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ABSTRACT

Electronic commerce is revolutionizing the way we think ato
data modeling, by making it possible to integrate the preeg®of
(costly) data acquisition and model induction. The opputyufor

improving modeling through costly data acquisition preséself
for a diverse set of electronic commerce modeling tasks) foer-
sonalization to customer lifetime value modeling; we iffage with
the running example of choosing offers to display to web-gis-

itors, which captures important aspects in a familiar sgttiCon-
sidering data acquisition costs explicitly can allow thdding of

predictive models at significantly lower costs, and a madelay

be able to improve performance via new sources of informatiat
previously were too expensive to consider. However, exgsech-
niques for integrating modeling and data acquisition camteal

with the rich environment that electronic commerce presekife
discuss several possible data acquisition settings, tilteciges in-
volved in the integration with modeling, and various reshareas
that may supply parts of an ultimate solution. We also presed

demonstrate briefly a unified framework within which one aan
tegrate acquisitions of different types, with any costcice and
any predictive modeling objective.

1. INTRODUCTION

Improved predictive modeling can lead to more efficient peses,
higher levels of customer satisfaction, reduced operatirsgs, and
higher returns on investment. Electronic commerce hasv\ieared
as an ideal domain of application for data modeling tectmpl@,
24]: Data are plentiful and relatively reliable. In prinkgp one
can have a “closed-loop” system that can mine data, takeregti
and measure results. Integration with existing procesaesbe

much smoother than when previously manual systems must-be au

tomated.

Electronic commerce also is likely to change the face ofraated
predictive modeling. Having a closed-loop system allowslato
ing systems to begin to make decisions affecting the adopnisdf
the data to be modeled. For example, consider supervisedlmod
ing to help in deciding which web-site visitors should besemted
with a particular offer. For supervised modeling, traindea must
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include “labels,” known values for a target variable—instioase,
whether or not particular visitors responded to the offesrgét-

ing a consumer with unwanted solicitations may incur the obs
reduced goodwill. Possibly more important, targeting ascomer
with one offer may incur the opportunity cost of not presemgti
a known-to-be highly profitable offer. The costs of acquria-

bels for training data can be reduced using techniques ficiiviea
learning [6] and optimal experimental design [22, 12]; wedalibe

active learning techniques below.

However, existing techniques for integrating modeling dath ac-
quisition cannot deal with the rich environment that eleait com-
merce presents, for at least two reasons. First, there amg difa
ferent sorts of data than can be acquired. Consumers’ respon
to offers can be acquired through direct solicitations hsas via
experimental special offers, via customer surveys, andni&r-
actions such as Amazon’s on-line acquisition of produdngast
Firms also collect information indirectly, in the courserafrmal
business interactions, for example by observing respdoszffers
or the results of everyday merchandising decisions. Faersiged
learning one not only can acquire labels, one can acquitesdbr
attributes (i.e., the independent variables). For our gtejrone
may acquire credit-bureau data, or psychographic datarior-p
purchase data from a business partner. Attribute values breay
obtainable individually, or in particular batches.

Data acquisition should consider various sorts of data lséme-
ously [50]. Some of these types of data acquisition have heen
dressed individually (which we discuss below), but to ouowh
edge there is no well-accepted data-acquisition procefdurthe
general problem.

The second characteristic of the e-commerce environmentigh
not dealt with by existing techniques is that each data adipn
has a cost associated with it. For example, different megns b
which consumer preferences (i.e., labels) can be acquineall e
different costs. Learning from normal business transastiand
experimental offers entails opportunity costs. Similgidy acquir-

ing consumers’ preferences via surveys it is often necgssaro-
vide consumers with costly incentives to provide genuirelfack.
Attribute values can also be acquired directly from thirdties.
For example, Acxiorhsells detailed consumer demographic and
lifestyle data to firms in support of their marketing effortgher
firms such as Abac@snaintain and sell specialized consumer pur-
chase information.

http:/www.acxiom.com
2http://www.abacus-us.com



Furthermore, the problem to which the resultant model vélbip-
plied has associated costs and benefits. Even for the cage whe
the only data to be acquired are training labels, traditiometh-
ods acquire data in an attempt to build the statistically tnaas
curate model. However, accuracy maximization is not negégs
the most cost-effective policy. For example, very oftendptve
models are used to support profit maximization and someydost!
provements in prediction accuracy do not improve the ugieyl
objective [53]. Thus, data acquisition must take costs amkb
fits into account—both the costs of data acquisition, anc-tsts
and benefits of the alternative courses of actions and tbesiple
outcomes [59, 43].

In this paper, we present in detail the issues involved witad
acquisition for predictive modeling in settings, such as&bnic
commerce, where various data can be acquired—at a cost-eto (p
tentially) improve the modeling. For illustration, we u$e trun-
ning example of choosing offers to display to web-site wisif
which captures the issues in a generally familiar settirfge iSsues
apply more broadly to a diverse set of electronic commerceatro
ing problems, from personalization to customer lifetimieiganod-
eling. Throughout the presentation, we provide the readtr av
high-level guide to various research areas that may suptg pf
an ultimate solution.

2. TARGETING E-COMMERCE OFFERS
Consider the following problem faced by web sites, inclagdétec-
tronic commerce sites. What offer should a visitor encaunteen

she requests a page? By “offer” we mean some part of the page
separate from the content that the visitor intended to retgder
which there are various alternatives. Various offers mayiee

sented on a page. For example, when a user visits Amazon.com

many offers are presented including internal advertiséspespe-
cial discounts, and links to other areas of Amazon’s web &ite
clarity, we will ignore combinatorics and discuss the siédtecof
a single offer (e.g., which should go in the upper right-haffdr
area?).

The selection of “the best” offer involves a conditional retidg

problem: given some representation of the customer (thgtima
clude demographics, prior behavior and the customer'vitiet

during the current session), and the available offersimesgé the
expected value of the offer. This, in turn, involves estimg{con-

ditional) probabilities and values associated with théotes possi-
ble offers. These must be estimated before making the dftsv:

ever, even retrospectively the computation of the valueafféer is

not always straightforward. In order to estimate condaigorob-

abilities and values, an offerer faces the time-honoretlpro of

determining what exactly to condition on for any particudéer.

2.1 Estimating the value of an offer

How to compute value in different situations differs basedab
least three factors. First, there are fundamentally diffesorts of
offers. An advertisement for a third party brings a diffarealue
structure than an enticement to visit a different area ofsémme
e-commerce site. Second, different values are derived fgr-di
ent pricing models. For example, sponsored advertisentarsed
on keyword bidding will take the bids into account in determi
ing expected valug. When ranking sponsored advertisements for
display along with organic search results, a procedureishadw

3http://adwords.google.com

standard [46] is to combine bid amounts with estimated pribba
ities of clickthrough to compute the expected revenue frache
potential sponsored advertisement. This amounts to thesitrate
value expected to be generated from an ad:

Eyq[revenue] = peiick(ad) - CPClqq 1)

wherep.i.k IS the probability of a clickthrough, ar@PC, is the
cost-per-click the advertiser agreed to pay.

Third, different ultimate notions of outcome value may bedjs
perhaps due to what exactly is measurable [32, 44]. Viewing s
cess as a user clicking on the offer is perhaps naive, bueisy
to measure. A less naive strategy would be to look for a ceimer
“resulting” from clicking on the offer. This allows for a deer no-
tion of value in certain cases, but also may miss difficultreak
conversions (such as subsequent off-line purchases) pedtasf
value such as brand awarerfefl]. The notion of brand aware-
ness reminds us that even in terms of measurable profit, the va
of an acquired customer extends far beyond the immediats-tra
action. A firm may want to consider the effect of an offer on the
lifetime value of a customer [48]. And looking even furtheffjrm
should want not just to maximize the lifetime value of the-cus
tomers independently, but the lifetime value of the popotabf
(potential) customers. For example, from the data minimgpez-
tive, prior work [11, 17] provides views into the value of sifer-
ing potential customers as a social hetwork.

Of course, difficulty in measuring the offerer’s true goalaynmot
be sufficient reason to ignore them, and some firms try to paor

'rate notions of longer-term value into their explicit valcecula-

tions. For example, recently, Google began additionallyetude
(in the ranking function) estimates of the quality/relesarof the
target pagé. This could be viewed as an attempt to incorporate in
its value estimate longer-term affects (such as searcleeenting
disillusioned with sponsored ads if they find irrelevanutes. In
principle, to best select among alternative offers/adstieicessary
to estimate the expected value of each including long-tdfects
on consumers and offerers. Specifically, an ad placemeigioec
may take into account possible impact of the decision on tise ¢
tomer’s future behavior as discussed above, as well as the=0$
future bidding behavior (e.g., frequency, CPC, etc.), thpdct on
future behaviors of other offerers who are competing forsibhace,
and the behaviors of other customers.

2.2 On what attributes to condition?

In order to estimate the expected value of the possiblesyféer of-
ferer must determine: on which, if any, attributes will itnctition
the estimates. For example, the probability of a visitarkitig on
an offer for discounted cookware might be conditioned omtlma-
ber of cookbooks the visitor previously purchased. Manfedgt
sorts of attributes might be considered for conditioning.

2.2.1 Atomic offers and undifferentiated visitors
In the simplest scenario, the offerer considers no spedcifiar-
mation about the offer, the visitor, or the offering contegtick-
through probability and value for each offer can be estichate-
conditionally from all prior visitors to which the offer wamade.
To our knowledge, this is one of the two most frequently agpli

“Some on-line advertising pricing schemes use cost-per-
impression, charging based on how often visitors are shown
an ad [46].
Shttp://adwords.blogspot.com/2007/02/quality-scopelates. html



scenarios for offer modeling. Although this simple scemauio-
vides no tailoring to specific users, it brings the advant#gelarge
amount data for certain offers and keywords. On the othed heam
discussed by Richardson et al. [46], for newer offers theag be
little or no data at all on which to base estimates.

2.2.2 \Visit attributes

Offers can be targeted based on attributes of the visit. ¥aneple,
the other of the two most frequent scenarios for offer modeis
to condition based on the keywords most recently enteredvisr a
itor. This is the conditioning used for most sponsored aikiag
accompanying search engine results. Improvements in &sbim
may be obtained by aggregating across somehow-similardeigy
[45]. Other possible visit attributes include the conteinthe cur-

rent pagé€, other pages visited, and more generally the clickstream

of the current visit, such as purchasing an item, the remafvah
item from the shopping cart [38, 40], as well as time of day, ofa
the week, time of year, etc. Visit attributes may help webssto
infer information need or commercial intent [39, 3, 8]. M@en-
erally, the context in which a user’s activities are beingdm§28]

has been noted as an important concept that can improve e¢he pr

dictability of consumers’ on-line behavior [38]. Howevéete is
no agreement as to what “context” constitutes, and hencetbow
derive such context from data.

2.2.3 Offer attributes

Attributes of the thing being offered can improve the tairggsub-
stantially, especially for newer offers. For estimatingkthrough
rate (CTR), Richardson et al. [46] discuss in detail, and pam@
empirically, a wide variety of attributes that could be usedle-
scribe offers. They show that by training a logistic regi@ssvith
offer attributes, they can decrease the error in estima@ing by
30-40%. Importantly for this paper, many of the potentitilatites
could be costly to compute (related-term CTR, landing page-q
ity, reputation, term category entropy, external attrésupased on
encyclopedia or thesaurus lookups, etc.). For exampleyieding
category entropy to assess the specificity of a search plinase
“targeted” it is) improves prediction of CTR substantiallyhey
also propose that creating an attribute based on a quickmopia-
ion, again at a cost for each keyword/offer instance, caulgrove
modeling substantially.

Offer attributes may be particularly useful in combinatieith vis-
itor attributes [16] (described next). For a product offee product
may belong to a product hierarchy with various levels of geliea-
tion. For example, high-tech gadgets may appeal more ttokssi
with a high-tech “lifestyle.” Attributes of the type of offenay also
affect the estimation of expected value. For example, distcof-
fers may appeal more or less to visitors in different incoarges.
Additionally, expected value modeling may take into ac¢athe
proposed location of the offer on the page.

2.2.4 \isitor attributes

In principle, personalized offers can be made by conditigron
attributes of the visitors, beyond those obtainable froendtwrrent
session. For example, very coarse-grained conditioniryg, (@rior
customers versus anonymous Visitors) can retain the aatyesit
of ease of application and massive data. A visitor's IP askire
also can give relatively reliable coarse-grained infoiomtsuch

Shttp://adsense.google.com

as country-of-residence. As with traditional targeted marketing
[54] there are many different types and sources of data oohtbi
condition: prior purchase (as with traditional “recenagduency,
monetary value (RFM)” analysis), geographic, demograpbsg-
chographic, and lifestyle attributes.

E-commerce sites may have additional data from prior visiish
as referrer search terms, clickstreams, search histod/,waab-
surfing history, from which useful attributes can be coritd.
Nasraoui et al. [40] provide a list of references to researctveb-
usage mining to extract frequent patterns from clickstréstory,
as well as a case study of their use. The most visible use itdivis
specific attributes in offer conditioning is for explicitt@mmenda-
tions, which usually are based on the particular produetgipusly
purchased or rated by the visitor.

Acquiring values for visitor attributes can be more-orslesstly.
Referring to the example above combining visitor and offer a
tributes, how could the offerer know that a visitor has a Higth
lifestyle? Or a high income? Lifestyle and demographic data
be purchased from syndicated data providers such as AcBaem.
havior on other web sites may be very useful [41], and is knbyn
and potentially may be purchased from, business partners.

2.2.5 Contemporaneous context

Finally, what is going on in the world beyond the electronitre

merce site in principle may have an effect on estimates ghrmese
probability or conditional value. What are currently paguitems
or topics that might encourage clickthrough or purchaseatih
the current economic climate? To our knowledge, currenilhs
attributes are taken into account only in the creative mufdhe

marketing staff. Such information could be acquired at a%os

3. MODELING WITH COSTLY DATA

So, both intuitively and based on prior research resultsamecon-
clude that conditional modeling can improve offer decisitaking.
However, this potentially useful attribute informationedonot all
come for free. For example, in order to gather data on CTRloeva
of a particular offer, one must make the offer to some visitdihis
introduces various costs—e.g., learning from experimesftars
incurs opportunity costs. Similarly, obtaining consumesdback
(such as for capturing product preferences) requires giryicon-
sumers with significant incentives [38].

Acquiring conditioning attributes also incurs varioustsogor ex-
ample, category-entropy [46], which improved the estipratf
CTR substantially, involves running a search engine andgasing
the results, which at the least incurs significant oppotyucdsts.
The same applies to using encyclopedia and thesaurus Isdkup
Attributes that can be purchased from partners or thirdgsmoan
incur actual monetary expense. Firms may incur a cost toikcqu
additional information, such as psychographic, consusnptand
lifestyle data from third-party suppliers. Informationcaib differ-
ent consumers may be obtained from different data supplibs
may charge different amounts for different types of infotiora

"Google uses the visitor's IP address in targeting adventses
via AdSense.

8For example, consider using Amazon’s “mechanical turk”dy b
these data and others; http://www.mturk.com.

°Richardson et al. [46] note that “more advanced technigags h
been proposed that would have been infeasible to do for exery
in our data set.”



Furthermore, in principle, firms may also find it useful toghase
information about a visitor’s activities at other sites][61

Although we have been discussing offer-making in order @ pr

vide an in-depth look at a specific problem, even within etedt
commerce there are many model-building tasks that reqinre s
lar costly information acquisition, from recommendati¢as], to
the selection of ad keywords [60], to the prediction of conuize
intent [39, 3, 8], and beyond.

4. BASIC (COSTLY) DATA ACQUISITION

In this section we discuss different settings in which redeers
and practitioners have considered costly data acquisitiompre-

dictive modeling. We briefly describe the related acquisitiasks
that arise and the main techniques for guiding acquisitiorsec-

tion 5 we describe in detail a solution for the general fraorw
that subsumes most of the settings described in this section

For each setting we describe, we will consider the task afdird) a
classification model from a set of conditioning attributies{ures).
For example, the task could be to predict whether an offdrresl
ceive a positive response. In this case, each offer is a dsti@nice

4.2 Active learning

The mostly broadly studied costly acquisition setting &t thf tra-
ditional active learning [6], which is depicted in Figureal( In
these figures the gray boxes represent known informatiorttend
white boxes represent information that may be acquired aa c
In the active-learning setting all feature-values are kmawmiss-
ing features can be dealt with (e.g., via imputation). Famegle,
we may only consider building models on simple offer attrésu
that may be readily available for all offers, such as the tflerdf
the offer description [46]. For some, perhaps small, sehee
instances we have labels collected from past user interaclihe
rest of the instances are unlabeled, but they can be selferttd
beling. Labeling each instance comes at a cost—this coujdsbe
the cost of acquiring a label, or could include the oppotiucost
of not displaying a more profitable offer. Given the cost asso
ated with labeling, the task of active learning is to selbet bhest
next instance to be labeled so as to build a good model at a low
cost. Most prior work in active learning has focused on silgc
instances to maximize classification accuracy, though secent
work has dealt with alternative objectives, such as claslsgility
estimation [52, 36].

The active-learning setting has received a substantialuatof
research attention, resulting in methods that have beetessic

that can be described by a fixed set of features, such as tie vis fully applied to different learning algorithms, such as rawet-

attributes, offer attributes, etc., and the class labellmEapositive

works [9, 6], decision tree induction [27], Hidden Markov d4o

or negativedepending on the response observed. Given a datasetg|g [7], SVMs [58, 5] and nearest neighbor classifiers [40The

consisting ofm n-dimensional instances, we represent it byhan
by-n data matrixX, wherezx;; corresponds to the value of thieh

feature of the-th instance. For simplicity, we treat the class label

as then-th feature.

4.1 Real-time (automated) experimentation

A basic form of costly data acquisition is gaining populbariit
electronic commerce: running real-time, controlled eikpents to
gather data on the effectiveness of alternatives; Kohaal.423]
provide a detailed practical guide and a wealth of pointets the
literature. For estimating the effectiveness of offers,stmaften
(to our knowledge) automated experimentation is done utfder
atomic-offer/undifferentiated-visitor scenario.

Once a firm is performing automated experiments, it makes eco

nomic sense to carefully manage the trade-off between Brpglo
new offers and exploiting those that have been proved vdegef
tive in the past. The atomic-offer/undifferentiated-igsiscenario
with a static set of possible offers corresponds to the idasslti-

armed bandit problem [47]: giveachoices (slot machines) each of

which will produce stochastically some (unknown) rewardhéw
the lever is pulled), maximize the cumulative (discountestyard
over a series of decisions (which lever to pull next). Evesgision
simultaneously generates a reward and generates datenfiraties
the decision modeling.

With additional conditioning attributes, this on-line effdecision
problem more generally would benefit from the applicationedd-
forcement learning methods [57, 19]. Its importance ndtstand-
ing, in this paper we will not consider further the on-linepkx
ration/exploitation trade-off; the interested readensticee [42].
Instead, we will look more deeply at the problem of acquiritaga
for improving the performance of a model in settings wheergh
will be explicit training and testing phases. The generah&lapply
more broadly.

challenge in active learning is to determine which unlatbete
stance(s) should be selected, such that labeling it anch@didio
the current data will increase the model’s predictive pennce
the most. Most popular methods use a variant of the followgiengr
eral ideas:

e Uncertainty samplind27, 26], which selects instances on
which the current model has the greatest uncertainty in its
predicted label;

e Query-by-CommitteéQBC) [55, 13, 1, 33, 14], which se-
lects instances on which a committee of classifiers most dis-
agree; and

e Estimation of error reductiofd9, 30], which selects instances,
that once labeled and added to the training set, are expected
to result in the lowest error on future test instances.

It has been demonstrated that active learning can signifjces:
duce the amount of labeled data required to build accuratieleo
in some e-commerce related domains, such as direct mag§&8h
and identifying internet ads [18].

4.3 Active feature-value acquisition

In the active learning setting we assume we have unlabeled in
stances, and the learner dynamically selects the instaodes|a-
beled. Consider instead the following scenario: we arergiveet

of offers that have already been displayed and the correspgpn
responses have been recorded. We now want to build a model to
predict the response on new offers. To do this, we may have som
features describing the offers already made, which can eé s
build a model. However, we may be able to improve the model-
ing by using additional features which were not availablewthe
data was being labeled—such as demographic, pyschograptic
lifestyle attributes of visitors. Such data can be purctidsem

105ee also work on optimal experimental design [22, 12].



n-1 Label

a) Active learning

n-1 Label

c) Instance-completion AFA

n-1 Label

(b) Active feature-value acquisition

n-1 Label

Active information acquisition

Figure 1: Different data acquisition settings. Gray boxes epresent known information and white boxes represent infomation that

may be acquired at a cost.

syndicated data providers or business partners, but they @i
a varying costs. Acquiring all features for all instancesyrba
prohibitively expensive and unnecessary, while acquiaimgndom
subset of feature values may be sub-optimal.

Therefore, we want to seletcrementallyfeature values that are
most cost-effective for improving the modeling. The mosteyal
form of this active feature-value acquisition (AFA) segtis shown
in Figure 1(b). In this setting, Melville et al. [35] presemproce-
dure that ranks alternative feature-value acquisitiorsetdaon an
estimation of the expected improvement in model perforragres
unit cost. We elaborate on this notion in more detail in Sech.
Lizotte et al. [31] study AFA under a fixebudget total cost to
be spent towards acquisitions is determined a priori an@d¢hei-
sition procedure must identify the bestof acquisitions for this
budget. In contrast to the incremental setting, in the btedbeet-
ting the user is not given the option to stop the acquisitimtess
at any time; thus the order in which acquisitions are madetigm-
portant. We will continue our discussion assuming the imenetal
setting.

In some situations, feature values for an instance may alture
available in sets; e.g. a set of demographic informatiooh sas
education level and income, may be available at a single Tbss
variation on the active feature-value acquisition taslsents the
challenge of estimating the value of sets of acquisitiortsckvin-
creases the computational complexity of expected-valtimason

combinatorially. Recently, there have been methods pexpis
use efficient data structures to ameliorate the compleXityet-
value estimation by reusing shared computations [4]. Asltan-a
native to the computationally intense optimal solutioreréhhave
been studies that present heuristic solutions for a spessal of this
setting, in which one set of features is known for all insemand
the task is to select instances for which the remaining feataan
be acquired in a batch [61, 34]. Thisstance-completiosetting
is shown in Figure 1(c), and we briefly describe two approac¢be
AFA in this setting below.

The first approach, Dual Objective Data Acquisitionia) [61],
assigns to each instance a heuristic score, which is angevefa
two measures. The first measure aims to capture the combribut
of the instance to learning, and the second tries to capbar@a-
tential contribution of the instance to imputation modeldliced to
predict the missing values. @A does not employ incomplete in-
stances for induction, hence the first measure is intendeaigiure
the value of adding a complete instance to the training setileN
the second measure is intended to estimate the contribafian
new instance to imputation, which is employed in the evéananf
subsequent acquisitions.

The second approach to instance-completion AEApr Sampl-
ing [34], is based on the conjecture that a set of feature vakies i
more likely to have an impact on subsequent model inductithei
acquired values belong to an instance the current modedifitess



incorrectly. Such a set of feature values embed predictitems
that are not consistent with the current model, and hencebeay
more informative to acquire. Motivated by this reasoniBgror

Samplingidentifies informative instances as those that the current

model misclassifies. Next, it ranks correctly classifieddanses in
order of decreasing uncertainty in the model’s prediction.

The effectiveness of the active feature-value acquisitim@ihods
described in this section has been demonstrated for onisteimer
conversion prediction, where they lead to a substantialatoh in
the amount of data required to build accurate models.

5. ACTIVE INFORMATION ACQUISITION

A natural extension of the settings described in Sectionwhisre
both class labels and feature values may be missing and caat be
quired at a cost. This is more realistic for offer targetihgrt the
prior settings, since many conditioning attributes definaffers
will be missing; we are faced with the choice of acquiring enor
feature values for previously labeled instances (Tell mesnabout
that customer who responded...) or selecting incompletaiites
to be labeled (Let's see whether this customer will respondif-
ferent attributes will have different costs of acquisitievhich all
will be different from the cost of labeling. In this sectiorewriefly
summarize a framework and solution proposed by Saar-Taskha
et al. [50] for dealing with these complex trade-offs.

This setting (active information acquisition (AlA)) is shio in Fig-
ure 1(d): arbitrary elements of the data matkixnay be missing.
Considering the target variable simply to be another “fiegtior
each missing feature;;, there is a corresponding c@st; at which
it can be acquired. Lej;; refer to the query for the value af;;.
Then, the general task of active information acquisiticthésprob-
lem of selecting the information query (instance plus vgfuthat
will result in the largest increase in model quality per waist.

5.1 General AIA framework

The overall framework for the generalized AlA problem is pre
sented in Algorithm 1. Since AlA is defined as an iterativektas
at each step the learning algorithm is trained on the cu(hechm-
plete) dataset and ranks all possible queries based ore#tpeicted
contribution to model quality normalized by cost. The higthe
ranking query is then selected, and the feature value qmnes
ing to this query is acquired. The dataset is appropriatptated,
and this process is repeated until some stopping critesanet,
e.g., desirable model quality has been achieved. To redute ¢
putational costs, multiple queries can be selected at ¢acdtion,
resulting in batch acquisitions, as often is done in actdaning
settings for classification tasks.

While the overall framework of Algorithm 1 is straightforveh the
crux of the problem lies in ranking queries by their expected-
tributions to model quality. In subsequent sections, weudis the
challenges involved in performing this estimation accelsatind
efficiently.

5.2 Estimating expected utility
At every step of the AIA algorithm, the next best feature tquare
is the one that will result in the highest improvement in maplel-

1The possible (costly) information queries that can impnmag-
eling can include additional structure, or can extendedbéythe
elements of this data matrix [43].

Algorithm 1 Active Information Acquisition
Given:
X —initial (incomplete) instance-feature matrix
L — learning algorithm
b — size of query batch
C — cost matrix for all instance-feature pairs
Output:
M = L(X) - final model trained on dataset incorporating ac-
quired values

1. Initialize set of possible queriex) =
x5 is not knowr}.
2. Repeat until stopping criterion is met

{qi;

3. Generate a classifig¥f = £L(X)

4, Vqi; € Q computescore(M, g;j, L, X)

5. Select a subsét of b queries with the
highestscore

6. tij €S,

7. Acquire values for;;: X = X A x4

8. RemoveS from Q

9. ReturnM = L(X)

ity per unit cost? Since the true values of missing features are un-
known prior to acquisition, it is necessary to estimate thptial
impact of every acquisition for all possible outcomes. Hgnbe
optimal policy is to ask for feature values which, once ipavated
into the data, will result in the highest increase in modelliqyin
expectation This Expected Utilityapproach is based on defining
autility functiont/(z;; = =, Cs;) which quantifies the anticipated
benefit arising from obtaining a specific valudor featurex;; via
the corresponding queky; at costC;;. Then, the expected utility
for queryq;;, EU(qs5), is defined as the expectation of the utility
function over the marginal distribution for the featurg:

EU(qs;) = / U(zs; =, Ciy) Plai =) @

While ranking queries using the expected utility definedvabis
the optimal acquisition strategy, the true marginal disition of
each missing feature value is unknown. Instead, an empée#ta
mate of P(x;; = x) in Eq. (2) can be obtained using probabilistic
classifiers. For example, in the case of discrete (categipdata,
for each featurej, a naive Bayes classifié¥/; could be trained
to estimate the feature’s probability distribution basedom the
values of other features of a given instance. Then, whenatal
ing the queryy;;, the classifiefV; is applied to the corresponding
instancez; to estimate the distribution of possible values for the
missing featureP;(x;; = z|x;), conditioned on all known fea-
ture values for the instance. Then, the expectation in BEqcd
be easily computed by piecewise summation over the possble
ues. For continuous attributes, computation of expectityutan

be performed using Monte Carlo methods, or by discretizimg a
using probabilistic classifiers as described above.

5.3 Computing the utility function

2\We consider here a myopic notion of optimality, where only th
current acquisition is considered. The framework appliesangen-
erally.



Selecting an appropriate utility functidi to estimate the benefits
of possible acquisition outcomes in Eq. (2) is a critical poment
of the AIA framework. The choice of utility function shoulceb
determined by the value to be optimized, for example, thegmar
improvement in accuracy per unit of acquisition cost:

.A(X Nxg; = CC) — .A(X)
Cij

U(zij=z,C) = 3

whereA(X) is the accuracy of the current classifigf( X Az; ; =
x) is the accuracy of the classifier induced frafmraugmented with
xi,; = x; andC; ; is the cost of acquiring:; ;.

Usually, maximizing simple classification accuracy is riw pri-
mary objective. In the case of sponsored search with castijok
pricing, we are more interested in calculating expecte@&mee
from a potential advertisement as in Eq. (1). To do this we can
build a model to predicb.i.x, the clickthrough rate (CTR), which
can be cast as a class-probability estimation task. In teisaio,
instead of measuring classification accuratf.) in Eq. (3), we

putation over all outcomes f@p(mn) possible queries. Therefore,
exhaustive selection of a query that maximizes the expadiéd
ity is computationally infeasible for datasets of even nmatiesize.
This selection can be made tractable by limiting the segrahesto
a subsample of the available queries.

For example [50], one can compute the information gain (B3] [
of each of then features (the IG of the class label being 1). Infor-
mally, the information gain gives an indication of how distina-
tive each feature is in terms of the class label. Each instéeature
query can then be scored based on the IG of the feature dibigled
its cost, and a sample taken from the top-scoring queriebitan
more intensive expected utility computation applied ordythis
sub-sample. By adjusting the sample size one can contraigtie-
off between the amount of time spent and the effectivenesiseof
selection scheme.

5.5 Demonstration of results

Past work [50] has demonstrated the effectiveness oE#pected
Utility approach to active information acquisition for the e-comeee
task of customer conversion prediction, and we highlight ttemon-

could measure the mean squared error or the average Kullback Stration here. We consider four e-commerce data sets frefatd

Leibler divergence [25] between the model's predicted CTR a
the true CTR on the labeled data. In tBgpected Utilityformu-
lation, the utility measure can be redefined to describe @ngro
objective—e.g., revenue from alternative pricing schefoeon-
line advertising, such as cost-per-impression or costapton.

The Expected Utilityapproach therefore corresponds to selecting
the query that will result in the estimated largest increiasthe
model utility of choice, per unit cost, in expectation. If fda-
ture costs are equal, this corresponds to selecting they dhat
would result in the model with the highest expected perforcea
Otherwise Expected Utilityallows several small, high-margin ac-
quisitions to be selected instead of one larger acquisitioim less
expected improvement per unit cost.

The advantage of the general AlA approach is that it evaualie
acquisition types by the same measure, i.e., the margipaiotsd
contribution to the predictive performance per unit cosly \B-
ing this common measure one can rank acquisitions of differe
types—in this case, acquisitions of class labels as welf fsature
values.

Another attractive feature of this approach is that it galiess
prior approaches that consider more restricted settindgen/@nly
class labels are missing, acquisition costs are uniform,ciassi-
fication accuracy is the criterion of interest (i.e., tramfial active
learning), it is equivalent to a generalization of the methsed
by [49]. Their method has been shown to be effective in this se
ting. Analogously, in the case that class labels are givenother
feature values may be missing, this formulation is equiviaie ac-
tive feature-value acquisition as in [35].

5.4 Efficiency considerations

A major challenge in implementing active information aigion

is the computational complexity of evaluating all potehgiequisi-
tions. Expected utility?U (¢g;;) cannot be computed in closed form
for arbitrary numeric attributes, and even for discreteritigtions
P(x;; =) the computation could require re-training models on the
dataset for every possible value of every missing featwreThus,
selecting the best fromll available queries would require the com-

study by Zheng and Padmanabhan [61]. These data sets cmtain
formation about web users and their visits to large retab wiges.
The target (dependent) variable indicates whether or reuter
made a purchase during a visit. The predictors describ&oxssi
surfing behaviors at the site as well as at other sites oves.tim
Induced models estimate whether a purchase will occur dwin
given session and employ ttiexpected Utilityapproach to deter-
mine which unknown values are most cost-effective to aeqgsir
as to improve the models’ predictions.

To assess the performance of taepected Utilityapproach to the
active information acquisition task, class labels anduesatal-
ues are removed from the training data uniformly at randoime T
performance of AlA is compared to acquiring missing values u
formly at random. Here we present the set of experimentstwhic
assume that all features and class labels have the sameTtwst.
purpose of this comparison is to verify tiExpected Utilityeffec-
tively estimates the expected contribution of missing ealaf both
types, so as to rank them accurately, and to produce betdicpr
tive models for a given cost. For results on experimentsifterent
cost distributions see [50].

Figure 2 demonstrates the substantial impact achieved img us
AlA over uniform sampling. AlA consistently acquires infoative
values for modeling that result in models superior to thdgeaioed
by uniform acquisition. By evaluating and comparing théed#nt
types of information effectively, AIA provides a signifidalift in
predictive performance. The magnitude of this impact casd®n
in Table 1, which summarizes the percentage reduction or efr
AIA over uniform sampling averaged over all points of thevaur

Average Percentage
Data Set| Error Reduction
etoys 39.71
expedia 15.97
priceline 28.54
qvc 23.47

Table 1: Error reduction produced by using Active Informati on
Active over Uniform Random Acquisition.
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6. ACQUIRING DATAWHEN USING A MODEL
In Sections 4 and 5 we have discussed different settingsdtar d
acquisition in the process tfaining a model. The focus has been
acquiring data in a cost-effective manner while buildingaaau-
rate model. However cost-effective data acquisition cap &k a
critical concern during model use, i.e., when the learnedehis
used for prediction on a new instance. New (test) instana@s m
also have missing features values that can be acquiredeeifak-
ing a prediction. For example, suppose we have built a madel t
predict the response to offers on a site, which is conditiooe
both offer and visitor attributes. Now, if we have a retugnuisitor

to the site we may already have all her information (demduap
psychographic, etc.), which we can use to predict her resptm

a new offer. However, if we have a new visitor, we may choose
to make predictions solely on the offer information we hareye
could choose to acquire more visitor information to pogsibbke

a better-informed decision. As before, this additionabinfation

built. In their setting, given a test case with missing valubey
attempt to determine which feature values should be aatjuamed
in which order, such that the sum of the feature-acquisitast and
expected misclassification cost is minimized.

Greiner et al. [15] analyze the problem of learning an optiata
tive classifieri.e., a classifier which, given a partially specified in-
stance, returns either a class label or specifies whichrieaalue

to acquire next. In their setting, it is assumed that duriagsifier
induction, the learner has access to all feature valuegdaring
instances.

A logical extension of these settings is one in which theseaar-
quisition costs both during training and testing. This isfact,
straightforward to incorporate within the AIA frameworkn Al-
gorithm 1, for the learnef we can use a bounded active classifier
learner, such as a bounded-depth decision tree [10]. THisavi

usually comes at cost, and one must decide between the cost ofenable us to acquire feature values and class labels thé¢ad|to

obtaining more information and the possible loss in revenom
making an ill-informed decision. Importantly, acquisitiof infor-
mation must be evaluated against the best possible dediased

on the available information. The “available informatidntludes
possible estimations of the missing values (for imputgtiand the
use of models that do not require at all values or that emphdy o

a subset of the features [51]—choosing between these nmetbod
dealing with missing data can make a large difference in node
performance [51].

As with model induction, there are several settings for datgui-
sition during model testing. Sheng and Ling [56] study thitirsg
of feature acquisition for testing when a model has alreagiynb

the greatest increase in expected performance of the ataissifier
per unit cost. In related work, Kapoor et al. [20] exploregrayx-
imate solutions to combining active feature-value actjoisiwith
active classification in thbudgeted learningetting.

7. CONCLUSION

Electronic commerce is revolutionizing the way we think ato
data mining, by making it possible to seamlessly integitagepro-
cesses of data acquisition and model induction. In this pape
discussed several possible data acquisition settingsg alith the
challenges involved in developing solutions for each sgttiWe
also presented a unified framework for active informatioguési-
tion, under which one can consider acquisitions of diffetgpes,



with any cost structure, for any modeling objective. We demo
strated the effectiveness of the proposed solution for dis& of
predicting online customer conversion, which shares thgopp
tunity for costly information acquisition with other e-comerce
tasks, such as targeting online offers. Employing activerina-
tion acquisition can allow the building of predictive maslek sig-
nificantly lowered costs. Furthermore, if information igjated
cost-effectively, a modeler may be able to explore new ssurc
of information, that previously were ignored because of ihe-
hibitive cost of acquiringll information from each source. Using
more and richer sources of data can also boost the predjmtive
formance of models, which, in electronic commerce, cansteda
to more efficient processes, higher levels of customerfaatisn,
reduced operating costs, and higher returns on investment.
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