 
and 1, where 4 denoted “strong agree”. The votes were slanted slightly toward 
“strong agree,” with a mean of 2.32 and a standard deviation of 1.34.  

The distribution of number of votes per user is strongly right skewed and well 
described by a power law [Wilkinson 2008]. This heavy tail form is almost ubiq-
uitous in most forms of online activity, including peer production [Wilkinson 
2008], media sharing [Ceyhan 2008], online discussion [Whittaker 1998], rating 
and commenting [Carlson and Doyle 2000], and open source contributions [Wil-
kinson 2008], among others. The heavy right skew means that a small fraction of 
very active participants are responsible for the large majority of the activity, an 
unfortunate reality for recommender systems attempting to provide accuracy for 
all users. 

The Essembly friends social network had 4,873 nodes and 13,516 links. As 
shown by Hogg et al. [2008], the degree distribution was strongly right-skewed, 
well described by a power law with exponential cutoff (gamma distribution). The 
transitivity, modularity, diameter, average path length, and giant component frac-
tion all fell well within the range observed for online friends networks. In other 
words, the Essembly friends network was very typical and representative of other 
online social networks. 

 
3 There was a third link type, “nemesis,” for users who tended to disagree, which we do not include 
in our analysis. 



The Essembly allies social network had 3,261 nodes and 15,593 links. Perhaps 
not surprisingly, it was quite different from the friends network in its network 
topology, having a smaller transitivity, modularity, diameter and average path 
length. These values for the allies network did not fall in the typical range of 
online social networks. 

We finally note that Essembly exhibited an approximately linear growth rate in 
the number of users and the number of votes. Our data did not include time-
stamps on the formation of links, but there is no reason to believe that the rate of 
link formation differed greatly from the growth rate of the system as a whole. 
Growth is typical of online systems and social networks, and the methodology of 
our measurements was designed with growth in mind, as described below. 

3.2. Walk-forward analysis 

In order to simulate the real-world prediction task, we evaluate CF and SNCF 
using a “walk-forward” analysis: for predicting a single data point v (a vote by a 
specific user on a specific resolve), the prediction can only be based on data 
points with time-stamps prior to the time-stamp of v.  We will call the data points 
on which the prediction is based on the training data.  As is standard, each pre-
diction will be compared to actual, observed value for v.  Errors will be averaged 
over a set V of test data, the selection of which is the subject of experimental de-
sign, as described in Section 3.3.   

Importantly, each prediction on a test point Vv∈ may generally be based on a 
different training set.  This evaluation method is much more computationally ex-
pensive than a simple hold-out or cross-validation evaluation, because the simi-
larity matrix in this case is not static. As each new vote is obtained, the similari-
ties between all users must be updated.  However, as this is the computation and 
prediction complexity encountered by a real-world recommender system, it is 
appropriate to simulate it here. 

3.3. Testing set selection 

To compare versions of CF and SNCF, we must select data points for comparison 
carefully.  In order to minimize the possible pollution of the results by basing a 
prediction on a link that was formed after the vote was cast (recall that we do not 
have time stamps for the formation of social links), we first carefully selected 
three testing “supersets” as follows.   

a) Testing superset T1 consists of data that are time-stamped within the 
most recent few days (1 for allies and 4 for friends, in order to get 
roughly the same number of data points), and by a user whose first vote 
was cast three months earlier than the testing vote. Considering our data 
set spans 498 days, the chance is very small that a long-term user formed 
the social links in the last few days.  

b) Testing superset T2 consists of data that are cast by users, each of whose 
last vote is one month before the last day of the data capture, and whose 
first vote is three months earlier than the testing vote.  Again, the chance 

 8 



 9 

is very small that a long-term user formed the social links in the last few 
days before his last vote.  However, because of the timing, the T2 testing 
set covers an entirely different set of users as compared to T1.  

c) Testing superset T3 consists of each user’s last vote. This testing set 
supplements T1 and T2, and also it is not likely a user will make further 
social links after his/her last voting activity.  

From these testing supersets we select testing sets for particular methods.  In or-
der to compare a pair of methods, we restrict the test set to include only data 
points for which there are sufficient alters (four in these experiments) for each 
method.  This reflects our desire to compare the methods when they apply, rather 
than to assess how broadly they apply.  So, for example, for SNCF using friends 
links, we would choose a testing superset Ti, and then from Ti select those user-
resolve pairs for which there are at least four alters for prediction.  

3.4. Benchmarks for comparison 

We used three techniques as the benchmark predictions against which to compare 
the collaborative filtering techniques.  The benchmarks comprise the global aver-
age voting score over the entire data set (BM-all), the average score for the re-
solve in question (BM-Item), and the average score by the user in question (BM-
User). BM-item and BM-User are implemented consistently with the walk-
forward analysis, in that the average is taken based only on the training data. 

4. RESULTS 

We now present our main results.  Recall that our focus is the performance of 
collaborative filtering based on alters specially selected by users as being like-
minded.  We first compare traditional collaborative filtering to SNCF using 
friends.  The friends are user-selected, but are not necessarily selected as being 
like-minded.  Then we look directly at the allies.  Finally, since the friends and 
allies sets generally overlap, we carefully separate them into several categories 
and show a clear ordering of predictive performance based on an intuitive inter-
pretation of the categories.  Finally, we present a brief investigation into whether 
there is evidence of social influence among the allies. 

4.1. SNCF versus CF with friends links 

Figure 1 and Table 1 compare SNCF using friends links (SNCF-friends) with the 
various alternative methods for estimating future votes.  Table 1 also shows the 
results of one-tailed t-tests, with the null hypothesis that MAE(SNCF) is not 
greater than MAE(alternative).  For convenience, if 
MAE(alternative)>MAE(SNCF), Table 1 shows the results of the corresponding 
t-test (the other tail), with a minus sign.  In each case, the sample size is the size 
of the testing data set. Bold values show significance at alpha =0.05. 

Ignoring the k-CF entries for the moment, Figure 1 and Table 1 show that SNCF-
friends does quite well.  SNCF-friends produces substantially lower error than 
even the best of the three benchmarks (BM-Item).  Furthermore, SNCF-friends is 
competitive with full-matrix CF.  Specifically, SNCF-friends has significantly 



lower error in most cases, and there are no cases where CF has significantly 
lower error rate than SNCF-friends. 
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Figure 1. MAE comparison between SNCF and CF with friends links 
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Table 1.  SNCF versus CF with friends links 
Test 
Set  SNCF BM-

All 
BM-
Item 

BM-
User 

CF-
MAD 

CF-
MSD 

CF-
COS 

CF-
COR 

CF-
PIP 

MAE 0.963 1.287 1.021 1.248 0.991 1.021 1.01 0.924 0.973 
MSE 1.498 1.846 1.445 1.826 1.381 1.444 1.418 1.261 1.344 T1 

t test  0.000 0.017 0.000 0.209 0.049 0.091 -0.132 0.389 
MAE 0.778 1.321 0.929 1.3 0.87 0.926 0.905 0.788 0.843 
MSE 1.165 1.921 1.208 1.905 1.094 1.2 1.157 0.97 1.041 T2 

t test  0.000 0.000 0.000 0.000 0.000 0.006 0.358 0.013 
MAE 0.691 1.228 0.886 1.16 0.814 0.884 0.859 0.735 0.774 
MSE 1.075 1.701 1.11 1.632 0.968 1.105 1.052 0.847 0.9 T3 

t test  0.000 0.000 0.000 0.004 0.000 0.000 0.167 0.034 

 
As discussed above, in certain domains CF produces better predictions if the 
number of alters used is limited, rather than using similarity weighting across the 
full matrix.  Therefore, we also compare SNCF with k-nearest-neighbor CF (“k-
CF”).  In order to produce an equal-footing comparison focused on our main 
question of the relative performance of user-selected alters and system-selected 
alters, for each comparison k-CF sets k equal to the number of friends used by 
the method to which it is being compared. 

Figure 1 shows the comparison of all the CF methods with the basic SNCF, and 
Table 2 includes the detailed comparison of each CF-S methods (S being the 
similarity metric) with the corresponding wSNCF2-S method, which also weights 
the alters by similarity in its predictions.  This table shows a pair of t-test rows 
for each testing set.  The upper row is the same as in Table 1; the lower row com-
pares the two columns it spans, in the same manner as the prior t-tests.  The per-
formance of the various wSNCF versions has very little variance and is very 
close to the unweighted SNCF.  Therefore, although we show the individual val-
ues for completeness in the table, we ignore wSNCF for simplicity in the analy-
sis, focusing on unweighted SNCF—which is only slightly worse in perform-
ance, much simpler, and strikingly efficient computationally.  

As shown clearly in Figure 1, these results show that for this domain, k-CF in-
deed is more accurate than full-matrix CF, irrespective of the similarity metric 
employed. More importantly for the purpose of this paper, k-CF now outper-
forms SNCF-friends, significantly in some cases.  Nevertheless, given the com-
putational advantage of SNCF-friends, it is of note that one has to be careful to 
design CF well in order to achieve consistently lower error rate.   
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Table 2. SNCF versus k-CF with friends links. 

Test-
ing 
set 

 SNCF wSNCF
-MAD 

k-CF-
MAD 

wSNCF 
-MSD 

k-CF-
MSD 

wSNCF 
-COS 

k-CF-
COS 

wSNCF
-COR 

k-CF-
COR 

wSNCF
-PIP 

k-CF-
PIP 

MAE 0.963 0.946 0.869 0.963 0.948 0.955 0.884 0.853 0.906 0.941 0.932 
MSE 1.498 1.463 1.394 1.498 1.435 1.48 1.371 1.392 1.383 1.5 1.344 
t test  -0.332 -0.008 0.499 -0.349 -0.349 -0.02 -0.398 -0.068 -0.284 -0.206 

T1 

t test  -0.023 -0.351 -0.032 0.35 -0.409 
MAE 0.778 0.753 0.662 0.778 0.765 0.768 0.698 0.751 0.731 0.751 0.765 
MSE 1.165 1.119 0.985 1.165 1.11 1.449 1.025 1.078 1.055 1.173 1.087 
t test  -0.229 -0.000 0.497 -0.35 -0.386 -0.013 -0.2 -0.074 0.33 -0.215 

T2 

  -0.003 -0.348 -0.016 -0.267 0.33 
MAE 0.691 0.69 0.629 0.704 0.695 0.697 0.642 0.789 0.735 0.691 0.715 
MSE 1.075 1.103 0.936 1.124 1.108 1.114 0.978 1.183 1.022 1.165 1.193 
t test  -0.49 -0.114 0.406 0.473 0.452 -0.173 0.029 0.192 0.5 0.328 

T3 

t test  -0.119 0.433 -0.147 -0.132 -0.333 

 
4.2. SNCF versus CF with allies links 

This section presents results directly analogous to those of section 4.1, where 
instead of "friend" social network links in the SNCF prediction, we use "ally" 
links (SNCF-allies).  As discussed previously, Essembly's user-created "ally" 
links were meant to be used to connect users who were like-minded in some 
sense.  

More specifically, the data set used in this section is the same as that of section 
4.1, except that the allies social network is used in for SNCF instead of the 
friends social network. We note that while the allies network was denser than the 
friends network, in terms of average number of neighbors per node, this should 
not affect our measurement since the experimental design considered only nodes 
with at least 4 alters in both cases, and because beyond that a higher number of 
alters was not correlated to higher accuracy of prediction. 

As in section 4.1, we compare SNCF-allies with CF, both making use of a full set 
of alters (CF) and a matching number of alters (k-CF).  Figure 2 and Table 3 
show the clear dominance of SNCF-allies over full-matrix CF. Figure 2 and 
Table 4 show that SNCF-allies much more competitive than SNCF-friends (com-
paring with the results from section 4.1). SNCF-allies clearly dominates full-
matrix CF, and is generally competitive even with k-NN CF (k-CF).  The very 
best k-CF (generally, k-CF-MAD) still beats SNCF, but one has to choose the 
similarity measure for k-CF just right to beat SNCF-allies significantly.  More 
importantly as shown by Figure 2, the magnitude of the difference between 
SNCF-allies and the best k-CF is relatively small.  For some choices of similarity 
metric, SNCF-allies actually produces statistically significantly lower error as 
compared to k-CF. 
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Figure 2. MAE comparison between SNCF and CF with allies links. 
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Table 3. MAE comparison between SNCF and CF with allies links 

Test 
set  SNCF BM-

All 
BM-
Item 

BM-
User 

CF-
MAD 

CF-
MSD 

CF-
COS 

CF-
COR 

CF-
PIP 

MAE 0.852 1.29 1.034 1.265 0.993 1.034 1.018 0.885 0.978 
MSE 1.306 1.849 1.462 1.829 1.365 1.461 1.422 1.152 1.395 T1 

t test  0.000 0.000 0.000 0.000 0.000 0.001 0.144 0.000 
MAE 0.735 1.288 0.945 1.27 0.886 0.941 0.921 0.777 0.848 
MSE 1.049 1.848 1.263 1.807 1.147 1.256 1.214 0.969 1.081 T2 

t test  0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.000 
MAE 0.652 1.256 0.971 1.214 0.884 0.968 0.938 0.778 0.827 
MSE 1.005 1.755 1.302 1.727 1.109 1.294 1.225 0.939 1.013 T3 

t test  0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 

 

Table 4. SNCF versus k-CF with allies links. 
Testing 

set  SNCF wSNCF-
MAD 

k-CF-
MAD 

wSNCF 
-SD 

k-CF-
MSD 

wSNCF 
-COS 

k-CF-
COS 

wSNCF
-COR 

k-CF-
COR 

wSNCF 
-PIP 

k-CF-
PIP 

MAE 0.852 0.843 0.802 0.852 0.949 0.848 0.833 0.844 0.839 0.857 0.938 
MSE 1.306 1.291 1.259 1.306 1.426 1.299 1.268 1.255 1.249 1.38 1.395 
t test  -0.407 -0.08 0.5 0.000 0.463 -0.298 -0.414 -0.359 0.437 0.006 

T1 

t test  -0.12 0.002 -0.33 -0.442 0.01 
MAE 0.735 0.726 0.679 0.735 0.787 0.731 0.708 0.734 0.727 0.724 0.773 
MSE 1.049 1.035 1.008 1.049 1.12 1.042 1.034 1.011 1.03 1.071 1.09 
t test  -0.327 -0.017 0.492 0.023 -0.433 -0.149 -0.48 -0.382 -0.338 0.073 

T2 

t test  -0.327 0.12 -0.446 -0.383 0.373 
MAE 0.652 0.653 0.641 0.658 0.75 0.655 0.651 0.723 0.731 0.684 0.748 
MSE 1.005 1.014 0.988 1.02 1.212 1.015 0.989 1.049 1.03 1.148 1.241 
t test  0.492 -0.405 0.447 0.017 0.473 0.489 0.053 0.033 0.251 0.02 

T3 

  -0.397 0.023 -0.462 0.422 0.09 

 
 
4.3. Allies, friends and taste similarity 

Our driving hypothesis has been that collaborative filtering based on user-
selected, like-minded alters might be competitive enough with standard collabo-
rative filtering to be considered as a complement or an alternative, especially 
considering its advantages in computational complexity.  The above results show 
that indeed SNCF is competitive with collaborative filtering, especially when the 
users select alters specifically as being like-minded (the allies).4   

                                                      
4 The absolute numbers for the SNCF-friends and SNCF-allies experiments from the prior two 
sections are not directly comparable, because the predictions are on different test sets, depending on 



Using the collaborative filtering framework, we can assess directly how similar 
the user-selected alters are comparatively.  Figure 3 shows a cartoon of the space 
of different categories of user-selected alters; the sizes of the bubbles for Allies 
and Friends, and the intersections and differences, are in rough proportion to the 
actual numbers.  The five categories are: allies, friends, ally-friends, non-friend-
allies, non-ally-friends.   

 

All Users

Friends

Allies 

Figure 3. Different categories of alters correspond to different regions.  Sizes 
of bubbles for Allies, Friends, overlap, and differences are in approximate 

proportion to actual numbers. 
 

Table 5. Comparison of similarity among different categories of user-
selected alters (minimum 10 votes on common resolves). 

 
Category mean stdev number 

all pairs (sampled) 0.584 0.162 4.3 M 

non-ally friends 0.682 0.146 7203 

all friends 0.702 0.142 10671 

ally and friend 0.746 0.123 3392 

all allies 0.751 0.112 14717 

allies only 0.754 0.107 11216 

 

Table 5 shows the average similarity across the entire user base of five different 
categories of alters. More specifically, the table shows the mean similarity, using 
the MAD similarity described in section 2.1, across dyads in the corresponding 
category. Note that the similarity measure here is in fact 1-(MAD/3), so that us-
ers voting identically have a similarity of 1. A similarity of 0 would be obtained 
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the conditions described in section 3.3.  For example, the benchmark accuracies suggest that the 
friends T3 data set is considerably easier than the allies T3 data set.  
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by a pair of users who always vote “strong agree” (4) or “strong disagree” (1) 
opposite each other. Only users with at least 10 common resolves are considered. 

All of the differences in Table 5 are significant in mean, in the sense that we can 
completely rule out the hypothesis that the data in any two sets came from distri-
butions with identical means (p<0.001, Wilcoxon rank sum test). The average 
similarity for random pairs of users is greater than 0.5 because the votes are 
slightly slanted towards 4 overall (strong agree). 

Table 5 demonstrates that friends who are not selected as allies are strikingly less 
similar to the user than allies who are not among the user’s friends.  This shows 
clearly the advantage of user-selection of like-minded alters: users have signifi-
cant numbers of friends who are not like-minded, which dilutes the set of alters 
for SNCF. 

To illustrate this dilution in predictive performance, Table 6 presents a walk-
forward predictive analysis between allies and non-ally friends.  Specifically, we 
made predictions on each data item where there are at least 4 allies and 4 friends. 
To avoid there being more alters in one set than another, we randomly sampled a 
subset of the bigger set to match the size of the smaller one. The MAE values in 
Table 6 are the averaged scores over 10 repetitions of the sampling.  The table 
shows clearly the dominance of SNCF using allies alters over SNCF using non-
ally friends alters.  

Table 6. Predictive performance of SNCF-allies Vs. SNCF-non-ally-friends 
 SNCF-allies SNCF-non-ally-friends No. Of Test Data 

MAE (Avg.) 0.892 1.062 1756 

t test on the mean of absolute error: p < 0.001 

 

4.4. Social influence versus selection effects 

The results so far in this section show clearly that users can find alters, allies, 
who are more like-minded than their friends in general, and specifically who can 
provide competitive accuracy in predicting future voting behavior.  What we 
have not yet done, and cannot do definitively based on these data, is provide an 
exact explanation of why.   

The most straightforward reason is simply that people can do a good job of se-
lecting like-minded alters, based on comparing voting behavior, comparing sta-
tistics on voting similarity, looking at textual descriptions of others’ interests, or 
some combination.  In this case, it would make sense to design information sys-
tems that help users to find like-minded alters, which will be increasingly diffi-
cult without system aid as the size of the user base grows. 

On the other hand, the reason for similarity and effective prediction may be due 
to social influence.  Users who have established a linkage may affect the behav-
ior (voting, rating, buying) of each other.  However, if social influence is at play, 



it is not clear that simple algorithmic techniques to help users find similar alters 
will be as effective; organically chosen alters may have greater social influence. 

Unfortunately, distinguishing precisely between the social influence and other 
reasons for similarity among grouped or linked individuals is notoriously difficult 
[Manski 1993, Oestricher-Singer & Sundararajan 2008, Bramoulle et al. 2007, 
Anagnostopoulos et al. 2008] and requires a level of detail not present in these 
data. Previous work has demonstrated evidence of social influence [Hill et al. 
2006, Birke 2008, Crandall et al. 2008], although these studies obtained some-
what ambiguous results and were not always able to account for exogenous selec-
tion effects. 

Nonetheless, one simple analysis can be performed which could give evidence of 
strong social influence.  Specifically, we are considering social influence as ex-
hibited by increasing similarity of linked users over time.  Thus, unless the links 
are all made at the very end of the data collection period (which for the Essembly 
data is highly unlikely), then strong social influence should lead to an increase in 
similarity over time.5   
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Figure 4. Similarity of allies, friends, and all pairs of users declines gradu-
ally over time. 

 
Figure 4 plots similarity among allies, friends, and all pairs of users over time.  
The general downward trend across all users seems to indicate that Essembly 
resolves over time became more polarized; however, the similar decline in the 
similarity of allies and friends indicates that perhaps they just represented issues 
with greater random variance in opinion—although it is difficult to account pre-
cisely for simple reversion to the mean (e.g., after ally selection by perceived 
similarity).   
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5 Notice that observing an increase over time does not necessarily prove social influence, because 
there could be other explanations. 
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In any case, Figure 4 shows no evidence of strong social influence—at least not 
strong enough to overcome declines in similarity for other reasons. This is in 
contrast to Crandall et al. [2008] who claim to have observed some social influ-
ence effects among Wikipedia editors; admittedly, Wikipedia is a different set-
ting with a greater degree of personal interaction in some cases. 

5. DISCUSSION AND LIMITATIONS 

Our results suggest that online content providers should consider allowing users 
to choose “allies” whenever recommendation is desired, and even facilitating the 
choice.  What allies represent depends on the domain of application and sort of 
recommendation desired.  For example, e-retailers like Amazon.com would like 
to recommend products that their customers will like (and buy).  Therefore, it 
may be useful for them to help users to identify “taste allies”, thereby removing 
some of the guesswork inherent in statistical inference from sparse data.  Prior 
work [Zheng et al. 2007] showed that SNCF-friends was not as accurate as tradi-
tional CF for predicting Amazon purchases (in agreement with the results above 
for Essembly); however, it may be SNCF-allies based on taste would be more 
accurate—or nevertheless useful as a complementary technique. 

To examine taste-allies in a very different domain, we examined the subset of the 
Amazon friends network who revealed their purchases. More specifically, this 
data set consists of 1206 customers who made 13,494 purchases on 11,773 dis-
tinct items. These 1206 customers are also connected by the “Amazon Friends” 
social network.  For these Amazon friends, we compared the purchases of spe-
cific products to those of a similar selection of 1206 “non-friend” customers, who 
also revealed their purchases, but were not in the friends network.  For the top-10 
book purchases of the Amazon friends, each was purchased by more than 40 cus-
tomers in the network; the #1 purchase was purchased by over 100 customers.  
However, of these top-10 purchases, only 5 were purchased at all by the non-
friends customers, and none by more than 3 non-friends.   

 
Dead Ringer      by Ken Douglas (Author) 
Tangerine Dream     by Ken Douglas (Author), Jack Stewart (Author) 
Hurricane      by Jack Stewart 
Night Witch     by Jack Priest 
Scorpion      by Jack Stewart    
Ragged Man     by Jack Priest 
Gecko          by Jack Priest 
Harry Potter and the Deathly Hallows 
Running Scared     by Ken Douglas 
Desperation Moon     by Ken Douglas 
Diamond Sky     by Ken Douglas (Author), Jack Stewart (Author) 
 

Figure 5. Top-10 books purchased by the subset of the Amazon friends net-
work who revealed their purchases, a like-minded “thriller” social network. 
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This result provides evidence that these customer-selected friends indeed have 
similar taste.  Examination of the purchases themselves strengthens the evidence.  
The top-10 purchases (shown in Figure 5) primarily were books from a particular 
genre (thrillers), and with the exception of the Harry Potter book, all by the same 
three authors. 

One limitation of our study is the relatively small scale of Essembly vis-à-vis the 
scale of massive ecommerce systems.  It could be that even with system-based 
aid in selecting allies, massive CF would out-perform SNCF-allies by a much 
larger margin.  Unfortunately, we are aware of no data set that includes the in-
formation necessary to compare user-selected allies to CF-selected allies with a 
massive set of potential alters.  In any case, the issue of computational perform-
ance still rears its head: given that user-to-user CF is such an elegant and intui-
tively satisfying concept, if SNCF is feasible where CF is not, it makes sense to 
consider whether it indeed improves user satisfaction or profit, even if in princi-
ple CF might perform somewhat better (if only it could be run).  

Moreover, our result that SNCF-allies is competitive with k-CF, which consid-
erably outperforms full-matrix CF, suggests that it is really the most-similar al-
ters that drive the performance.  Thus, even with a massive set of potential alters, 
as long as the system can provide help in selection, the task of selecting strong 
allies may not be onerous for individual users. As we have mentioned, the distri-
bution of activity per person is heavily right skewed in most online settings 
which have been studied. This means that a few active people provide most of 
the ratings. So no matter how large the system, it always is difficult to make good 
recommendations for most people (a massive cold-start problem).  

For comparison, in the Netflix challenge the by-item benchmark in MSE was 
1.10, while the very best, highly optimized kNN CF methods reduce the error to 
about 0.83 MSE [Bell & Koren 2007]. This is a 25% improvement.  In our case 
for T3, which is the closest in benchmark error rate to Netflix's test set, the by-
item benchmark is 1.3 for MSE, and the error the "best" CF we tried (k-CF-
cosine) is 0.99 MSE. This is an improvement of 24%. Even though the Netflix 
data set has 500,000 users, the best CF on that improved BM-item about the same 
as our straightforward k-CF improved over BM-item.  This is only suggestive 
evidence, but qualitatively the effectiveness of CF on the Essembly problem is 
not very different than on a much larger, one.6   

Self-selected alters, as opposed to algorithmically selected alters, might prove 
more accurate for people with few ratings because the algorithmically detected 
similarities could be chance.  As future work, using the Essembly data we could 
assess the support (or lack thereof) for this conjecture.  Consider an oversimpli-
fied model where user-selection clearly would be beneficial: each user has a la-
tent taste distribution.  His behavior is drawn from a mixture of this distribution 
and another distribution (e.g., representing present-buying behavior).  Thus, for 
some individuals, especially with limited data, CF-selected alters would include 

 
6 Even if you adjust our errors by 5/4, since our scale was 4 and theirs was 5, the qualitative conclu-
sion would be the same. 
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alters who are not so similar to the user’s true taste distribution, but rather to the 
other distribution.  However, the user may well be able to distinguish those alters 
who are similar in taste from the others. 

A related limitation is that we have compared SNCF using generic friends to 
SNCF with taste-selected alters only on Essembly data.  Thus, the results must be 
interpreted as a "proof of concept" that users can select links to allow better rec-
ommendations. Whether the results generalize to other settings, in particular 
product recommender systems, would be an important extension.  Unfortunately, 
to our knowledge there are no other available data sets in a recommendation con-
text that include with self-selected like-minded “allies”, as opposed to other sorts 
of “friends.”  However, within Essembly, we have shown that the results are ro-
bust to different prediction settings. 

6. CONCLUSION 

This study shows that the extremely efficient collaborative-filtering technique 
consisting of choosing “recommenders” to be one’s self-selected, like-minded 
social-network neighbors can be remarkably effective, particularly when users 
select the alters specifically as being like minded.  For the domain studied, this 
social-network collaborative filtering was competitive with traditional user-to-
user collaborative filtering systems.  The selection of users specifically to be like-
minded appears to be important, because the users have significant numbers of 
linked “friends” who are not like-minded, which reduces the accuracy of a sys-
tem based on generic friends.  

These results suggest that designers of web recommender systems should con-
sider supplying users with facilities to self-select like-minded alters, in addition 
to generic friends.  They can provide fast, effective recommendations. 
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