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Abstract
This paper is about constructing and evaluating pointwise confi-
dence bounds on an ROC curve. We describe four confidence-
bound methods, two from the medical field and two used pre-
viously in machine learning research. We evaluate whether the
bounds indeed contain the relevant operating point on the “true”
ROC curve with a confidence of1−δ. We then evaluate pointwise
confidence bounds on the region where the future performanceof
a model is expected to lie. For evaluation we use a synthetic world
representing “binormal” distributions–the classification scores for
positive and negative instances are drawn from (separate) normal
distributions. For the “true-curve” bounds, all methods are sen-
sitive to how well the distributions are separated, which corre-
sponds directly to the area under the ROC curve. One method
produces bounds that are universally too loose, another univer-
sally too tight, and the remaining two are close to the desired
containment although containment breaks down at the extremes
of the ROC curve. As would be expected, all methods fail when
used to contain “future” ROC curves. Widening the bounds to
account for the increased uncertainty yields identical qualitative
results to the “true-curve” evaluation. We conclude by recom-
mending a simple, very efficient method (vertical averaging) for
large sample sizes and a more computationally expensive method
(kernel estimation) for small sample sizes.

1. Introduction

In this paper we address the problem of creating pointwise
confidence bounds on ROC curves. Increasingly, machine
learning studies plot ROC curves to assess possible trade-
offs of true-positive and false-positive rates to be expected
from a learned model. In machine learning, confidence
bounds rarely are drawn on ROC curves, and the field gen-
erally is unaware of methods (introduced elsewhere) to pro-
duce such bounds. There has been almost no research on
the assessment of confidence bounds on ROC curves, and
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no research in a machine learning context (with the excep-
tion of a previous workshop paper (Macskassy & Provost
2004)).

Pointwise confidence bounds generally are designed to
contain (with probability1−δ) the expectation of the point
being estimated. The analog for ROC curves is that the
expected or “true” ROC curve should be contained within
the confidence bounds, with the designated probability. To
contrast with what follows, we call these “true-curve” con-
fidence bounds. When the points in question lie on a curve
in multidimensional space, it is important to consider the
dimension(s) along which the points are bounded, and as-
sociated semantics of the bounds. In ROC space, most ex-
isting methods compute bounds parallel to the axes, which
correspond to assessing the confidence that for a given FP
rate, the model’s TP rate is expected to be contained within
the bound (or vice versa).1

In machine learning settings, it may be desireable to place a
bound on the future performance of a scoring model: where
should we expect the relevant operating point on an ROC
curve to lie given a future sample. To generate such “fu-
ture” confidence bounds, we need (1) to adjust the bounds
to take into account the increased uncertainty, and (2) to
take into account the size of the future sample. The latter is
important because the variance of an ROC curve depends
on the number of data on which it is based (Macskassy &
Provost, 2004).2 Specifically, we will generate bounds that
are expected to contain(1 − δ)% of the appropriate points

1As pointed out by Provost et al. (1998), these pointwise
bounds may not be appropriate for common machine learning
evaluations, e.g., choosing the operating point corresponding
to the minimum expected-cost calculation (Provost & Fawcett,
2001). It may be more appropriate to compute confidencebands
about the entire curve. We discuss ROC confidence bands in a
companion paper at this workshop—a paper that also appears in
the main ICML conference (Macskassy et al., 2005).

2For highly unbalanced class distributions, it also is criti-
cally dependent on the number of minority class instances (Stein,
2002).



on ROC curves produced from data sets containingr ex-
amples.

There has been very little research on the assessment of
confidence regions for ROC curves, even for their designed
purpose, although a few pieces of work did perform em-
pirical evaluations of the efficacy of their methods (e.g.
(Claeskens et al., 2003; Hall et al., 2004)). For ROC anal-
ysis, it is sufficient to represent a (learned) model simply
by the class-conditional score distributions it produces (G+

andG−). For this paper, we adopt the conventional (“bi-
normal”) assumption thatG+ and G− are normally dis-
tributed, and assess the containment of the bounds. We
further assume that it is desired to compute an ROC curve
for a learned scoring model, rather than for a learning algo-
rithm. The latter also is important, but we treat the simpler
question here.

For the “true-curve” bounds, all methods are sensitive
to how well the distributions are separated, which corre-
sponds directly to the area under the ROC curve. One
method produces bounds that are universally too loose, an-
other universally too tight, and the remaining two are close
to the desired containment although containment breaks
down at the extremes of the ROC curve. As would be
expected, all methods fail when used to contain “future”
ROC curves. Widening the bounds to account for the in-
creased uncertainty yields identical qualitative resultsto the
“true-curve” evaluation. We conclude by recommending a
simple, very efficient method (vertical averaging) for large
sample sizes and a more complex and computationally ex-
pensive method (kernel estimation) for small sample sizes.

2. Generation of Pointwise ROC Confidence
Bounds

In machine learning research, prior work on creating confi-
dence intervals for ROC curves has for the most part been
in the context of creating pointwise confidence intervals.
Vertical averaging (VA) looks at successive FP rates and
averages the TPs of multiple ROC curves at that FP rate
(Provost et al., 1998). A potential weakness of this method
is the practical lack of independent control over a model’s
false-positive rates (Fawcett, 2003).Threshold averaging
(TA) chooses a set of decision thresholds and, for each,
identifies the mean and standard deviation (along both FP
and TP) of the set of ROC points that would be generated
using the threshold. Below, we select a uniformly dis-
tributed subset from the sorted set of all scores observed
across the set of ROC curves in the sample (Fawcett, 2003).

VA and TA both require a set of ROC curves to generate
their confidence regions. These can be generated by eval-
uating the model on multiple, sampled fitting sets or by
resampling one fitting set. In this paper, we take an ob-

served sample setR and repeatedly resample with replace-
ment setsR∗. The resulting ROC curves fromR andR∗
will be used to generate confidence regions about an aver-
age curve. Use of such resampling (the bootstrap (Efron &
Tibshirani, 1993)) as a robust way to evaluate expected per-
formance has been suggested for evaluating cost-sensitive
classifiers (Margineantu & Dietterich, 2000).

Medical researchers have examined the use of ROC curves
extensively and have introduced many techniques for cre-
ating confidence boundaries (intervals or bands) (Beck &
Shultz, 1986; Zweig & Campbell, 1993; Hilgers, 1991; Ma
& Hall, 1993; Campbell, 1994; Metz et al., 1998; Tilbury
et al., 2000; Claeskens et al., 2003; Hall et al., 2004). We
focus here on two methods that are directly applicable to
the generation of pointwise confidence bounds for contin-
uous score distributions. One method (Ma & Hall, 1993)
is based on the Working-Hotelling hyperbolic confidence
bounds for regression lines (Working & Hotelling, 1929).
The other method is based on kernel estimation, which re-
cently has seen increasing use to estimate points and their
variances in ROC space (cf. (Hall et al., 2004)).

2.1. Vertical Averaging (VA)

Given a false-positive rate (FP), thevertical averaging
(VA) method works as follows: sample the distribution of
true-positive rates (TPs) from a collection of ROC curves
at the given FP. Given this distribution a TP confidence in-
terval can be created using either the empirical distribution,
a fitted Gaussian distribution, or the binomial distribution.
We use the empirical distribution in this paper—the fitted
Gaussian bounds had similar containments in preliminary
experiments, but we do not report on those here. Using the
binomial distribution yielded bounds that were far too nar-
row and had close to0 containment; we therefore do not
report results using it. We generate VA bounds for a range
of false-positive values between0 and1 and evaluate the
bound for each FP value separately.

2.2. Threshold Averaging (TA)

Given a threshold, the confidence bound calculation for the
threshold averaging (TA) method works by sampling the
distribution of ROC points generated at the given thresh-
old. It then generates the mean (FP,TP) point for the sam-
pled threshold and finds the confidence intervals of the FPs
and TPs. We use the empirical distribution for the same
reason as for the vertical average method. We generate TA
bounds for100 thresholds, uniformly distributed among the
observed thresholds and evaluate the bound for each thresh-
old separately.



2.3. Pointwise Working-Hotelling Bounds (WHB-p)

Following Ma and Hall (1993) and Metz et al. (1998),
we adapt a method for using Working-Hotelling hyperbolic
bounds (Working & Hotelling, 1929) to generate point-
wise confidence bounds on an ROC curve. We use a mod-
ified version a publicly available implementation of the
LABROC4 algorithm (Metz et al., 1998)3 The method is
too complex to describe in detail here; we will give an in-
tuitive overview and the interested reader is refereed to the
original sources.

Previously, much work on generating ROC curves in the
medical literature dealt with ordinal decision categories,
notably estimating ROC curves using maximum likelihood
(ML) estimation based on an assumed parametric form for
the ROC curve. However, we are interested in continuous
decision scores (e.g., estimates of the probability of class
membership). Metz et al. observed that ML estimation of
an ROC curve from continuous scores is equivalent to ML
estimation from ordinal scores if runs of positives/negatives
(as well as equal-scored cases) in the rank-ordered data are
interpreted as ordinal categories. LABROC4 first groups
the data into such runs. Then assuming a binormal score
distribution it uses an ordinal (‘rating method’) algorithm
(Dorfman & Alf, 1969) to fit a smooth ROC curve. Two
different notions of binormality are taken by this approach.
One, which we use later, is that the class-conditional score
distributionsG+ and G− are normally distributed. The
second is that the ROC curve is a straight line using
“normal-deviate” axes—the so-called “probit” space; that
is, Φ−1(TP ) = a + bΦ−1(FP ), whereΦ(·) represents the
cumulative normal distribution function andTP andFP
are the true- and false-positive rates. This straight line in
probit space corresponds to a smooth curve in ROC space.

Ma and Hall (1993) describe the construction of different
sorts of confidence bounds for such ROC curves. Follow-
ing their line of reasoning, the LABROC4 program gener-
ates pointwise confidence bounds via the ROC regression
line in probit space, which is fit using maximum-likelihood
estimation (MLE). Specifically, the bounds are composed
of points defined by the functionl:

l(x, k) = a − b · x + k · σ(x), (1)

wherek is a constant defined below, positive for the up-
per bound and negative for the lower bound,x is a probit-
transformed false-positive rate, andσ(x) is the estimated
variance of the prediction atx, using the standard linear
regression inference methodology.

The constants±k are determined by the confidence level

3We acquired the LABROC4 FORTRAN source code from a
public web-site and modified its I/O to work with our ROC analy-
sis toolkit. Our Java 1.5 toolkit will be released to the public later
this year.
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Figure 1.Example distribution used in study below.

(1− δ) and the type of bound being generated. To generate
pointwise confidence bounds, we use Ma and Hall’s point-
wise Working-Hotelling bounds, where,kδ = Φ−1(1 −
δ/2) = zδ/2 (the z-score for a two-sided bound ofδ confi-
dence).

2.4. Kernel Estimation (KE)

Recently there has been an increased focus on the use of
kernel estimation to generate ROC curves and confidence
bounds around them (cf. (Hall et al., 2004)). Kernel esti-
mation (KE) is used to estimate a continuous density func-
tion from a discrete observed score distribution using some
kernel functionK(x). We refer the reader to the original
paper for the details of this method.4

3. Data Generator

To evaluate the different confidence bounds, we generate
G+ andG− as two normal distributions, only differing in
their parameters. Our synthetic worldW is defined by five
parameters:

1. P (+), the probability that an instance is fromG+;

2. the two model parameters forG+: θ+ andσ+;

3. the two model parameters forG−: θ− andσ−.

For the study below, we fixP (+) = 0.5, σ+ = 3.75,
and σ− = 3.0, making G+ “fatter” than G− (fol-
lowing an observation of Bennett (2003), discussed be-
low). We used a range of values ofθ, setting θ+ =
{0.75, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00}, andθ− = −θ+.

4We use the R script written by the authors to generate the
bounds. This script is publicly available from Hyndman’s web-
site. We wrote an R script wrapper to tailor the I/O to our ROC
toolkit.
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Figure 2.ROC curves generated for distribution as we varyθ.

Figure 1 shows the distributions withθ = ±3.0. Figure 2
shows the resulting ROC curves for all values ofθ, gen-
erated by plotting the points(cdfG−(x), cdfG+(x)), for x
ranging from∞ down to−∞. The smallerθ, the closer the
true ROC curve will be to the random line (x = y); these
choices ofθ yield a range of AUCs from0.62 to 0.98.

4. “True” Bound Evaluation

The semantics for the “true” confidence bound is that we
would expect the relevant operating point on the “true”
ROC curve to lie within the bound with the specified prob-
ability (frequency). In other words, were we to generate a
large number of bounds, we would expect that(1−δ) of
them contain the “true” operating point.

We generate the bounds using the straightforward method-
ology outlined in Table 1.

1. Build a synthetic world,W , consisting of two distribu-
tions,G+ andG

− with meansθ and−θ respectively.
2. Fix a sampling size,r, and sample fromW a confidence-

generation set,R, of sizer.
3. Generate confidence bounds,Cb, based onR as outlined

in Section 2.

Table 1.Generating ROC Bounds from Synthetic World.

This methodology has three parameters: (1) the synthetic
world, which is defined byG+, G−, andP (+), (2) the
ROC-generation size,r, and (3) the confidenceδ.

4.1. Evaluation

We described the synthetic worlds we will use in Sec-
tion 3. We fix δ = 0.1 and examine the sensitivity of
the confidence calculations to the ROC-generation size,
r ∈ {25, 100, 250, 1000, 2500, 10000} and the synthetic
world used. To evaluate the efficacy of the bounds, we gen-

erate1000 bounds based on the method shown in Table 1,
and count how many of those contained the true operating
point. We should expect that(1 − δ)% of the calculated
bounds contain the “truth”.

4.2. Results

Figure 3 shows the containment for the4 pointwise bound
methods across various values ofθ for r = 10000. For low
thresholds (which correspond to high values of FP) the TA
bounds are universally too wide, whereas for high thresh-
olds (low FP) the bounds are sensitive to how well the dis-
tributions are separated—i.e., the TA bounds fall below the
desired containment in direct relation to the increasing val-
ues ofθ. The containments of WHB are very erratic.

KE and VA have almost identical patterns. Both methods
yield, on average, bounds with close to the desired con-
tainments. Exceptions include dips around FP= 0.15 for
θ ∈ {4, 5}, at FP=(0.6, 0.7) for θ = 1.5 and a very large
dip at FP=0.90 for θ = 5. For θ ∈ {0.75, 1}, both meth-
ods have containments around0.95 for all FP. The bounds
are for the most part slightly too wide at any given point.
These results indicate that with a large data set using the
VA bounds generally would be preferable, given the com-
putational expense required to generate the KE bounds.

Exploring the sensitivity to data set size, Figure 4 shows
the containments for each of the4 methods across various
values ofr at θ = 3.0.5 We see the same pattern for TA
as before—TA bounds are for the most part too wide, then
drop below the desired containment at high threshold val-
ues. WHB shows more consistency acrossr values, with
somewhat better containment at lower FP values, but shows
consistently poor performance for larger FP values.

KE and VA exhibit different containment patterns for small
data sets and larger FP values. The VA bounds become far
too narrow for small data sets. The KE bounds become too
inclusive, except for very large values of FP. This is in line
with containment patterns reported on the original KE work
(Hall et al., 2004). Assuming that one generally would pre-
fer to be overly conservative in creating confidence bounds
(avoiding Type I errors in inference), the KE bounds would
be recommended for small data sets.

5. “Future” Bound Evaluation

For machine-learning evaluations we may want to bound
the future performance of the model. Moreover, to eval-
uate the bounds on (real) data for which the score distri-

5We see similar containment patterns for other values ofθ.
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Figure 3.Coverage of pointwise “truth” bounds atδ = 0.1 andr = 10000. The horizontal line shows the expected coverage. We show
the coverages for various values ofθ.
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butions are not binormal,6 we need an alternative strategy.
We don’t know the true ROC curve, but we often have suf-
ficient data to assess the containment of future ROC curves.
To evaluate “future-curve” confidence bounds, for each
bounded curve we generate1000 additional ROC curves
based onr samples fromW and count how many of the
relevant operating points were contained by the bounds,
wherer is the same size as that used to generate the bounds.
Ideally, 1 − δ of the generated operating points would fall
within the bounds.

Not surprisingly KE, VA and WHB all fail. TA is still
too wide. Each method places bounds about the observed
curve. Even if the methods are estimating the true variance
correctly, future curves will be distributed about the true
curve, not about the observed curve. See Macskassy et al.
(2005) for further explanation.

5.1. Widening the bounds

Following Macskassy et al. (2005), we address this prob-
lem by widening the bounds. Let us consider the true ROC
curve (RT ), the sample ROC curve (RM ) from which we
will calculate the bounds (BM ) of width w, and an ROC
curve sampled subsequently (RM ′) the appropriate points
of which should with probability(1 − δ) lie within BM .

Assume that we have a correct true-curve bound around
RM , and denote the width byw. The distance between RT

and RM in the chosen direction (TP for three of our bounds)
has probability (1 − δ) of being smaller thanw. Denote
this distance by d(RT , RM ). The distance measure for RT

and RM ′ , d(RT , RM ′), follows the same distribution and
is independent. Now, if we assume that this distance has a
Gaussian distribution, then it is easy to verify that:

P (d(RT , RM ) + d(RT , RM ′) ≤
√

2w) = 1 − δ.

With non-Gaussian, but “reasonable” distributions, this
should still hold approximately. Sinced(RM , RM ′) ≤
d(RT , RM ) + d(RT , RM ′) we expect the resulting bounds
to be a little too wide, but this could be offset somewhat by
additional uncertainties not accounted for by our method-
ology, such as non-Gaussianity, etc.

5.2. Results

Figure 5 shows the containments we get from applying this
technique using various values ofθ for r = 10000. We see
a close correspondence to the results for the “true-curve”
bounds. KE and VA have similar containments and TA
and WHB fail in the same manner as before. Notably, KE
and VA are more robust than they were for the “true-curve”

6Which we do not do in this paper for pointwise bounds, but
see Macskassy et al. (2005) for a similar evaluation for confidence
bands.

bounds, not having as many dips. They are both generally
a little too wide, as suggested above. Note that both here
and above, even the better methods are too inclusive for
very-difficult-to-separate score distributions (low AUCs).

We performed the same sensitivity analysis tor as before.
Figure 6 shows the containments we get atθ = 3.0 across
various values ofr. Again we see close correspondence
to the performances of the “true-curve” bounds. KE has
very good containment across the board and VA is worse
for smaller values ofr, but for r ≥ 500 it performs com-
parably to KE. We also see that TA is again too wide and
WHB performs even worse than before, being everywhere
too narrow.

Figures 5 and 6 clearly show that only one of the methods,
KE, shows consistently appropriate containment. However,
for larger data sets VA performs comparably and therefore
it may be recommended—for computational reasons—ifr
is large enough (≥ 500 for these experiments).

6. Discussion and Limitations

In this paper we assessed various methods for generating
pointwise confidence bounds for ROC curves. We evalu-
ated two types of bounds: (1) containment of points on the
“true” ROC curve, and (2) containment of points on future
ROC curves produced by the same model (for a test set of a
particular size). The former evaluation is based on what the
bounds were designed to do. The latter may be appropriate
for real settings, when a practitioner may need to bound the
performance expected of a model in the future (see also the
evaluation by Macskassy et al. (2005)).

For computing a confidence bound on where the operating
points on the “true” ROC curve for a model lies, we saw
that a resampling technique (VA) and a semi-parametric
technique (KE) both performed comparably for large sam-
ple sizes, and that the kernel estimation technique (KE) was
much more robust for smaller sampling sizes. Because KE
is computationally expensive, VA should be the method of
choice unlessr is small. The two other techniques, TA
and WHB, were either far too conservative (TA) or too
tight (WHB). This is somewhat surprising for the paramet-
ric WHB method, since the underlying parametric assump-
tions seem to hold, and deserves further analysis.

We proposed a method to widen the bounds to account for
the added uncertainty incorporated in “future” bounds. Us-
ing the widened bounds, KE was always very close to the
proper containment regardless ofθ andr, VA broke down
for small r but was otherwise comparable to KE, TA was
always too conservative and WHB was always too tight.
Therefore, KE is the method of choice unless computa-
tional expensive is an issue, in which case VA can be used
unlessr is small.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

co
ve

ra
ge

False Positive

KE [r=10000]

theta +/- 0.75
theta +/- 1.5
theta +/- 3.0
theta +/- 5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -8 -6 -4 -2  0  2  4  6  8  10 12

co
ve

ra
ge

False Positive

TA [r=10000]

theta +/- 0.75
theta +/- 1.5
theta +/- 3.0
theta +/- 5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

co
ve

ra
ge

False Positive

VA [r=10000]

theta +/- 0.75
theta +/- 1.5
theta +/- 3.0
theta +/- 5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

co
ve

ra
ge

False Positive

WHB [r=10000]

theta +/- 0.75
theta +/- 1.5
theta +/- 3.0
theta +/- 5.0

Figure 5.Containment of pointwise “future” bounds atδ = 0.1 andr = 10000. The horizontal line shows the expected containment.
We show the containments for various values ofθ.
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Our study is based only on synthetic data in an ideal setting.
Prior research (Bennett, 2003; Macskassy et al., 2005) has
shown that scoring distributions from learned modelsdo
not follow Gaussian distributions. Whether the current re-
sults will carry over to real data the subject of our ongoing
investigation—however, given that they do carry over for
confidence bands (Macskassy et al., 2005), it is not unrea-
sonable to expect a similar result for pointwise confidence
bounds.

One issue which we did not cover here is the effect of class
skew, which requires investigation. Stein (2002) has shown
that for data sets with a large class imbalance, the variance
in ROC curves is extremely sensitive to the size of the mi-
nority class. Macskassy et al. (2005) show that for the
highly unbalanced Letter-A data set, confidence band con-
tainment tends to fail. Therefore, caution should be taken
in extrapolating our results to data sets with relatively few
examples of one class.
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