
6

Classification-Aware Hidden-Web Text
Database Selection

PANAGIOTIS G. IPEIROTIS

New York University

and

LUIS GRAVANO

Columbia University

Many valuable text databases on the web have noncrawlable contents that are “hidden” behind

search interfaces. Metasearchers are helpful tools for searching over multiple such “hidden-web”

text databases at once through a unified query interface. An important step in the metasearching

process is database selection, or determining which databases are the most relevant for a given

user query. The state-of-the-art database selection techniques rely on statistical summaries of the

database contents, generally including the database vocabulary and associated word frequencies.

Unfortunately, hidden-web text databases typically do not export such summaries, so previous re-

search has developed algorithms for constructing approximate content summaries from document

samples extracted from the databases via querying. We present a novel “focused-probing” sampling

algorithm that detects the topics covered in a database and adaptively extracts documents that

are representative of the topic coverage of the database. Our algorithm is the first to construct

content summaries that include the frequencies of the words in the database. Unfortunately, Zipf ’s

law practically guarantees that for any relatively large database, content summaries built from

moderately sized document samples will fail to cover many low-frequency words; in turn, incom-

plete content summaries might negatively affect the database selection process, especially for short

queries with infrequent words. To enhance the sparse document samples and improve the data-

base selection decisions, we exploit the fact that topically similar databases tend to have similar

vocabularies, so samples extracted from databases with a similar topical focus can complement

each other. We have developed two database selection algorithms that exploit this observation.

The first algorithm proceeds hierarchically and selects the best categories for a query, and then

sends the query to the appropriate databases in the chosen categories. The second algorithm uses

This material is based upon work supported by the National Science Foundation under Grants No.

IIS-97-33880, IIS-98-17434, and IIS-0643846. The work of P. G. Ipeirotis is also supported by a

Microsoft Live Labs Search Award and a Microsoft Virtual Earth Award. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation or of the Microsoft Corporation.

Authors’ addresses: P. G. Ipeirotis, Department of Information, Operations, and Management Sci-

ences, New York University, 44 West Fourth Street, Suite 8-84, New York, NY 10012-1126; email:

panos@stern.nyu.edu; L. Gravano, Computer Science Department, Columbia University, 1214

Amsterdam Avenue, New York, NY 10027-7003; email: gravano@cs.columbia.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1046-8188/2008/03-ART6 $5.00 DOI 10.1145/1344411.1344412 http://doi.acm.org/

10.1145/1344411.1344412

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:2 • P. G. Ipeirotis and L. Gravano

“shrinkage,” a statistical technique for improving parameter estimation in the face of sparse data,

to enhance the database content summaries with category-specific words. We describe how to mod-

ify existing database selection algorithms to adaptively decide (at runtime) whether shrinkage is

beneficial for a query. A thorough evaluation over a variety of databases, including 315 real web da-

tabases as well as TREC data, suggests that the proposed sampling methods generate high-quality

content summaries and that the database selection algorithms produce significantly more relevant

database selection decisions and overall search results than existing algorithms.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Anal-

ysis and Indexing—Abstracting methods, indexing methods; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—Search process, selection process; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Information networks, performance evaluation
(efficiency and effectiveness); H.3.5 [Information Storage and Retrieval]: Online Information

Services—Web-based services; H.3.6 [Information Storage and Retrieval]: Library Automa-

tion—Large text archives; H.3.7 [Information Storage and Retrieval]: Digital Libraries; H.2.4

[Database Management]: Systems—Textual databases, distributed databases; H.2.5 [Database
Management]: Heterogeneous Databases

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Distributed information retrieval, web search, database selec-

tion

ACM Reference Format:
Ipeirotis, P. G. and Gravano, L. 2008. Classification-Aware hidden-web text database selection.

ACM Trans. Inform. Syst. 26, 2, Article 6 (March 2008), 66 pages. DOI = 10.1145/1344411.1344412

http://doi.acm.org/10.1145/1344411.1344412

1. INTRODUCTION

The World-Wide Web continues to grow rapidly, which makes exploiting all
useful information that is available a standing challenge. Although general web
search engines crawl and index a large amount of information, typically they
ignore valuable data in text databases that is “hidden” behind search interfaces
and whose contents are not directly available for crawling through hyperlinks.

Example 1.1. Consider the U.S. Patent and Trademark (USPTO) database,
which contains1 the full text of all patents awarded in the US since 1976.2 If
we query3 USPTO for patents with the keywords “wireless” and “network”,
USPTO returns 62,231 matches as of June 6th, 2007, corresponding to distinct
patents that contain these keywords. In contrast, a query4 on Google’s main
index that finds those pages in the USPTO database with the keywords “wire-
less” and “network” returns two matches as of June 6th, 2007. This illustrates
that valuable content available through the USPTO database is ignored by this
search engine.5

One way to provide one-stop access to the information in text databases
is through metasearchers, which can be used to query multiple databases

1The full text of the patents is stored at the USPTO site.
2The query interface is available at http://patft.uspto.gov/netahtml/PTO/search-adv.htm
3The query is [wireless AND network].
4The query is [wireless network site:patft.uspto.gov].
5Google has a dedicated patent-search service that specifically hosts and enables searches over the

USPTO contents; see http://www.google.com/patents

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:3

simultaneously. A metasearcher performs three main tasks. After receiving a
query, it finds the best databases to evaluate it (database selection), translates
the query in a suitable form for each database (query translation), and finally
retrieves and merges the results from different databases (result merging) and
returns them to the user. The database selection component of a metasearcher
is of crucial importance in terms of both query processing efficiency and effec-
tiveness.

Database selection algorithms are often based on statistics that character-
ize each database’s contents [Yuwono and Lee 1997; Xu and Callan 1998; Meng
et al. 1998; Gravano et al. 1999]. These statistics, to which we will refer as
content summaries, usually include the document frequencies of the words that
appear in the database, plus perhaps other simple statistics.6 These summaries
provide sufficient information to the database selection component of a meta-
searcher to decide which databases are the most promising to evaluate a given
query.

Constructing the content summary of a text database is a simple task if the
full contents of the database are available (e.g., via crawling). However, this task
is challenging for so-called hidden-web text databases, whose contents are only
available via querying. In this case, a metasearcher could rely on the databases
to supply the summaries (e.g., by following a protocol like STARTS [Gravano
et al. 1997], or possibly by using semantic web [Berners-Lee et al. 2001] tags
in the future). Unfortunately, many web-accessible text databases are com-
pletely autonomous and do not report any detailed metadata about their con-
tents to facilitate metasearching. To handle such databases, a metasearcher
could rely on manually generated descriptions of the database contents. Such
an approach would not scale to the thousands of text databases available on
the web [Bergman 2001], and would likely not produce the good-quality, fine-
grained content summaries required by database selection algorithms.

In this article, we first present a technique to automate the extraction of
high-quality content summaries from hidden-web text databases. Our tech-
nique constructs these summaries from a biased sample of the documents in
a database, extracted by adaptively probing the database using the topically
focused queries sent to the database during a topic classification step. Our al-
gorithm selects what queries to issue based in part on the results of earlier
queries, thus focusing on those topics that are most representative of the da-
tabase in question. Our technique resembles biased sampling over numeric
databases, which focuses the sampling effort on the “densest” areas. We show
that this principle is also beneficial for the text-database world. Interestingly,
our technique moves beyond the document sample and attempts to include in
the content summary of a database accurate estimates of the actual document
frequency of words in the database. For this, our technique exploits well-studied
statistical properties of text collections.

6Other database selection algorithms (e.g., Si and Callan [2005, 2004a, 2003], Hawking and

Thomas [2005], Shokouhi [2007]) also use document samples from the databases to make selection

decisions.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:4 • P. G. Ipeirotis and L. Gravano

Unfortunately, all efficient techniques for building content summaries via
document sampling suffer from a sparse-data problem: Many words in any text
database tend to occur in relatively few documents, so any document sample
of reasonably small size will necessarily miss many words that occur in the
associated database only a small number of times. To alleviate this sparse-data
problem, we exploit the observation (which we validate experimentally) that
incomplete content summaries of topically related databases can be used to
complement each other. Based on this observation, we explore two alternative
algorithms that make database selection more resilient to incomplete content
summaries. Our first algorithm selects databases hierarchically, based on their
categorization. The algorithm first chooses the categories to explore for a query
and then picks the best databases in the most appropriate categories. Our sec-
ond algorithm is a “flat” selection strategy that exploits the database catego-
rization implicitly by using “shrinkage,” a statistical technique for improving
parameter estimation in the face of sparse data. Our shrinkage-based algo-
rithm enhances the database content summaries with category-specific words.
As we will see, shrinkage-enhanced summaries often characterize the database
contents better than their “unshrunk” counterparts do. Then, during database
selection, our algorithm decides in an adaptive and query-specific way whether
an application of shrinkage would be beneficial.

We evaluate the performance of our content summary construction algo-
rithms using a variety of databases, including 315 real web databases. We also
evaluate our database selection strategies with extensive experiments that
involve text databases and queries from the TREC testbed, together with rele-
vance judgments associated with queries and database documents. We compare
our methods with a variety of database selection algorithms. As we will see, our
techniques result in a significant improvement in database selection quality
over existing techniques, achieved efficiently just by exploiting the database
classification information and without increasing the document-sample size.

In brief, the main contributions presented in this article are as follows:

—a technique to sample text databases that results in higher-quality database
content summaries than those produced by state-of-the-art alternatives;

—a technique to estimate the absolute document frequencies of the words in
content summaries;

—a technique to improve the quality of sample-based content summaries using
shrinkage;

—a hierarchical database selection algorithm that works over a topical classi-
fication scheme;

—an adaptive database selection algorithm that decides in an adaptive and
query-specific way whether to use the shrinkage-based content summaries;
and

—a thorough, extensive experimental evaluation of the presented algorithms
using a variety of datasets, including TREC data and 315 real web databases.

The rest of the article is organized as follows. Section 2 gives the neces-
sary background. Section 3 outlines our new technique for producing content

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:5

Table I. A Fragment of the Content Summaries

of Two Databases

CANCERLIT
3,801,351 documents

Word df
breast 181,102

cancer 1,893,838

.

CNN Money
13,313 documents

Word df
breast 65

cancer 255

.

summaries of text databases and presents our frequency estimation algorithm.
Section 4 describes our hierarchical and shrinkage-based database selection al-
gorithms, which build on our observation that topically similar databases have
similar content summaries. Section 5 describes the settings for the experimen-
tal evaluation of Sections 6 and 7. Finally, Section 8 describes related work and
Section 9 concludes the article.

2. BACKGROUND

In this section, we provide the required background and describe related ef-
forts. Section 2.1 briefly summarizes how existing database selection algorithms
work, stressing their reliance on database “content summaries.” Then, Sec-
tion 2.2 describes the use of “uniform” query probing for extraction of content
summaries from text databases, and identifies the limitations of this technique.
Finally, Section 2.3 discusses how focused query probing has been used in the
past for the classification of text databases.

2.1 Database Selection Algorithms

Database selection is an important task in the metasearching process, since it
has a critical impact on the efficiency and effectiveness of query processing over
multiple text databases. We now briefly outline how typical database selection
algorithms work and how they depend on database content summaries to make
decisions.

A database selection algorithm attempts to find the best text databases to
evaluate a given query, based on information about the database contents. Usu-
ally, this information includes the number of different documents that contain
each word, which we refer to as the document frequency of the word, plus per-
haps some other simple related statistics [Gravano et al. 1997; Meng et al. 1998;
Xu and Callan 1998], such as the number of documents stored in the database.

Definition 2.1. The content summary S(D) of a database D consists of:

—the actual number of documents in D, |D|, and

—for each word w, the number df(w) of documents in D that include w.

For notational convenience, we also use p(w|D) = df (w)
|D| to denote the fraction

of D documents that include w.

Table I shows a small fraction of what the content summaries for two real
text databases might look like. For example, the content summary for the CNN

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:6 • P. G. Ipeirotis and L. Gravano

Money database, a database with articles about finance, indicates that 255 out
of the 13,313 documents in this database contain the word “cancer,” while there
are 1,893,838 documents with the word “cancer” in CANCERLIT, a database
with research articles about cancer. Given these summaries, a database selec-
tion algorithm estimates the relevance of each database for a given query (e.g.,
in terms of the number of matches that each database is expected to produce
for the query).

Example 2.2. bGlOSS [Gravano et al. 1999] is a simple database selec-
tion algorithm that assumes query words to be independently distributed
over database documents to estimate the number of documents that match
a given query. So, bGlOSS estimates that query [breast cancer] will match

|D| · df(breast)
|D| · df(cancer)

|D|
∼= 90, 225 documents in database CANCERLIT, where

|D| is the number of documents in the CANCERLIT database and df(w) is the
number of documents that contain the word w. Similarly, bGlOSS estimates
that roughly only one document will match the given query in the other data-
base, CNN Money, of Table I.

bGlOSS is a simple example from a large family of database selection algo-
rithms that rely on content summaries such as those in Table I. Furthermore,
database selection algorithms expect content summaries to be accurate and up-
to-date. The most desirable scenario is when each database exports its content
summary directly and reliably (e.g., via a protocol such as STARTS [Gravano
et al. 1997]). Unfortunately, no protocol is widely adopted for web-accessible da-
tabases, and there is little hope that such a protocol will emerge soon. Hence, we
need other solutions to automate the construction of content summaries from
databases that cannot or are not willing to export such information. We review
one such approach next.

2.2 Uniform Probing for Content Summary Construction

As discussed before, we cannot extract perfect content summaries for hidden-
web text databases whose contents are not crawlable. When we do not have
access to the complete content summary S(D) of a database D, we can only
hope to generate a good approximation to use for database selection purposes.

Definition 2.3. The approximate content summary Ŝ(D) of a database D
consists of:

—an estimate |̂D| of the number of documents in D, and

—for each word w, an estimate d̂f (w) of df (w).

Using the values |̂D| and d̂f (w), we can define an approximation p̂(w|D) of

p(w|D) as p̂(w|D) = d̂f (w)

|̂D| .

Callan et al. [1999] and Callan and Connell [2001] presented pioneering work
on automatic extraction of approximate content summaries from “uncoopera-
tive” text databases that do not export such metadata. Their algorithm extracts
a document sample via querying from a given database D, and approximates

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:7

df (w) using the frequency of each observed word w in the sample, sf (w) (i.e.,
d̂f (w) = sf (w)). In detail, the algorithm proceeds as follows.

Algorithm.

(1) Start with an empty content summary where sf (w) = 0 for each word w, and a
general (i.e., not specific to D), comprehensive word dictionary.

(2) Pick a word (see the next paragraph) and send it as a query to database D.

(3) Retrieve the top-k documents returned for the query.

(4) If the number of retrieved documents exceeds a prespecified threshold, stop. Other-
wise continue the sampling process by returning to step 2.

Callan et al. suggested using k = 4 for step 3 and that 300 documents are
sufficient (step 4) to create a representative content summary of a database.
Also they describe two main versions of this algorithm that differ in how step
2 is executed. The algorithm QueryBasedSampling-OtherResource (QBS-Ord
for short) picks a random word from the dictionary for step 2. In contrast, the
algorithm QueryBasedSampling-LearnedResource (QBS-Lrd for short) selects
the next query from among the words that have been already discovered dur-
ing sampling. QBS-Ord constructs better profiles, but is more expensive than
QBS-Lrd [Callan and Connell 2001]. Other variations of this algorithm per-
form worse than QBS-Ord and QBS-Lrd, or have only marginal improvement
in effectiveness at the expense of probing cost.

Unfortunately, both QBS-Lrd and QBS-Ord have a few shortcomings. Since
these algorithms set d̂f (w) = sf (w), the approximate frequencies d̂f (w) range
between zero and the number of retrieved documents in the sample. In other
words, the actual document frequency df (w) for each word w in the database is
not revealed by this process. Hence, two databases with the same focus (e.g., two
medical databases) but differing significantly in size might be assigned similar
content summaries. Also, QBS-Ord tends to produce inefficient executions in
which it repeatedly issues queries to databases that produce no matches. Ac-
cording to Zipf ’s law [Zipf 1949], most of the words in a collection occur very few
times. Hence, a word that is randomly picked from a dictionary (which hope-
fully contains a superset of the words in the database), is not likely to occur in
any document of an arbitrary database. Similarly, for QBS-Lrd, the queries are
derived from the already acquired vocabulary, and many of these words appear
only in one or two documents, so a large fraction of the QBS-Lrd queries return
only documents that have been retrieved before. These queries increase the
number of queries sent by QBS-Lrd, but do not retrieve any new documents.
In Section 3, we present our algorithm for approximate content summary con-
struction that overcomes these problems and, as we will see, produces content
summaries of higher quality than those produced by QBS-Ord and QBS-Lrd.

2.3 Focused Probing for Database Classification

Another way to characterize the contents of a text database is to classify it in
a Yahoo!-like hierarchy of topics according to the type of the documents that
it contains. For example, CANCERLIT can be classified under the category

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:8 • P. G. Ipeirotis and L. Gravano

Fig. 1. Algorithm for classifying a database D into the category subtree rooted at category C.

“Health,” since it contains mainly health-related documents. Gravano et al.
[2003] presented a method to automate the classification of web-accessible text
databases, based on focused probing.

The rationale behind this method is that queries closely associated with a
topical category retrieve mainly documents about that category. For example,
a query [breast cancer] is likely to retrieve mainly documents that are related
to the “Health” category. Gravano et al. [2003] automatically construct these
topic-specific queries using document classifiers, derived via supervised ma-
chine learning. By observing the number of matches generated for each such
query at a database, we can place the database in a classification scheme. For
example, if one database generates a large number of matches for queries asso-
ciated with the “Health” category and only a few matches for all other categories,
we might conclude that this database should be under category “Health.” If the
database does not return the number of matches for a query or does so unreli-
ably, we can still classify the database by retrieving and classifying a sample of
documents from the database. Gravano et al. [2003] showed that sample-based
classification has both lower accuracy and higher cost than an algorithm that
relies on the number of matches; however, in the absence of reliable match-
ing statistics, classifying the database based on a document sample is a viable
alternative.

To classify a database, the algorithm in Gravano et al. [2003] (see Figure 1)
starts by first sending those query probes associated with subcategories of the
top node C of the topic hierarchy, and extracting the number of matches for
each probe, without retrieving any documents. Based on the number of matches
for the probes for each subcategory Ci, the classification algorithm then calcu-
lates two metrics, the Coverage(D, Ci) and Specificity(D, Ci) for the subcate-
gory: Coverage(D, Ci) is the absolute number of documents in D that are es-
timated to belong to Ci, while Specificity(D, Ci) is the fraction of documents
in D that are estimated to belong to Ci. The algorithm decides to classify D
into a category Ci if the values of Coverage(D, Ci) and Specificity(D, Ci) ex-
ceed two prespecified thresholds τec and τes, respectively. These thresholds are

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:9

determined by “editorial” decisions on how “coarse” a classification should be.
For example, higher levels of the specificity threshold τes result in assignments
of databases mostly to higher levels of the hierarchy, while lower values tend to
assign the databases to nodes closer to the leaves.7 When the algorithm detects
that a database satisfies the specificity and coverage requirement for a subcat-
egory Ci, it proceeds recursively in the subtree rooted at Ci. By not exploring
other subtrees that did not satisfy the coverage and specificity conditions, the
algorithm avoids exploring portions of the topic space that are not relevant to
the database.

Next, we introduce a novel technique for constructing content summaries
that are highly accurate and efficient to build. Our new technique builds on the
document sampling approach used by the QBS algorithms [Callan and Connell
2001] and on the text-database classification algorithm from Gravano et al.
[2003]. Just like QBS, which we summarized in Section 2.2, our new technique
probes the databases and retrieves a small document sample to construct the
approximate content summaries. The classification algorithm, which we sum-
marized in this section, provides a way to focus on those topics that are most
representative of a given database’s contents, resulting in accurate and effi-
ciently extracted content summaries.

3. CONSTRUCTING APPROXIMATE CONTENT SUMMARIES

We now describe our algorithm for constructing content summaries for a text
database. Our algorithm exploits a topic hierarchy to adaptively send focused
probes to the database (Section 3.1). Our technique retrieves a “biased” sam-
ple containing documents that are representative of the database contents.
Furthermore, our algorithm exploits the number of matches reported for each
query to estimate the absolute document frequencies of words in the database
(Section 3.2).

3.1 Classification-Based Document Sampling

Our algorithm for approximate content summary construction exploits a topic
hierarchy to adaptively send focused probes to a database. These queries tend
to efficiently produce a document sample that is representative of the database
contents, which leads to highly accurate content summaries. Furthermore, our
algorithm classifies the databases along the way. In Section 4, we will show
that we can exploit categorization to improve further the quality of both the
generated content summaries and the database selection decisions.

Our content summary construction algorithm is based on the classification
algorithm from Gravano et al. [2003], an outline of which we presented in Sec-
tion 2.3 (see Figure 1). Our content summary construction algorithm is shown in
Figure 2. The main difference with the classification algorithm is that we exploit
the focused probing to retrieve a document sample. We have enclosed in boxes
those portions directly relevant to content summary extraction. Specifically, for

7Gravano et al. [2003] suggest that τec ≈ 10 and τes ≈ 0.3 − 0.4 work well for the task of database

classification.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:10 • P. G. Ipeirotis and L. Gravano

Fig. 2. Generalizing the classification algorithm from Figure 1 to generate a content summary for

a database using focused query probing.

each query probe, we retrieve k documents from the database in addition to
the number of matches that the probe generates (box β in Figure 2). Also, we
record two sets of word frequencies based on the probe results and extracted
documents (boxes β and γ). These two sets are described next.

(1) df (w) is the actual number of documents in the database that contain word
w. The algorithm knows this number only if [w] is a single-word query probe
that was issued to the database.8

(2) sf (w) is the number of documents in the extracted sample that contain
word w.

The basic structure of the probing algorithm is as follows. We explore (and
send query probes for) only those categories with sufficient specificity and cover-
age, as determined by the τes and τec thresholds (for details, see Section 2.3). As
a result, this algorithm categorizes the databases into the classification scheme
during probing. We will exploit this categorization to improve the quality of the
generated content summaries in Section 4.2.

Figure 3 illustrates how our algorithm works for the CNN Sports Illus-
trated database, a database with articles about sports, and for a toy hierar-
chical scheme with four categories under the root node: “Sports,” “Health,”

8The number of matches reported by a database for a single-word query [w] might differ slightly

from df (w), for example, if the database applies stemming [Salton and McGill 1983] to query words

so that a query [computers] also matches documents with word “computer.”

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:11

Health

Science

metallurgy
(0)

dna
(30)

Computers

Sports

soccer
(7,530) cancer

(780)baseball
(24,520)

keyboard
(32)

ram
(140)

aids
(80)

Probing Process -
Phase 1

Parent Node: Root

Basketball

Baseball

Soccer

Hockey

jordan
(1,230)

liverpool
(150)

lakers
(7,700)

yankees
(4,345)

fifa
(2,340)

Probing Process -
Phase 2

Parent Node: Sports

nhl
(4,245)

canucks
(234)

The number of matches
returned for each query is
indicated in parentheses

next to the query

Fig. 3. Querying the CNN Sports Illustrated database with focused probes.

“Computers,” and “Science.” We pick specificity and coverage thresholds τes =
0.4 and τec = 10, respectively, which work well for the task of database clas-
sification [Gravano et al. 2003]. The algorithm starts by issuing query probes
associated with each of the four categories. The “Sports” probes generate many
matches (e.g., query [baseball] matches 24,520 documents). In contrast, probes
for the other sibling categories (e.g., [metallurgy] for category “Science”) gener-
ate just a few or no matches. The Coverage of category “Sports” is the sum of the
number of matches for its probes, or 32,050. The Specificity of category “Sports”
is the fraction of matches that correspond to “Sports” probes, or 0.967. Hence,
“Sports” satisfies the Specificity and Coverage criteria (recall that τes = 0.4 and
τec = 10) and is further explored in the next level of the hierarchy. In contrast,
“Health,” “Computers,” and “Science” are not considered further. By pruning
the probe space, we improve the efficiency of the probing process by giving at-
tention to the topical focus (or foci) of the database. (Out-of-focus probes would
tend to return few or no matches.)

During probing, our algorithm retrieves the top-k documents returned by
each query (box β in Figure 2). For each word w in a retrieved document, the al-
gorithm computes sf (w) by measuring the number of documents in the sample,
extracted in a probing round, that contain w. If a word w appears in document
samples retrieved during later phases of the algorithm for deeper levels of the
hierarchy, then all sf (w) values are added together (the merge step in box γ).

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:12 • P. G. Ipeirotis and L. Gravano

f = P (r+p)
B

?

?

?

Known df

?

Unknown df

sf

... ...

hcamotsrevilrecnac kidneys

......

hepatitis... ...

...

200,000 matches

1,400,000 matches

600,000 matches

f (frequency)

r (rank)

Fig. 4. Estimating unknown df values.

Similarly, during probing, the algorithm keeps track of the number of matches
produced by each single-word query [w]. As discussed, the number of matches
for such a query is (an approximation of) the df (w) frequency (i.e., the number
of documents in the database with word w). These df (·) frequencies are crucial
to estimate the absolute document frequencies of all words that appear in the
document sample extracted, as discussed next.

3.2 Estimating Absolute Document Frequencies

The QBS-Ord and QBS-Lrd techniques return the frequency of words in the
document sample (i.e., the sf (·) frequencies), with no absolute frequency in-
formation. We now show how we can exploit the df (·) and sf (·) document fre-
quencies that we extract from a database to build a content summary for the
database with accurate absolute document frequencies.

Before turning to the details of the algorithm, we describe a (simplified) ex-
ample in Figure 4 to introduce the basic intuition behind our approach.9 After
probing the CANCERLIT database using the algorithm in Figure 2, we rank all
words in the extracted documents according to their sf (·) frequency. For exam-
ple, “cancer” has the highest sf (·) value and “hepatitis” the lowest such value
in Figure 4. The sf (·) value of each word is denoted by an associated vertical
bar. Also, the figure shows the df (·) frequency of each word that appeared as a
single-word query. For example, df (hepatitis) = 200, 000, because query probe
[hepatitis] returned 200,000 matches. Note that the df value of some words
(e.g., “stomach”) is unknown. These words are in documents retrieved during
probing, but did not appear as single-word probes. Finally, note from the figure

9The figures in this example are coarse approximations of the real ones, and we use them just to

illustrate our approach.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:13

that sf(hepatitis) ≈ sf(stomach), and so we might want to estimate df (stomach)
to be close to the (known) value of df (hepatitis).

To specify how to “propagate” the known df frequencies to “nearby” words
with similar sf frequencies, we exploit well-known laws on the distribution
of words over text documents. Zipf [1949] was the first to observe that word-
frequency distributions follow a power law, an observation later refined by Man-
delbrot [1988]. Mandelbrot identified a relationship between the rank r and the
frequency f of a word in a text database, f = P (r + p)B, where P , B, and p
are database-specific parameters (P > 0, B < 0, p ≥ 0). This formula indicates
that the most frequent word in a collection (i.e., the word with rank r = 1)
will tend to appear in about P (1 + p)B documents, while, say, the tenth most
frequent word will appear in just about P (10+ p)B documents. Therefore, given
Mandelbrot’s formula for the database and the word ranking, we can estimate
the frequency of each word.

Our technique relies on Mandelbrot’s formula to define the content summary
of a database and consists of two steps, detailed next.

(1) During probing, exploit the sf (·) frequencies derived during sampling to
estimate the rank-frequency distribution of words over the entire database
(Section 3.2.1).

(2) After probing, exploit the df (·) frequencies obtained from one-word query
probes to estimate the rank of these words in the actual database; then,
estimate the document frequencies of all words by “propagating” the known
rank and document frequencies to “nearby” words w for which we only know
sf (w) and not df (w) (Section 3.2.2).

3.2.1 Estimating the Word Rank-Frequency Distribution. The first part
of our technique estimates the parameters P and B (of a slightly simplified
version10) of Mandelbrot’s formula for a given database. To do this, we examine
how the parameters of Mandelbrot’s formula change for different sample sizes.
We observed that in all the databases that we examined for our experiments,
log(P) and B tend to increase logarithmically with the sample size |S|. (This
is actually an effect of sampling from a power-law distribution [Baayen 2006].)
Specifically,

log(P) = P1 log(|S|) + P2 (1a)

B = B1 log(|S|) + B2 (1b)

and P1, P2, B1, and B2 are database-specific constants, independent of sample
size.

Based on the preceding empirical observations, we proceed as follows for
a database D. At different points during the document sampling process, we
calculate P and B. After sampling, we use regression to estimate the values of
P1, P2, B1, and B2. We also estimate the size of database D using the sample-
resample method [Si and Callan 2003] with five resampling queries. Finally, we

10For numerical stability, we define f = Pr B, which allows us to use linear regression in the log-log

space to estimate parameters P and B.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:14 • P. G. Ipeirotis and L. Gravano

compute the values of P and B for the database by substituting the estimated
|D| for |S| in Eqs. (1a) and (1b). At this point, we have a description of the
frequency-rank distribution for the actual database.

3.2.2 Estimating Document Frequencies. Given the parameters of Man-
delbrot’s formula, the actual document frequency df (w) of each word w can be
derived from its rank in the database. For high-frequency words, the rank in
the sample is usually a good approximation of the rank in the database. Unfor-
tunately, this is rarely the case for low-frequency words, for which we rely on
the observation that the df (·) frequencies derived from one-word query probes
can help estimate the rank and df (·) frequency of all words in the database.
Our rank and frequency estimation algorithm works as follows.

Algorithm.

(1) Sort words in descending order of their sf (·) frequencies to determine the sample
rank sr(wi) of each word wi ; do not break ties for words with equal sf(·) frequency
and assign the same sample rank sr(·) to these words.

(2) For each word w in a one-word query probe (df (w) is known), use Mandelbrot’s

formula and compute the database rank ar(w) = (df (w)

P)
1
B.

(3) For each word w not in a one-word query probe (df (w) is unknown), do the following.
(a) Find two words w1 and w2 with known df and consider their ranks in the sample

(i.e., sr(w1), sr(w2)) and in the database (i.e., ar(w1), ar(w2)).11

(b) Use interpolation in the log-log space to compute the database rank ar(w).12

(c) Use Mandelbrot’s formula to compute d̂f (w) = P · ar(w)B, where ar(w) is the
rank of word w as computed in the previous step.

Using the aforesaid procedure, we can estimate the df frequency of each word
that appears in the sample.

Example 3.1. Consider the medical database CANCERLIT and Figure 4.
We know that df (liver) = 1, 400, 000 and df (hepatitis) = 200, 000, since the re-
spective one-word queries reported as many matches. Furthermore, the ranks
of the two words in the sample are sr(liver) = 4 and sr(hepatitis) = 10, re-
spectively. While we know that the rank of the word “kidneys” in the sample
is sr(kidneys) = 8, we do not know df (kidneys) because [kidneys] was not a
query probe. However, the known values of df (hepatitis) and df (liver) can help
us estimate the rank of “kidneys” in the database and, in turn, the df (kidneys)
frequency. For the CANCERLIT database, we estimate that P = 6 · 106 and
B = −1.15. Thus, we estimate that “liver” is the fourth most frequent word
in the database (i.e., ar(liver) = 4), while “hepatitis” is ranked number 20
(i.e., ar(hepatitis) = 20). Therefore, 15 words in the database are ranked be-
tween “liver” and “hepatitis”, while in the sample there are only 5 such words.
By exploiting this observation and by interpolation, we estimate that “kid-
neys” (with rank 8 in the sample) is the 14th most frequent word in the data-
base. Then, using the rank information with Mandelbrot’s formula, we compute
d̂f (kidneys) = 6 · 106 · 14−1.15 ∼= 288, 472.

11It is preferable, but not essential, to pick w1 and w2 such that sr(w1) < sr(w) < sr(w2).
12The exact formula is ar(w) = exp(

ln(ar(w2))·ln(sr(w)/sr(w1))+ln(ar(w1))·ln(sr(w2)/sr(w))
ln(sr(w2)/sr(w1))

).

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:15

During sampling, we also send to the database query probes that consist of
more than one word. (Recall that our query probes are derived from an under-
lying automatically learned document classifier.) We do not exploit multiword
queries for determining the df frequencies of their words, since the number of
matches returned by a Boolean-AND multiword query is only a lower bound on
the df frequency of each intervening word. However, the average length of the
query probes that we generate is small (less than 1.5 words in our experiments),
and their median length is 1. Hence, the majority of the query probes provide
us with df frequencies that we can exploit.

Finally, a potential problem with the current algorithm is that it relies on
the database reporting a value for the number of matches for a one-word query
[w] that is equal (or at least close) to the value of df (w). Sometimes, however,
these two values might differ (e.g., if a database applies stemming to query
words). In this case, frequency estimates might not be reliable. However, it
is rather easy to detect such configurations [Meng et al. 1999] and adapt the
frequency estimation algorithm properly. For example, if we detect that a
database uses stemming, we might decide to compute the frequency and rank
of each word in the sample after the application of stemming and then adjust
the algorithms accordingly.

In summary, we have presented a novel technique for estimating the absolute
document frequency of the words in a database. As we will see, this technique
produces relatively accurate frequency estimates for the words in a document
sample of the database. However, database words that are not in the sample
documents in the first place are ignored and not made part of the resulting
content summary. Unfortunately, any document sample of moderate size will
necessarily miss many words that occur only a small number of times in the as-
sociated database. The absence of these words from the content summaries can
negatively affect the performance of database selection algorithms for queries
that mention such words. To alleviate this sparse-data problem, we exploit the
observation that incomplete content summaries of topically related databases
can be used to complement each other, as discussed next.

4. DATABASE SELECTION WITH SPARSE CONTENT SUMMARIES

So far, we have discussed how to efficiently construct approximate content
summaries using document sampling. However, any efficient algorithm for
constructing content summaries through query probes is likely to produce in-
complete content summaries, which can adversely affect the effectiveness of the
database selection process. To alleviate this sparse-data problem, we exploit the
observation that incomplete content summaries of topically related databases
can be used to complement each other. In this section, we present two alterna-
tive algorithms that exploit this observation and make database selection more
resilient to incomplete content summaries. Our first algorithm (Section 4.1) se-
lects databases hierarchically, based on categorization of the databases. Our
second algorithm (Section 4.2) is a flat selection strategy that exploits the data-
base categorization implicitly by using shrinkage, and enhances the database
content summaries with category-specific words that appear in topically similar
databases.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:16 • P. G. Ipeirotis and L. Gravano

4.1 Hierarchical Database Selection

We now introduce a hierarchical database selection algorithm that exploits the
database categorization and content summaries to alleviate the negative effect
of incomplete content summaries. This algorithm consists of two basic steps,
given next.

Algorithm.

(1) “Propagate” the database content summaries to the categories of the hierarchical
classification scheme and create the associated category content summaries using
Definition 4.1.

(2) Use the content summaries of categories and databases to perform database selec-
tion hierarchically by zooming in on the most relevant portions of the topic hierarchy.

The intuition behind our approach is that databases classified under similar
topics tend to have similar vocabularies. (We present supporting experimental
evidence for this statement in Section 6.2.) Hence, we can view the (potentially
incomplete) content summaries of all databases in a category as complemen-
tary, and exploit this for better database selection. For example, consider the
CANCER.gov database and its associated content summary in Figure 5. As we
can see, CANCER.gov was correctly classified under “Cancer” by the algorithm
of Section 3.1. Unfortunately, the word “metastasis” did not appear in any of the
documents extracted from CANCER.gov during probing, so this word is miss-
ing from the content summary. However, we see that CancerBACUP13, another
database classified under “Cancer”, has d̂f (metastasis) = 3, 569, a relatively
high value. Hence, we might conjecture that the word “metastasis” is an impor-
tant word for all databases in the “Cancer” category and that this word did not
appear in CANCER.gov because it was not discovered during sampling, and not
because it does not occur in the database. Therefore, we can create a content
summary with category “Cancer” in such a way that the word “metastasis” ap-
pears with relatively high frequency. This summary is obtained by merging the
summaries of all databases under the category.

In general, we define the content summary of a category as follows.

Definition 4.1. Consider a category C and the set db(C) = {D1, . . . , Dn} of
databases classified (not necessarily immediately) under C.14 The approximate
content summary Ŝ(C) of category C contains, for each word w, an estimate
p̂(w|C) of p(w|C), where p(w|C) is the probability that a randomly selected
document from a database in db(C) contains the word w. The p̂(w|C) estimates
in Ŝ(C) are derived from the approximate content summaries of the databases

13http://www.cancerbacup.org.uk
14If a database Di is classified under multiple categories, we can treat Di as multiple disjoint

subdatabases, with each subdatabase being associated with one of the Di categories and containing

only the documents in the respective category.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:17

CANCER.gov
60,574 documents

Word df
… ...
breast 13,379
… ...
cancer 58,491
… ...
diabetes 11,344
… …
metastasis <not found>

CancerBACUP
17,328 documents

Word df
… ...
breast 2,546
… ...
cancer 16,735
… ...
diabetes <not found>
… …
metastasis 3,569

Category: Cancer
|db(Cancer)| =2

77,902 documents

Word df
… ...
breast 15,925
… ...
cancer 75,226
… ...
diabetes 11,344
… …
metastasis 3,569

WebMD
3,346,639 documents

Word df

… ...
… ...
… ...

Category: Health
|db(Health)| = 5

3,747,366 documents

Word df

… ...
… ...
… ...

…

Fig. 5. Associating content summaries with categories.

in db(C) as15

p̂(w|C) =
∑

D∈db(C)
p̂(w|D) · |̂D|∑

D∈db(C) |̂D|
, (2)

where |̂D| is an estimate of the number of documents in D (see Definition 2.3).16

The approximate content summary Ŝ(C) also includes:

—the number of databases |db(C)| under C (n in this definition);

—an estimate |̂C| = ∑
D∈db(C)

|̂D| of the number of documents in all databases
under C; and

15An alternative is to define p̂(w|C) =
∑

D∈db(C)
p̂(w|D)

|db(C)| , which “weights” each database equally,

regardless of its size. We implemented this alternative and obtained results virtually identical to

those for Eq. (2).
16We estimate the number of documents in the database as described in Section 3.2.1.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:18 • P. G. Ipeirotis and L. Gravano

Fig. 6. Selecting the K most specific databases for a query hierarchically.

—for each word w, an estimate d̂f C(w) of the total number of documents under
C that contain the word w: d̂f C(w) = p̂(w|C) · |̂C|.
By having content sumaries associated with categories in the topic hierar-

chy, we can select databases for a query by proceeding hierarchically from the
root category. At each level, we use existing flat database algorithms such as
CORI [Callan et al. 1995] or bGlOSS [Gravano et al. 1999]. These algorithms
assign a score to each database (or category, in our case) that specifies how
promising the database (or category) is for the query, as indicated by the content
summaries (see Example 2.2). Given the scores for categories at one level of the
hierarchy, the selection process continues recursively down the most promising
subcategories. As further motivation for our approach, earlier research has in-
dicated that distributed information retrieval systems tend to produce better
results when documents are organized in topically cohesive clusters [Xu and
Croft 1999; Larkey et al. 2000].

Figure 6 specifies our hierarchical database selection algorithm in detail.
The algorithm receives as input a query and the target number of databases K
that we are willing to search for the query. Also, the algorithm receives the top
category C as input, and starts by invoking a flat database selection algorithm to
score all subcategories of C for the query (step 1), using the content summaries
associated with the subcategories. We assume in our discussion that the scores
produced by the database selection algorithms are greater than or equal to zero,
with a zero score indicating that a database or category should be ignored for
the query. If at least one promising subcategory has a nonzero score (step 2),
then the algorithm picks the best such subcategory Cj (step 3). If Cj has K
or more databases under it (step 4), the algorithm proceeds recursively under
that branch only (step 5). This strategy privileges “topic-specific” databases over
those with broader scope. On the other hand, if Cj does not have sufficiently
many (i.e., K or more) databases (step 6), then intuitively the algorithm has
gone as deep in the hierarchy as possible (exploring only category Cj would
result in fewer than K databases being returned). Then, the algorithm returns
all |db(Cj)| databases under Cj , plus the best K − |db(Cj)| databases under C
but not in Cj , according to the flat database selection algorithm of choice (step
7). If no subcategory of C has a nonzero score (step 8), then again this indicates
that the execution has gone as deep in the hierarchy as possible. Therefore, we

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:19

Fig. 7. Exploiting a topic hierarchy for database selection.

return the best K databases under C, according to the flat database selection
algorithm (step 9).

Figure 7 shows an example of an execution of this algorithm for query [babe
ruth] and for a target of K = 3 databases. The top-level categories are evaluated
by a flat database selection algorithm for the query, and the “Sports” category
is deemed best, with a score of 0.93. Since the “Sports” category has more than
three databases, the query is “pushed” into this category. The algorithm pro-
ceeds recursively by pushing the query into the “Baseball” category. If we had
initially picked K = 10 instead, the algorithm would have still picked “Sports”
as the first category to explore. However, “Baseball” has only seven databases,
so the algorithm picks them all, and chooses the best three databases under
“Sports” to reach the target of ten databases for the query.

In summary, our hierarchical database selection algorithm attempts to
choose the most specific databases for a query. By exploiting the database cate-
gorization, this hierarchical algorithm manages to compensate for the necessar-
ily incomplete database content summaries produced by query probing. How-
ever, by first selecting the most appropriate categories, this algorithm might
miss some relevant databases that are not under the selected categories. One
solution would be to try different hierarchy-traversal strategies that could lead
to the selection of databases from multiple branches of the hierarchy. Instead of
following this direction of finding the appropriate traversal strategy, we opt for
an alternative, flat selection scheme: We use the classification hierarchy only
for improving the extracted content summaries, and we allow the database se-
lection algorithm to choose among all available databases. Next, we describe
this approach in detail.

4.2 Shrinkage-Based Database Selection

As argued previously, content summaries built from relatively small document
samples are inherently incomplete, which might affect the performance of da-
tabase selection algorithms that rely on such summaries. Now, we show how
we can exploit database category information to improve the quality of the

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:20 • P. G. Ipeirotis and L. Gravano

database summaries, and subsequently the quality of database selection deci-
sions. Specifically, Section 4.2.1 presents an overview of our general approach,
which builds on the shrinkage ideas from document classification [McCallum
et al. 1998], while Section 4.2.2 explains in detail how we use shrinkage to con-
struct content summaries. Finally, Section 4.2.3 presents a database selection
algorithm that uses the shrinkage-based content summaries in an adaptive and
query-specific way.

4.2.1 Overview of our Approach. In Sections 2.2 and 3.1, we discussed
sampling-based techniques for building content summaries from hidden-web
text databases, and argued that low-frequency words tend to be absent from
these summaries. Additionally, other words might be disproportionately rep-
resented in the document samples. One way to alleviate these problems is to
increase the document sample size. Unfortunately, this solution might be im-
practical, since it would involve extensive querying of (remote) databases. Even
more importantly, increases in document sample size do not tend to result in
comparable improvements in content summary quality [Callan and Connell
2001]. An interesting challenge is thus to improve the quality of approximate
content summaries, without necessarily increasing the document sample size.

This challenge has a counterpart in the problem of hierarchical document
classification. Document classifiers rely on training data to associate words with
categories. Often, only limited training data is available, which might lead to
poor classifiers. Classifier quality can be increased with more training data, but
creating large numbers of training examples might be prohibitively expensive.
As a less expensive alternative, McCallum et al. [1998] suggested sharing train-
ing data across related topic categories. Specifically, their shrinkage approach
compensates for sparse training data for a category by using training exam-
ples for more general categories. For example, the training documents for the
“Heart” category can be augmented with those from the more general “Health”
category. The intuition behind this approach is that the word distribution in
“Health” documents is hopefully related to that in the “Heart” documents.

We can apply the same shrinkage principle to our problem, which requires
that databases be categorized into a topic hierarchy. This categorization might
be an existing one (e.g., if the databases are classified under Open Directory17).
Alternatively, databases can be classified automatically using the classifica-
tion algorithm briefly reviewed in Section 2.3. Regardless of how databases are
categorized, we can exploit this categorization to improve content summary
coverage. The key intuition behind the use of shrinkage in this context is that
databases under similar topics tend to have related content summaries. Hence,
we can use the approximate content summaries for similarly classified data-
bases to complement each other, as illustrated in the following example.

Example 4.2. Figure 8 shows a fraction of a classification scheme with
two text databases D1 and D2 classified under “Heart,” and one text database
D3 classified under the (higher-level) category “Health.” Assume that the ap-
proximate content summary of D1 does not contain the word “hypertension,”

17http://www.dmoz.org

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:21

Fig. 8. A fraction of a classification hierarchy and content summary statistics for the word

“hypertension.”

but that this word appears in many documents in D1. (“Hypertension” might
not have appeared in any of the documents sampled to build Ŝ(D1).) In con-
trast, “hypertension” appears in a relatively large fraction of D2 documents
as reported in the content summary of D2, which is also classified under the
“Heart” category. Then, by “shrinking” p̂(hypertension|D1) towards the value
of p̂(hypertension|D2), we can capture more closely the actual (and unknown)
value of p(hypertension|D1). The new, “shrunk” value is, in effect, exploiting
documents sampled from both D1 and D2.

We expect databases under the same category to have similar content sum-
maries. Furthermore, even databases classified under relatively general cate-
gories can help improve the approximate content summary of a more specific da-
tabase. Consider database D3, classified under “Health” in Figure 8. Here Ŝ(D3)
can help complement the content summary approximation of databases D1 and
D2, which are classified under a subcategory of “Health,” namely “Heart.” Da-
tabase D3, however, is a more general database that contains documents in
topics other than heart-related. Hence, the influence of Ŝ(D3) on Ŝ(D1) should
perhaps be less than that of, say, Ŝ(D2). In general, and just as for document
classification [McCallum et al. 1998], each category level might be assigned a
different “weight” during shrinkage. We discuss this and other specific aspects
of our technique next.

4.2.2 Using Shrinkage over a Topic Hierarchy. We now define more for-
mally how we can use shrinkage for content summary construction. For this,
we use the notion of content summaries for the categories of a classification
scheme (Definition 4.1) from Section 4.1.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:22 • P. G. Ipeirotis and L. Gravano

Creating shrunk content summaries. Section 4.2.1 argued that mixing in-
formation from content summaries of topically related databases may lead to
more complete approximate content summaries. We now formally describe how
to use shrinkage for this purpose. In essence, we create a new content sum-
mary for each database D by shrinking the approximate content summary of
D, Ŝ(D), so that it is “closer” to the content summaries S(Ci) of each category
Ci under which D is classified.

Definition 4.3. Consider a database D classified under categories
C1, . . . , Cm of a hierarchical classification scheme, with Ci = Parent(Ci+1) for
i = 1, . . . , m − 1. Let C0 be a dummy category whose content summary Ŝ(C0)
contains the same estimate p̂(w|C0) for every word w. Then, the shrunk content
summary R̂(D) of database D consists of:

—an estimate |̂D| of the number of documents in D; and

—for each word w, a shrinkage-based estimate p̂R(w|D) of p(w|D), defined as

p̂R(w|D) = λm+1 · p̂(w|D) +
m∑

i=0

λi · p̂(w|Ci) (3)

for a choice of λi values such that
∑m+1

i=0 λi = 1 (see next).

As described so far, the p̂(w|Ci) values in the Ŝ(Ci) content summaries are
not independent of each other: Since Ci = Parent(Ci+1), all the databases under
Ci+1 are also used to compute Ŝ(Ci), by Definition 4.1. To avoid this overlap,
before estimating R̂(D), we subtract from Ŝ(Ci) all the data used to construct
Ŝ(Ci+1). Also note that a simple version of Eq. (3) is used for database selection
based on language models [Si et al. 2002]. Language model database selection
“smoothes” the p̂(w|D) probabilities with the probability p̂(w|G) for a “global”
category G. Our technique extends this principle and does multilevel smoothing
of p̂(w|D), using the hierarchical classification of D. We now describe how to
compute the λi weights used in Eq. (3).

Calculating category mixture weights. We define the λi mixture weights
from Eq. (3), so as to make the shrunk content summaries R̂(D) for each da-
tabase D as similar as possible to both the starting summary Ŝ(D) and the
summary Ŝ(Ci) of each category Ci under which D is classified. Specifically, we
use expectation maximization (EM) [McCallum et al. 1998] to calculate the λi
weights, using the algorithm in Figure 9. (This is a simple version of the EM
algorithm from Dempster et al. [1977].)

The Expectation step calculates the likelihood that content summary R̂(D)
corresponds to each category. The Maximization step weights the λi ’s to maxi-
mize the total likelihood across all categories. The result of the algorithm is the
shrunk content summary R̂(D), which incorporates information from multiple
content summaries and is thus hopefully closer to the complete (and unknown)
content summary S(D) of database D.

For illustration purposes, Table II reports the computed mixture weights for
two databases that we used in our experiments. As we can see, in both cases
the original database content summary and that of the most specific category

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:23

Fig. 9. Using expectation maximization to determine the λi mixture weights for the shrunk content

summary of a database D.

for the database receive the highest weights (0.421 and 0.414, respectively, for
the AIDS.org database, and 0.411 and 0.297, respectively, for the American
Economics Association database). However, higher-level categories also receive
nonnegligible weights. In general, the λm+1 weight associated with a database
(as opposed to with the categories under which it is classified) is usually highest
among the λi ’s, and so the word-distribution statistics for the database are
not eclipsed by the category statistics. (We verify this claim experimentally in
Section 6.3.)

Shrinkage might in some cases (incorrectly) reduce the estimated frequency
of words that distinctly appear in a database. Fortunately, this reduction tends
to be small because of the relatively high value of λm+1, and hence these dis-
tinctive words remain with high frequency estimates. As an example, consider
the AIDS.org database from Table II. The word chlamydia appears in 3.5% of
those in the AIDS.org database. This word appears in 4% of the documents
in the document sample from AIDS.org and in approximately 2% of those in
the content summary for the AIDS category. After applying shrinkage, the esti-
mated frequency of the word chlamydia is somewhat reduced, but still high. The
shrinkage-based estimate is that chlamydia appears in 2.85% of the documents
in AIDS.org, which is still close to the real frequency.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:24 • P. G. Ipeirotis and L. Gravano

Table II. Category Mixture Weights for Two Databases

Database Category λ Database Category λ

Uniform 0.075 Uniform 0.041

Root 0.026 American Root 0.041

AIDS.org Health 0.061 Economics Science 0.055

Diseases 0.003 Association Social Sciences 0.155

AIDS 0.414 Economics 0.297

AIDS.org 0.421 A.E.A. 0.411

Shrinkage might in some cases (incorrectly) cause inclusion of words in
the content summary that do not appear in the corresponding database. For-
tunately, such spurious words tend to be introduced in summaries with low
weight. Using once again the AIDS.org database as an example, we observed
that the word metastasis was (incorrectly) added by the shrinkage process to
the summary: Metastasis does not appear in the database, but is included in
documents in other databases under the Health category and hence is in the
Health category content summary. The shrunk content summary for AIDS.org
estimates that metastasis appears in just 0.03% of the database documents, so
such a low estimate is unlikely to adversely affect database selection decisions.
(We will evaluate the positive and negative effects of shrinkage experimentally
later, in Sections 6 and 7.)

Finally, note that the λi weights are computed offline for each database when
the sampling-based database content summaries are created. This computation
does not involve any overhead at query-processing time.

4.2.3 Improving Database Selection Using Shrinkage. So far, we intro-
duced a shrinkage-based strategy to complement the incomplete content sum-
mary of a database with the summaries of topically related databases. In princi-
ple, existing database selection algorithms could proceed without modification
and use the shrunk summaries to assign scores for all queries and databases.
However, sometimes shrinkage might not be beneficial and should not be used.
Intuitively, shrinkage should be used to determine the score s(q, D) for a query
q and a database D only if the uncertainty associated with this score would
otherwise be large.

The uncertainty associated with an s(q, D) score depends on a number of
sample-, database-, and query-related factors. An important factor is the size
of the document sample relative to that of database D. If an approximate sum-
mary Ŝ(D) was derived from a sample that included most of the documents
in D, then this summary is already “sufficiently complete.” (For example, this
situation might arise if D is a small database.) In this case, shrinkage is not
necessary and might actually be undesirable, since it might introduce spurious
words into the content summary from topically related (but not identical) da-
tabases. Another factor is the frequency of query words in the sample used to
determine Ŝ(D). If, say, every word in a query appears in nearly all sample doc-
uments and the sample is representative of the entire database contents, then
there is little uncertainty on the distribution of the words over the database
at large. Therefore, the uncertainty about the score assigned to the database

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:25

from the database selection algorithm is also low, and there is no need to apply
shrinkage. Analogously, if every query word appears in only a small fraction of
sample documents, then most probably the database selection algorithm would
assign a low score to the database, since it is unlikely that the database is a
good candidate for evaluating the query. Again, in this case shrinkage would
provide limited benefit and should be avoided. However, consider the following
scenario, involving bGlOSS and a multiword query for which most words ap-
pear very frequently in the sample, but where one query word is missing from
the document sample altogether. In this case, bGlOSS would assign a zero score
to the database. The missing word, though, may have a nonzero frequency in
the complete content summary, and the score assigned by bGlOSS to the da-
tabase would have been significantly higher in the presence of this knowledge
because of bGlOSS’s Boolean nature. So, the uncertainty about the database
score that bGlOSS would assign if given the complete summary is high, and
it is thus desirable to apply shrinkage. In general, for query-word distribution
scenarios where the approximate content summary is not sufficient to reliably
establish the query-specific score for a database, shrinkage should be used.

More formally, consider a query q = [w1, . . . , wn] with n words w1, . . . , wn, a
database D, and an approximate content summary for D, Ŝ(D), derived from a
random sample S of D. Furthermore, suppose that word wk appears in exactly sk
documents in the sample S. For every possible combination of values d1, . . . , dn
(see the following), we compute:

—the probability P that wk appears in exactly dk documents in D, for k =
1, . . . , n, as

P =
n∏

k=1

d γ

k

(
dk
|D|

)sk
(
1 − dk

|D|
)|S|−sk

∑|D|
i=0 iγ ·

(
i

|D|
)sk

(
1 − i

|D|
)|S|−sk

, (4)

where γ is a database-specific constant (for details, see Appendix A); and

—the score s(q, D) that the database selection algorithm of choice would assign
to D if p(wk|D) = dk

|D| , for k = 1, . . . , n.

So for each possible combination of values d1, . . . , dn, we compute both the
probability of the value combination and the score that the database selection
algorithm would assign to D for this document frequency combination. Then,
we can approximate the uncertainty behind the s(q, D) score by examining
the mean and variance of database scores over the different d1, . . . , dn values.
This computation can be performed efficiently for a generic database selection
algorithm: Given the sample frequencies s1, . . . , sn, a large number of possible
d1, . . . , dn values have virtually zero probability of occurring, so we can ignore
them. Additionally, mean and variance converge fast, even after examining only
a small number of d1, . . . , dn combinations. Specifically, we examine random
d1, . . . , dn combinations and periodically calculate the mean and variance of
the score distribution. Usually, after examining just a few hundred random
d1, . . . , dn combinations, mean and variance converge to a stable value. The
mean and variance computation typically requires less than 0.1 seconds for

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:26 • P. G. Ipeirotis and L. Gravano

Fig. 10. Using shrinkage adaptively for database selection.

a single-word query, and approximately 4–5 seconds for a 16-word query.18

This computation can be even faster for a large class of database selection
algorithms that assume independence between query words (e.g., Gravano et al.
[1999], Callan et al. [1995], and Xu and Croft [1999]). For these algorithms, we
can calculate the mean and variance for each query word separately, and then
combine them into the final mean score and variance, respectively (in Appendix
B we provide more details). For algorithms that assume independence between
query words, the computation time is typically less than 0.1 seconds.

Figure 10 summarizes the preceding discussion and shows how we can adap-
tively use shrinkage with an existing database selection algorithm. Specifically,
the algorithm takes as input a query q and a set of databases D1, . . . , Dm. The
Content Summary Selection step decides whether to use shrinkage for each
database Di, as discussed earlier. If the distribution of possible scores has high
variance, then Ŝ(Di) is considered unreliable and the shrunk content sum-
mary R̂(Di) is used instead. Otherwise, shrinkage is not applied. Then, the
Scoring step computes the score s(q, Di) for each database Di, using the con-
tent summary chosen for Di in the Content Summary Selection step. Finally,
the Ranking step orders all databases by their final score for the query. The
metasearcher then uses this rank to decide which databases to search for the
query.

In this section, we presented two database selection strategies that ex-
ploit database classification to improve selection decisions in the presence of

18We measured the time on a PC with a dual AMD Athlon CPU, running at 1.8 GHz.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:27

incomplete content summaries. Next, we present the settings for the experi-
mental evaluation of the content summary construction algorithm of Section 3
and of the database selection algorithms of Section 4.

5. EXPERIMENTAL SETTING

In this section, we describe the data (Section 5.1), strategies for computing con-
tent summaries (Section 5.2), and database selection algorithms (Section 5.3)
that we use for the experiments reported in Sections 6 and 7.

5.1 Datasets

The content summary construction techniques that we proposed before rely on
a hierarchical categorization scheme. For our experiments, we use the classifi-
cation scheme from Gravano et al. [2003], with 72 nodes organized in a 4-level
hierarchy. To evaluate the algorithms described in this article, we use four
datasets in conjunction with the hierarchical classification scheme. These are
as follows.

—Controlled. This is a dataset that was also used for evaluating the task of
database classification in Gravano et al. [2003]. To construct this dataset, we
used postings from Usenet newsgroups where the signal-to-noise ratio was
high and where the documents belonged (roughly) to one of the categories
of our classification scheme. For example, the newsgroups comp.lang.c and
comp.lang.c++ were considered relevant to category “C/C++.” We collected
500,000 articles from April through May 2000. Out of these 500,000 articles,
81,000 were used to train and test the document classifiers that we used for
the Focused Probing algorithm (see Section 5.2.1). We removed all headers
from the newsgroup articles, with the exception of the “Subject” line; we
also removed the e-mail addresses contained in the articles. Except for these
modifications, we made no changes to the collected documents.
We used the remaining 419,000 articles to build the 500 databases in the
Controlled dataset. The size of the 500 Controlled databases that we cre-
ated ranges from 25 to 25,000 documents. Out of the 500 databases, 350 are
homogeneous, with documents from a single category, while the remaining
150 are heterogeneous, with a variety of category mixes. We define a data-
base as homogeneous when it has articles from only one node, regardless of
whether this node is a leaf node. If it is not, then it has an equal number
of articles from each leaf node in its subtree. Heterogeneous databases, on
the other hand, have documents from different categories that reside in the
same level in the hierarchy (not necessarily siblings), with different mixture
percentages. We believe that these databases model real-world searchable
web databases, with a variety of sizes and foci.

—TREC4. This is a set of 100 databases created using documents from TREC-
4 [Harman 1996] and separated into disjoint databases via clustering using
the K -means algorithm as specified in Xu and Croft [1999]. By construction,
the documents in each database are on roughly the same topic.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:28 • P. G. Ipeirotis and L. Gravano

Table III. Some of the Real Web Databases in the Web Dataset

URL Documents Classification
http://www.bartleby.com/ 375,734 Root→ Arts→ Literature→ Texts

http://java.sun.com/ 78,870 Root→ Computers→ Programming→ Java

http://mathforum.org/ 29,602 Root→ Science→ Mathematics

http://www.uefa.com/ 28,329 Root→ Sports→ Soccer

—TREC6. This is a set of 100 databases created using documents from TREC-
6 [Voorhees and Harman 1998] and separated into disjoint databases using
the same methodology as for TREC4.

—Web. This set contains the top-5 real web databases from each of the 54 leaf
categories of the hierarchy and from each of the 17 internal nodes of the
hierarchy19 (except for the root), as ranked in the Google Directory,20 for a
total of 315 databases.21 The size of these databases ranges from 100 to about
376,000 documents. Table III lists four example databases. We used the GNU
Foundation’s wget crawler to download the HTML contents of each site, and
kept only the text from each file by stripping the HTML tags using the lynx
–dump command.

We use the Controlled dataset in Section 6 to extensively test the quality
of the generated content summaries and to pick the variation of our probing
strategy (from Section 3.1) that we will use for our subsequent experiments in
Section 7. We also use the Web dataset in Section 6 to further validate results on
the quality of the summaries. Finally, we use the TREC4 and TREC6 datasets,
both for examining the quality of the content summaries and for testing the
performance of the database selection algorithms in Section 7. (The TREC4
and TREC6 datasets are the only ones in our testbed that include queries and
associated relevance judgments.) For indexing and searching the files in all
datasets, we used Jakarta Lucene,22 an open-source full-text search engine.

5.2 Content Summary Construction Algorithms

Our experiments evaluate a number of content summary construction tech-
niques, which vary in their underlying document sampling algorithms (Sec-
tion 5.2.1) and on whether they use shrinkage and absolute frequency estima-
tion (Section 5.2.2).

5.2.1 Sampling Algorithms. We use different sampling algorithms for re-
trieving the documents based on which we build the approximate content sum-
maries Ŝ(D) of each database D. We now describe the sampling algorithms in
detail.

—Query-Based Sampling (QBS). We experimented with the two versions of
QBS described in Section 2, namely QBS-Ord and QBS-Lrd. As the initial

19Instead of retrieving the top-5 databases from each category, a plausible alternative is to select

a number of databases, from each hierarchy node, that is proportional to the size of the respective

hierarchy subtree. In our work, we give equal weight to each category.
20http://directory.google.com/
21We have fewer than 71 × 5 = 355 databases because not all internal nodes included at least 5.
22http://lucene.apache.org/

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:29

dictionary D for these two methods, we used all words in the Controlled
databases.23 Each query retrieves up to 4 previously unseen documents. Sam-
pling stops after retrieving 300 distinct documents. In our experiments, sam-
pling also stops when 500 consecutive queries retrieve no new documents.
To minimize the effect of randomness, we run each experiment over 5 QBS
document samples for each database and report average results.

—Focused Probing (FPS). We evaluate our Focused Probing technique, which
we introduced in Section 3.1, with a variety of underlying document classi-
fiers. The document classifiers are used by Focused Probing to generate the
queries sent to the databases. Specifically, we consider the following varia-
tions of the Focused Probing technique:

—FP-RIPPER. Focused Probing using RIPPER [Cohen 1996] as the base
document classifier.

—FP-C4.5. Focused Probing using C4.5RULES, which extracts classification
rules from decision tree classifiers generated by C4.5 [Quinlan 1992].

—FP-Bayes. Focused Probing using naive-Bayes classifiers [Duda et al. 2000]
in conjunction with the technique to extract rules from numerically-based
naive-Bayes classifiers from Gravano et al. [2003].

—FP-SVM. Focused Probing using support vector machines with linear ker-
nels [Joachims 1998] in conjunction with the same rule extraction tech-
nique used for FP-Bayes.

The query probes of these classifiers are typically short: The median query
length is 1 word, average query length is 1.35 words, and maximum query
length is 4 words. Further details about the characteristics of the classifiers
are available in Gravano et al. [2003].

We also consider different values for the τes and τec thresholds, which affect
the granularity of sampling performed by the algorithm (see Section 3.1).
All variations were tested with threshold τes ranging between 0 and 1. Low
values of τes result in databases being pushed to more categories, which in
turn results in larger document samples. To keep the number of experiments
manageable, we fix the coverage threshold to τec = 10, varying only the
specificity threshold τes.

5.2.2 Shrinkage and Frequency Estimation. Our experiments also eval-
uate the usefulness of our shrinkage (Section 4.2) and frequency estimation
(Section 3.2) techniques. To evaluate the effect of shrinkage on content sum-
mary quality, we create the shrunk content summary R̂(D) for each database D
and contrast its quality against that of the unshrunk content summary Ŝ(D).
Similarly, to evaluate the effect of our frequency estimation technique on con-
tent summary quality, we consider the QBS and FPS summaries, both with and
without this frequency estimation. We report results on the quality of content
summaries before and after the application of our shrinkage algorithm.

23Note that this slightly favors QBS in the experiments over the Controlled databases: The initial

dictionary contains a superset of words that appear in each database in the Controlled dataset.

Experiments that use the Web, TREC4, and TREC6 datasets are not affected by this bias.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:30 • P. G. Ipeirotis and L. Gravano

To apply shrinkage, we need to classify each database into the 72-node topic
hierarchy. Unfortunately, such classification is not available for TREC data, so
for the TREC4 and TREC6 datasets we resort to our classification technique
from Gravano et al. [2003], which we reviewed briefly in Section 2.3.24 A manual
inspection of the classification results confirmed that they are generally accu-
rate. For example, the TREC4 database all-83, with articles about AIDS, was
correctly classified under the “Root→ Health→ Diseases→ AIDS” category. In-
terestingly, in the case in which databases were not classified correctly, similar
databases were still classified into the same (incorrect) category. For example,
all-14, all-21, and all-44 are about middle-eastern politics and were classified
under the “Root→ Science→ Social Sciences→ History” category.

Unlike TREC4 and TREC6, for which no “external” classification of the da-
tabases is available, for the Web databases we do not have to rely on query
probing for classification; instead we can use the categories assigned to data-
bases in the Google Directory. For QBS, the classification of each database in our
dataset was indeed derived from the Google Directory. For FPS, we can either
use the (correct) Google Directory database classification, as for QBS, or rely on
the automatically computed database classification that this technique derives
during document sampling. We tried both choices and found only small differ-
ences in the experimental results. Therefore, for conciseness, we only report
the FPS results for the automatically derived database classification. Finally,
for the Controlled dataset, we use the automatically derived classification with
τes = 0.25 and τec = 10.

5.3 Database Selection Algorithms

The algorithms presented in this article (Sections 4.1 and 4.2.3) are built on
top of underlying “base” database selection algorithms. We consider three well-
known such algorithms from the literature.

—bGlOSS, as described in Gravano et al. [1999]. Databases are ranked for a
query q by decreasing score s(q, D) = |D| · ∏

w∈q p̂(w|D).

—CORI, as described in French et al. [1999]. Databases are ranked for a
query q by decreasing score s(q, D) = ∑

w∈q
0.4+0.6·T ·I

|q| , where T = (p̂(w|D) ·
|D|)/(p̂(w|D) · |D| + 50 + 150 · cw(D)

mcw), I = log (m+0.5
c f (w)

)/ log (m + 1.0), cf(w) is

the number of databases containing w, m is the number of databases being
ranked, cw(D) is the number of words in D, and mcw is the mean cw among
the databases being ranked. One potential problem with the use of CORI in
conjunction with shrinkage is that virtually every word has cf(w) equal to
the number of databases in the dataset: Every word appears with nonzero
probability in every shrunk content summary. Therefore, when we calculate
cf(w) for a word w in our CORI experiments, we consider w as present in a
database D only when round(|D| · p̂R(w|D)) ≥ 1.

—Language Modeling (LM), as described in Si et al. [2002]. Databases are
ranked for a query q by decreasing score s(q, D) = ∏

w∈q(λ · p̂(w|D) + (1 − λ) ·

24We adapted the technique slightly so that each database is classified under exactly one category.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:31

p̂(w|G)). The LM algorithm is equivalent to the KL-based database selection
method described in Xu and Croft [1999]. For LM, p(w|D) is defined differ-
ently than in Definition 2.1. Specifically, p(w|D) = t f (w,D)∑

i t f (wi ,D)
, where t f (w, D)

is the total number of occurrences of w in D. The algorithms described in
Section 4.2 can be easily adapted to reflect this difference, by substituting
this definition of p(w|D) for that in Definition 2.1. LM smoothes the p̂(w|D)
probability with the probability p̂(w|G) for a “global” category G. In our exper-
iments, we derive the probabilities p̂(w|G) from the “Root” category summary
and we use λ = 0.5, as suggested in Si et al. [2002].

We experimentally evaluate the aforesaid three database selection algo-
rithms with three variations:

—Plain. Using unshrunk (incomplete) database content summaries extracted
via QBS or FPS.

—Shrinkage. Using shrinkage when appropriate (as discussed in Section 4.2.3),
again over database content summaries extracted via QBS or FPS.

—Hierarchical. Using unshrunk database content summaries (extracted via
QBS or FPS) in conjunction with the hierarchical database selection algo-
rithm from Section 4.1.

Finally, to evaluate the effect of our frequency estimation technique (Section 3.2)
on database selection accuracy, we consider the QBS and FPS summaries both
with and without this frequency estimation. Also, since stemming can help
alleviate the data sparseness problem, we consider content summaries both
with and without stemming.

6. EXPERIMENTAL RESULTS FOR CONTENT SUMMARY QUALITY

In this section, we evaluate alternative content summary construction tech-
niques. We first focus on the impact of the choice of sampling algorithm on
content summary quality in Section 6.1. Then, in Section 6.2 we show that
databases classified under similar categories tend to have similar content sum-
maries. Finally, in Section 6.3 we show that shrinkage-based content sum-
maries are of higher quality than their unshrunk counterparts.

6.1 Effect of Sampling Algorithm

Consider a database D and a content summary A(D) computed using an ar-
bitrary sampling technique. We now evaluate the quality of A(D) in terms of
how well it approximates the “perfect” content summary S(D), determined by
examining every document in D. In the following definitions, WA is the set of
words that appear in A(D), while WS is the (complete) set of words that appear
in S(D). Our experiments are over the Controlled dataset.

Recall. An important property of content summaries is their coverage of
the actual database vocabulary. The weighted recall (wr) of A(D) with respect

to S(D) is defined as wr =
∑

w∈WA∩WS
df (w)∑

w∈WS
df (w)

, which corresponds to the ctf ratio

in Callan and Connell [2001]. This metric gives higher weight to more fre-
quent words, but is calculated after stopwords (e.g., “a”, “the”) are removed,

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:32 • P. G. Ipeirotis and L. Gravano

Fig. 11(a). Weighted recall as a function of the specificity threshold τes and for the Controlled

dataset.

Fig. 11(b). Unweighted recall as a function of the specificity threshold τes and for the Controlled

dataset.

so this ratio is not artificially inflated by the discovery of common words. We
report the weighted recall for the different content summary construction al-
gorithms in Figure 11(a). Variants of the Focused Probing technique achieve
substantially higher wr values than do QBS-Ord and QBS-Lrd. Early during
probing, Focused Probing retrieves documents covering different topics, and
then sends queries of increasing specificity, retrieving documents with more
specialized words. As expected, the coverage of Focused Probing summaries
increases for lower values of the specificity threshold τes, since the number of

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:33

Fig. 11(c). Spearman rank correlation coefficient as a function of the specificity threshold τes and

for the Controlled dataset.

Fig. 11(d). Relative error of the df estimations, for words with df > 3, as a function of the specificity

threshold τes and for the Controlled dataset.

documents retrieved for lower thresholds is larger (e.g., 493 documents for FP-
SVM with τes = 0.25 versus 300 documents for QBS-Lrd): A sample of larger
size, everything else being the same, is better for content summary construction.
In general, the difference in weighted recall between QBS-Lrd and QBS-Ord
is small, but QBS-Lrd has slightly lower wr values due to the bias induced
from querying only using previously discovered words. To understand whether
low-frequency words are present in the approximate summaries, we resort to

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:34 • P. G. Ipeirotis and L. Gravano

Fig. 11(e). Number of interactions per database as a function of the specificity threshold τes and

for the Controlled dataset.

the unweighted recall (ur) metric, defined as ur = |WA∩WS |
|WS | . The ur metric is the

fraction of words in a database that are present in a content summary. Fig-
ure 11(b) shows trends similar to those for weighted recall, but the numbers
are smaller, showing that lower-frequency words are not well represented in
the approximate summaries.

Correlation of word rankings. The recall metric can be helpful to compare
the quality of different content summaries. However, this metric alone is not
enough, since it does not capture the relative ranks of words in the content
summary by their observed frequency. To measure how well a content sum-
mary orders words by frequency with respect to the actual word frequency order
in the database, we use the Spearman rank correlation coefficient (SRCC for
short), which is also used in [Callan and Connell 2001] to evaluate the quality
of the content summaries. (We use the version of SRCC that accounts for ties,
as suggested by Callan and Connell [2001].) When two rankings are identical,
then SRCC = 1; when they are uncorrelated, SRCC=0; and when they are in
reverse order, SRCC = –1. The results for the different algorithms are shown
in Figure 11(c). Again, the content summaries produced by Focused Probing
techniques have higher SRCC values than those for QBS-Lrd and QBS-Ord,
hinting that Focused Probing retrieves a more representative sample of docu-
ments from the database.

Accuracy of frequency estimations. In Section 3.2, we introduced a technique
to estimate the actual absolute frequencies of words in a database. To eval-
uate the accuracy of our predictions, we computed the average relative error
|df (w)− ˆdf (w)|/df (w) for every word w with actual frequency df (w) > 3 (includ-
ing the large tail of less-frequent words would highly distort the relative-error

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:35

computation, even for small estimation errors). Figure 11(d) reports the aver-
age relative-error estimates for our algorithms. We also applied our absolute
frequency estimation algorithm of Section 3.2 to QBS-Ord and QBS-Lrd, even
though this estimation is not part of the original algorithms in Callan and Con-
nell [2001]. As a general conclusion, our technique provides a good ballpark
estimate of the absolute frequency of the words.

Efficiency. To measure the efficiency of the probing methods, we report the
sum of the number of queries sent to a database and the number of documents
retrieved (“number of interactions”) in Figure 11(e); see Gravano et al. [2003] for
a justification of this metric. Focused Probing techniques retrieve, on average,
one document per query, while QBS-Lrd retrieves about one document for every
two queries.25 QBS-Ord unnecessarily issues many queries that produce no
document matches. The efficiency of the other techniques is correlated with
their effectiveness. More expensive techniques tend to give better results. The
exception is FP-SVM, which for τes > 0 has the lowest cost (or cost close to
the lowest one) and gives results of comparable quality with respect to the
more expensive methods. As discussed earlier, the Focused Probing probes were
generally short, with a maximum of four words and a median of one word per
query.

Recall, rank correlation, and efficiency for identical sample size. We have
seen that Focused Probing algorithms achieve better wr and SRCC values than
do the QBS-Lrd and QBS-Ord algorithms. However, the Focused Probing al-
gorithms generally retrieve a (moderately) larger number of documents than
do QBS-Ord and QBS-Lrd, and the number of documents retrieved depends
on how deeply into the categorization scheme the databases are classified. To
test whether the improved performance of Focused Probing is just a result of
larger sample size, we increased the sample size for QBS-Lrd to retrieve the
same number of documents as each Focused Probing variant.26 We refer to the
versions of QBS-Lrd that retrieve the same number of documents as FP-Bayes,
FP-C4.5, FP-RIPPER, and FP-SVM as QBS-Bayes, QBS-C4.5, QBS-RIPPER,
and QBS-SVM, respectively.

The wr, ur, and SRCC values for the alternative versions of QBS-Lrd are
shown in Figures 12(a), 12(b), and 12(c), respectively. We observe that the wr,
ur, and SRCC values of the QBS methods improve with a larger document sam-
ple, but are still lower than their Focused Probing counterparts; the difference
is statistically significant at the 1% level according to a paired t-test. In gen-
eral, the results show that Focused Probing methods are more effective than
their QBS counterparts: The Focused Probing queries are generated by docu-
ment classifiers and tend to “cover” distinct parts of the document space. In con-
trast, QBS methods query the database with words that appear in the retrieved
documents, and these documents tend to contain words already present in the

25The average is computed over databases in the Controlled dataset, after the different content

summary construction algorithms run to completion.
26We pick QBS-Lrd over QBS-Ord because the latter requires a much larger number of queries to

extract its document sample: Most of its queries return no results (see Figure 11(e)), making it the

most expensive method.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:36 • P. G. Ipeirotis and L. Gravano

Fig. 12(a). Weighted recall as a function of the specificity threshold τes, for the Controlled dataset

and for the case where the FP and QBS methods retrieve the same number of documents;

(b) unweighted recall as a function of the specificity threshold τes, for the Controlled dataset and

for the case where the FP and QBS methods retrieve the same number of documents.

sample. This difference is more pronounced in earlier stages of sampling, where
Focused Probing sends more general queries. When Focused Probing starts
sending queries for lower levels of the classification hierarchy, both Focused
Probing and QBS demonstrate similar rates ofvocabulary growth. The exact

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:37

Fig. 12(c). Spearman rank correlation coefficient as a function of the specificity threshold τes, for

the Controlled dataset and for the case where the FP and QBS methods retrieve the same number

of documents.

point where the two techniques start performing similarly depends on the size
of the database. For large databases, Focused Probing dominates QBS even at
deep levels of the hierarchy, while for smaller databases the benefits of Focused
Probing are only visible during the first and second levels of sampling.

Finally, we measured the number of interactions performed by the Focused
Probing and QBS methods when they retrieve the same number of documents.
The sum of the number of queries sent to a database and the number of docu-
ments retrieved (“number of interactions”) is shown in Figure 12(d). The aver-
age number of queries sent to each database is larger for the QBS methods than
for their Focused Probing counterparts when they retrieve the same number of
documents: QBS queries are derived from the already acquired vocabulary, and
many of these words appear only in one or two documents, so a large fraction of
the QBS queries return only documents that have been retrieved before. These
queries increase the number of interactions for QBS, but do not retrieve any
new documents.

For completeness, we ran the same set of experiments for the Web, TREC4,
and TREC6 datasets. We use content summaries extracted from FP-SVM with
specificity threshold τes = 0.25 and coverage threshold τec = 10: We note that
FP-SVM exhibits the best accuracy-efficiency tradeoff, while τes = 0.25 leads
to good database classification decisions as well (see Gravano et al. [2003]). We
also use the respective QBS-SVM version of QBS. The results that we obtained
(Table IV) were in general similar to those for the Controlled dataset. The
main difference with the results obtained for the Controlled dataset is that
the number of interactions is substantially lower for FP-SVM (and hence for

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:38 • P. G. Ipeirotis and L. Gravano

Fig. 12(d). Number of interactions per database as a function of the specificity threshold τes, for

the Controlled dataset and for the case where the FP and QBS methods retrieve the same number

of documents.

Table IV. Weighted Recall, Unweighted Recall, Spearman Rank

Correlation Coefficient, and Number of Interactions per Database

Metric
Dataset Method wr ur SRCC Interactions
Web FP-SVM 0.887 0.520 0.813 623

Web QBS-SVM 0.879 0.456 0.810 650

TREC4 FP-SVM 0.972 0.599 0.884 650

TREC4 QBS-SVM 0.943 0.428 0.850 702

TREC6 FP-SVM 0.975 0.662 0.905 684

TREC6 QBS-SVM 0.952 0.545 0.883 694

These results are for the Web, TREC4, and TREC6 datasets and for the case

where FP-SVM and QBS-SVM retrieve the same number of documents.

QBS-SVM): Databases in the Controlled dataset are typically classified under
multiple categories; in contrast, the databases in Web, TREC4, and TREC6 are
generally classified under only one or two categories, and hence require much
fewer queries for content summary construction than do Controlled databases.

Evaluation conclusions. Overall, Focused Probing techniques produce sum-
maries of better quality than do QBS-Ord and QBS-Lrd, both in terms of vo-
cabulary coverage and word-ranking preservation. The cost of Focused Probing
in terms of number of interactions with the databases is comparable to that for
QBS-Lrd (for τes > 0), and significantly lower than that for QBS-Ord. Finally,
the absolute frequency estimation technique of Section 3.2 gives good ballpark
approximations of the actual frequencies.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:39

Fig. 13(a). Weighted recall for pairs of database content summaries, for the Controlled dataset as

a function of the number of common categories in the database pairs.

6.2 Relationship Between Content Summaries and Categories

A key conjecture behind our database selection algorithms is that databases
under the same category tend to have closely related content summaries. Thus,
we can use the content summary of a database to complement the (incomplete)
content summary of another database in the same category (Section 4.2). We
now explore this conjecture experimentally using the Controlled, Web, TREC4,
and TREC6 datasets.

Each database in the Controlled set is classified using τs = 0.25 and τc = 10,
and following definition in Gravano et al. [2003]. By construction, we know
the contents of all databases in the Controlled set, as well as their correct
classification. For the Web dataset, we use the database classification as given
by Open Directory. Finally, we classify the databases in the TREC4 and TREC6
datasets using the classification algorithm from Gravano et al. [2003], with
τes = 0.25 and τec = 10. Then, for each pair of databases Di and D j we measure

—the number of categories that they share, numCategories, where

numCategories = |Path(Ideal(Di)) ∩ Path(Ideal(D j))|,
and where Ideal(D) is the correct classification of D, Path(Ideal(D)) =
{category c |c ∈ Ideal(D), or where c is an ancestor of some n ∈ Ideal(D)},
for τes = 0.25 and τec = 10;

—the wr, ur, and SRCC values of their correct content summaries.

Figures 13(a), 13(b), and 13(c) report the wr, ur, and SRCC metrics, respec-
tively, over all pairs of databases in the Controlled set and discriminated by
numCategories. The larger the number of common categories between a pair
of databases, the more similar their corresponding content summaries tend
to be, according to the wr, ur, and SRCC metrics. Tables V(a), V(b), and V(c)
report the wr, ur, and SRCC metrics, respectively, over all pairs of databases
in the Web, TREC4, and TREC6 datasets, confirming the idea that databases

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:40 • P. G. Ipeirotis and L. Gravano

Fig. 13(b). Unweighted recall for pairs of database content summaries, for the Controlled dataset

as a function of the number of common categories in the database pairs.

Fig. 13(c). Spearman rank correlation coefficient for pairs of database content summaries, for the

Controlled dataset as a function of the number of common categories in the database pairs.

classified under similar categories have more similar content summaries than
those under different topics.

6.3 Effect of Shrinkage

We now report experimental results on the quality of the content summaries
generated by the shrinkage technique from Section 4.2. To keep our exper-
iments manageable, we use content summaries extracted from FP-SVM with
specificity threshold τes = 0.25 and coverage threshold τec = 10, which give good
classification decisions. We also pick QBS-Lrd over QBS-Ord, since the former
method demonstrates similar performance at substantially smaller cost than
the latter. (See Section 6.1 for a justification of this choice.) For conciseness, we

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:41

Table V(a). Weighted Recall

numCategories
Dataset 1 2 3 4

Web 0.83 0.89 0.90 0.91

TREC4 0.85 0.89 0.92 0.95

TREC6 0.86 0.88 0.89 0.92

The measure is for pairs of database content summaries as a

function of the number of common categories in the database

pairs and for the Web, TREC4, and TREC6 datasets.

Table V(b). Unweighted Recall

numCategories
Dataset 1 2 3 4

Web 0.46 0.51 0.53 0.55

TREC4 0.52 0.57 0.59 0.60

TREC6 0.53 0.57 0.58 0.61

The measure is for pairs of database content summaries, as a

function of the number of common categories in the database

pairs and for the Web, TREC4, and TREC6 datasets.

Table V(c). Spearman Rank Correlation Coefficient

numCategories
Dataset 1 2 3 4

Web 0.50 0.59 0.67 0.69

TREC4 0.52 0.55 0.60 0.70

TREC6 0.52 0.55 0.57 0.62

The measure is for pairs of database content summaries, as a

function of the number of common categories in the database

pairs and for the Web, TREC4, and TREC6 datasets.

now refer to FP-SVM as FPS and to QBS-Lrd as QBS. We evaluate the content
summaries using the Controlled, Web, TREC4, and TREC6 datasets.

Recall. We used the weighted and unweighted recall metrics to measure
vocabulary coverage of shrunk content summaries. The shrunk content sum-
maries include (with nonzero probability) every word in any content summary.
Most words in any given content summary, however, tend to exhibit a very
low probability. Therefore, not to inflate artificially the recall results (and con-
versely, not to hurt artificially the precision results), we drop from the shrunk
content summaries every word w with round(|D| · p̂R(w|D)) < 1 during eval-
uation. Intuitively, we drop from the content summary all words that are esti-
mated to appear in less than one document.

Table VI shows the weighted recall for different content summary construc-
tion techniques. Most methods exhibit high weighted recall, which shows that
document sampling techniques identify the most frequent words in the data-
base. Not surprisingly, shrinkage increases the (already high) wr values and all
shrinkage-based methods have close-to-perfect wr. This improvement is statis-
tically significant in all cases: A paired t-test [Marques De Sá 2003] showed
significance at the 0.01% level. The improvement for the Web set is higher
compared to that for the TREC4 and TREC6 datasets: The Web set contains

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:42 • P. G. Ipeirotis and L. Gravano

Table VI(a). Weighted Recall wr

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.903 0.745

Controlled QBS Yes 0.917 0.745

FPS No 0.912 0.827

FPS Yes 0.928 0.827

QBS No 0.962 0.875

Web QBS Yes 0.976 0.875

FPS No 0.989 0.887

FPS Yes 0.993 0.887

QBS No 0.937 0.918

TREC4 QBS Yes 0.959 0.918

FPS No 0.980 0.972

FPS Yes 0.983 0.972

QBS No 0.959 0.937

TREC6 QBS Yes 0.985 0.937

FPS No 0.979 0.975

FPS Yes 0.982 0.975

Table VI(b). Unweighted Recall ur

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.589 0.523

Controlled QBS Yes 0.601 0.523

FPS No 0.623 0.584

FPS Yes 0.638 0.584

QBS No 0.438 0.424

Web QBS Yes 0.489 0.424

FPS No 0.681 0.520

FPS Yes 0.711 0.520

QBS No 0.402 0.347

TREC4 QBS Yes 0.542 0.347

FPS No 0.678 0.599

FPS Yes 0.714 0.599

QBS No 0.549 0.475

TREC6 QBS Yes 0.708 0.475

FPS No 0.731 0.662

FPS Yes 0.784 0.662

larger databases, and the approximate content summaries are less complete
than the respective approximate content summaries of TREC4 and TREC6.
Our shrinkage technique becomes increasingly useful for larger databases. To
understand whether low-frequency words are present in the approximate and
shrunk content summaries, we use the unweighted recall metric. Table VI(b)
shows that the shrunk content summaries have higher unweighted recall as
well.

Finally, recall is higher when shrinkage is used in conjunction with the fre-
quency estimation technique. This behavior is to be expected: When frequency
estimation is enabled, the words introduced by shrinkage are close to their real
frequencies, and are used in precision and recall calculations. When frequency

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:43

Table VII(a). Weighted Precision wp

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.989 1.000
Controlled QBS Yes 0.979 1.000

FPS No 0.948 1.000
FPS Yes 0.940 1.000
QBS No 0.981 1.000

Web QBS Yes 0.973 1.000
FPS No 0.987 1.000
FPS Yes 0.947 1.000
QBS No 0.992 1.000

TREC4 QBS Yes 0.978 1.000
FPS No 0.987 1.000
FPS Yes 0.984 1.000
QBS No 0.978 1.000

TREC6 QBS Yes 0.943 1.000
FPS No 0.976 1.000
FPS Yes 0.958 1.000

Table VII(b). Unweighted Precision up

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.932 1.000
Controlled QBS Yes 0.921 1.000

FPS No 0.895 1.000
FPS Yes 0.885 1.000
QBS No 0.954 1.000

Web QBS Yes 0.942 1.000
FPS No 0.923 1.000
FPS Yes 0.909 1.000
QBS No 0.965 1.000

TREC4 QBS Yes 0.955 1.000
FPS No 0.901 1.000
FPS Yes 0.856 1.000
QBS No 0.936 1.000

TREC6 QBS Yes 0.847 1.000
FPS No 0.894 1.000
FPS Yes 0.850 1.000

estimation is not used, the estimated frequencies of the same words are often
below 0.5, and therefore not used in precision and recall calculations.

Precision. A database content summary constructed using a document sam-
ple contains only words that appear in the database. In contrast, the shrunk
content summaries may include words not in the corresponding databases. To
measure the extent to which “spurious” words are added (with high weight) by
shrinkage in the content summary, we use the weighted precision (wp) of A(D)

with respect to S(D), wp =
∑

w∈WA∩WS
d̂f (w)∑

w∈WA
d̂f (w)

. Table VII(a) shows that shrinkage

decreases weighted precision by just 0.8% to 6%.
We also report the unweighted precision (up) metric, defined as up = |WA∩WS |

|WA| .

This metric reveals how many words introduced in a content summary do not

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:44 • P. G. Ipeirotis and L. Gravano

Table VIII. Spearman Correlation Coefficient

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.723 0.628

Controlled QBS Yes 0.723 0.628

FPS No 0.765 0.665

FPS Yes 0.765 0.665

QBS No 0.904 0.812

Web QBS Yes 0.904 0.812

FPS No 0.917 0.813

FPS Yes 0.917 0.813

QBS No 0.981 0.833

TREC4 QBS Yes 0.981 0.833

FPS No 0.943 0.884

FPS Yes 0.943 0.884

QBS No 0.961 0.865

TREC6 QBS Yes 0.961 0.865

FPS No 0.937 0.905

FPS Yes 0.937 0.905

appear in the complete content summary (or, equivalently, in the underlying
database). Table VII(b) reports the results for the up metric, which show that
shrinkage-based techniques have unweighted precision usually above 90% and
always above 84%.

Word-ranking correlation. Table VIII shows that SRCC is higher for the
shrunk content summaries. In general, SRCC is better for shrunk than for
unshrunk content summaries (p < 0.001, according to a paired t-test): Not
only do the shrunk content summaries have better vocabulary coverage (as the
recall figures show), but also the newly added words tend to be ranked properly.

Word-frequency accuracy. Our shrinkage-based algorithm modifies the prob-
ability estimates p̂(w|D) in the approximate summaries A(D), in order to gen-
erate a summary whose probability distribution is closer to that of the original
S(D). The KL-divergence compares the similarity of the A(D) estimates against
the real values in S(D): KL = ∑

w∈WA∩WS
p(w|D) · log p(w|D)

p̂(w|D)
, where p(w|D) is de-

fined as p(w|D) = t f (w,D)∑
i t f (wi ,D)

and t f (w, D) is the total number of occurrences of

w in D. The KL metric takes values from 0 to infinity, with 0 indicating that
the two content summaries being compared are equal.

Table IX shows that shrinkage helps decrease large KL values. (Recall that
lower KL values indicate higher-quality summaries.) This is a characteristic of
shrinkage [Hastie et al. 2001]: All summaries are shrunk towards some “com-
mon” content summary that has an average distance from all the summaries.
This effectively reduces the variance of the estimations and leads to reduced
estimation risk. However, shrinkage (moderately) hurts content-summary ac-
curacy in terms of the KL metric in cases where KL is already low for the un-
shrunk summaries. We use this observation in our shrinkage-based database
selection algorithm in Section 4.2.3, where our algorithm attempts to identify
those cases where shrinkage is likely to help general database selection accu-
racy and avoids applying shrinkage in other cases.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:45

Table IX. KL-Divergence

Sampl. Freq. Shrinkage
Dataset Method Est. Yes No

QBS No 0.364 0.732

Controlled QBS Yes 0.389 0.645

FPS No 0.483 0.542

FPS Yes 0.378 0.503

QBS No 0.361 0.531

Web QBS Yes 0.382 0.472

FPS No 0.298 0.254
FPS Yes 0.281 0.224
QBS No 0.296 0.300

TREC4 QBS Yes 0.175 0.180

FPS No 0.253 0.203
FPS Yes 0.193 0.118
QBS No 0.305 0.352

TREC6 QBS Yes 0.287 0.354

FPS No 0.223 0.193
FPS Yes 0.301 0.126

Evaluation conclusions. The general conclusion from our experiments on con-
tent summary quality is that shrinkage drastically improves content summary
recall at the expense of precision. The high weighted precision of shrinkage-
based summaries suggests that the spurious words introduced by shrinkage
appear with low weight in the summaries, which should reduce any potential
negative impact on database selection. Next, we present experimental evidence
that the loss in precision ultimately does not hurt, since shrinkage improves
overall database selection accuracy.

7. EXPERIMENTAL RESULTS FOR DATABASE SELECTION ACCURACY

In this section, we evaluate the accuracy of the database selection algorithms
that we presented in this article. We first describe our evaluation metric, and
then we study the performance of the proposed database selection algorithms
under a variety of settings. Just as in Section 6.3, we use FP-SVM (for concise-
ness, FPS) with specificity threshold τes = 0.25 and coverage threshold τec = 10,
and QBS-Lrd (for conciseness, QBS) as underlying content summary construc-
tion algorithms.

Consider a ranking of the databases 	D = D1, . . . , Dm according to the scores
produced by a database selection algorithm for some query q. To measure the
“goodness” or general quality of such a rank, we follow an evaluation method-
ology that is prevalent in the information retrieval community, and consider
the number of documents in each database that are relevant to q, as deter-
mined by a human judge [Salton and McGill 1983]. Intuitively, a good rank
for a query includes (at the top) those databases with the largest number of
relevant documents for the query. If r(q, Di) denotes the number of Di docu-
ments that are relevant to query q, then A(q, 	D, k) = ∑k

i=1 r(q, Di) measures

the total number of relevant documents among the top-k databases in 	D. To
normalize this measure, we consider a hypothetical, “perfect” database rank
	DH = Dh1

, . . . , Dhm in which databases are sorted by their r(q, Dhi) value. (This

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:46 • P. G. Ipeirotis and L. Gravano

is, of course, unknown to the database selection algorithm.) Then, we define the

Rk metric for a query and database rank 	D as Rk = A(q, 	D,k)

A(q, 	DH ,k)
[Gravano et al.

1999]. A “perfect” ordering of k databases for a query yields Rk = 1, while a
(poor) choice of k databases with no relevant content results in Rk = 0. We note
that when a database receives the default score from a database selection al-
gorithm (i.e., when the score assigned to a database for a query is equal to that
assigned to an empty query), we consider that the database is not selected for
searching. This sometimes results in a database selection algorithm selecting
fewer than k databases for a query.

The Rk metric relies on human-generated relevance judgments for the
queries and documents. For our experiments on database selection accuracy,
we focus on the TREC4 and TREC6 datasets, which include queries and asso-
ciated relevance judgments.27 We use queries 201–250 from TREC-4 with the
TREC4 dataset and queries 301–350 from TREC-6 with the TREC6 dataset.
The TREC-4 queries are long, with 8–34 words and an average of 16.75 words
per query. The TREC-6 queries are shorter, with 2–5 words and an average of
2.75 words per query.

We considered eliminating stopwords (e.g., “the”) from the queries, as well
as applying stemming to the query and document words (e.g., so that a query
[computers] matches documents with the word “computing”). While the results
improve with stopword elimination, a paired t-test showed that the difference
in performance is not statistically significant; therefore, we only report results
with stopword elimination. Stemming tends to improve performance for small
values of k; the results are mixed when k > 10.

Figures 14(a)–14(d) show results for the CORI database selection algo-
rithm. We used both the TREC4 and TREC6 datasets and queries, as well as
the QBS and FPS content summary construction strategies (Section 5.2). We
consider applying CORI over “unshrunk” content summaries (QBS-Plain and
FPS-Plain), using the adaptive shrinkage-based strategy (QBS-Shrinkage and
FPS-Shrinkage), and using the hierarchical algorithm (QBS-Hierarchical and
FPS-Hierarchical). Figures 15(a)–15(d) show the results for the bGlOSS data-
base selection algorithm, while Figures 16(a)–16(d) show the results for the LM
database selection algorithm.

Overall, a paired t-test shows that QBS-Shrinkage improves the database se-
lection performance over QBS-Plain, and this improvement is statistically sig-
nificant (p < 0.05). Moreover, FPS-Shrinkage improves the database selection
performance relative to FPS-Plain, but this improvement is statistically signif-
icant only when k < 10. We now describe the details of our findings.

Shrinkage versus plain. The first conclusion from our experiments is
that QBS-Shrinkage and FPS-Shrinkage improve performance compared to

27We do not consider the Web and Controlled datasets of Section 5.1 for these experiments because

of the lack of relevance judgments for them. In Ipeirotis and Gravano [2002] we presented a pre-

liminary evaluation of the hierarchical database selection algorithm of Section 4.1 over a subset of

the Web dataset, for a relatively low-scale evaluation. (This evaluation used relevance judgments

provided by volunteer colleagues.) The results in Ipeirotis and Gravano [2002] are consistent with

those we present here over the TREC data.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:47

Fig. 14(a). The Rk ratio for CORI with stemming over the TREC4 dataset.

Fig. 14(b). The Rk ratio for CORI without stemming over the TREC4 dataset.

Fig. 14(c). The Rk ratio for CORI with stemming over the TREC6 dataset.

Fig. 14(d). The Rk ratio for CORI without stemming over the TREC6 dataset.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:48 • P. G. Ipeirotis and L. Gravano

Fig. 15(a). The Rk ratio for bGlOSS with stemming over the TREC4 dataset.

Fig. 15(b). The Rk ratio for bGlOSS without stemming over the TREC4 dataset.

Fig. 15(c). The Rk ratio for bGlOSS with stemming over the TREC6 dataset.

Fig. 15(d). The Rk ratio for bGlOSS without stemming over the TREC6 dataset.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:49

Fig. 16(a). The Rk ratio for LM with stemming over the TREC4 dataset.

Fig. 16(b). The Rk ratio for LM without stemming over the TREC4 dataset.

Fig. 16(c). The Rk ratio for LM with stemming over the TREC6 dataset.

Fig. 16(d). The Rk ratio for LM without stemming over the TREC6 dataset.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:50 • P. G. Ipeirotis and L. Gravano

Table X. Percentage of Query-Database Pairs for which Shrinkage was Applied

Sampl. Database Shrinkage Sampl. Database Shrinkage
Dataset Method Selection Application Dataset Method Selection Application

bGlOSS 35.42% bGlOSS 33.43%

FPS CORI 17.32% FPS CORI 13.12%

TREC4 LM 15.40% TREC6 LM 12.78%

bGlOSS 78.12% bGlOSS 58.94%

QBS CORI 15.68% QBS CORI 14.32%

LM 17.32% LM 11.73%

QBS-Plain and FPS-Plain, respectively. Shrinkage helps because new words
are added in the content summaries in a database- and category-specific man-
ner. In Table X, we report the number of times shrinkage was applied for
each database-query pair and for each database selection algorithm. Since the
queries for TREC6 are shorter, shrinkage was applied comparatively fewer
times for TREC6 than for TREC4. Also, shrinkage was applied more frequently
for bGlOSS than for LM and CORI. Specifically, bGlOSS does not have any form
of smoothing and assigns zero scores to databases whose content summaries do
not contain a query word. This results in high variance for the bGlOSS scores,
which in turn triggers the application of shrinkage.

Interestingly, Table X shows that shrinkage is applied relatively few times
overall, yet its impact on database selection accuracy is large, as we have seen.
To understand why, note that the Table X figures refer to database-query pairs.
We have observed that the application of shrinkage to even a few critical da-
tabases for a given query can sometimes dramatically improve the quality of
the database rank that is produced for the query. As a real example of this phe-
nomenon, consider the TREC-6 query [unexplained highway accidents] and
database all-2, which contains 92.5% of all relevant documents for the query.
Using the LM algorithm (for both FPS and QBS), database all-2 is ranked 16th,
resulting in low Rk values for any k < 16. Our adaptive shrinkage algorithm
decides to use shrinkage for this specific database-query pair, and database
all-2 is ranked 3rd after application of shrinkage. This results in substantially
larger Rk values for the shrinkage-based algorithms for 3 ≤ k ≤ 15. While
our adaptive database selection algorithm applied shrinkage to just 5% of the
databases for this query (i.e., for just 5 databases out of 100), the resulting da-
tabase rank for the query is significantly better than the rank produced with
no shrinkage. In general, even limited applications of shrinkage tend to have
significant effect on the Rk ranking: The distribution of relevant documents
across databases is typically skewed,28 and only a small number of databases
contain the majority of relevant documents. Therefore, by ranking the impor-
tant databases accurately, we can substantially improve the database selection
performance.

Shrinkage versus hierarchical. QBS-Hierarchical and FPS-Hierarchical
generally outperform their “plain” counterparts. This confirms our observation
that categorization information helps compensate for incomplete summaries.
Exploiting this categorization via shrinkage results in even higher accuracy:

28This effect is not only limited to TREC datasets, but is true for the web at large.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:51

QBS-Shrinkage and FPS-Shrinkage significantly outperform QBS-
Hierarchical and FPS-Hierarchical. This improvement is due to the flat
nature of our shrinkage method: While QBS-Shrinkage and FPS-Shrinkage
can rank the databases globally, QBS-Hierarchical and FPS-Hierarchical have
to make irreversible choices at each category level of the hierarchy. Even when
a chosen category contains only a small number of databases with relevant doc-
uments, the hierarchical algorithm continues to select (irrelevant) databases
from the (relevant) category. When a query cuts across multiple categories,
the hierarchical algorithm might fail to select the appropriate databases. In
contrast, our shrinkage-based approach can potentially select databases from
multiple categories and hence manages to identify the appropriate databases
for a query, regardless of whether they are similarly classified or not.

Adaptive versus universal application of shrinkage. The strategy in Sec-
tion 4.2.3 dynamically decides when to apply shrinkage for database selec-
tion. To understand whether this decision step is necessary, we evaluated the
performance of the algorithms when we always decide to use shrinkage (i.e.,
when the R̂(Di) content summary is always chosen in Figure 10). Figures 17(a)–
(b) and 18(a)–(b) show the TREC4 results for CORI and bGlOSS, with QBS-
Universal and FPS-Universal denoting universal application of shrinkage.29

The only case where QBS-Universal and FPS-Universal are better than QBS-
Plain and FPS-Plain, respectively, is for bGlOSS (Figures 18(a) and (b)): Unlike
CORI and LM, bGlOSS does not have any form of smoothing already built-in,
so if a query word is not present in a content summary, bGlOSS assigns a zero
score to the database. Unlike bGlOSS, CORI and LM perform worse when we
apply shrinkage universally than when we do so adaptively. The only excep-
tion is for content summaries created without the use of stemming and only for
small values of k, but even in this case the small improvement is not statistically
significant. This result indicates that CORI and LM handle incomplete content
summaries in a more graceful way than does bGlOSS, since both CORI and LM
have a form of smoothing already embedded.

Frequency estimation. We also examined the effect of frequency estimation
(Section 3.2) on database selection. Figures 19(a)–(d) show the results for CORI
over TREC4 and TREC6. In general, frequency estimation affected only the per-
formance of the CORI database selection algorithm, and had only a small effect
on the performance of bGlOSS and LM, so we do not show plots for these two
techniques. The reason is that bGlOSS and LM rely on probabilities that remain
virtually unaffected after the frequency estimation step. In contrast, CORI re-
lies on document frequencies. Figures 19(a)–(d) show that when shrinkage is
used, frequency estimation improves the performance of CORI, by 10%–30%
for small values of k, with respect to the case where raw word-frequencies for
the document sample are used. Interestingly, frequency estimation alone, that
is, without shrinkage, does not improve database selection as much, hinting
that more accurate frequency estimates only improve database selection ac-
curacy substantially when the underlying content summaries are sufficiently
complete.

29The results for TREC6 are similar, while the results for LM are analogous to those for CORI.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:52 • P. G. Ipeirotis and L. Gravano

Fig. 17(a). The Rk ratio for CORI with stemming over the TREC4 dataset, with and without

universal application of shrinkage.

Fig. 17(b). The Rk ratio for CORI without stemming over the TREC4 dataset, with and without

universal application of shrinkage.

Evaluation conclusions. A general conclusion from the experiments is that
the adaptive application of shrinkage significantly improves database selection
when selection decisions are based on sparse content summaries. An interest-
ing observation is that the universal application of shrinkage is not always
beneficial, indicating that for cases where selection decisions are already accu-
rate, shrinkage negatively affects the selection process. Another conclusion is
that stemming-based summaries are typically better than their nonstemmed
counterparts, since stemming reduces data sparseness. The difference is signif-
icant for small numbers of selected databases, which indicates that stemming
results in better database rankings.

8. RELATED WORK

This section addresses literature relevant to the topics covered in this article.
Portions of this article appeared in Ipeirotis and Gravano [2002, 2004]. First,
Section 8.1 reviews work on database selection. Then, Section 8.2 discusses re-
lated work for content summary construction. Finally, Section 8.3 summarizes
various applications of query probing, a technique that we used extensively in
this article.

8.1 Database Selection

A large body of work has been devoted to distributed information retrieval,
or metasearching, over text databases. As we discussed, a crucial task for a

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:53

Fig. 18(a). The Rk ratio for bGlOSS with stemming over the TREC4 dataset, with and without

universal application of shrinkage.

Fig. 18(b). The Rk ratio for bGlOSS without stemming over the TREC4 dataset, with and without

universal application of shrinkage.

metasearcher is database selection, which requires that the metasearcher have
summaries of the database contents.

Early database selection techniques relied on human-generated database
descriptions. WAIS [Kahle et al. 1993] uses such descriptions and ranks data-
bases according to their similarity to the queries. In Search Broker [Manber and
Bigot 1997], each database is manually tagged with two or three category index
descriptors. At query time, users specify the query category and then Search
Broker selects the appropriate databases. Chakravarthy and Haase, Jr. [1995]
use Wordnet [Fellbaum 1998] to complement manually assigned keywords that
are used to describe each database for database selection.

More robust database selection approaches rely on statistical metadata
about the contents of the databases, generally following the type of content
summary used in this article. CORI [Callan et al. 1995; Xu and Callan 1998]
uses inference networks together with this kind of content summary to select
the best databases for a query. (We used CORI for our experiments in Section 7.)
GlOSS [Gravano et al. 1999] uses content summaries and selects databases
for a query according to some notion of goodness for a query. GlOSS can choose
among a variety of definitions of goodness, some of which depend on the re-
trieval model supported by the databases. (We used bGlOSS, a variant of GlOSS
originally introduced for Boolean databases, for our experiments in Section 7.)
Yuwono and Lee [1997] use content summaries and rank databases according

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:54 • P. G. Ipeirotis and L. Gravano

Fig. 19(a). The Rk ratio for CORI with stemming over the TREC4 dataset, for summaries gener-

ated with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.

Fig. 19(b). The Rk ratio for CORI without stemming over the TREC4 dataset, for summaries

generated with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.

Fig. 19(c). The Rk ratio for CORI with stemming over the TREC6 dataset, for summaries gener-

ated with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.

Fig. 19(d). The Rk ratio for CORI without stemming over the TREC6 dataset, for summaries

generated with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:55

to the cue validity of the query words: A query word w has high cue validity
for a database D if the probability of observing w in D is comparatively higher
than in other databases. Meng et al. [1999, 1998] also rely on content sum-
maries to identify databases that contain the highest number of documents
similar to a query, and similarity is computed using the cosine similarity met-
ric. Meng et al. use a variety of methods to estimate the weight of words in
the database, and propose to keep significant covariance statistics for word
pairs that appear often together. The storage requirements for the content
summaries in Meng et al. [1998] are much higher compared to other meth-
ods that ignore the covariance statistics, such as Callan et al. [1995], Xu and
Callan [1998], Gravano et al. [1999], and Yuwono and Lee [1997], which we de-
scribed before. In a similar approach, Yu et al. [2001] rank databases for a query
according to the highest similarity of any document in each database to the
query. Baumgarten [1999, 1997] proposes a probabilistic framework for data-
base selection and uses content summaries to derive the p̂(w|D) probability es-
timates that are used during querying. Most approaches that use content sum-
maries rely either on access to all documents or on metadata directly exported
by the databases, using, for example, a protocol like STARTS [Gravano et al.
1997].

French et al. [1999, 1998], Powell et al. [2000], and Powell and French [2003]
present experimental evaluations of database selection algorithms. Their main
conclusion is that CORI is robust and performs better than other database se-
lection algorithms for a variety of datasets. Results by Xu and Croft [1999] and
Si et al. [2002] indicate that a language modeling (LM) approach for database
selection works better than CORI for topically focused databases. (We used the
LM algorithm for our experiments in Section 7.) Xu and Croft [1999] and Larkey
et al. [2000] show that organizing documents by topic helps improve database
selection accuracy. Our results in Section 7 are consistent with these findings,
since they show that classification-aware database selection algorithms per-
form better than algorithms that ignore classification information.

Our database selection techniques in Section 4 are built on top of an ar-
bitrary “base” database selection algorithm. We reported experiments using
CORI, bGlOSS, and LM. Our experimental results show that our techniques
improve database selection—in the face of sparse data—when used in conjunc-
tion with a variety of existing flat algorithms. In the future, our techniques can
continue to leverage new database selection algorithms that rely on content
summaries to make the selection decisions. Another promising direction for
future research is to extend our smoothing models for database selection algo-
rithms that not only keep a content summary for each database but also exploit
the actual documents retrieved during document sampling (e.g., Si and Callan
[2005, 2004a, 2003], Hawking and Thomas [2005], and Shokouhi [2007]).

Other database selection algorithms rely on hierarchical classification
schemes (mostly for “efficiency”) to direct queries to appropriate categories
of the hierarchy [Dolin 1998; Sheldon 1995; Gravano et al. 1999; Choi and
Yoo 2001; Yu et al. 1999]. The hierarchical database selection algorithm in
Sheldon [1995] uses intentionally small content summaries that contain
only the high-frequency terms that characterize each category. The hGlOSS

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:56 • P. G. Ipeirotis and L. Gravano

system [Gravano et al. 1999] focuses on the efficiency of selection and does not
exploit any topic similarities of the databases. Similarly, the hierarchical orga-
nization in Dolin [1998] focuses on efficiency and does not exploit the clustering
of similar databases under the same categories. Fuhr [1999] briefly discusses
the hierarchical database selection problem, but no special clustering of sim-
ilar databases is considered to improve the hierarchical selection task. The
aforementioned hierarchical algorithms also need access to all documents or to
metadata directly exported by the databases. Our hierarchical database selec-
tion algorithm in Section 4.1 first appeared in Ipeirotis and Gravano [2002];
this algorithm uses a topic hierarchy not only for efficiency, but also for improv-
ing the quality of database selection decisions in the presence of sparse content
summaries.

Other approaches rely on users providing relevance judgments to create a
profile of each database. Voorhees et al. [1995] use a set of training queries
to learn the usefulness of each database and to decide how many docu-
ments to retrieve from each. ProFusion [Gauch et al. 1996] and SavvySearch
[Dreilinger and Howe 1997] also exploit historic data to learn the performance
of each database for various types of queries. Then, databases that exhibit
higher performance for a query are preferred over others. Fuhr [1999] uses a
decision-theoretic model to decide whether to use a database and to determine
how many documents to retrieve from a selected database. The method in Fuhr
[1999] tries to minimize the cost of retrieval and assumes that the precision-
recall curves of the underlying retrieval system either are known or can be
estimated.

8.2 Constructing Database Content Summaries

Unfortunately, hidden-web text databases do not usually export any metadata
about their contents nor offer immediate access to them. Callan et al. [2001,
1999] probe databases with semi-random queries to extract content summaries
from autonomous databases. (See Section 2 for a detailed discussion of this
technique.) We used Callan et al.’s algorithm extensively in our experiments of
Sections 6 and 7. Monroe et al. [2002] present and evaluate small variations of
the algorithm from Callan et al. [1999] and Callan and Connell [2001]. Craswell
et al. [2000] compared database selection algorithms in the presence of incom-
plete content summaries extracted using document sampling, and observed
that algorithm performance deteriorates with respect to its behavior over com-
plete summaries. Sugiura and Etzioni [2000] proposed the Q-Pilot technique,
which uses query expansion to route web queries to the appropriate search en-
gines. It also characterizes databases using words that appear in the webpages
that host the search interfaces, as well as words that appear in other web-
pages that link to the databases. We used an adaptation of Q-Pilot for content
summary generation in a preliminary experimental evaluation [Ipeirotis and
Gravano 2002] of our hierarchical database selection algorithm of Section 4.1.
Our experiments showed that the Q-Pilot content summaries are not sufficient
for accurate database selection. Hawking and Thistlewaite [1999] used query
probing to perform database selection by ranking databases by similarity to a

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:57

given query. Their algorithm assumed that the query interface to the database
can handle normal queries and query probes differently, and that the cost to
handle query probes is smaller than that for normal queries.

A preliminary version of the algorithm of Section 3 for constructing content
summaries appeared in Ipeirotis and Gravano [2002]. The frequency estima-
tion algorithm in Ipeirotis and Gravano [2002] managed to produce relatively
accurate frequency estimates for database words that appear in sample-based
content summaries. However, a problem with this algorithm is the assump-
tion that the rank of a word in a database coincides with the word’s rank in
a document sample extracted from the database. Unfortunately, this assump-
tion does not hold in general, and is largely false for words that appear in a
database only a relatively small number of times. In Section 3.2, we presented
an improved frequency estimation algorithm that addresses this problem and
produces significantly more accurate word-frequency estimates for database
words that appear only a relatively small number of times.

Along a related research direction, Si and Callan [2003] show that database
selection performance can be improved by considering database size estimates
within their ReDDE database selection algorithm. ReDDE retains the docu-
ments retrieved during content summary construction and uses this document
sample to estimate the distribution of relevant documents across databases.
Further studies by Si and Callan [2004b] show that CORI and LM are only
marginally affected when used in conjunction with the database size estima-
tion method from Si and Callan [2003]. This result is consistent with the behav-
ior that we observed for CORI (without use of shrinkage) with our frequency
estimation method.

Our content summary construction technique in Section 4.2 appeared in
Ipeirotis and Gravano [2004] and is based on the work by McCallum et al.
[1998], who introduced a shrinkage-based approach for hierarchical document
classification in the face of sparse data. Shrinkage is a form of smoothing, and
smoothing has been used extensively in the area of speech recognition [Jelinek
1999] to improve probability estimates in language models. Language mod-
eling has also been used for information retrieval [Croft and Lafferty 2003].
Notably, smoothing is present in recent language modeling approaches to infor-
mation retrieval [Zhai and Lafferty 2004, 2002, 2001]. An interesting direction
for future work is to examine the performance of smoothing models other than
shrinkage-based for database selection, especially in the presence of database
classification information.

Liu et al. [2004] estimate the potential inaccuracy of the database rank pro-
duced for a query by a database selection algorithm. If this inaccuracy is unac-
ceptably large, then the query is dynamically evaluated on a few carefully cho-
sen databases to reduce the uncertainty associated with the database rank. This
work does not take content summary accuracy into consideration. In contrast,
in Section 4.2.3, we addressed the scenario where summaries are derived from
document samples (and are hence incomplete) and decide dynamically whether
shrinkage should be applied, without actually querying databases during da-
tabase selection. The bulk of Section 4.2.3 appeared originally in Ipeirotis and
Gravano [2004], where we described a generic method for computing the mean

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:58 • P. G. Ipeirotis and L. Gravano

and variance of a database score distribution when using sample-based content
summaries. The method in Ipeirotis and Gravano [2004] did not use the fact that
most database selection algorithms assume independence of the query words.
We will exploit this property in Appendix B to substantially improve both the
accuracy and runtime performance of the mean-variance computation, which in
turn improves substantially the runtime performance of our database selection
algorithm of Section 4.2.3.

8.3 Miscellaneous Applications of Query Probing

In this article, we used query probing for the extraction of content summaries
from text databases. Query probing has helped in other related tasks. Gravano
et al. [2003] use a small number of query probes derived using machine learn-
ing techniques to categorize a text database in a topic hierarchy. (We briefly
reviewed this algorithm in Section 2.3 and used it extensively in subsequent
sections.) Perkowitz et al. [1997] use it to automatically understand query forms
and to extract information from web databases to build a comparative shopping
agent. New forms of crawlers [Raghavan and Garcı́a-Molina 2001] use query
probing to automatically interact with web forms and crawl the contents of
hidden-web databases. Cohen and Singer [1996] use RIPPER to learn queries
that mainly retrieve documents in a specific category. The queries are used
at a later time to retrieve new documents in this category. Flake et al. [2002]
extract rules from nonlinear SVMs that identify documents with a common
characteristic (e.g., “calls for papers”). The generated rules are used to modify
queries sent to a search engine, so that the queries retrieve mostly documents
of the desired kind. Grefenstette and Nioche [2000] use query probing to de-
termine the use of different languages on the web. The query probes are words
that appear only in one language. The number of matches generated for each
probe is subsequently used to estimate the number of webpages written in each
language. Ghani et al. [2001] automatically generate queries to retrieve doc-
uments written in a specific language. Meng et al. [1999] used guided query
probing to determine sources of heterogeneity in the algorithms used to index
and search locally at each text database. Bergholz and Chidlovskii [2004] probe
a database with a carefully selected set of queries to identify the characteris-
tics of the query language. Finally, the QXtract system [Agichtein and Gravano
2003] automatically generates queries to improve the efficiency of a given in-
formation extraction system, such as Snowball [Agichtein and Gravano 2000]
or Proteus [Yangarber and Grishman 1998], over large text databases. Specifi-
cally, QXtract learns queries that tend to match those database documents that
are useful for the extraction task at hand. The information extraction system
can then focus only on these documents, which results in large performance
improvements.

9. CONCLUSION

Database selection is critical to building efficient metasearchers that interact
with potentially large numbers of databases. Exhaustively searching all avail-
able databases to answer each query is impractical (or even not possible) in

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:59

increasingly common scenarios. Current database selection algorithms rely on
statistical summaries about the contents of the databases, in order to select the
best databases for a given query; unfortunately, databases accessible through
the web do not generally export these statistics. In this article, we presented ef-
ficient algorithms for constructing content summaries for such databases. Our
algorithms create content summaries of higher quality than alternative ap-
proaches, and additionally categorize databases in a classification scheme. We
also presented a shrinkage-based technique that further improves the quality
of the generated content summaries. Shrinkage-based content summaries are
more complete than their unshrunk counterparts. Our shrinkage-based tech-
nique achieves this performance gain efficiently, without requiring any increase
in size of the document samples.

We also presented techniques for improving the performance of database
selection algorithms in the case where database content summaries are de-
rived from relatively small document samples. Such summaries are typically
incomplete, and this can hurt the performance of database selection algorithms.
We showed that classification-aware database selection algorithms can signif-
icantly improve the accuracy of selection decisions in the face of incomplete
content summaries. Both the hierarchical database selection algorithm of Sec-
tion 4.1 and the adaptive, shrinkage-based algorithm of Section 4.2 perform
better than their counterparts that do not exploit database classification. Fur-
thermore, we showed that the shrinkage-based strategy outperforms the hierar-
chical database selection algorithm: The hierarchical algorithm initially selects
databases under a single subtree of the classification hierarchy, thus failing to
select appropriate databases for queries that cut across multiple categories.
Shrinkage, on the other hand, embeds the category information in the content
summaries. Therefore, a flat database selection algorithm can exploit the clas-
sification information without being constrained by the classification hierarchy.

APPENDIXES

A. ESTIMATING SCORE DISTRIBUTIONS

Section 4.2.3 discussed how to estimate the uncertainty associated with a da-
tabase score for a query. Specifically, this estimate relies on the probability P
of the different possible query keyword frequencies. To compute P , we assume
independence of the words in the sample, as

P =
n∏

k=1

p(dk|sk),

where p(dk|sk) is the probability that wk occurs in dk documents in database
D, given that it occurs in sk documents in sample S. Using the Bayes rule, we
have

p(dk|sk) = p(sk|dk)p(dk)∑|D|
i=0 p(i)p(sk|i)

.

To compute p(sk|dk), we assume that the presence of each word wk follows a
binomial distribution over the S documents, with |S| trials and probability of

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:60 • P. G. Ipeirotis and L. Gravano

success dk
|D| for every trial. Then,

p(sk|dk) =
(|S|

sk

) (
dk

|D|
)sk

(
1 − dk

|D|
)|S|−sk

p(dk|sk) =
p(dk)

(
dk
|D|

)sk
(
1 − dk

|D|
)|S|−sk

∑|D|
i=0

(
p(i)

(
i

|D|
)sk

(
1 − i

|D|
)|S|−sk

) .

Finally, to compute p(dk) we use the well-known fact that the distribution of
words in text databases tends to follow a power law [Mandelbrot 1988]: Ap-
proximately c f γ words in a database have frequency f , where c and γ are
database-specific constants (c > 0, γ < 0). Then,

p(dk) = cd γ

k∑|D|
i=1 ciγ

= d γ

k∑|D|
i=1 iγ

.

Interestingly, γ = 1
B − 1, where B is a parameter of the frequency-rank dis-

tribution of the database [Adamic 2002] and can be computed as described in
Section 3.2.

B. ESTIMATING SCORE VARIANCE

The adaptive algorithm in Figure 10 computes the mean and variance of the
query-score distribution for a database to decide whether to use shrinkage for
the database content summary. In Section 4.2.3, we outlined a method for com-
puting the mean and variance relatively efficiently for any arbitrary database
selection algorithm. This computation can be made even faster for the large
class of database selection algorithms that assume independence of the query
words. For example, bGlOSS, CORI, and LM, the database selection algorithms
that we used in our experiments, belong to this class. For these algorithms, we
can calculate the mean and variance of the subscore associated with each query
word separately, and then combine these word-level mean and variance values
to compute the final-score mean and variance for the query. We show the deriva-
tion of variance30 for bGlOSS and CORI. The computation of variance for LM
is similar to the one for bGlOSS.31

Estimating Score Variance for bGlOSS

bGlOSS defines the score s(q, D) of a database D for a query q as

s(q, D) = |D| ·
∏
w∈q

p̂(w|D).

30Computation of the mean score is simpler and the derivation is analogous to the variance com-

putation presented here.
31In the computation of mean and variance for LM, we treat the values of p̂(w|G) as constants,

since the variance of the random variable p̂(w|G) is negligible compared to that of p̂(w|D).

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:61

By definition of variance, we have

Var(s(q, D)) = E[s(q, D)2] − (E[s(q, D)])2

= E

⎡⎣(
|D| ·

∏
w∈q

p(w|D)

)2
⎤⎦ −

(
E

[
|D| ·

∏
w∈q

p(w|D)

])2

= |D|2 · E

⎡⎣(∏
w∈q

p(w|D)

)2
⎤⎦ − |D|2 ·

(
E

[∏
w∈q

p(w|D)

])2

.

Since the p(w|D)’s are assumed to be independent, we have

E

⎡⎣(∏
w∈q

p(w|D)

)2
⎤⎦ =

∏
w∈q

E
[

p(w|D)2
]

(
E

[∏
w∈q

p(w|D)

])2

=
(∏

w∈q
E

[
p(w|D)

])2

.

Therefore,

Var
(
s(q, D)

) = |D|2 ·
⎛⎝∏

w∈q
E

[
p(w|D)2

]
−

(∏
w∈q

E
[
p(w|D)

])2
⎞⎠ .

The mean values of the distributions of p(w|D) and p(w|D)2 can be computed
using the results from Appendix A. Since p(w|D) depends only on the frequency
sw of the word w in Ŝ(D), we have

E
[
p(w|D)

] =
|D|∑
i=1

i
|D| p(i|sw)

E
[

p(w|D)2
]

=
|D|∑
i=1

(
i

|D|
)2

p(i|sw)

We can see that the variance V ar
(
s(q, D)

)
can be computed efficiently because

there is no need to consider frequency combinations, unlike the case for a generic
database selection algorithm (see Section 4.2.3).

Estimating Score Variance for CORI

CORI defines the score s(q, D) of a database D for a query q as

s(q, D) =
∑
w∈q

0.4 + 0.6 · Tw · Iw

|q| = 0.4 + 0.6 ·
∑
w∈q

Tw · Iw

|q|

Tw = p(w|D) · |D|
p(w|D) · |D| + 50 + 150 · cw(D)

mcw

, Iw = log

(
m + 0.5

c f (w)

)
/ log (m + 1.0)

where cf(w) is the number of databases containing w, m is the number of data-
bases being ranked, cw(D) is the number of words in D, and mcw is the mean

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:62 • P. G. Ipeirotis and L. Gravano

cw among the databases being ranked. For simplicity in our following calcu-
lations, we assume that c f (w) and cw(D) are constants, since the variance of
their values is small compared to other components of the CORI formula. In
this case, Iw is also constant. Then, by definition of variance we have

Var(s(q, D)) = E[(s(q, D))2] − (E[s(q, D)])2

= E

⎡⎣(
0.4 + 0.6 ·

∑
w∈q

Tw · Iw

|q|

)2
⎤⎦ −

(
E

[
0.4 + 0.6 ·

∑
w∈q

Tw · Iw

|q|

])2

= 0.36

|q|2 · E

⎡⎣(∑
w∈q

Tw · Iw

)2
⎤⎦ − 0.36

|q|2 ·
(

E

[∑
w∈q

Tw · Iw

])2

= 0.36

|q|2
(∑

w∈q
E

[
T 2

w · I2
w

]
+

∑
wi ,wj ∈q,i �= j

E
[
Twi · Iwi · Twj · Iwj

]
−

∑
w∈q

(
E [Tw · Iw]

)2

−
∑

wi ,wj ∈q,i �= j

E
[
Twi · Iwi

] · E
[
Twj · Iwj

])
.

By assuming independence of the words w in the query, the variables Twi and
Twj are independent if i �= j , and we have∑

wi ,wj ∈q,i �= j

E
[
Twi · Iwi · Twj · Iwj

] =
∑

wi ,wj ∈q,i �= j

E
[
Twi · Iwi

] · E
[
Twj · Iwj

]
Therefore,

Var(s(q, D)) = 0.36

|q|2
(∑

w∈q
I2

w · (
E

[
T 2

w

] − (E[Tw])2
))

.

Again, the distribution of the random variables Tw and T 2
w can be computed

using the results from Appendix A. The mean values of the distributions can be
computed efficiently, since there is no need to consider frequency combinations,
unlike the case for a generic database selection algorithm (see Section 4.2.3).

REFERENCES

ADAMIC, L. A. 2002. Zipf, power-laws, and Pareto—A ranking tutorial. http://ginger.hpl.hp.

com/shl/papers/ranking/ranking.html.

AGICHTEIN, E. AND GRAVANO, L. 2000. Snowball: Extracting relations from large plain-text collec-

tions. In Proceedings of the 5th ACM Conference on Digital Libraries (DL).
AGICHTEIN, E. AND GRAVANO, L. 2003. Querying text databases for efficient information extraction.

In Proceedings of the 19th IEEE International Conference on Data Engineering (ICDE).
BAAYEN, R. H. 2006. Word Frequency Distributions. Springer.

BAUMGARTEN, C. 1999. A probabilistic solution to the selection and fusion problem in distributed

information retrieval. In Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), 246–253.

BAUMGARTEN, C. 1997. A probabilistic model for distributed information retrieval. In Proceed-
ings of the 20th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 258–266.

BERGHOLZ, A. AND CHIDLOVSKII, B. 2004. Using query probing to identify query language features

on the Web. In Proceedings of the Distributed Multimedia Information Retrieval, SIGIR 2003

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:63

Workshop on Distributed Information Retrieval, Revised Selected and Invited Papers. Lecture

Notes in Computer Science, vol. 2924, Springer, 21–30.

BERGMAN, M. K. 2001. The deep Web: Surfacing hidden value. J. Electron. Publ. 7, 1 (Aug.).

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. 2001. The semantic Web. Sci. Amer. 284, 5 (May),

34–43.

CALLAN, J. P. AND CONNELL, M. 2001. Query-Based sampling of text databases. ACM Trans. Inf.
Syst. 19, 2, 97–130.

CALLAN, J. P., CONNELL, M., AND DU, A. 1999. Automatic discovery of language models for text

databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), 479–490.

CALLAN, J. P., LU, Z., AND CROFT, W. B. 1995. Searching distributed collections with inference

networks. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), 21–28.

CHAKRAVARTHY, A. S. AND HAASE, JR., K. W. 1995. Netserf: Using semantic knowledge to

find Internet information archives. In Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 4–

11.

CHOI, Y. S. AND YOO, S. I. 2001. Text database discovery on the Web: Neural net based approach.

J. Intell. Inf. Syst. 16, 1 (Jan.), 5–20.

COHEN, W. W. 1996. Learning trees and rules with set-valued features. In Proceedings of the 13th
National Conference on Artificial Intelligence (AAAI), 8th Conference on Innovative Applications
of Artificial Intelligence (IAAI), 709–716.

COHEN, W. W. AND SINGER, Y. 1996. Learning to query the Web. In Proceedings of the AAAI Work-
shop on Internet-Based Information Systems, 16–25.

CRASWELL, N., BAILEY, P., AND HAWKING, D. 2000. Server selection on the World Wide Web. In

Proceedings of the 5th ACM Conference on Digital Libraries (DL). 37–46.

CROFT, W. B. AND LAFFERTY, J. 2003. Language Modeling for Information Retrieval. Kluwer Aca-

demic.

DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. 1977. Maximum likelihood from incomplete data

via the EM algorithm. J. Royal Statis. Soc. B, 39, 1–38.

DOLIN, R. A. 1998. Pharos: A scalable distributed architecture for locating heterogeneous infor-

mation sources. Ph.D. thesis, University of California, Santa Barbara.

DREILINGER, D. AND HOWE, A. E. 1997. Experiences with selecting search engines using

metasearch. ACM Trans. Inf. Syst. 15, 3, 195–222.

DUDA, R. O., HART, P. E., AND STORK, D. G. 2000. Pattern Classification, 2nd ed. Wiley.

FELLBAUM, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.

FLAKE, G., GLOVER, E., LAWRENCE, S., AND GILES, C. L. 2002. Extracting query modifications

from nonlinear SVMs. In Proceedings of the 11th International World Wide Web Conference
(WWW).

FRENCH, J. C., POWELL, A. L., CALLAN, J. P., VILES, C. L., EMMITT, T., PREY, K. J., AND MOU, Y. 1999.

Comparing the performance of database selection algorithms. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), 238–245.

FRENCH, J. C., POWELL, A. L., VILES, C. L., EMMITT, T., AND PREY, K. J. 1998. Evaluating database

selection techniques: A testbed and experiment. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 121–

129.

FUHR, N. 1999. A decision-theoretic approach to database selection in networked IR. ACM Trans.
Inf. Syst. 17, 3 (May), 229–249.

GAUCH, S., WANG, G., AND GOMEZ, M. 1996. ProFusion*: Intelligent fusion from multiple, dis-

tributed search engines. J. Universal Comput. Sci. 2, 9 (Sept.), 637–649.

GHANI, R., JONES, R., AND MLADENIC, D. 2001. Using the Web to create minority language corpora.

In Proceedings of the ACM Conference on Information and Knowledge Management (CIKM),
279–286.

GRAVANO, L., IPEIROTIS, P. G., AND SAHAMI, M. 2003. QProber: A system for automatic classification

of hidden-Web databases. ACM Trans. Inf. Syst. 21, 1 (Jan.), 1–41.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:64 • P. G. Ipeirotis and L. Gravano

GRAVANO, L., GARCı́A-MOLINA, H., AND TOMASIC, A. 1999. GlOSS: Text-Source discovery over the

Internet. ACM Trans. Database Syst. 24, 2 (Jun.), 229–264.

GRAVANO, L., CHANG, K. C.-C., GARCı́A-MOLINA, H., AND PAEPCKE, A. 1997. STARTS: Stanford pro-

posal for Internet meta-searching. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 207–218.

GREFENSTETTE, G. AND NIOCHE, J. 2000. Estimation of English and non-English language use on

the WWW. In Recherche d’Information Assistée par Ordinateur (RIAO).
HARMAN, D. 1996. Overview of the Fourth Text REtrieval Conference (TREC-4). In NIST Special

Publication 500-236: The 4th Text REtrieval Conference (TREC-4), 1–24.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. H. 2001. The Elements of Statistical Learning.

Springer.

HAWKING, D. AND THOMAS, P. 2005. Server selection methods in hybrid portal search. In Proceed-
ings of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 75–82.

HAWKING, D. AND THISTLEWAITE, P. B. 1999. Methods for information server selection. ACM Trans.
Inf. Syst. 17, 1 (Jan.), 40–76.

IPEIROTIS, P. G. AND GRAVANO, L. 2004. When one sample is not enough: Improving text database

selection using shrinkage. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 767–778.

IPEIROTIS, P. G. AND GRAVANO, L. 2002. Distributed search over the hidden Web: Hierarchical

database sampling and selection. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB), 394–405.

JELINEK, F. 1999. Statistical Methods for Speech Recognition. MIT Press.

JOACHIMS, T. 1998. Text categorization with support vector machines: Learning with many rel-

evant features. In Proceedings of the 10th European Conference on Machine Learning (ECML),
137–142.

KAHLE, B., MORRIS, H., GOLDMAN, J., ERICKSON, T., AND CURRAN, J. 1993. Interfaces for distributed

systems of information servers. J. Amer. Soc. Inf. Sci. 44, 8 (Sept.), 453–467.

LARKEY, L. S., CONNELL, M. E., AND CALLAN, J. P. 2000. Collection selection and results merging

with topically organized U.S. patents and TREC data. In Proceedings of the ACM Conference on
Information and Knowledge Management (CIKM), 282–289.

LIU, Z., LUO, C., CHO, J., AND CHU, W. 2004. A probabilistic approach to metasearching with adap-

tive probing. In Proceedings of the 20th IEEE International Conference on Data Engineering
(ICDE), 547–559.

MANBER, U. AND BIGOT, P. A. 1997. The search broker. In 1st USENIX Symposium on Internet
Technologies and Systems (USITS).

MANDELBROT, B. B. 1988. Fractal Geometry of Nature. W. H. Freeman.

MARQUES DE SÁ, J. P. 2003. Applied Statistics. Springer.

MCCALLUM, A., ROSENFELD, R., MITCHELL, T. M., AND NG, A. Y. 1998. Improving text classification

by shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on
Machine Learning (ICML), 359–367.

MENG, W., YU, C. T., AND LIU, K.-L. 1999. Detection of heterogeneities in a multiple text database

environment. In Proceedings of the 4th IFCIS International Conference on Cooperative Informa-
tion Systems (CoopIS), 22–33.

MENG, W., LIU, K.-L., YU, C. T., WANG, X., CHANG, Y., AND RISHE, N. 1998. Determining text databases

to search in the Internet. In Proceedings of the 24th International Conference on Very Large
Databases (VLDB), 14–25.

MONROE, G. A., FRENCH, J. C., AND POWELL, A. L. 2002. Obtaining language models of Web collec-

tions using query-based sampling techniques. In Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences (HICSS), 67–73.

PERKOWITZ, M., DOORENBOS, R. B., ETZIONI, O., AND WELD, D. S. 1997. Learning to understand

information on the Internet: An example-based approach. J. Intell. Inf. Syst. 8, 2 (Mar.), 133–153.

POWELL, A. L. AND FRENCH, J. C. 2003. Comparing the performance of collection selection algo-

rithms. ACM Trans. Inf. Syst. 21, 4 (Oct.), 412–456.

POWELL, A. L., FRENCH, J. C., CALLAN, J. P., CONNELL, M., AND VILES, C. L. 2000. The impact of

database selection on distributed searching. In Proceedings of the 23rd Annual International

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

Classification-Aware Hidden-Web Text Database Selection • 6:65

ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 232–

239.

QUINLAN, J. R. 1992. C4.5: Programs for Machine Learning. Morgan Kaufmann.

RAGHAVAN, S. AND GARCı́A-MOLINA, H. 2001. Crawling the hidden web. In Proceedings of the 27th
International Conference on Very Large Databases (VLDB), 129–138.

SALTON, G. A. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw-

Hill.

SHELDON, M. A. 1995. Content routing: A scalable architecture for network-based information

discovery. Ph.D. thesis, Massachusetts Institute of Technology.

SHOKOUHI, M. 2007. Central-Rank-Based collection selection in uncooperative distributed infor-

mation retrieval. In Proceedings of the 29th European Conference on IR Research (ECIR).
SI, L. AND CALLAN, J. 2005. Modeling search engine effectiveness for federated search. In Proceed-

ings of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), 83–90.

SI, L. AND CALLAN, J. 2004a. Unified utility maximization framework for resource selection. In

Proceedings of the ACM Conference on Information and Knowledge Management (CIKM), 32–

41.

SI, L. AND CALLAN, J. P. 2004b. The effect of database size distribution on resource selection

algorithms. In Proceedings of the Distributed Multimedia Information Retrieval, SIGIR 2003
Workshop on Distributed Information Retrieval, Revised Selected and Invited Papers. Lecture

Notes in Computer Science, vol. 2924, Springer, 31–42.

SI, L. AND CALLAN, J. P. 2003. Relevant document distribution estimation method for resource

selection. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), 298–305.

SI, L., JIN, R., CALLAN, J. P., AND OGILVIE, P. 2002. A language modeling framework for resource

selection and results merging. In Proceedings of the ACM Conference on Information and Knowl-
edge Management (CIKM), 391–397.

SUGIURA, A. AND ETZIONI, O. 2000. Query routing for web search engines: Architecture and exper-

iments. In Proceedings of the 9th International World Wide Web Conference (WWW).
VOORHEES, E. M., GUPTA, N. K., AND JOHNSON-LAIRD, B. 1995. Learning collection fusion strate-

gies. In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 172–179.

VOORHEES, E. M. AND HARMAN, D. 1998. Overview of the Sixth Text REtrieval Conference (TREC-

6). In NIST Special Publication 500-240: The 6th Text REtrieval Conference (TREC-6), 1–24.

XU, J. AND CALLAN, J. P. 1998. Effective retrieval with distributed collections. In Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), 112–120.

XU, J. AND CROFT, W. B. 1999. Cluster-Based language models for distributed retrieval. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), 254–261.

YANGARBER, R. AND GRISHMAN, R. 1998. NYU: Description of the Proteus/PET system as used for

MUC-7. In Proceedings of the 7th Message Understanding Conference (MUC).
YU, C. T., MENG, W., WU, W., AND LIU, K.-L. 2001. Efficient and effective metasearch for text

databases incorporating linkages among documents. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD).

YU, C. T., MENG, W., LIU, K.-L., WU, W., AND RISHE, N. 1999. Efficient and effective metasearch

for a large number of text databases. In Proceedings of the ACM Conference on Information and
Knowledge Management (CIKM), 217–224.

YUWONO, B. AND LEE, D. L. 1997. Server ranking for distributed text retrieval systems on the

Internet. In Proceedings of the 5th International Conference on Database Systems for Advanced
Applications (DASFAA), 41–50.

ZHAI, C. AND LAFFERTY, J. D. 2004. A study of smoothing methods for language models applied to

information retrieval. ACM Trans. Inf. Syst. 22, 2 (Apr.), 179–214.

ZHAI, C. AND LAFFERTY, J. D. 2002. Two-Stage language models for information retrieval. In Pro-
ceedings of the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), 49–56.

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

6:66 • P. G. Ipeirotis and L. Gravano

ZHAI, C. AND LAFFERTY, J. D. 2001. A study of smoothing methods for language models applied

to ad hoc information retrieval. In Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), 334–342.

ZIPF, G. K. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley.

Received October 2005; revised December 2006, June 2007; accepted June 2007

ACM Transactions on Information Systems, Vol. 26, No. 2, Article 6, Publication Date: March 2008.

