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Abstract

We consider pure-jump transaction-level models for asset prices in continuous time, driven by

point processes. In a bivariate model that admits cointegration, we allow for time deformations

to account for such effects as intraday seasonal patterns in volatility, and non-trading periods

that may be different for the two assets. Most assumptions are stated directly on the point

process, though we provide sufficient conditions on the corresponding inter-trade durations for

these assumptions to hold. We obtain the asymptotic distribution of the log-price process. We

also obtain the asymptotic distribution of the ordinary least-squares estimator of the cointegrat-

ing parameter based on data sampled from an equally-spaced discretization of calendar time,

in the case of weak fractional cointegration. Finally, we obtain the limiting distribution of the

ordinary least-squares estimator of the autoregressive parameter in a simplified transaction-level

univariate model with a unit root.

1 Introduction

The increasingly widespread availability of transaction-level financial price data motivates the de-

velopment of models to describe such data, as well as theory for widely-used statistics of interest

under the assumption of a given transaction-level generating mechanism. We focus here on a bi-

variate pure-jump model in continuous time for log prices proposed by Hurvich and Wang [19, 20]

which yields fractional or standard cointegration. The motivation for using a pure-jump model is

that observed price series are step functions, since no change is possible in observed prices during

time periods when there are no transactions. Examples of data sets that would fit into the frame-

work of this model include: buy prices and sell prices of a single stock; prices of two different stocks
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within the same industry; stock and option prices of a given company; option prices on a given

stock with different degrees of maturity or moneyness; corporate bond prices at different maturities

for a given company; Treasury bond prices at different maturities.

Two basic questions that we address here are the asymptotic distribution of the log prices as time

t →∞, and of the usual OLS estimator of the cointegrating parameter based on n observations of

the log prices at equally-spaced time intervals as n →∞. Most of the existing methods for deriving

such limit laws (see Phillips and Durlauf [27], Robinson and Marinucci [30]) cannot be applied

here because the continuous-time log-price series are not diffusions and because the discretized

log-price series are not linear in either an iid sequence, a martingale difference sequence or a strong

mixing sequence. Nevertheless, it is of interest to know whether and under what conditions the

existing limit laws, based, say, on linearity assumptions in discrete time, continue to hold under a

transaction-level generating mechanism.

In the model of Hurvich and Wang [19, 20] the price process in continuous time is specified by

a counting process giving the cumulative number of transactions up to time t, together with the

process of changes in log price at the transaction times. This structure corresponds to the fact

that most transaction-level data consists of a time stamp giving the transaction time as well as a

price at that time. In such a setting, another observable quantity of interest is the durations, i.e.,

the waiting times between successive transactions of a given asset. There is a growing literature

on univariate models for durations, including the seminal paper of Engle and Russell [16] on the

autoregressive conditional duration models (ACD), as well as Bauwens and Veredas [4] on the

stochastic duration model (SCD), and Deo et al. [12] on the long-memory stochastic duration

model (LMSD).

It is known from the theory of point processes (see Daley and Vere-Jones [8, 9, 10] or Nieuwenhuis

[25]) that the durations are stationary under a measure P 0 (known as the palm distribution) if

and only if the point process is stationary under a measure P which determines and is uniquely

determined by P 0, where in general P and P 0 are different. Deo et al. [14] showed that, subject to

regularity conditions, if partial sums of centered durations, scaled by n−(d+1/2) with d ∈ [0, 1/2),

satisfy a functional central limit theorem under P 0 then the counting process N(t) has long or short

memory (for d > 0, d = 0, respectively) in the sense that VarN(t) ∼ Ct2d+1 under P as t → ∞
(with C > 0), and they gave conditions under which this scaling would lead to long memory in

volatility. It is important to note that since P and P 0 determine one another, there is no need

to start with models for durations, as in most of the existing literature. Instead, as advocated by

Bowsher [6], it is possible to start by specifying a model for the point process of events of interest

(such as transactions). Such an approach appears to generalize more easily to the multivariate

case, since attempting to directly model multivariate durations as a time series is problematic as
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they are not synchronized in transaction-time, e.g., the kth transactions of IBM and Apple occur

at different times, and this time difference is itself a stochastic process with respect to k.

Hurvich and Wang [19, 20] did not derive limit laws for the log price series or the OLS estimator

of the cointegrating parameter, but focused instead on properties of variances and covariances for

log price series and returns, and on lower bounds on the rate of convergence for the OLS estimator.

In this paper, for the model of [19, 20] but under assumptions that are more general than theirs, we

obtain the limit law for log prices for standard, weak fractional and strong fractional cointegration,

where the cointegrating error is integrated of order dη with dη = 0, dη ∈ (1/2, 1) or dη ∈ (0, 1/2),

respectively, and for the OLS estimator of the cointegrating parameter in the case of weak fractional

cointegration only. In our result on the limit law for log prices, Theorem 4.1, we allow for a

stochastic time-varying intensity function in the counting processes. This allows for such effects as

dynamic intraday seasonality in volatility (as observed, for example, in Deo et al. [13]), as well as

fixed non-trading intervals such as holidays and overnight periods. We will also obtain the limiting

distribution of the OLS estimator of the autoregressive parameter in a simplified transaction-level

univariate model with a unit root.

The remainder of this paper is organized as follows. In Section 2 we write the model for the log

price series and state our assumptions on the counting process, the time-deformation functions, and

the return shocks. In Section 3, we explain how our assumptions on the counting process can be

related to corresponding assumptions on the sequence of durations (inter-arrival times), with focus

on some particular duration models that have been proposed in the literature. In Section 4, we

provide our main results on the long-run behavior of the log-price process, on the OLS estimator for

the cointegrating parameter under weak fractional cointegration (with some remarks on the strong

fractional and standard cointegration cases), and on the OLS estimator for univariate unit-root

autoregression. Section 5 provides proofs.

2 Transaction-level Model

In this section, we introduce our model and precisely state the assumptions made on the var-

ious model components. As in Hurvich and Wang [19, 20], we consider a bivariate pure-jump

transaction-level price model that enables cointegration. We define the log-price process y =

(y1, y2) = (y(t) : t ≥ 0) by

y1(t) =
N1(t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k), (2.1)
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y2(t) =
N2(t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(t))∑

k=1

(θ−1e1,k + g12η1,k), (2.2)

where for i = 1, 2, Ni(·) are counting processes on the real line (see Daley and Vere-Jones [9],

page 43) such that, for t ≥ 0, Ni(t) := Ni(0, t] gives the total number of transactions of As-

set i in (0, t], and ti,k is the clock time (calendar time) for the kth transaction of Asset i, with

· · · ti,−1 ≤ ti,0 ≤ 0 < ti,1 ≤ ti,2 · · · . The quantity N2(t1,N1(t)) denotes the number of transactions

of Asset 2 between time 0 and the time t1,N1(t) of the most recent transaction of Asset 1, with an

analogous interpretation for N1(t2,N2(t)). The efficient shock sequences {ei,k}∞k=1 model the perma-

nent component and the microstructure noise sequences {ηi,k}∞k=1 model the transitory component

of the log-price process. Efficient shock spillover effects are weighted by θ and θ−1, thus yielding

cointegration with cointegrating parameter θ, assumed nonzero, while the microstructure spillover

is enabled through the quantities g12 and g21. A detailed economic justification for this model,

derivation of a common-components representation, as well as a comparison with certain discrete-

time models, is given in [19, 20]. We shall work in this paper with the following set of assumptions,

using the definition of Daley and Vere-Jones [9] (page 47) that a point process is simple if the

probability is zero that there exists a time t at which more than one event occurs.

Assumption 2.1. (Counting Processes) For i = 1, 2,

Ni(t) = Ñi(t + fi(t)),

where under the measure P , Ñi(·) is a simple, stationary and ergodic counting process on R with

intensity λ̃i ∈ (0,∞). The fi are random or deterministic càdlàg functions such that t + fi(t) is

nondecreasing with probability one, t−1[t + fi(t)] → γi ∈ (0,∞) with probability one as t →∞, and

sup
t≥0

∣∣fi(t)− fi(t−)
∣∣ ≤ C

with probability one, where C ∈ (0,∞). Finally, Ñi and fj (i, j = 1, 2) need not be independent.

The functions fi are used to speed up or slow down the trading clock. To incorporate dynamic

intraday seasonality in volatility, the same time deformation can be used in each trading period

(of length, say, T ), assuming that t + fi(t) has a periodic derivative (with period T and with

probability one), for example, fi(t) = sin(2πt/T ). Fixed non-trading intervals, say, t ∈ [T1, T2),

could be accommodated by taking fi(t) = T1 + fi(T1)− t for t ∈ [T1, T2) so that t + fi(t) remains

constant for t in this interval, and then taking fi(T2) > T1 + fi(T1) − T2 so that t + fi(t) jumps

upward when trading resumes at time T2. The jump allows for the possibility of one or more
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transactions at time T2, potentially reflecting information from other markets or assets that did

trade in the period [T1, T2).

The use of the time-varying intensity function fi renders the counting process Ni nonstationary.

We will show, however, in Lemma 5.1 below that Ni satisfies a renewal-type theorem. Since it is

possible that fi has (upward) jumps, the Ni may not be simple even though the Ñi are simple.

The counting processes Ni induce associated sequences of durations {τi,k}∞k=−∞ defined by

τi,k = ti,k − ti,k−1, thus yielding the duality

Ni(t) =





max
{

s :
s∑

k=1

ui,k ≤ t
}

, ui,1 ≤ t

0, ui,1 > t,

where

ui,k =

{
ti,1, k = 1.

τi,k, k ≥ 2.

Similarly, Ñi induces associated durations {τ̃i,k}∞k=−∞ satisfying a corresponding duality relation.

Our approach here differs somewhat from the univariate duration-based approaches given in the

papers Engle and Russell [16], Bauwens and Veredas [4], and Deo et al. [14]. These authors

start out with the durations {τi,k}∞k=−∞ and endow them with certain desirable properties such

as stationarity, mixing and ergodicity with respect to the so-called Palm distribution P 0 (see

Nieuwenhuis [25] for the definition). How these properties then propagate to the counting processes

under P has been addressed in the recent article Deo et al. [14]. By contrast, in the current paper

we typically start with assumptions on the counting processes Ñi rather than on the durations (see

Assumption 2.1 above). Nevertheless, we also provide, in Section 3, conditions on the durations

{τ̃i,k}∞k=−∞ that are sufficient for our assumptions on the counting processes Ñi to hold.

Assumption 2.2. (Efficient Shocks) The efficient shocks {ei,k}∞k=1 form independent, identically

distributed sequences of random variables with zero mean and finite variance σ2
i,e.

Although many of our results would continue to hold if the iid assumption above were replaced

by a weak-dependence assumption (see Subsection 5.1 below), we maintain the iid assumption here

in keeping with the economic motivation for the model as provided by Hurvich and Wang ([19])

that in the absence of the microstructure shocks each of the log price series would be a martingale

with respect to its own past.

Assumption 2.3. (Microstructure Noise) The microstructure noise {ηi,k}∞k=1 is a zero mean

sequence with memory parameter dη ∈ [−1, 0) that satisfies moreover one of the following conditions.
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(A) Weak Fractional Cointegration: If dη ∈ (−1
2 , 0), then ηi,k =

∑∞
j=0 bi,jζi,k−j where

bi,j ∼ Cij
dη−1 as j →∞ with Ci 6= 0, and {ζi,k}∞k=−∞ is iid with zero mean and finite variance. It

is also required that E[|ζi,1|2ν ] < ∞ for some ν ≥ 1 satisfying the condition dη ≥ 1
ν+2 − 1

2 . Finally,

{ηi,k} has spectral density gi,η(λ) such that, for some β ∈ (0, 2], gi,η(λ) = σ2
i,ηCηλ

−2dη(1 +O(λβ))

holds as λ → 0+, where Cη = {−4Γ(−1 − 2dη) sin(π(dη + 1))}−1 and σ2
i,η > 0 is the long-run

variance of {ηi,k}.
(B) Strong Fractional Cointegration: If dη ∈ (−1,−1

2), then ηi,k = ϕi,k − ϕi,k−1,

k = 1, 2, . . ., where ϕi,0 = 0 and {ϕi,k}∞k=1 is a zero mean, strictly stationary long memory se-

quence with memory parameter dϕ = dη + 1 ∈ (0, 1
2) in the sense that its autocovariances satisfy

Cov(ϕi,k, ϕi,k+h) = Kih
2dϕ−1 +O(h2dϕ−3) for h ≥ 1 and Ki > 0.

(C) Standard Cointegration: If dη = −1, then ηi,k = ξi,k − ξi,k−1, k = 1, 2, . . ., where

ξi,0 = 0 and {ξi,k}∞k=1 is a zero mean, strictly stationary sequence with exponentially decaying

autocovariances, |Cov(ξi,k, ξi,k+h)| ≤ Cξe
−Kξh for h ≥ 0 and Cξ,Kξ > 0.

Assumption 2.4. The shocks {e1,k}∞k=1, {e2,k}∞k=1, {η1,k}∞k=1 and {η2,k}∞k=1 are mutually indepen-

dent, and these are independent of the counting processes Ni, i = 1, 2.

Assumption 2.4 was also made by Hurvich and Wang [19, 20]. Since the trades of Asset 1 are not

synchronized in calendar time or in transaction time with those of Asset 2, it seems reasonable to

assume that the two efficient shock series are mutually independent, as are the two microstructure

shock series. Mutual independence of the efficient and microstructure shock series of a given asset

can be justified on economic grounds, and is often made in the econometric literature for calendar-

time models. See, e.g., Barndorff-Nielsen et al. [3].

We note that (N1, N2) together with the sequences of return shocks comprises a marked point

process (see Daley and Vere-Jones [10], Nieuwenhuis [26]), where the shocks are marks. However,

because Assumption 2.4 states that the shocks are independent of the Ni, it suffices for most of

our discussion of point processes theory to focus on the non-marked point process (N1, N2). Still,

it is worth mentioning that for the marked point process, the independence between (N1, N2) and

the return shocks holds under both the Palm distribution P 0 and the time-stationary distribution

P (see Nieuwenhuis [26]) of the marked point process.

The independence of (N1, N2) and the return shocks is restrictive. In particular, it implies that

there can be no leverage effect in the returns (for example, a correlation between a return in one

time period and a squared return in a subsequent time period). A transaction-level model yielding

a leverage effect was proposed (but justified only with simulations) in Hurvich and Wang [20].

Models where the point process need not be independent of the return shocks were discussed in

Prigent [29] in the context of option pricing with marked point processes.
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Hurvich and Wang [19, 20] assumed fi ≡ 0. They also assumed that the durations satisfied

the conditions of Theorem 1 of Deo et al. [12] which entails finite moments of all orders for the

durations under P 0. The conditions stated in this section allow fi 6= 0 and also allow the durations

to have infinite moment of order 1 + ε under P 0, for any ε > 0.

3 From Durations to Counting Processes

Many existing transaction-level models start with assumptions on the durations {τk}∞k=−∞ instead

of imposing assumptions directly the corresponding counting processes. Duration-based approaches

in econometrics have originally been used to examine the impact of past unemployment on current

levels in Lancaster [23]. The first attempt in modeling tick-by-tick data on the basis of durations

has led to the autoregressive conditional duration (ACD) model of Engle and Russell [16]. More

recent contributions in the literature include the stochastic conditional duration (SCD) model of

Bauwens and Veredas [4] and the long memory stochastic duration (LMSD) model of Deo et al. [12].

In this section, we first provide the general link between the counting-process-based assumptions

imposed in this paper and the duration-based modeling in the above mentioned papers, followed by

sufficient criteria for ACD, SCD and LMSD duration sequences to fit into the present framework

of Assumption 2.1.

Let N(·) be a counting process on R satisfying the conditions of Assumption 2.1 with time-

deformation function f ≡ 0, (that is, for notational convenience, we will often suppress the dis-

tinction between N and Ñ in the remainder of this section) and let moreover τ = {τk}∞k=−∞ be

the sequence of associated durations. Except for the case of a Poisson process, N and τ are not

stationary with respect to the same measure. It follows from Iglehart and Whitt [21] that func-

tional limit theorems for counting processes and associated partial sums of durations are essentially

equivalent under P . If N is stationary with respect to a measure P , then one can also construct

the so-called Palm measure P 0 under which the durations τ are stationary using for example the

results in [9, 10, 25]. In duration-based approaches assumptions are stated under P 0 and not under

P . In general properties holding under one measure do not translate one-to-one to the other (see

the discussions in [14]). We have, however, the following theorem whose proof can be found in

Baccelli and Brémaud [2].

Theorem 3.1. The counting process N is ergodic with respect to P if and only if the durations τ

are ergodic with respect to the Palm distribution P 0.

To validate the ergodicity part of Assumption 2.1 for the ACD, SCD and LMSD models, it

suffices according to Theorem 3.1 to establish sufficient conditions ensuring ergodicity of τ under
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P 0. We do this in the examples below.

Sufficient conditions on a duration sequence (stationary with finite mean under P 0) for the

corresponding counting process Ñ to satisfy the conditions of Assumption 2.1 (i.e., stationarity,

ergodicity and simplicity under P ), are that the durations are positive with P 0-probability 1, and

that the durations are ergodic under P 0. To justify this statement, we note that the positivity,

ergodicity, stationarity and finite mean of durations under P 0 implies that Ñ , under P , is ergodic,

orderly and strictly stationary (by Daley and Vere-Jones [8], Theorem 12.3.II) and the latter two

properties imply that Ñ is simple under P (by Daley and Vere-Jones [9], Proposition 3.3.VI).

Since the ACD, SCD and LMSD durations are positive with P 0-probability 1 and have a finite

mean under P 0, it will follow that these models have corresponding counting processes Ñ , stationary

under P , satisfying Assumption 2.1, as long as we can verify that the durations are ergodic under

P 0, which we do presently.

Example 3.1. The ACD model proposed in Engle and Russell [16] can be rewritten as

τk = ψkεk, ψk = g(εk−1, εk−2, . . .), k ∈ Z, (3.1)

where {εk}∞k=−∞ is a sequence of independent, identically distributed random variables under P 0

satisfying ε0 > 0 P 0-almost surely, and E0[ε0] = 1 with E0 denoting expectation with respect to

P 0, whereas g > 0 is a measurable function. It is clear that {τk}∞k=−∞ is then strictly stationary

under P 0 provided such a solution to the equations (3.1) exists. From Section 9.5 of Grimmett and

Stirzaker [17], it follows that stationary ACD durations are ergodic under P 0 if E0[τ0] < ∞. In a

simple and more specific form, one can let (see [16])

ψk = ω + ατk−1 + βψk−1, k ∈ Z,

where the parameters involved satisfy ω > 0 and α, β ≥ 0. The P 0-strictly stationary solution

is then determined by ψk = ω
∑∞

j=1

∏j−1
i=1 (αεk−i + β) and exists if E0[ln(αε0 + β)] < 0, following

arguments given in [5]. As in [1] one can derive that now E0[τ0] is finite if α + β < 1 which,

on account of Jensen’s inequality, is also sufficient for E0[ln(αε0 + β)] < 0 to hold. Theorem 3.1

consequently implies that the ergodicity part of Assumption 2.1 is satisfied for the ACD model, as

long as α + β < 1.

Example 3.2. In contrast to the ACD model which is observation driven, the SCD model of

Bauwens and Veredas [4] is based on a latent variable. It is defined via the equations

τk = ψkεk, lnψk = ω + β lnψk−1 + wk, k ∈ Z, (3.2)

where ω ∈ R and |β| < 1. The sequence {εk}∞k=−∞ consists of independent, identically distributed

random variables under P 0 satisfying ε0 > 0 P 0-almost surely, and E0[ε0] = 1. This sequence
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is P 0-independent of {wk}∞k=−∞ which is itself independent, identically distributed under P 0. If

E0[ln |w0|] < 0, then a strictly stationary solution to the ψ-equations exists and is given by the

series
∑∞

j=0 βj(ω + wk−j). If w0 possesses P 0-finite moments of all order, then E[τ0] < ∞ and the

same arguments as in Example 3.1 imply here that the ergodicity part of Assumption 2.1 holds as

well.

Example 3.3. The LMSD model was introduced as an extension of the SCD model that can

capture long memory in the durations. Following [12], the LMSD is given by replacing ψk in (3.2)

with the linear process specification

τk = ψkεk, lnψk =
∞∑

j=0

bjwk−j , k ∈ Z, (3.3)

where {wk}∞k=−∞ are independent, identically distributed normal random variables with zero mean

under P 0, independent of {εk}∞k=−∞ which is assumed to possess all moments and to be positive

P 0-almost surely. Long memory in durations is enabled through the coefficients bj ∼ Cjd−1, where

C 6= 0 is a constant and d ∈ (0, 1/2). It is also possible to nest the short memory case within this

framework (see [14] for details). Deo et al. [14] have shown in their Lemma 3 that {τk}∞k=−∞ is

τk-mixing and therefore weak mixing and ergodic under P 0 (see, for example, Choe [7], page 133).

It follows from Theorem 3.1 that the associated counting process is ergodic under P . Assumption

2.1 is consequently satisfied for the LMSD model.

4 Main results

4.1 The long-run behavior of the bivariate log-price process

With the assumptions made in Section 2, the long-run behavior of the bivariate process y = (y1, y2)

can be determined. The following theorem shows that the log-prices are approximately integrated.

Even though independence is assumed between the various shock series, the log-price process y =

(y(t) : t ≥ 0) exhibits a nontrivial variance-covariance structure which is determined by a complex

interplay of the model parameters.

Theorem 4.1. If Assumptions 2.1–2.4 are satisfied, then as n →∞,
(

1√
n

y(nu) : u ∈ [0, 1]
)

d→ By = (By(u) : u ∈ [0, 1]),

where d→ signifies convergence in the Skorohod space D2[0, 1] and By is a bivariate Brownian motion

with 2× 2 covariance matrix Σ = (Σi,j : i, j = 1, 2) given by the entries

Σ1,1 = λ1σ
2
1,e + θ2λ2σ

2
e,2, Σ2,2 =

λ1σ
2
1,e

θ2
+ λ2σ

2
2,e and Σ1,2 =

λ1σ
2
1,e

θ
+ θλ2σ

2
2,e = Σ2,1,

9



where λi = λ̃iγi = a.s.- limt t−1Ni(t) is the asymptotic intensity of the counting process Ni.

Hurvich and Wang [19, 20] have in their Theorem 1 computed the long-run variances of y1(t)

and y2(t) which are given as Σ1,1t and Σ2,2t, respectively. Our theorem yields the variances as well

as the covariances in the limiting distribution of (t−1/2y(t) : t ≥ 0). More importantly, our theorem

provides the limiting distribution itself for the (normalized) log-price process y which, in turn, can

be used for asymptotic statistical inference.

4.2 The OLS estimator for the cointegrating parameter

In this section, we derive the asymptotic behavior of the ordinary least-squares estimator (OLS) of

the cointegrating parameter θ. To do so, we assume that the log-price series are observed at integer

multiples of ∆t. We will work here, without loss of generality, with ∆t = 1 in order to keep the

notation simple. Then (2.1) and (2.2) become

y1,j =
N1(j)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(j))∑

k=1

(θe2,k + g21η2,k), (4.1)

y2,j =
N2(j)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(j))∑

k=1

(θ−1e1,k + g12η1,k). (4.2)

Regressing y1,1, . . . , y1,n on y2,1, . . . , y2,n without intercept, we obtain the OLS estimator for the

cointegration parameter θ as

θ̂n =

∑n
j=1 y2,jy1,j∑n

j=1 y2
2,j

. (4.3)

Hurvich and Wang [19, 20] have shown in their Theorem 6 that θ̂n is weakly consistent for θ and

obtained a lower bound on the rate of convergence in the case of weak fractional, strong fractional

and standard cointegration. The exact limit distributions, however, were not given. We fill in this

gap next for weak fractional cointegration.

Theorem 4.2. Under Assumptions 2.1–2.4 with the restrictions that E0[τ2
i,k] < ∞ and fi ≡ 0 for

i = 1, 2, and dη ∈ (−1
2 , 0),

n−dη(θ̂n − θ) D→ σ
∫ 1
0 B(u)BH(u)du

Σ1/2
2,2

∫ 1
0 B2(u)du

(n →∞),

where D→ indicates convergence in distribution, σ2 = λ2H
1 σ2

η,1[1− θg12]2 + λ2H
2 σ2

η,2[g21 − θ]2, Σ2,2 is

defined in Theorem 4.1, B = (B(u) : u ∈ [0, 1]) is a standard Brownian motion, BH = (BH(u) : u ∈
[0, 1]) is a Type I fractional Brownian motion with Hurst parameter H = dη + 1

2 , and B, BH are

mutually independent.
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The result in Theorem 4.2 is similar to that obtained in Proposition 6.5, formula (6.8) of

Robinson and Marinucci [30], under their Assumption 6.1, for which a sufficient condition (their

formula (6.5)) was verified in Marinucci and Robinson [24] to hold for weak (but not strong)

fractional cointegration in the case where the process is linear with respect to iid innovations. The

restrictions in Theorem 4.2 that E0[τ2
i,k] < ∞ and fi ≡ 0 for i = 1, 2 are needed only for proving

Lemma 5.4, which handles certain end effects. We conjecture that if the durations have infinite

variance under P 0 (holding the fi at zero), the limiting distribution of the OLS estimator under

weak fractional cointegration would be affected.

The reason we are currently unable to generalize Theorem 4.2 to the strong fractional cointe-

gration case is the same as given by Robinson and Marinucci [30] (page 963) for not covering this

case, namely that here the continuous mapping theorem cannot be applied, and that the process

with lower memory parameter cannot be approximated by a semimartingale.

We are also unable to provide conditions under which n(θ̂n− θ) converges in distribution in the

standard cointegration case. Phillips and Durlauf [27] establish in their Theorem 4.1 that n(θ̂n−θ)

converges in distribution to a functional of a bivariate Brownian motion, under assumptions that

may not hold for the process {(y1,j , y2,j)′}n
j=1 given in (4.1) and (4.2). Inspection of their proof

suggests that in order for this limit result to hold, it is necessary that the bivariate process {zj}n
j=1

with zj = (y1,j − θy2,j , y2,j − y2,j−1)′ have the property that as n →∞,

 1√

n
M

bnuc∑

j=1

zj : u ∈ [0, 1]


 d→ Bz = (Bz(u) : u ∈ [0, 1]), (4.4)

where M is a fixed 2× 2 matrix and Bz is a bivariate standard Brownian motion. We are unable

to provide conditions on the point process and other elements of our model such that (4.4) would

hold. In particular, we note that the first component of zj is

y1,j − θy2,j =
N1(j)∑

k=N1(t2,N2(j))+1

e1,k − θ

N2(j)∑

k=N2(t1,N1(j))+1

e2,k

+ ξ1,N1(j)I{N1(j) > 0} − θg12 · ξ1,N1(t2,N2(j))I{N1(t2,N2(j)) > 0}

− θ · ξ2,N2(j)I{N2(j) > 0}+ g21 · ξ2,N2(t1,N1(j))I{N1(j) > 0}. (4.5)

In the special case where fi ≡ 0, for i = 1, 2 the {ξi,k} are iid with zero mean and finite variance,

the {τi,k} under P 0 are iid and restricted to the positive integers, with a distribution in the domain

of attraction of an α-stable distribution with α ∈ (1, 2) and the {τi,k} are independent of the

{ξi,k}, it is known that (see, for example, Proposition 3.3 of Hsieh et al. [18]) the finite dimensional

11



distributions of `(n)−1n−1/α
∑bnuc

j=1 ξi,Ni(j) converge weakly to those of an α-stable Lévy process as

n → ∞ for u ∈ [0, 1] where `(n) is slowly varying as n → ∞. Even though the {ξi,k} are iid, the

fact that there may be long sets of contiguous integers for which ξi,Ni(j) is constant, due to the

heavy tails in the {τi,k}, leads to a non-Gaussian limit for suitably normalized partial sums of the

{ξi,Ni(j)}. Thus, in view of (4.5) it seems that (4.4) would not hold in this special case. Barring

heavy tails in the distributions of the {τi,k} (as we do in Theorem 4.2) it is still not clear whether

and under what conditions (4.4) would hold.

4.3 The OLS Estimator for Univariate Unit-Root Autoregression

Consider a marked point process N(·) on R, with durations {τk}∞k=−∞ and marks (representing

weakly-dependent transaction-level returns) {uk}∞k=−∞, independent of N(·). We assume that the

process is simple, stationary and ergodic with finite mean intensity λ under the time-stationary

measure P (see Nieuwenhuis [26], page 686) with E[uk] = 0 and Varuk < ∞. We assume in this

subsection that the time-deformation function (f) is identically equal to zero. We also assume that

as n →∞, 
 1√

n

bnuc∑

j=1

uj : u ∈ [0, 1]


 d→ B0, (4.6)

where B0 = CW , C is a positive constant (the long-run variance of {uk}) and W is a standard

Brownian motion on [0, 1]. Sufficient conditions for (4.6) are provided in Phillips and Durlauf [27].

It follows from (4.6) and the proof of Theorem 4.1 that under the time-stationary measure P as

n →∞, 
 1√

n

N(bnuc)∑

j=1

uj : u ∈ [0, 1]


 d→ B, (4.7)

where B = CλW on [0, 1] and λ = E[N(1)] = 1/E0[τk] ∈ (0,∞) is the intensity.

Define a discrete-time log-price process {yj}∞j=0 by

yj =
N(j)∑

k=1

uk, j = 0, 1, 2, . . . ,

where N(j) = N(0, j]. Thus, y0 = 0, and

yj = yj−1 + Uj , j = 1, 2, . . . ,

where

Uj =
N(j)∑

k=N(j−1)+1

uk, j ∈ Z.

12



Note that {Uj}∞j=−∞ is strictly stationary under P . It follows from the independence of {uk} and

N(·) together with the assumption Varuk < ∞ that E[U2
j ] < ∞. Now consider the OLS estimator

of the AR(1) parameter (without intercept),

â =

∑n
j=1 yj−1yj∑n
j=1 y2

j−1

= 1 +

∑n
j=1 yj−1Uj∑n

j=1 y2
j−1

.

Since
1√
n

bnuc∑

j=1

Uj =
1√
n

N(bnuc)∑

k=1

uk =
1√
n

ybnuc,

it follows from (4.7) that 
 1√

n

bnuc∑

j=1

Uj : u ∈ [0, 1]


 d→ B (4.8)

under P , where B = CλW on [0, 1]. For k ≥ 1, let Sk =
∑k

j=1 Uj and Xn(r) = n−1/2Sbnrc for

r ∈ [0, 1]. Arguing as in Phillips [28] (page 254), we have

1
n

n∑

j=1

yj−1Uj =
1
2


X2

n(1)− 1
n

n∑

j=1

U2
j


 .

Since P is ergodic, {U2
j } is ergodic under P . It follows from the ergodic theorem that since

E[U2
j ] < ∞ there exists an ω2

0 > 0 such that (1/n)
∑n

j=1 U2
j → ω2

0 almost surely under P . It then

follows from (4.8) that
1
n

n∑

j=1

yj−1Uj
D→ 1

2
(
C2λ2W 2(1)− ω2

0

)

as n →∞, under P . This, together with (4.8) and the continuous mapping theorem implies that

n(â− 1) D→
∫ 1
0 BdB + 1

2(C2λ2 − ω2
0)∫ 1

0 B2(r)dr
. (4.9)

Except for the constant λ2, (4.9) is identical to the result (10) of Phillips [28] obtained under strong

mixing conditions.

5 Proofs

5.1 Properties of the efficient shocks and the microstructure noise

We provide some limit results for the partial sums of the efficient shocks and the microstructure noise

when the upper summation index in the partial sums is nonrandom. To this end, we introduce the
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relevant notation first. If (zk : k ≥ 1) is a sequence of random variables, we denote in the following

by Sz = (Sz(t) : t ≥ 0) its partial sum process, where Sz(t) = z1 + . . . + zbtc.

First, we study the weak convergence of the bivariate partial sum process Se = (Se,1, Se,2). It

follows then from Assumptions 2.2 and 2.4 that, for any T > 0,
(

1√
n

Se(nu) : u ∈ [0, T ]
)

d→ Be = (Be(u) : u ∈ [0, T ]), (5.1)

where Be stands for a bivariate Brownian motion with 2×2 covariance matrix Σe = diag(σ2
1,e, σ

2
2,e).

Observe that the components of Be are independent, due to the independence of (e1,k : k ≥ 1) and

(e2,k : k ≥ 1) imposed in Assumption 2.4. The limit result (5.1) holds also under dependence, but

Σe is in general not diagonal.

Next, we study the weak convergence of the microstructure noise. Let dη ∈ (−1
2 , 0) and set

Sη = (Sη,1, Sη,2). In the case of weak fractional cointegration, Theorem 2 in Davydov [11] implies

in combination with part (A) of Assumption 2.3 and Assumption 2.4 that
(

1
ndη+1/2

Sη(nu) : u ∈ [0, T ]
)

d→ Bη = (Bη(u) : u ∈ [0, T ]), (5.2)

where Bη denotes a Type I fractional Brownian motion with Hurst parameter H = dη + 1
2 ∈ (0, 1

2).

We have Ση = diag(σ2
1,η, σ

2
2,η), in view of Assumption 2.4.

It is important to notice that, again in view of Assumption 2.4, the weak convergence results for

the efficient shocks in (5.1) and for the microstructure noise in (5.2) hold also jointly. We formulate

this as a proposition.

Proposition 5.1. If Assumptions 2.1–2.4 are satisfied and dη ∈ (−1
2 , 0), then

(
1√
n

Se(nu),
1

nH
Sη(nu) : u ∈ [0, T ]

)
d→ Be,ψ = (Be, Bη) (n →∞), (5.3)

where the Gaussian limit process Be,η possesses the variance-covariance matrix Σe,η = diag(Σe, Ση),

and H = dη + 1
2 .

Another approach to deriving the limit theorems of Section 2 is to start with prescribing the

joint convergence in (5.3), potentially allowing for dependence between the various shock sequences.

Then, the covariance matrices in the earlier displays (5.1) and (5.2) have to be adjusted accord-

ingly. Though technically feasible, there is no apparent economic explanation for using this more

complicated approach and we therefore focus on the set of assumptions given in Section 2.

5.2 Properties of the counting processes

In this subsection we collect several key results concerning the counting processes Ni. By assump-

tion 2.1, we have that Ni(t) = Ñi(t + fi(t)), where Ñi is stationary and ergodic. Therefore (see
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displays (12.2.3) and (12.2.4) of Daley and Vere-Jones [10]), Ñi satisfies the renewal theorem

Ñi(t)
t

→ λ̃i a.s. (t →∞), (5.4)

The latter limit result translates as follows to the time-deformed counting processes Ni used to

build the bivariate transaction-level returns (y(t) : t ≥ 0).

Lemma 5.1. If Ni(·), i = 1, 2, are the counting processes of Assumption 2.1, then

Ni(t)
t

→ λi = λ̃iγi P -a.s. (t →∞) (5.5)

Proof. Since Ni(t) = Ñi(t + fi(t)), we obtain

Ni(t)
t

=
Ñi(t + fi(t))

t
=

Ñi(t + fi(t))
t + fi(t)

t + fi(t)
t

.

Since t + fi(t) →∞ with probability one, the renewal theorem (5.4) implies that the first term on

the right-hand side converges with probability one to λ̃i. The second term satisfies t−1[t+fi(t)] → γi

with probability one on account of Assumption 2.1. This is the assertion.

The following proposition contains an auxiliary result needed to exchange asymptotically the

counting process value at a large enough time t, Ni(t), with the corresponding average rate λit.

We formulate it in terms of an arbitrary stochastic process (Z(t) : t ≥ 0).

Proposition 5.2. Let (Z(t) : t ≥ 0) be a stochastic process satisfying Z(s) ≤ Z(t) if s ≤ t and the

renewal theorem t−1Z(t) → λ ≥ 0 with probability one as t →∞. Then,

sup
0≤u≤1

∣∣∣∣
Z(nu)

n
− λu

∣∣∣∣ → 0 P -a.s. (n →∞).

Proof. Let ε > 0. Choose δ > 0 such that λδ ≤ ε. Now the monotonicity of the stochastic process

(Z(t) : t ≥ 0) implies that

sup
0≤u≤δ

∣∣∣∣
Z(nu)

n
− λu

∣∣∣∣ ≤
Z(nδ)

n
+ λδ

and therefore, taking the limit superior on both side of this equation and applying the renewal

theorem for (Z(t) : t ≥ 0), we get

lim sup
n→∞

sup
0≤u≤δ

∣∣∣∣
Z(nu)

n
− λu

∣∣∣∣ ≤ 2λδ ≤ 2ε a.s.

In the preceding, we can choose δ < 1 without loss of generality. In the following, we still need to

consider the limit superior of the supremum taken over u ∈ [δ, 1] to complete the proof. To this
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end, note that there is a random variable t0 such that −εt ≤ Z(t)− λt ≤ εt if t ≥ t0. This implies

for n ≥ n0 = δ−1t0 and δ ≤ u ≤ 1 that −εnu ≤ Z(nu)− λnu ≤ εnu and thus

−εn ≤ Z(nu)− λnu ≤ εn, u ∈ [δ, 1].

Since the lower and upper bounds are independent of u, the latter inequalities imply that

lim sup
n→∞

sup
δ≤u≤1

∣∣∣∣
Z(nu)

n
− λu

∣∣∣∣ ≤ ε a.s.,

which also completes the proof.

Next, we will show that the processes Ni satisfy the assumptions of Proposition 5.2.

Lemma 5.2. If Ni(·) are the counting processes of Assumption 2.1, then it holds with probability

one that

sup
0≤u≤1

∣∣∣∣
Ni(nu)

n
− λiu

∣∣∣∣ → 0 (n →∞).

Proof. Since Ñi is a counting process and s + fi(s) ≤ t + fi(t) as long as s ≤ t by Assumption 2.1,

we have with probability one that

Ni(s) = Ñi(s + fi(s)) ≤ Ñi(t + fi(t)) = Ni(t), s ≤ t.

We have shown in Lemma 5.1 that Ni satisfies a renewal theorem, so that the assertion of this

lemma follows from Proposition 5.2. ¤

The definition of y1(t) and y2(t) also contains the quantities N2(t1,N1(t)) and N1(t2,N2(t)) whose

limiting behavior needs to be determined for the asymptotics in Theorems 4.1 and 4.2. Recall that

ti,k denotes the clock-time of the kth event of Ni.

Lemma 5.3. If Ni(·) are the counting processes of Assumption 2.1, then it holds with probability

one that

sup
0≤u≤1

∣∣∣∣
N2(t1,N1(nu))

n
− λ2u

∣∣∣∣ = o(1) (n →∞).

This statement remains true if the roles of the indices 1 and 2 are interchanged.

Proof. Since N1 and N2 are nondecreasing in clock-time t and t1,k is nondecreasing in tick-time k,

we get that N2(t1,N1(s)) ≤ N2(t1,N1(t)) whenever s ≤ t. Note that clearly t1,k →∞ with probability

one, as k →∞. Observe next that

1 ≤ N1(t1,k)
k

≤ 1 +
1
k

[
Ñ1(t1,k + f1(t1,k))− Ñ1(t−1,k + f1(t−1,k))

]
= 1 + o(1) a.s.
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as k →∞, using the definition of N1 and the boundedness requirement on the jumps of f1 imposed

in Assumption 2.1. Hence, by Lemma 5.2,

t1,k

k
∼ t1,k

N1(t1,k)
→ 1

λ1
a.s. (k →∞),

where ak ∼ bk indicates that the ratio of ak and bk tends to one as k →∞. Now we arrive at the

asymptotic relation

N2(t1,N1(t))
t

=
N2(t1,N1(t))

t1,N1(t)

t1,N1(t)

N1(t)
N1(t)

t
→ λ2

1
λ1

λ1 = λ2 a.s.

The assertion of the lemma follows therefore again from Proposition 5.2. ¤

5.3 Proofs of Theorems

First, we separate the efficient shocks components from the microstructure noise and thus decom-

pose y = r + s, where the processes s = (s(t) : t ≥ 0) and r = (r(t) : t ≥ 0) are, for t ≥ 0, given by

s(t) = (s1(t), s2(t)) and r(t) = (r1(t), r2(t)) with

s1(t) =
N1(t)∑

k=1

e1,k + θ

N2(t1,N1(t))∑

k=1

e2,k, s2(t) =
N2(t)∑

k=1

e2,k + θ−1

N1(t2,N2(t))∑

k=1

e1,k,

r1(t) =
N1(t)∑

k=1

η1,k + g21

N2(t1,N1(t))∑

k=1

η2,k, r2(t) =
N2(t)∑

k=1

η2,k + g12

N1(t2,N2(t))∑

k=1

η1,k.

To apply the weak convergence results collected in Proposition 5.1, it is necessary to replace the

random limits in the partial sums that define si(t) and ri(t) with deterministic ones. These key

steps have been established in the previous subsection.

Proof of Theorem 4.1. The assertion that λi = λ̃iγi = a.s.- limt Ni(t) is proved in Lemma 5.1.

In view of (5.1) we show first that the microstructure noise components are less persistent than the

efficient shocks components for all dη ∈ [−1, 0), that is,

1√
n

sup
u∈[0,1]

|r(nu)| = oP (1) (n →∞), (5.6)

where |·| denotes Euclidean norm. The asymptotic behavior of y is therefore completely determined

by s. To prove (5.6), we start with letting dη ∈ (−1
2 , 0). Utilizing the weak convergence result (5.2)

and the Skorohod-Dudley-Wichura representation theorem (see Shorack and Wellner [31], page

47), we obtain that, for every n ≥ 1 and T > 0, there exists a process B
(n)
η ∈ C2[0, T ], the set of

stochastic processes in R2 with a.s. continuous sample paths, such that B
(n)
η

D= Bη and

sup
u∈[0,T ]

∣∣∣∣
1

nH
Sη(nu)−B(n)

η (u)
∣∣∣∣ = o(1) a.s. (n →∞), (5.7)
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where H = dη + 1
2 . We focus on r1(t) in the following. The same arguments provide a similar result

also for r2(t). Note that r1(t) = Sη,1(N1(t)) + g21Sη,2(N2(t1,N1(t))) and that consequently

sup
u∈[0,1]

∣∣∣∣
1

nH
r1(nu)−

[
B

(n)
η,1 (λ1u) + g21B

(n)
η,2 (λ2u)

]∣∣∣∣ (5.8)

≤ sup
u∈[0,1]

∣∣∣∣
1

nH
r1(nu)−

[
B

(n)
η,1

(N1(nu)
n

)
+ g21B

(n)
η,2

(N2(t1,N1(nu))
n

)]∣∣∣∣

+ sup
u∈[0,1]

∣∣∣∣
[
B

(n)
η,1

(N1(nu)
n

)
+ g21B

(n)
η,2

(N2(t1,N1(nu))
n

)]
−

[
B

(n)
η,1 (λ1u) + g21B

(n)
η,2 (λ2u)

]∣∣∣∣

=o(1) a.s.

as n → ∞, using display (5.7) for the first term and the continuity of the fractional Brownian

motion sample paths in combination with Lemmas 5.2 and 5.3 for the second. Since H < 1
2 ,

(5.6) is established for the weak fractional cointegration case. In the case of strong fractional

cointegration (standard cointegration), we have that r1(t) = ϕ1,N1(t) + g21ϕ2,N2(t1,N1(t)) and r2(t) =

ϕ2,N2(t) + g12ϕ1,N1(t2,N2(t)) (r1(t) = ξ1,N1(t) + g21ξ2,N2(t1,N1(t)) and r2(t) = ξ2,N2(t) + g12ξ1,N1(t2,N2(t)))

are each the sum of two random variables and thus (5.6) continues to hold.

To complete the proof of Theorem 4.1, we now derive the limit for s(t) and do so only for its first

component s1(t) = Se,1(N1(t))+ θSe,2(N2(t1,N1(t))). The Skorohod-Dudley-Wichura representation

theorem and (5.1) yield that, for every n ≥ 1 and T > 0, there is a process B
(n)
e ∈ C2[0, T ] such

that B
(n)
e

D= Be and

sup
u∈[0,T ]

∣∣∣∣
1√
n

Se(nu)−B(n)
e (u)

∣∣∣∣ = o(1) a.s. (n →∞). (5.9)

Therefore,

sup
u∈[0,1]

∣∣∣∣
1√
n

s1(nu)−
[
B

(n)
e,1 (λ1u) + θB

(n)
e,2 (λ2u)

]∣∣∣∣ (5.10)

≤ sup
u∈[0,1]

∣∣∣∣
1√
n

s1(nu)−
[
B

(n)
e,1

(N1(nu)
n

)
+ θB

(n)
e,2

(N2(t1,N1(nu))
n

)]∣∣∣∣

+ sup
u∈[0,1]

∣∣∣∣
[
B

(n)
e,1

(N1(nu)
n

)
+ θB

(n)
e,2

(N2(t1,N1(nu))
n

)]
−

[
B

(n)
e,1 (λ1u) + θB

(n)
e,2 (λ2u)

]∣∣∣∣

=o(1) a.s.

as n →∞, applying the same arguments as in (5.8) replacing display (5.7) with (5.9) and fractional

with standard Brownian motion. Similarly, one obtains that

sup
u∈[0,1]

∣∣∣∣
1√
n

s2(nu)−
[
B

(n)
e,2 (λ2u) + θ−1B

(n)
e,1 (λ1u)

]∣∣∣∣ = o(1) a.s. (n →∞). (5.11)
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The distributions of By,1(u) = B
(n)
e,1 (λ1u) + θB

(n)
e,2 (λ2u) and By,2(u) = B

(n)
e,2 (λ2u) + θ−1B

(n)
e,1 (λ1u)

do not depend on n and direct computations show that By = (By,1, By,2) is a bivariate Brownian

motion with covariance matrix Σ as given in Theorem 4.1. This completes the proof. ¤

To give the proof of Theorem 4.2, we need one further lemma which deals with the end effects.

Lemma 5.4. If the assumptions of Theorem 4.2 are satisfied, then

E1(n) :=
1

n3/2

n∑

j=1

y2,j

N1(j)∑

k=N1(t2,N2(j))+1

e1,k = OP (1) (n →∞),

E2(n) :=
1

n3/2

n∑

j=1

y2,j

N2(j)∑

k=N2(t1,N1(j))+1

e2,k = OP (1) (n →∞).

Proof: We only provide the proof of the first statement, the second follows analogously. First, we

estimate

|E1(n)| ≤ 1√
n

max
1≤j≤n

|y2,j | · 1
n

n∑

j=1

∣∣∣∣∣∣

N1(j)∑

k=N1(t2,N2(j))+1

e1,k

∣∣∣∣∣∣
= F1(n) · F2(n),

where the first term F1(n) converges in distribution to Σ2,2 supt |By,2(t)| by Theorem 4.1 and the

continuous mapping theorem. To complete the proof, it remains to be shown that F2(n) = OP (1).

If we define

xj =
N1(j)∑

k=N1(t2,N2(j))+1

e1,k,

then F2(n) = 1
n

∑n
j=1 |xj |. Note that E[|xj |] < CE[N1(j) −N1(t2,N2(j))] with some C > 0. So we

consider E[N1(j)−N1(t2,N2(j))], which is the expected number of transactions of Asset 1 after the

most recent transaction of Asset 2 up to time j. Let

B2,j = inf{s > 0 : N2(j)−N2(j − s) > 0}

be the backward recurrence time for Asset 2 at time j. Clearly, B2,j = j − t2,N2(j). Exploiting the

P -stationarity of N2 and display (3.1.7) of Daley and Vere-Jones [9] we obtain

E[N1(j)−N1(t2,N2(j))] = E[−N(−B2,j)] = E[−N1(−B2,0)]. (5.12)

In the right-hand equality, we have used that, since N2 is a P -stationary point process, B2,j has

the same distribution as B2,0 which does not depend on j (see pages 58–59 of [9] for a detailed

discussion). By Example 3.4.1 of [9], B2,0
D= T2,0, where T2,0 denotes the forward recurrence time

for Asset 2 at time j = 0. By equation (3.4.17) of [9], E[T2,0] = 1
2λ2E

0[τ2
2,0], which is finite by
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assumption on {τ2,k}∞k=−∞. Going back to (5.12) we find that E[N1(j) − N1(t2,N2(j))] < ∞ and

consequently E[|xj |] < ∞. Since {xj}∞j=−∞ is a strictly stationary process under P , an application

of the ergodic theorem given on page 209 of Dudley [15] implies that F2(n) converges with P -

probability one to a random variable with finite mean. Hence, F2(n) = OP (1). The proof is

complete. ¤

Proof of Theorem 4.2. Observe that

θ̂n − θ =

∑n
j=1 y2,j(y1,j − θy2,j)∑n

j=1 y2
2,j

.

First, we consider the denominator part of θ̂n − θ. It follows from Theorem 4.1 that the partial

sum-type process 1√
n
y2(n ·) converges weakly in D[0, 1] to Σ1/2

2,2 B, where B = (B(u) : u ∈ [0, 1]) is a

standard Brownian motion. Thus, the continuous mapping theorem and standard arguments imply

that
1
n2

n∑

j=1

y2
2,j =

1
n

n∑

j=1

(
1√
n

y2,j

)2 D→ Σ2,2

∫ 1

0
B2(u)du (n →∞). (5.13)

As for the numerator part, we obtain from the definition of y1,j and y2,j in (4.1) and (4.2) that

An :=
n∑

j=1

y2,j(y1,j − θy2,j)

=
n∑

j=1

y2,j(r1,j − θr2,j) +
n∑

j=1

y2,j(s1,j − θs2,j)

=
n∑

j=1

y2,j(r1,j − θr2,j) + n3/2(E1(n)− θE2(n)).

Since 2 + dη > 3/2, Lemma 5.4 first implies that n3/2−2−dη(E1(n)− θE2(n)) = oP (1). As indicated

above, Theorem 4.1 implies that 1√
n
y2(n ·) converges weakly in D[0, 1] to Σ1/2

2,2 B. Relation (5.8)

and the corresponding statement for r2 yield moreover that the microstructure process 1
nH [r1(n ·)−

θr2(n ·)] converges weakly in D[0, 1] to σBH , where the variance parameter σ2 is defined in Theorem

4.2 and BH = (BH(u) : u ∈ [0, 1]) denotes a fractional Brownian motion with Hurst parameter

H = dη + 1
2 . An application of Theorem 2.2 in Kurtz and Protter [22] leads now to

1
n2+dη

An =
1
n

n∑

j=1

(
1√
n

y2,j

)(
1

nH
[r1,j − θr2,j ]

)
+ oP (1)

D→ Σ1/2
2,2 σ

∫ 1

0
B(u)BH(u)du, (5.14)
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as n →∞. By Assumption 2.4 and (5.6), y2,j and r1,j−θr2,j are moreover asymptotically indepen-

dent, thereby rendering B and BH independent. In view of (5.13) and (5.14), the proof of Theorem

4.2 is complete. ¤
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