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Abstract 

Social network theories (e.g. Granovetter 1973, Burt 1992) and information richness theory (Daft & Lengel 1987) 
have both been used independently to understand knowledge transfer in information intensive work settings. Social 
network theories explain how network structures covary with the diffusion and distribution of information, but 
largely ignore characteristics of the communication channels (or media) through which information and knowledge 
are transferred. Information richness theory on the other hand focuses explicitly on the communication channel 
requirements for different types of knowledge transfer but ignores the population level topology through which 
information is transferred in a network. This paper aims to bridge these two sets of theories to understand what 
types of social structures are most conducive to transferring knowledge and improving work performance in face-to-
face communication networks. Using a novel set of data collection tools, techniques and methodologies, we were 
able to record precise data on the face-to-face interaction networks, tonal conversational variation and physical 
proximity of a group of IT configuration specialists over a one month period while they conducted their work. 
Linking these data to detailed performance and productivity metrics, we find four main results.  First, the face-to-
face communication networks of productive workers display very different topological structures compared to those 
discovered for email networks in previous research. In face-to-face networks, network cohesion is positively 
correlated with higher worker productivity, while the opposite is true in email communication. Second, network 
cohesion in face-to-face networks is associated with even higher work performance when executing complex tasks. 
This result suggests that network cohesion may complement information-rich communication media for transferring 
the complex or tacit knowledge needed to complete complex tasks. Third, the most effective network structures for 
“latent” social networks (those that characterize the network of available communication partners) differ from “in-
task” social networks (those that characterize the network of communication partners that are actualized during the 
execution of a particular task). Finally, the effect of cohesion is much stronger in face-to-face networks than in 
physical proximity networks, demonstrating that information flows in actual conversations (rather than mere 
physical proximity) are driving our results. Our work bridges two influential bodies of research in order to contrast 
face-to-face network structure with network structure in electronic communication. We also contribute a novel set of 
tools and techniques for discovering and recording precise face-to-face interaction data in real world work settings. 
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1. Introduction  
Information workers now account for more than 70% of the U.S. labor force in the U.S. economy (Apte & Nath 
2004). As the information content of work has increased, the distribution and use of information has become central 
to the performance of workers and organizations. Advances in information technology have given workers access to 
a tremendous amount of information to solve complex problems, and new modes of electronic communication have 
facilitated changes in the way information workers seek and obtain information. How information workers obtain, 
transfer and utilize information, through both social and technological means, is central to how these workers make 
decisions, perform tasks, and deliver information-based products and services.  

Two broad theoretical perspectives inform our understanding of information transfer in information-intensive work 
settings: social network theory (e.g. Granovetter 1973, Burt 1992) and information richness theory (e.g. Daft & 
Lengel 1986). While social network theories explain how network structures covary with the diffusion and 
distribution of information, they largely ignore characteristics of the communication channels through which 
information and knowledge are transferred. Information richness theory on the other hand focuses explicitly on the 
communication channel requirements for different types of knowledge transfer but ignores the population-level 
topology through which information is transferred within a network. We bridge these two theories in order to 
understand what types of communication channels are most effective in transferring knowledge in different kinds of 
social networks. In particular, we examine whether optimal network structures in face-to-face interaction networks 
are the same as or different from those structures found to be optimal in electronic communication networks such as 
email. We hypothesize that the different modes of communication reflect differences in the type of information 
being transferred—for example tacit versus explicit knowledge—and that these differences are reflected in the 
structure of networks that most effectively transfer different types of information and knowledge.  

Social network theories have been instrumental for understanding how information workers leverage their network 
potential to achieve better work performance. Although researchers have been creative in obtaining social network 
data from multiple sources, methodologies such as surveys, questionnaires, and self-reports have been predominant.  
Unfortunately, data collection based on self-reporting, which requires that subjects recall their social networks from 
memory, are often biased toward the inclusion of strong links (Marsden 1990). It has been shown that most network 
data from surveys and questionnaires tend to produce better quality for close and strong ties than for distant and 
weak ties. In addition, although subjects are able to describe their local network in general terms, they fail to 
describe details such as discussion topics or the timing of interactions (Marsden 1990). While numerous methods try 
to address these issues, the bias inherent in self-reports remains problematic. To bring social network analysis to the 
next level, it has become imperative to collect more reliable data collected in real time.  

Ubiquitous email access gives researchers the opportunity to solicit real-time email communication data. Since 
email archives record detailed communication logs, such as who has emailed whom, the exact time of the 
interaction, and the content of the exchange, using email archives to construct social networks allows researchers to 
eliminate bias introduced through survey methods. Aral, Brynjolfsson, and Van Alstyne (2006, 2007) and Aral & 
Van Alstyne (2007) report on one of the first empirical studies to use email data to understand how social networks 
impact information worker productivity. They find that structurally diverse networks with an abundance of structural 
holes are most effective for gathering diverse information, which in turn improves information worker productivity.  

Although email has become an important communication tool over the last fifteen years, face-to-face conversations 
remain an important and in many cases predominant mode of communication. In fact, information workers may use 
face-to-face conversations to transfer and process fundamentally different types of knowledge than those transferred 
via email. Consequently, the network structures that are most effective for improving work performance in face-to-
face networks may be different from those in email social networks. In addition to studying electronic 
communication networks such as email, it is therefore essential to explore and contrast the types of structures in 
face-to-face networks that are most effective for accessing and transferring information and improving worker 
productivity. Unfortunately, until now, recording precise and reliable data on face-to-face interaction networks has 
been difficult. To fill this gap, we employ a new data collection method that utilizes Sociometric badges developed 
at the MIT Media Laboratory to record real-time patterns of face-to-face interactions between employees in real-
world work settings over time (Waber et al., 2007). These data enable us to analyze both proximity and conversation 
networks amongst a group of IT workers who execute configuration tasks during the sale and delivery of 
commercial IT hardware. Collecting actual face-to-face interaction data, we are able to introduce information 
richness theory into social network analysis to contrast the communication modes used to actualize social networks 
in information intensive work settings. Using these data, combined with project and accounting data on the relative 
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performance of the workers, we evaluate which face-to-face network structures best predict higher performance, and 
whether these structures differ from those found to predict productivity in the context of electronic communication 
networks such as email and phone communication. 

Our analyses uncover four key results. First, we demonstrate that face-to-face networks are indeed different from 
electronic networks in terms of their relationship to worker productivity. In face-to-face networks, cohesion is 
positively correlated to higher worker productivity, while the opposite is true in email communication. Second, 
network cohesion is also associated with even higher performance when executing complex tasks. This suggests that 
cohesive networks using information-rich media may be particularly effective in transmitting complex knowledge 
needed to solve complex problems. Third, we show that the most effective network structures for “latent” social 
networks (those that characterize the network of available communication partners) differ from “in-task” social 
networks (those that characterize the network of communication partners that are actualized during the execution of 
a particular task). Lastly, the effect of cohesion is much stronger in face-to-face networks than in physical proximity 
networks, demonstrating that information flows in actual conversations (rather than mere physical proximity) are 
driving our results. Although our results do not firmly identify the direction of causality, our panel data estimates 
eliminate bias from any unobserved time-invariant factors that may confound our results.  Furthermore, on-site visits 
and interviews support our empirical evidence, as employees corroborated their use face-to-face conversations to 
communicate complex and embedded knowledge. Our results demonstrate the importance of face-to-face social 
networks in predicting worker productivity even as email communication becomes ubiquitous. Such evidence is 
important for managers who face increasingly global and geographically dispersed work environments, as electronic 
communication networks alone may not be enough to transfer complex knowledge needed for complex tasks. 

2. Theory 
Prior research has shown that factors such as technology use, geographic dispersion and organizational structure 
significantly affect information transfer effectiveness (Argote 1999, Contu & Willmott 2003, Hansen 1999).  Other 
research emphasizes the importance of using different transfer mechanisms for different types of knowledge 
(Slaughter & Kirsch, 2006). In this study, we link two broad theoretical perspectives, social network theory (e.g. 
Granovetter 1973, Burt 1992) and information richness theory (e.g. Daft & Lengel 1986), to understand what types 
of networked social structures are most conducive to transferring knowledge and improving work performance 
across different communication media. Specifically, we contrast new evidence on face-to-face networks with prior 
results on email networks in information intensive work. By elevating face-to-face network data collection to 
comparable standards of accuracy and precision in electronic communication data, we open new avenues for true 
comparisons across heavily theorized media choices. 

2.1 Information Richness  
The first broad perspective on information transfer is information richness theory, which provides a foundation for 
understanding how media choice affects information and knowledge transfer. Daft and Lengel (1986) combined two 
dimensions of information processing—uncertainty and equivocality—into a single framework to understand the 
implications of information richness on media choice. In their framework, media is assigned to a richness scale, 
where media that require a long time to transfer knowledge and through which it is difficult to resolve divergent 
perspectives have low richness, while media that enable reductions in equivocality and allow managers to process 
complex information are considered richer. Face-to-face communication is a rich medium because it provides 
multiple social cues through both natural language and body language, and can therefore greatly reduce equivocality 
(Daft & Lengel 1986). Following face-to face communication, the hierarchy in decreasing ability to transfer social 
cues and feedback is telephone, electronic mail, letter, note, memo, special report, and finally, flier and bulletin. 
According to this framework, when the information to be transferred is equivocal or uncertain, rich media such as 
face-to-face meetings are most effective for clarifying ambiguous events and developing common ground for mutual 
understanding. On the other hand, when information requirements are unequivocal and relatively simple, less rich 
media such as memos are sufficient (Daft & Lengel 1986). 

Much work in the Information Systems literature has built on information richness theory to elucidate other 
important factors that influence media choice (e.g. Sproul & Kiesler 1986, Markus 1994, Walther 1995). However, 
social network theories have rarely been examined together with information richness to explain media choices and 
their effectiveness in the context of the topological network structures of communicative interaction. It is therefore 
important to bridge these theories to examine what types of media support what types of social network structure. 
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2.2 Network Structure and Knowledge Exchange  
Social network analysis provides a rich class of theories to explain how information workers obtain knowledge and 
information. Two properties in particular have been instrumental in understanding the impact of social networks on 
work performance: structural diversity and social cohesion (Burt 1992, Coleman 1988). Some social scholars 
believe that a structurally diverse network is the most effective structure for improving performance in information 
intensive work. Burt (1992) shows that individuals with structurally diverse networks spanning multiple structural 
holes are more successful in terms of wages and promotion (Burt 1997). He attributes these performance differences 
to actors’ ability to access and gather diverse pools of information from diverse social groups. Aral, Brynjolfsson 
and Van Alstyne (2006) demonstrate that structural diversity is associated with higher levels of economic 
productivity for information workers. Other studies also demonstrate an association between network diversity and 
performance and infer that diverse contacts provide access to novel information (e.g. Ancona & Caldwell 1992, 
Sparrowe et al. 2001, Reagans & Zuckerman 2001, Cummings & Cross 2003). By analyzing email communication 
networks, message content and employee performance, Aral & Van Alstyne (2007) demonstrate that networks with 
structural holes deliver diverse and novel information and that access to novel information explains a significant 
portion of the variance in productivity – more so for instance than traditional human capital.  

Although structurally diverse networks are beneficial for exposing actors to different kinds of information, they are 
less effective at transferring complex knowledge. Knowing where the knowledge resides is very different from 
understanding the knowledge itself (Hansen 1999). When information is simple, explicit or declarative, using a 
structurally diverse network with many weak ties to transfer knowledge may be sufficient, as the information is 
easily transferred between actors. However, when information is complex or tacit a cohesive network with strong 
ties may be more effective for transferring knowledge (Hansen 1999). Cohesion can induce cooperative behavior 
which facilitates knowledge transfer, especially for complex tasks. If the source decides not to cooperate, his 
behavior may tarnish his reputation and consequently restrict his ability to interact with others in the cohesive group 
in the future. Stronger relationships among parties in a cohesive network also foster norm, trusts and reciprocity 
which induce the source to commit more time and energy to transfer information (Granovetter 1992). Furthermore, a 
dense web of third-party relationships in a cohesive network reinforces learning since it allows the same information 
to be presented using multiple perspectives, creating better understanding. 

In summary, social network theories expect diverse networks to improve productivity when the ability to access 
diverse information is important. In contrast, cohesive networks are most effective for work performance when 
transferring complex tacit knowledge is important. 

2.3 Combining Information Richness Theory with Social Network Theory 
The central concept linking social network theories and information richness theory is knowledge complexity. Social 
network theories emphasize the impact of structural properties on an actor’s ability to obtain and transfer 
knowledge, while information richness theory focuses on identifying the appropriate media with which to most 
effectively transfer different types of information and knowledge.  Two dimensions of knowledge are typically used 
to characterize complexity: codifiability and interdependence. Codifiability refers to the degree to which knowledge 
can be fully documented in writing at the time of knowledge transfer (Brynjolfsson 1994, Hansen 1999). It has been 
shown that tacit knowledge is often associated with low levels of codifiability, making it difficult to articulate and 
transfer (Polanyi 1966, Nelson & Winter 1982). The second dimension, information interdependence, measures 
whether knowledge is part of a larger system of interrelated concepts (Teece 1986, Winter 1987). When knowledge 
is embedded in a system, information transfer can be particularly challenging, as it requires transmitting knowledge 
of the larger system in addition to the specific knowledge.  

Information richness theory expects the use of rich media to transmit uncertain and equivocal knowledge, and less 
rich media to transfer simple, codifiable knowledge. Although face-to-face communication is typically the most 
costly communication channel (in time, effort and energy), it is preferred when transferring complex knowledge 
because it can facilitate the resolution of confusion and misconception. Network theories predict that structurally 
diverse networks with weak ties are beneficial for accessing novel and diverse information. However, knowledge 
accessed through diverse networks, typically characterized by an overabundance of weak ties (Granovetter 1973, 
Burt 1992, Aral & Van Alstyne 2007), is often limited to simpler, codifiable knowledge in part because weak ties 
have a limited ability to transfer tacit, embedded information (Hansen 1999). As complex knowledge is more 
difficult to transfer, a cohesive network may be even more important for complex knowledge transfers. 
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The Effect of Network Cohesion in Face-to-face Networks 

As face-to-face communication offers the richest medium for transferring complex knowledge, cohesive networks 
are in the best position to fully utilize the power of face-to-face communication.  Specifically, cohesive face-to-face 
networks are more effective in transferring complex knowledge for three reasons. First, cohesive networks are more 
likely to develop trust among actors. Second, the absorptive capacity in a cohesive network facilitates knowledge 
transfer. Third, the redundancy inherent in cohesive networks allows actors to receive information through multiple 
perspectives, easing knowledge transfer. 

In a cohesive network, actors are more likely to trust each other. Since transferring knowledge requires the 
cooperation of the source, it is important to convince the source that the transfer would not negatively affect them. 
Without trust, the source may simply refuse to pass on the knowledge to the recipient. However, when there is a 
strong tie between them or a dense web of third party ties around the relationship, the source may be more willing to 
initiate the transfer. Consequently, knowledge transfer between the source and the recipient in a cohesive network is 
more likely as cohesion creates cooperative motivation and removes competitive impediments to information 
transfer by increasing trust between parties (Granovetter 1992, Reagans & McEvily 2003).  Trusting the recipient, 
the source has greater incentive to be of assistance and is typically more available to help (Granovetter 1982).  Face-
to-face communication offers a rich medium where actors can quickly establish familiarity and rapport through both 
natural language and body language. These rich social cues allow actors to easily understand each other and to 
develop the trust needed to transfer complex knowledge between them. 

However, even when the source is willing, the process of knowledge transfer may not be straightforward due to the 
inherent complexity of the information (Hansen 1999). Absorptive capacity is important for recognizing the value of 
new information and the ability to assimilate and apply the information to solve complex problems (Cohen & 
Levinthal, 1990). Facilitating communication between individuals especially across social boundaries is important. 
Furthermore, effective communication for transferring complex knowledge requires shared language and social 
norms (Cohen & Levinthal 1990). A cohesive network can increase the absorptive capacity in a network as repeated 
communication allows actors to develop relationship-specific communication heuristics that ease knowledge transfer 
(Hansen 1999). With more frequent communication, actors are less inhibited from seeking information and asking 
for clarification in a cohesive network, and accordingly, they are more likely to understand how to correctly use the 
information sooner. Face-to-face communication offers the maximal knowledge transfer in each information 
exchange by using communication channels with the richest social cues, which improves absorptive capacity in a 
short amount of time.  

Although cohesive networks have been criticized for generating redundant information, redundancy could be a 
powerful instrument for effectively transferring tacit knowledge. Redundancy is not simply duplication of existing 
knowledge but, in fact often helps to create a common cognitive ground that can help individuals sense what others 
are struggling to articulate (Nonaka 1990, 1994, Grant 1996). Consequently, cohesive networks can facilitate tacit 
knowledge transfer, by allowing the same information to be repeated multiple times from different perspectives. 
Face-to-face communication further aids actors in developing the common cognitive background needed for clear 
articulation of complex knowledge and therefore improved work performance.   

We expect face-to-face networks to require different network structures to transfer fundamentally different types of 
knowledge when compared to email networks. Structurally diverse networks that use less rich media such as email 
are beneficial for obtaining diverse sources of information and consequently improving worker productivity (Aral & 
Van Alstyne 2006, Aral & Van Alstyne 2007). Based on information richness theory and social network theories, 
cohesion (rather than diversity) in face-to-face networks should improve work performance as face-to-face 
communication is typically used to transfer more complex, embedded knowledge, and because network cohesion 
aids complex knowledge transfers. We therefore hypothesize that network cohesion is positively associated with 
work performance in a face-to-face networks. 

Hypothesis 1a: Cohesion in face-to-face networks, measured by network constraint, is correlated with 
stronger information worker performance. 

Although face-to-face communication in a cohesive network may have significant impact on work performance in a 
variety of tasks, it may be especially beneficial for more complex tasks. Basic tasks that require relatively simple 
information can often be solved without the necessity of face-to-face communication. When information can be 
written into succinct rules that workers can easily follow and when tasks are relatively simple, cohesion in face-to-
face networks may provide less additional benefit. However, when workers face complex tasks that presumably 
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require access to tacit and embedded information, manuals prove to be less useful and workers must to turn to face-
to-face conversations with colleagues to access the desired information. Because face-to-face communication is the 
richest medium that can most effectively transfer complex knowledge between actors, and because cohesive 
networks are most effective for transferring complex knowledge, a cohesive face-to-face network may be especially 
helpful in transferring tacit or embedded knowledge used for the execution of complex tasks. Thus, we hypothesize: 

Hypothesis 1b: Cohesion in face-to-face networks, measured by network constraint, is more helpful for 
completing complex tasks than simple tasks. 

The Effect of Indirect Contact in Face-to-face Networks  

Although having a cohesive face-to-face network is beneficial for transferring complex knowledge, the ability to 
access a broad range of information in the network, be it complex or simple, is still important. In addition to the 
topology of the surrounding network, an actor’s direct and indirect contacts can affect her ability to search for 
relevant information (Hansen 2002). While direct contacts enable actors to immediately initiate information 
transfers, indirect contacts quicken the search process because actors learn of information and opportunities in the 
network through word of mouth. Individuals can therefore leverage their web of third-party ties to obtain the desired 
information. However, indirect contacts can also distort information content. When information gets passed through 
long path lengths (Freeman 1979), the chance of distortion is particularly high, as people tend to misunderstand or 
misinterpret information (Collins and Guetzkow 1964, Huber an Daft 1987, Gilovich 1991, Hansen 2002). 
Imprecise or inaccurate information can have a negative performance impact on the focal actor. Acting on vague 
information obtained indirectly, the focal actor may need to use her ties to connect to the original source of the 
information, only to find it was not what she sought. Eliminating misleading information is costly, as verifying each 
incorrect lead wastes valuable time and effort. When an actor has relatively short path lengths to other experts, not 
only is she exposed to less information distortion, she can also access knowledge experts more quickly. Two 
network properties measure the relative path length between actors: betweenness centrality and network reach.  

Betweenness centrality measures how often an actor is positioned on the shortest path between other pairs of actors 
in the network (Freeman 1979). When an information worker is positioned in the network where she can access 
other actors quickly, she is more likely to be in the most effective position (Freeman 1979, Brass & Burkhardt 1992, 
Burt 2992, Hansen 2001) and is more likely to access more novel information more quickly. While betweenness 
centrality measures the positional advantage in a network for accessing information, network reach measures the 
degree to which an actor in a network can reach everyone else in the network. An actor with broad network reach is 
less affected by information distortion, since the path lengths to other actors in the network are relatively short. 
Consequently, network reach can facilitate information transfer and improve work performance. We, therefore, 
hypothesize that high betweenness centrality and broad network reach are beneficial for accessing critical 
information and consequently improving an actor’s work performance.  

Hypothesis 2a. High betweenness centrality and broad network reach in face-to-face networks are 
correlated with stronger work performance. 

Transfers of complex information may experience even greater distortion than transfers of simple knowledge, as 
complex information is inherently more difficult to understand and is more likely to be misinterpreted. The ability to 
access many indirect contacts efficiently can be especially helpful in obtaining complex information needed to 
complete more complex tasks. Occupying network positions with high betweenness centrality enables workers to 
quickly access valuable information. This can be particularly important in completing more difficult - tasks which 
tend to require more information to complete. Broad network reach can reduce information distortion and promote 
knowledge transfer by influencing an actor’s ability to effectively access complex ideas in the network. Workers 
with broad network reach are exposed to more views and perspectives, allowing them to understand information 
from different angles and to frame information in ways others can understand. Thus, we hypothesize that broad 
network reach and high betweenness centrality are particularly beneficial for complex tasks that require both more 
information and information that is inherently more complex and therefore more difficult to transfer and absorb. 

Hypothesis 2b: High betweenness centrality and broad network reach in face-to-face networks can be 
especially beneficial in completing complex tasks. 

The Effect of Direct Contacts in Face-to-face Networks 

Direct contacts are actors one can communicate with directly. Measured using network size, direct contacts are often 
associated with easing knowledge transfer by removing information distortion caused by middlemen. They can 
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therefore be effective in transferring complex knowledge. While a cohesive face-to-face network provides a good 
infrastructure for transferring complex information, relying on direct links may further ease the transfer, since actors 
may already have developed relation-specific heuristics to communicate with each other (Hansen 1999, Uzzi 1997).  
However, while direct links ease information exchange, maintaining direct links is costly, especially in face-to-face 
networks which require time-consuming conversations and co-presence (Burt 1992, Uzzi 1997, Hansen 1999). 

The tradeoff between direct and indirect contacts depends largely on the nature of the information being transferred. 
If the task requires complex information, direct links can give extra power in transmitting knowledge in cohesive 
face-to-face networks. However, if the information is simple and can be articulated in writing, maintaining direct 
contacts may be too expensive to justify the maintenance cost. In this case, face-to-face conversations do not aid 
transfer, but take time away from task completion activities. Thus, we hypothesize that network size (maintaining 
many contacts) has a negative average effect on work performance, as transferring simple knowledge through direct 
contacts is expensive. However, a large network may be justified when workers are executing complex tasks that 
require more information and multiple sources of corroboration. 

Hypothesis 3a: On average, network size has negative effect on work performance. 
Hypothesis 3b: Network size has positive effect on work performance when solving complex tasks. 

3. Background and Data  
We studied an IT configuration facility with 37 employees whose primary job is to guide, solicit and capture clients’ 
IT configuration requirements, and to produce IT products according to those specifications. Interviews indicate that 
the data configuration process is information-intensive, requiring employees to quickly analyze the feasibility of 
specifications and build the system. Our interviews also indicate that talking to others is particularly helpful in 
improving a worker’s overall understanding of the whole system. This can be viewed as workers using face-to-face 
communication to transfer embedded knowledge. Each configuration task is a single-person task and is randomly 
assigned given a workload constraint, much like a series of queued tasks (Aral, Brynjolfsson & Van Alstyne 2006). 

To measure worker performance, we collected data on 911 configuration tasks during the experimental period of 25 
working days (more than one month’s activities at the facility). For each task, we gathered data on the task duration, 
difficulty level, the number of follow-ups, and information about the employee who performed the task. Although 
some of the tasks took less than a day to finish, tasks that took more than one day deserve special consideration as 
we cannot assume the worker is working on the task 24 hours a day. To better approximate the completion time of 
tasks that span multiple days, we assumed an 8-hour work day. Our interviews with staff indicate that employees 
typically follow this work schedule and rarely stay late or work on weekends to catch up. Although task completion 
time is only one dimension of work performance, it is an important outcome in the computing industry (Eisenhardt 
& Tabrizi 1995), and in this organization employees are formally evaluated on this metric. 

Capabilities of Wearable Sociometric Badge 
Recognizing common daily human activities (such as sitting, standing, walking, and running) in real time 
using a 3-axis accelerometer (Olguin Olguin & Pentland, 2006). 
Extracting speech features in real time to capture nonlinguistic social signals such as interest and excitement, 
the amount of influence each person has on another in a social interaction, and unconscious back-and-forth 
interjections, while ignoring the words themselves in order to assuage privacy concerns (Pentland, 2005). 
Performing indoor user localization by measuring received signal strength and using triangulation algorithms 
that can achieve position estimation errors as low as 1.5 meters, which also allows for detection of people in 
close physical proximity (Sugano, Kawazoe, Ohta, & Murata, 2006; Gwon, Jain, & Kawahara, 2004). 
Communicating with Bluetooth enabled cell phones, PDAs, and other devices to study user behavior and 
detect people in close proximity (Eagle & Pentland, 2006). 

 

 
Figure 1: The Wearable 

Sociometric Badge 
Capturing face-to-face interaction time using an IR sensor that can detect when two people wearing badges 
are facing each other within a 30°-cone and one meter distance. Choudhury (Choudhury, 2004) showed that it 
was possible to detect face-to-face conversations of more than one minute using an earlier version of the 
Sociometric badge with 87% accuracy.  

To collect face-to-face and physical proximity interactions, we utilized the wearable Sociometric badge, a sensing 
device that collects behavioral data from many individuals over time (Waber et al. 2007). Our data collection 
method deserves special note. Instead of using surveys that have traditionally been used to construct social 
networks, we recorded every face-to-face interaction between workers using the Sociometric badge and 
continuously logged physical proximity to others, as well as many other behavioral features. The “wearable badge” 
form factor is particularly useful in organizational contexts. First, most organizations already require individuals to 
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wear identification badges with embedded RFID. It is not hard to extend the sensing functionality of these badges 
further with accelerometers, IR transceivers, and microphones. Second, wearable badges are less obtrusive than 
sensors that have to be in physical contact with the user or require a long setup period to function. The success of IT 
products that employ this form factor for wearable sensors, such as the nTag (http://www.ntag.com/) and Vocera 
systems (http://www.vocera.com/) implies that this technology is acceptable to users in a wide variety of contexts. 
The capabilities of the wearable Sociometric badge and a picture of the wearable badge are shown in Figure 1. 
Waber et. al. (2007) provides detailed analysis of how the badge is used to detect worker interactions.  

3.1 Network Variable Construction 
Network size is simply the number of direct contacts one has. In face-to-face networks, a direct link between two 
actors exists when they engage in at least one conversation during the experimental period. Physical proximity 
networks, on the other hand, are a broader measure of direct links where network size counts an interaction between 
actors when they either engaged in a conversation or when they were physically (within ten meters) of each other. 
The volume of interactions measures the total interactions an actor has with anyone else in the network. This differs 
from network size as it counts all communication incidents regardless of with whom the actor has interacted. For 
example, an actor who communicates 100 times to a single person in the network would have the same volume of 
interactions as someone who communicates with 100 different people once. The network size of the former case is 
one, but in the latter case it is 100. While both variables measure the number of direct interactions between actors, 
network size may have a stronger effect than the volume of interactions in accessing and transferring complex 
information. Since high volume of interaction may also only involve a small group of actors, frequent interaction 
with the same person may be redundant and may not add value for knowledge transfer. 

Table 1: Network Characteristics and Description 
Network characteristics Description 
Network size The total number of contacts with whom an actor exchanges at least one message 
Volume of interactions The total number of face-to-face interactions an actor experiences  
Betweenness centrality The probability of an actor that falls on the shortest path between any two other actors 
Cohesion (constraint) Degree to which an actor’s contacts are connected to each other 
Reach The number of other people an actor can reach in two links or less 

Betweenness centrality B(ni) measures the probability that an individual i will fall on the shortest path between any 
two other individuals in a network (Freeman 1979), where gjk(n) is the number of shortest geodesic paths from i to j 
that pass through a node n, while gjk is the number of shortest geodesic paths from i to j: 

 
As shown in the hypothetical network in Table 3, actor 7 is located in a relatively more central position than actor 
12. As actor 7 is closer to three different groups of actors, her betweenness centrality is much higher than actor 12. 

Network reach measures the degree to which any member of a network can reach everyone else in the network. We 
measure 2-step reach which calculates the number of actors that an individual can reach in the network in 2 steps. 
We choose 2-step reach because our network is small enough that all actors are able to connect to everyone else in 
the network in three steps or less. Actor 7, located in the center of the network in Table 3, can reach eight other 
employees in two steps and therefore has a higher network reach than actor 12 who can only reach five others. 

Network constraint Ci measures the degree to which an individual’s contacts are connected to each other. Pij is the 
proportion of i’s network time and energy invested in communicating with j. Network constraint can be used as 
proxy for measuring network cohesion (Burt 1992), and network diversity is simply computed as 1-C. In the 
hypothetical network in Table 3, C12 is much higher than C7, because friends of actor 12 are more likely to be 
friends with each other than friends of actor 7. We construct network characteristics for both face-to-face and 
physical proximity. The network topologies are shown in Figures 2 and 3, and the summary statistics are shown in 
Tables 2 and 3. 

 
3.3 Control Variable Construction 
In addition to network structure, we posit two broad factors that may influence the task completion rate besides 
network variables: characteristics of tasks and individual workers. Characteristics of tasks: as harder tasks take 
longer to finish, task difficulty is strongly correlated with time to completion. We include two controls for task 
difficulty: task complexity and the number of follow-ups. Managers determine the task complexity and assign one of 
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three levels to each task—basic, complex, or advanced—when the task is created. Basic tasks are the most common 
and rudimentary job, while difficult tasks take considerably more time on average. The number of follow-ups 
represents complexity measured during task execution. When a task is difficult and the requirements are unclear, 
employees may need further clarification. Accordingly, a task with many follow-ups tends to take longer to finish.  

 
 

Table 2: Summary Statistics F2F Network Variables 
Latent Network Variables 
Variable Obs Mean Std. Dev. Min Max 
Interactions 931 526.62 421.52 156 2701 
Network size 931 11.44 3.47 1 20 
Betweenness 931 1.49 1.38 0 8.95 
 Constraint 931 0.53 0.19 0 1.33 
2-step reach 931 86.73 7.52 0 94.44 
In-Task Network Variables 
Interactions 937 26.71612 39.80165 0 287 
Network Size 937 3.315902 3.10302 0 15 
Betweenness 937 1.510955 2.450147 0 17.422 
Constraint 937 0.523816 0.388709 0 1.9 
2-step reach 937 33.23671 26.96877 0 94.29 
3-day Network Variables 
Interactions 132 30.9697 48.84059 0 287 
Network Size 132 3.666667 3.513695 0 13 
Betweenness 132 1.648174 2.453405 0 10.729 
Constraint 132 0.695031 0.268236 0.25 1.9 
2-step reach 132 33.93879 28.11835 0 88.57 

 
Characteristics of individual. We included controls for human capital using functional titles that classify employees 
into 3 categories: manager, pricing strategist and configuration specialist. While managers may be knowledgeable 
about the entire system, they are less likely to be intimately familiar with day-to-day configuration routines 
Although all three types of worker perform configuration tasks in our sample, the configuration specialist is most 
prepared to execute the configuration and we expect the complete tasks more quickly and accurately. Although we 
lack complete demographic data of workers, we infer some worker characteristics from the badge data. By 
measuring the tonal variance of workers, we can infer how animated a person is at the time (Pentland 2006). The 
animation of a worker’s voice may give us indications about his general enthusiasm or motivation (Basu 2002, 
Pentland 2006). Summary statistics and correlations are listed in Tables 4 and 5.  

Table 4: Summary Statistics for Worker and Task Characteristics 
Variable Obs Mean Std. Dev. Min Max 
Task Completion time (minutes) 1201 515.9159 968.8949 1 12281 
Functional Title 1157 1.57822 0.502736 1 3 
Task Complexity 1201 1.437968 0.761374 1 3 
Number of Follow-ups 1217 4.612983 3.270522 0 21 
Voice Animation 931 6703509 6056288 85 2.89E+07 

Table 3: Network Measures for a Hypothetical 
Network 

 
 
 
 
 
 
 
 
 
Direct Contacts Size(7)= 4 Size(12)= 3 

Btw(7)= 33    Btw(12)=6 Indirect 
Contacts Reach(7)=67% Reach(12)=41% 
Constraint Constr(7)=0.47 

Constr(12)=0.84 

Table 5: Pair Wise Correlations Between Independent Variables for the F2F Network 
 Function Complexity Follow up Animation Volume Direct links Btw Constraint Reach 
Function 1.00         
Complexity -0.52 1.00        
Follow up -0.52 0.42 1.00       
Animation -0.14 0.04 0.03 1.00      
Interactions -0.17 0.12 0.13 0.25 1.00     
Size -0.31 0.16 0.26 0.43 0.62 1.00    
Betweenness -0.27 0.16 0.17 0.43 0.71 0.87 1.00   
Constraint -0.28 0.13 0.17 -0.17 -0.28 -0.44 -0.38 1.00  
Reach -0.07 0.04 0.16 0.38 0.15 0.69 0.54 -0.46 1.00 

Figure 2: Face-to-face Conversation Network Figure 3: Weighted Face-to-face and 
 Physical Proximity Network 
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4. Empirical Methods & Results 

Combining task performance data and network data, we empirically test whether face-to-face and proximity 
networks are correlated with productivity and performance. Time to task completion measures how fast a person can 
finish a given task and based on our interviews, speed is a good measure of work performance in this setting. The 
accuracy or quality of configurations is also an important measure but only 20 of the 1217 tasks in our sample 
contain errors and 90% of those errors were caused by server configuration issues that are largely outside the control 
of individual workers. Since the majority of the tasks are completed correctly, completion time is a good metric for 
work performance. Although multitasking can increase total task throughput, it could confound the use of duration 
as the only performance measure as it increases the average time spent per task (Aral, Brynjolfsson & Van Alstyne 
2007). However, in this setting, multitasking is not possible since tasks are assigned to workers one at a time. 
Consequently, task duration can be used as an overall measure of work performance. In order to complete a task 
faster, it is essential that workers have both basic configuration information, as well as information about the overall 
system. The latter is especially important for completing complex tasks. While most of the basic tasks are routine 
jobs for which referencing a manual is sufficient, complex tasks require significantly more information and more 
complex information. Our interviews indicate that communicating with peers is particularly beneficial for 
understanding the overall system, highlighting the importance of face-to-face communication for transferring tacit 
and embedded knowledge during complex tasks.   

Since our dependent variable is the number of minutes it takes to complete a task, the model specification follows a 
duration model. We use a hazard rate model of the likelihood of a project completing at time t, conditional on it not 
having been completed earlier. The Cox proportional hazards model is used to examine the effect of network 
characteristics on project completion rate: 

tones)followupsjobTitlexitytaskComplereachcohesionsbetweennessizefRHazardRate ,,,,,,,()( =  
Χ )(= βetrtR b)(  

where )(tR  represents the project completion rate, t is project time in the risk set, and r(t)b is the baseline completion 
rate when all the independent variables are set to zero. In this duration model, the effects of independent variables 
are specified in the exponential power, where β is a vector of estimated coefficients on a vector of independent 
variables X. β has a straight forward interpretation, where | β-1| represents the percentage increase (or decrease) in 
project completion rate associated with a one unit incrase in the independent variable depending on whether β-1 is 
positive (or negative). We tested this specification using both face-to-face and proximity-based network 
characteristics (Figures 2 and 3). The thickness of the lines in the graphs indicates the number of interactions 
between workers. As shown in the figures, there are more interactions between workers in the physical proximity-
based network than in the face-to-face network because when people are engaged in conversation they are by 
definition close to each other, whereas two people who are not talking could still be in close proximity. Therefore, 
the face-to-face network is a subset of the proximity network.  

We test the effects of four face-to-face network attributes on the speed of task completion: size, volume, reach, and 
cohesion. First, we use a single cross-sectional network over the entire experimental period to compute network 
variables. Constructing a network over the entire period allows us to assess the ‘latent social network’ that a worker 
can potentially leverage when completing a task. In addition, for every task in our sample, we construct an ‘in-task 
social network’ that includes only the interactions that took place while the worker was performing that particular 
task. For example, if a task takes 3 days to complete, the in-task network for that task is computed using the 
interactions of every worker for those 3 days. Task-specific social networks help us explore whether in-task 
networks differ from workers’ latent networks of available contacts and how these differences affect performance.  

Model 1 in Table 6 shows the effect of the cross-sectional or latent network on worker productivity. Unsurprisingly, 
complex tasks and tasks requiring more follow-ups display longer completion times on average. Interestingly, tonal 
variation, a proxy for employees’ level of enthusiasm and motivation, has no effect on work performance. As 
predicted, network cohesion is positively correlated with work performance. Instead of reducing speed and 
productivity, as in email networks (Aral & Van Alstyne 2007), a one-standard-deviation increase in network 
constraint in face-to-face networks is associated with a 9.5% increase in the speed of task completion, demonstrating 
that cohesive ties in a face-to-face network are more conducive to productivity than diverse ties. We suspect that the 
information transmitted in face-to-face networks is inherently different from that which is transferred in email 
networks. It appears that the advantages of using face-to-face communication to transmit complex knowledge are 
enhanced in cohesive networks. Similarly, indirect contacts are positively correlated with the task completion rate. 
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Although the coefficient on betweenness centrality is not statistically significant, a one percent increase in network 
reach is associated with a 4% increase in the speed of task completion, demonstrating the power of indirect contacts 
in obtaining information. Lastly, direct contacts seem to have either no effect or a negative effect on the task 
completion rate. The total number of face-to-face interactions has a minimal impact on the time to finish a task. 
However, an additional network contact is associated with an 8% decrease in the average speed of task completion, 
demonstrating the potential cost in time, effort, and energy of maintaining face-to-face relationships.  

Although the result using the cross-sectional latent network shows promising evidence supporting our hypotheses, 
the results may be driven by unobserved variation in individual characteristics, such as employees’ inherent ability 
or ambition. Without comprehensive demographic data, it may be premature to attribute the performance differences 
to social networks alone. We therefore constructed a panel data set of in-task face-to-face networks for each task 
performed during the experiment. We employ the Cox proportional hazards model using fixed effects and random 
effects specifications to eliminate variance explained by any time-invariant characteristics of individual employees 
that could affect performance. The results are shown in Table 6, Models 2 and 3 respectively.  The coefficients from 
the random effects model are roughly the same as with the latent cross-sectional network. Although the coefficients 
in the fixed effects model diminish in size, the signs of those coefficients and statistical significance retain powerful 
evidence supporting our hypotheses. We discuss these findings in greater detail below. We first address one 
modeling concern which led us to estimate a third family of specifications beyond the latent and in-task network 
estimations. 

One possible concern in using task-specific networks to infer the effect of social networks on task completion time 
is that tasks of longer duration may generate larger networks and a greater volume of interactions by construction. 
As a result, task-level networks may be less meaningful without controls for the time a network is allowed to grow. 
To eliminate this potential bias in analyzing task-specific networks, we set the number of days that can be used to 
build a social network. With this constraint, observations are no longer task-centric but relate to a person over a 
fixed period of time. Instead of task completion time, the dependent variable is the average completion time for all 
tasks started within a fixed time period. Instead of task-specific network variables, we take into account interactions 
only within the same period, creating a more traditional balanced longitudinal, panel data set of the 37 workers 
measured using the same time periods for each worker. The summary statistics for all three types of face-to-face 
network variables are shown in Table 2. 

itiititit sticsCharacteriIndividualNetworkplexityAvgTaskComnAvgDuratio εβββα ++++= _321  

We chose spells of different durations (1, 3 and 5 day panels) and the length of the periods do not affect our results. 
Table 6 shows the results of a linear regression on the balanced panel with both random and fixed effects where the 
periods are fixed at 3 day intervals. The results from task-specific networks and 3-day networks (Table 6, Models 2-
5) are qualitatively similar for both random and fixed effects models, demonstrating that the network size bias in 
task-specific networks is minimal. Network constraint continues to have the strongest effect on worker performance 
even after eliminating time-invariant factors such as individuals’ inherent ability. As shown in Model 3 of Table 6, 
the fixed effects model demonstrates that a one standard deviation increase in network constraint is associated with a 
6% increase in the task completion rate. The evidence from both longitudinal in-task networks and latent cross-
sectional networks demonstrates that cohesion in face-to-face networks is correlated with higher productivity 
supporting Hypothesis 1a. We speculate that this result holds because the information transmitted in face-to-face 
networks is inherently different from what is transferred in email networks. The advantage of using face-to-face 
communication to transmit complex knowledge is enhanced through cohesion, which allows workers to assimilate 
knowledge more effectively and in a timely manner.  This is in direct contrast to email social networks, in which 
structural diversity has been shown to be more effective (Aral, Brynjolfsson & Van Alstyne 2006, Aral & Van 
Alstyne 2007). 

Overall, the empirical results also support the argument that indirect contacts have a positive effect on work 
performance (Hypothesis 2a). Interestingly, the two measures of indirect contacts (betweenness centrality and 
network reach) have different effects on worker productivity depending on which network model is used. The cross-
sectional network approximates the latent network of potential contacts that workers can leverage while completing 
a task, while the in-task network only contains interactions workers actualized while the task was being performed.  
Using the latent network, a 1% increase in network reach is associated with increasing the speed of task completion 
by 4%, whereas the coefficient on betweenness centrality is positive but statistically insignificant. Network reach 
measures the ability to connect to other employees and to eliminate information distortion caused by intermediaries. 
High network reach in the latent network improves the task completion rate because latent networks represent the 
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constellation of colleagues an employee can potentially contact for information. A broader network reach in 
potential contacts is particularly effective in reducing information distortion because an employee can choose the 
shortest path to task-relevant experts among those potential contacts while performing a particular task. 
Betweenness centrality in the latent network is a proxy for path lengths to potential contacts. Path lengths in 
potential contact networks are less relevant to performance than path lengths in in-task networks because distortion 
occurs only when long path lengths are actually chosen to collect information, not when path lengths of potential 
contacts are long. We therefore expect betweenness in the latent network to be a noisy proxy for path lengths. 

As expected, for the in-task network in which information seeking paths are actualized for each task, a one standard 
deviation increase in betweenness is correlated with 13 to 16% faster task completion, but the coefficient on network 
reach produces no effect. The positive coefficient on betweenness centrality for the in-task network implies that the 
ability to quickly access information needed for the task at hand is important for task completion. On the other hand, 
network reach shows no significant effect in in-task networks. We suspect this is because reach is only relevant for 
how far my potential contacts reach into the organization, but if employees can find the information relevant to a 
given task in a nearby local network neighborhood, then actualizing an in-task network of little reach is unlikely to 
hamper performance. 

 
The number of direct contacts has either a limited or a negative effect on the task completion rate for both cross-
sectional and longitudinal models. Although the total number of face-to-face interactions has a minimal impact on 
the rate of task completion, an additional network contact in the in-task fixed effects model is associated with a 4% 
decrease in the task completion rate. Since most of the tasks in our sample are simple tasks, the negative impact of 
network size on work performance suggests a potential cost in time, effort, and energy to maintain face-to-face 
relationships. Disruptions during task execution can be especially distracting, as the cognitive cost of switching tasks 
can impede the rate of task completion (Aral, Brynjolfsson & Van Alstyne 2006). Our results show this effect is 
more pronounced for basic tasks that are relatively simple and do not require extensive face-to-face counseling. 
Since workers have less need to seek knowledge from other members of the group when performing basic tasks, the 

                                                           
1 We excluded network reach in physical proximity models since there is little variation in reach levels among actors. Since physical proximity-
based networks have many more interactions between actors than in face-to-face networks (Figure 2, 3), their topology also tend to be denser, 
where 90% of the actors achieved 100% reach level while the remaining 10% achieved 94.75% level. Therefore, to avoid multicollinearity 
problems, we eliminated network reach in our model. 

Table 6: The Effect of F2F Networks on Work Performance 

Network Type 
Cross-sectional  
Latent Network Panel: In-Task Networks Panel: 3-Day Network Panels Physical Proximity 

Network 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Dependent Variable 
Completion  

Rate 
Completion  

Rate 
Completion  

Rate 
Average   
Duration 

Average 
Duration 

Completion  
Rate 

 Hazard Hazard -RE Hazard-FE Linear RE Linear FE Hazard 
0.793*** 0.755*** 0.747*** 51.98 19.42 0.774*** Task 

Complexity (0.043) (0.041) (0.043) (89.500) (102.000) (0.042) 
0.854*** 0.857*** 0.844*** 109.8*** 114.6*** 0.863*** Follow-ups 
(0.013) (0.012) (0.013) (20.400) (22.100) (0.012) 

2.272*** 2.504*** 2.672*** -567.0*** -- 2.047*** Configuration 
Specialist (0.230) (0.230) (0.420) (198.000) -- (0.190) 

1.000  1.000  1.000  6.29E-07 -- 1.000  Tonal 
Variation (0.000) (0.000) (0.000) (0.000) -- (0.000) 

1.000** 0.997** 0.996*** -2.425* -1.756 1.000  InteractionsVolume 
(0.000) (0.001) (0.001) (1.400) (1.580) (0.000) 

0.917*** 0.951** 0.961*  139.3*** 136.4*** 1.002  Network  
Size (0.026) (0.024) (0.024) (45.500) (49.300) (0.017) 

1.095** 1.116*** 1.063*  -87.18* -93.68* 0.855** Network Cohesion 
(0.050) (0.043) (0.043) (57.900) (63.200) (0.047) 
1.092  1.163*** 1.128*** -175.3*** -185.7** 0.959  BetweennessCentrality 

(0.089) (0.047) (0.047) (65.500) (69.800) (0.049) 
1.039*** 1.001  1.001  -11.08** -11.92** -- 2 Step 

Reach  (0.010) (0.003) (0.003) (4.450) (4.810) --1 
   184.9 -211.8  Constant 
   (230.000) (238.000)  

Observations 911 911 911 93 93 911 
Standard errors in parentheses     *** p<0.001, ** p<0.05, * p<0.1 
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delay in task completion is likely due to unproductive or interruption-driven communication from other colleagues. 
Since interruptions are costly to workers, we may also expect the total number of interactions to negatively affect 
work performance. In support of this argument, the volume of interactions for the in-task network has a slight 
negative effect on task completion, suggesting interactions with anyone during task execution has a cognitive 
disruption cost. The total number of interactions has no impact on work completion in the latent network however, 
implying that interactions outside of the task have little disruptive impact on the average task duration, 
demonstrating the importance of separating in-task and latent networks and interaction characteristics.  
Lastly, when we compare face-to-face networks with physical proximity networks, we see (in Model 6) that most of 
the coefficients in the physical proximity network are insignificant, demonstrating that face-to-face conversations 
matter more than physical proximity alone. Conley and Udry (2005) find similar results when studying the effect of 
social networks effect on the use of fertilizer in Ghanaian pineapple farms. 

4.1 The Effect of Network Structure on Completing Complex Tasks 
As cohesive networks enable more effective transfers of complex knowledge (Reagans & McEvily 2003, Hansen 
1999) we expect cohesion to be more important when employees are engaged in complex tasks. Given the cost of 
face-to-face interactions in time, effort, energy and interruption, we also expect additional interactions during task 
execution (e.g. in-task networks) to reduce the speed of project completion, but to help increase the speed of project 
completion on complex tasks that require more information, advice and tacit guidance from colleagues. For complex 
tasks we expect the benefits of interaction to outweigh the costs, whereas for simple tasks we expect there to be less 
benefit to interaction, while still creating costs. We also expect network size to follow the same pattern – costly for 
simple tasks but beneficial for complex tasks that require more support from colleagues. To test these expectations, 
we add interaction terms between task difficulty levels, the volume of interactions and network variables. The 
results in Table 7 lend broad support to our expectations with one interesting deviation.  

The interaction of task complexity and network reach is statistically significant and has a positive effect in both the 
latent network and the 3-day network, lending support to Hypothesis 2b. For the latent model, a 1% increase in 
network reach is associated with a 3% greater increase in the rate of completing a complex task (when compared to 
tasks on average) while for the 3-day model with fixed effects, a one percent increase in network reach is associated 
with an 18 minute decrease in the average completion time. Network reach, the ability to access colleagues in the 
network in 2 steps or less, can be beneficial in a latent network of available contacts for contacting the right expert 
to access and assimilate the knowledge needed to complete the task. Consequently, network reach is especially 
helpful for completing difficult tasks that require more information, advice and tacit guidance from colleagues. In 
addition, network reach eliminates intermediaries and can reduce information distortion, which is particularly 
important when transferring complex information. We expect network reach to have less significance in analyses of 
in-task networks, as in-task networks measure networks of colleagues that have already been chosen as contacts 
during the execution of a particular task. The ability to reach a large portion of the network is less relevant once the 
most appropriate colleagues have already been chosen. In fact, we find the interaction terms for task complexity and 
network reach to be insignificant in analyses of in-task networks.  

We also find that more interactions are costly on average during task execution with an additional interaction 
correlated with reducing the project completion rate by about 1%. However, more interactions are beneficial when 
tasks are complex and require more guidance. The interaction terms in Models 2 & 3 show that for complex tasks, 
one additional interaction increases the project completion rate by between .4 - .5%. We suspect that for complex 
tasks the benefits of interaction outweigh the costs, whereas for simple tasks there are fewer benefits to interaction, 
while still creating costs. 

We expected network size to follow a similar pattern to interaction volume, with the maintenance cost of face-to-
face interactions with more people reducing the project completion rate on average but increasing the speed of 
project completion for complex tasks. We found strong evidence of the cost of network size on the completion rate 
in Table 6, but in Table 7 we see this is true even for complex tasks. The interaction terms in Models 4 & 5 show 
that larger networks increase the average duration of complex tasks as well. This contrasts the interactions volume 
result, demonstrating that more interactions with fewer people are the most beneficial for increasing the speed of 
work. We suspect that employees who seek information from a greater number of colleagues not only experience a 
cost to those interactions, but are also not finding the information they are looking for and thus are seeking advice 
from additional colleagues. Our interviews corroborate this finding as employees report having to contact more 
people when they can’t find the guidance they are seeking. More interactions with the right colleagues are helpful on 
complex tasks, but seeking advice from many colleagues is not only costly but also signals an inability to find the 
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information necessary to complete the task quickly. It could also be that more interactions with fewer colleagues 
generate a higher degree of mutual understanding and conversational rapport that facilitates more efficient transfers 
of complex knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As expected, the interaction with betweenness centrality is insignificant in the latent model, since short path lengths 
in actualized in-task networks are those that we expect to be beneficial. We have strong evidence, displayed in Table 
6, that betweenness in in-task networks is correlated with faster project completion. When the interaction term with 
task complexity is introduced, we observe several interesting results. First, the average positive effect of 
betweenness on the task completion rate decreases to zero and the interaction terms with task complexity are 
positive in Models 2-5 demonstrating statistically significant reductions in the average duration of complex tasks in 
Models 4 & 5. These results provide consistent (albeit weak) evidence that higher betweenness is more beneficial 
for complex tasks.  

The coefficient of the interaction term between network cohesion and task complexity is positive but statistically 
insignificant. However, if we use the number of follow-ups as the measurement for task complexity, this interaction 
becomes significant2, lending partial support for hypothesis 1b. Lastly, the physical proximity network displays no 
significant effect on task completion, suggesting that face-to-face conversations are more important than physical 
proximity when completing complex tasks.  

5. Discussion and Conclusion 

                                                           
2 The table that use the number of follow-ups to interact with network variables is not displayed here due to space constraints. The results are 
qualitatively similar to what is shown in Table 7. However, the interaction terms with network cohesion is statistically significant, demonstrating 
that an additional interaction is positively associated with a 4% increase in task completion speed. 

Table 7: The Effect of F2F Networks on Completing Complex Task--Complexity Using Job Difficulty 

Network type 
Cross-sectional  
Latent Network Panel: In-Task Networks Panel: 3-Day Network 

Panels 
Physical Proximity 

Network 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Dependent 
Variable 

Completion 
Rate 

Completion 
Rate 

Completion 
Rate 

Average  
Duration 

Average 
Duration 

Completion  
Rate 

 Hazard Hazard -RE Hazard-FE Linear RE Linear FE Hazard 
0.0695** 0.760*** 0.718*** 206.8 130.4 0.718  Task  

Complexity (0.079) (0.071) (0.068) (216.000) (242.000) (0.380) 
0.855*** 0.854*** 0.840*** 99.89*** 98.57*** 0.861*** Follow-ups 
(0.013) (0.012) (0.013) (21.300) (24.200) (0.012) 

2.204*** 2.559*** 2.799*** -582.2*** -- 2.117*** Configuration 
Specialist (0.240) (0.240) (0.440) (210.000) -- (0.210) 

1.000  1.000  1.000  4.13E-06 -- 1.000  Tonal  
Variation (0.000) (0.000) (0.000) (0.000) -- (0.000) 

1.000  0.989*** 0.990*** -2.25 0.689 1.000  Interaction 
Volume (0.000) (0.003) (0.003) (4.650) (5.350) (0.000) 

0.972  1.021  1.020  -105.2 -155.3 0.997  Network  
Size (0.066) (0.059) (0.057) (133.000) (149.000) (0.042) 

1.006  1.069  1.014  231 250.2 0.855  Network 
Cohesion (0.100) (0.089) (0.087) (207.000) (238.000) (0.100) 

1.225  1.106  1.027  199.9 251.2 0.857  Betweenness 
centrality (0.220) (0.110) (0.099) (214.000) (248.000) (0.100) 

0.991  1.001  0.999  16.67 16.65 1.000  2-Step  
Reach  (0.023) (0.006) (0.006) (12.900) (14.600) (0.000) 

1.000* 1.005*** 1.004** -0.15 -1.416 -- ComplexityX   
     Interact. Vol. (0.000) (0.002) (0.002) (2.330) (2.650) -- 

0.958  0.956  0.963  154.4** 176.9** 0.999  ComplexityX 
Network Size (0.038) (0.033) (0.033) (75.500) (83.900) (0.021) 

1.080  1.031  1.037  -200.4* -216.1* 1.070  ComplexityX         
    Cohesion (0.071) (0.052) (0.054) (125.000) (143.000) (0.066) 

0.966  1.034  1.067  -247.9** -282.2* 0.982  ComplexityX       
    Betweenness (0.092) (0.058) (0.062) (125.000) (145.000) (0.081) 

1.032** 1.000  1.002  -17.68** -17.58** -- ComplexityX      
Reach (0.016) (0.004) (0.004) (7.620) (8.530) -- 

   3.345 -267.9  Constant 
   (409) (466)  

Observations 911 911 911 93 93 911 
Standard errors in parentheses,     *** p<0.001, ** p<0.05, * p<0.1 
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We use new tools and methodologies to collect precise real time data on face-to-face interactions in an IT 
configuration facility. By matching data obtained through the use of wearable Sociometric badges with detailed 
performance data from the firm’s accounting records we are able to test the effects of face-to-face interaction 
networks on individual information worker performance. Although detailed data on electronic interactions (e.g. 
email, phone logs, instant messaging) has become readily available in recent years, our ability to record network 
data for face-to-face interactions has lagged behind. The tools and methods presented in this paper give researchers 
important new opportunities for collecting fine grained data about the flow of information and knowledge in face-to-
face interaction networks in real organizations, opening new avenues for research into social networks, knowledge 
management and IT use in organizations and elevating data collection on face-to-face networks to the standards of 
accuracy and precision displayed in electronic communication data. 

We also make important theoretical contributions to Information Systems research. Until now social network 
theories (e.g. Granovetter 1973, Burt 1992) and information richness theory (Daft & Lengel 1987) have been used 
independently to understand knowledge transfer in information intensive work. Social network theories explain how 
network structures covary with the diffusion and distribution of information, but largely ignore characteristics of 
communication channels. Information richness theory focuses explicitly on communication channel requirements 
for different types of knowledge transfer but ignores the population level topology through which information is 
transferred in a network. We bridge these two sets of theory to understand what types of social structures are most 
conducive to transferring knowledge and improving performance in face-to-face communication networks. 

Our research uncovers four main results.  First, optimal face-to-face communication networks display very different 
topological structures compared to email networks. In both cross-sectional and longitudinal models of face-to-face 
networks, network cohesion is associated with higher productivity, while the opposite is true in email 
communication. We suspect that information transmitted in face-to-face networks is more tacit, complex and 
embedded than information transferred through electronic channels, and that the advantages of using face-to-face 
communication to transmit complex knowledge are enhanced by cohesion which increases norms of trust, effective 
communication heuristics and absorptive capacity through the provision of multiple perspectives on a problem. 
Second, we find that cohesion in face-to-face networks is especially effective when solving complex problems, 
suggesting that cohesion complements information-rich communication media for the effective transmission of 
complex tacit knowledge when conducting complex tasks. Third, we show that the most effective network structures 
for “latent” social networks (those that characterize the network of available communication partners) differ from 
“in-task” social networks (those that characterize the network of communication partners that are actualized during 
the execution of a particular task). We find betweenness centrality is important for in-task networks, as occupying a 
central position in the network accelerates the speed of obtaining information required to complete the task. On the 
other hand, network reach is more important in the latent network than in the in-task network, as the latent model 
represents the network of potential contacts a worker could leverage when completing a task. We find direct 
contacts have a negative impact on task-completion for in-task networks, as the cognitive cost of interruptions is 
high during task execution, but that more interactions with fewer people speed project completion for complex tasks, 
which require more information and guidance from colleagues. Finally, the effect of cohesion is stronger in face-to-
face networks than in physical proximity networks, demonstrating that information flows in actual conversations 
(rather than mere physical proximity) are driving our results. 

There are two main limitations of our work. First, we have no access to email, phone or IM traffic. Without data on 
other communication channels, it is difficult to make direct comparisons of the magnitudes and directions of our 
results across different communication media. However, our on-site interviews indicate that the information 
transferred in face-face conversations in our firm may be fundamentally different from that which is transferred in 
electronic media. Second, although our longitudinal models allow us to control for variance explained by any time-
invariant characteristics of employees, our results may still be biased by unobserved time-varying characteristics 
such as media choice at different points during a task or simultaneity. Although we do not make causal 
interpretations of our parameter estimates, our fixed effects analyses which control for omitted variables that could 
explain our results, combined with interview evidence, suggest that a causal interpretation is plausible. 

Caveats aside, our results represent some of the first evidence measuring the effects of a face-to-face communication 
networks on information worker performance. Using innovative technology to record face-to-face interactions, we 
link information richness theory and social network theories to show that in contrast to email networks, cohesive 
networks in a rich communication medium such as face-to-face interaction are associated with higher employee 
performance. The unique characteristics of face-to-face networks highlight the need to distinguish them from other 
types of communication networks, particularly when analyzing their effects on productivity and performance. 
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