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Abstract. The restricted likelihood ratio test, RLRT, for the autoregressive coefficient in

autoregressive models has recently been shown to be second order pivotal when the autoregressive

coefficient is in the interior of the parameter space and so is very well approximated by the χ2
1

distribution. In this paper, the non-standard asymptotic distribution of the RLRT for the unit

root boundary value is obtained and is found to be almost identical to that of the χ2
1 in the right

tail. Together, the above two results imply that the χ2
1 distribution approximates the RLRT

distribution very well even for near unit root series and transitions smoothly to the unit root

distribution.
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1 Introduction:

Assume that the n× 1 vector Z follows the linear model

Z = Wθ + ε, (1)

where W is an n×k design matrix, θ is a vector of regression coefficients , ε ∼ N (0,Σ (δ)) and δ

is a parameter vector that characterises the error covariance matrix. The Restricted Likelihood

(Kalbfleisch and Sprott, 1970) is useful for inference in this model when interest centers on the

parameter vector δ and θ is a nuisance parameter vector. The Restricted Likelihood, RL, is

defined as the exact likelihood of the linearly transformed data TZ, where T is a full row rank

matrix chosen such that TW = 0, so that the nuisance parameters θ are eliminated. The RL
∗Department of Statistics, Texas A&M University, College Station, Texas 77843, USA
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has been very popular in mixed linear models and the behaviour of RLRT when parameters are

on the boundary has been recently studied (Claeskens 2004 ). A similar boundary problem in a

linear model arises in an autoregressive model of order 1, AR(1), with intercept

X = 1µ + ε (2)

where X =(X1, ..., Xn)′ , ε = (ε1, ..., εn)′ and ε follows a zero mean AR(1) given by εt =

αεt−1 + vt for t ≥ 2, where vt ∼ i.i.d.N(0, σ2
v). The initial condition ε1 is assumed to follow

N
(
0,

(
1− α2

)−1
σ2

v

)
when |α| < 1 and N

(
0, σ2

v

)
when α = 1. When the AR coefficient satisfies

|α| < 1, the series {Xt} is stationary and the t-statistic and Likelihood Ratio Test, LRT, for

α have standard asymptotic distributions. However, the series {Xt} is non-stationary at the

boundary when α = 1 and the asymptotic distribution of both the t-statistic and the LRT for

α in model (2) is very different from the standard normal and the χ2
1 respectively in this case

(Fuller, 1996). As a result, in finite samples the distribution of the t-statistic and the full LRT

for α deviate substantially from the standard normal and the χ2
1 respectively when α is close

to the unit boundary. Indeed, using results by Hayakawa (1977) on the expansion of the dis-

tribution of likelihood ratio tests, Chen and Deo (2009a) obtained the formal expansion of the

distribution of the full LRT for α in model (2) and showed that when |α| < 1,

P (LRT ≤ x) = P
(
χ2

1 ≤ x
)

+
1 + 7α
1− α

0.25
n

[
P

(
χ2

3 ≤ x
)− P

(
χ2

1 ≤ x
)]

+ O
(
n−2

)
. (3)

The fact that the leading error term blows up as α approaches unity implies that the χ2
1 dis-

tribution will be a poor approximation to the distribution of the full LRT for values of α close

to unity. This is seen very clearly in the plot on the left side of Figure 1, where we plot the

empirical densities of the full LRT for various values of α and samples of size n = 100, along

with that of the χ2
1. (Since the χ2

1 distribution is very right skewed, we plot the distribution of

the cube root of the LRT to reduce skewness and make comparisons in the right tail clearer).

Chen and Deo (2009a) have shown that the prime cause of this problem for likelihood based

inference near the unit root is the nuisance intercept parameter µ in (2) . Since the RL is free

of such nuisance location parameters, one might thus expect the RLRT to have better finite

sample performance. Furthermore, Chen and Deo (2009a) also showed that the RL has small

Efron (1975) curvature, which additionally supports the notion of a well behaved RLRT. That

this is indeed the case can be seen from the formal expansion of the distribution of the RLRT

for α in model (2) when |α| < 1,

P (RLRT ≤ x) = P
(
χ2

1 ≤ x
)− 0.25

n

[
P

(
χ2

3 ≤ x
)− P

(
χ2

1 ≤ x
)]

+ O
(
n−2

)
, (4)
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Figure 1: Empirical densities of cubic root transformed LRT statistics and Retricted LRT statis-

tics of AR(1) processes with unknown mean. The vertical lines are 90th and 95th percentiles.

Both plots are based on 100,000 repetitions of an AR(1) with sample size n = 100 and AR

coefficient α = .9, .975, and .99.

which Chen and Deo (2009a) obtained. Thus, the RLRT is second order pivotal, in sharp contrast

to the strong second order dependence on α, particularly near the unit root, of the distribution

of the full LRT seen in (3). This second order pivotal property of the RLRT suggests that the

χ2
1 distribution should provide a good approximation even near the unit root. This can be seen

in the plot on the right side of Figure 1, where we plot the empirical density of RLRT for various

values of α with n = 100. In this paper, we obtain the asymptotic distribution of the RLRT at

the unit root boundary. The method of proof required is novel since regularity conditions, such

as asymptotic normality of the score function, that are assumed in the related boundary value

literature (eg. Self and Liang, 1987 and Vu and Zhou, 1997) do not hold here. It is found that

the asymptotic distribution of the RLRT at the boundary has a right tail that is almost identical

to that of the χ2
1. Thus, inference based on the RLRT in conjunction with the χ2

1 critical values

will provide almost exactly sized tests, no matter what the value of the AR coefficient. Some

related work by Francke and de Vos (2006) suggests the RLRT intervals may also be close to

uniformly most accurate invariant, while simulation results in Chen and Deo (2009b) show that

RLRT based confidence intervals uniformly dominate competing bootstrap based intervals in

terms of average length, power against the unit root and ease of computation.
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In the next Section we describe the RL and present our main result.

2 The Restricted Likelihood at the Unit Root:

The RL has been considered for time series models by, among others, Tunnicliffe Wilson (1989),

Rahman and King (1997), Cheang and Reinsel (2000) and most recently by Francke and de Vos

(2006), who actually study it in the context of unit root tests. The RL has appealing properties

in that the restricted maximum likelihood (REML) estimates do not lose efficiency (Harville

1977) and are also less biased than full maximum likelihood estimates in nearly integrated AR

models with intercept (Cheang and Reinsel, 2000) and with trend (Kang, Shin and Lee, 2003).

Furthermore, in an AR(1) model the RL is equivalent to the approximate conditional likelihood

(Cruddas, Cox and Reid, 1989).

In the case of the AR(1) model in (2), the restricted log-likelihood (Appendix A of Tunnicliffe-

Wilson, 1989) simplifies to

L
(
X,α, σ2

v

)
= −n− 1

2
log σ2

v +
1
2

log
{

1 + α

(n− 2) (1− α) + 2

}
− 1

2σ2
v

Q (α) , (5)

where

Q (α) =
(
1− α2

)
X2

1 +
n∑

t=2

(Xt − αXt−1)
2 − 1− α

(n− 2) (1− α) + 2

{
X1 + Xn + (1− α)

n−1∑

t=2

Xt

}2

.

(6)

It is worth pointing out, as noted in Francke and de Vos (2006), that the restricted log-likelihood

for the AR(1) is well defined at the boundary α = 1. Indeed, since the restricted likelihood for

a time series with an intercept is the exact likelihood of the first difference (which is the linear

transformation that eliminates an intercept parameter in a linear model), it follows that the

restricted likelihood will be well defined and finite at the unit root since the first difference

of a unit root AR(1) is a stationary white noise. The RLRT for testing the null hypothesis

H0 : α = α0 against H1 : α 6= α0 for any α0 is

RT (α0) = 2L
(
X,α̂, σ̂2

v

)− 2L
(
X, α0, σ̂

2
v,0

)
,

where L (·) is the restricted log-likelihood in (5) and
(
α̂, σ̂2

v

)
and

(
α0, σ̂

2
v0

)
are the unconstrained

and constrained (under H0) REML estimates respectively. The unconstrained estimate α̂ can

be obtained through a univariate minimisation as

α̂ = arg min
α∈(−1,1]

{
(n− 1) log Q (α)− log

(
1 + α

(n− 2) (1− α) + 2

)}
(7)
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after concentrating out σ2
v from L (·) , while the innovation variance estimate is obtained as

σ̂2
v = (n− 1)−1 Q (α̂) . The constrained innovation variance estimate is σ̂2

v,0 = (n− 1)−1 Q (α0) .

The use of the RLRT for unit root tests has already been proposed in the literature by

Francke and de Vos (2006). They obtained the limiting distribution of the RLRT for testing

H0 : α = 1 versus Ha : α = 1− n−1γ, where γ > 0 is a fixed constant, given by

2L
(
X,1− n−1γ, (n− 1)−1 Q

(
1− n−1γ

))− 2L
(
X, 1, (n− 1)−1 Q (1)

)
.

Thus, they obtained the limiting distribution of the RLRT in a test of the unit root against a

sequence of local-to-unity alternatives. However, they did not establish the consistency of the

REML estimate α̂ under the boundary unit root, nor did they obtain its limiting distribution

or the limiting distribution of the RLRT for the general alternative Ha : α < 1 given by

RT (1) = 2L
(
X,α̂, (n− 1)−1 Q (α̂)

)
− 2L

(
X, 1, (n− 1)−1 Q (1)

)
, (8)

the proof of which involves non-standard arguments. Francke and de Vos did provide critical

values based on simulations of the distribution of both n (α̂− 1) and the RLRT when α = 1.

In their simulation study of the power of the RLRT , they found that the RLRT tends to be

more powerful than other standard unit root tests and that its power almost coincides with

the power envelope for Gaussian AR(1) series, yielding tests that are almost uniformly most

powerful invariant. Francke and de Vos (2006) also provided an intriguing heuristic explanation

of this finding, showing that the restricted likelihood is almost monotonic in the AR(1) case.

In Theorem 1 below we provide the limiting distribution of the REML estimate α̂ as well as

that of the RLRT when α = 1. As stated earlier, it should be noted that earlier literature on

likelihood ratio tests for boundary values (eg. Self and Liang, 1987 and Vu and Zhou, 1997)

generally requires the score function to be asymptotically normal. From Phillips (1987), it is

easy to show that the score function of the RL at α = 1 is not asymptotically normal. Hence, a

new proof needs to be constructed to obtain the limit theory for the RLRT in this case.

Before stating our main theorem, we define some quantities that appear in the limiting

distribution of α̂ as well as a useful Lemma. Let W (·) be the standard Wiener process and
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define the random variables (see Fuller 1996, Ch. 10)

G ≡
∫ 1

0
W 2 (t) dt =

∞∑

i=1

γ2
i U2

i

H ≡
∫ 1

0
W (t) dt =

√
2
∞∑

i=1

γ2
i Ui

T ≡ W (1) =
√

2
∞∑

i=1

γiUi, (9)

where γi = (−1)i+1 2 [(2i− 1)π]−1 and Ui ∼ i.i.d.N (0, 1) and define the random cubic polyno-

mial

f (z) = 2
(
G−H2

)
z3 +

{
8

(
G−H2

)
+ H2 − 1 + (T −H)2

}
z2 (10)

+
{

4G + 4 (T −H)2 + 4
(
G−H2

)− 3
}

z + 2
(
T 2 − 1

)

≡ a3z
3 + a2z

2 + a1z + a0

with associated discriminant function

∆ = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 + 18a0a1a2a3 − 27a2
0a

2
3 (11)

and the random function

g (z) = z2G + z
(
T 2 − 1

)− z

z + 2
(T + zH)2 + log

(
z + 2

2

)
.

The following Lemma describes the nature of the roots of the polynomial f (z) .

Lemma 1 The random cubic polynomial f (z) in (10) has exactly one positive real root γ0 when

T 2 ≤ 1 and at least one real negative root, γ01, when T 2 > 1. Furthermore, when T 2 > 1, all

three roots, γ01 < γ02 < γ03, are real if ∆ > 0, in which case either γ01 < γ02 < γ03 < 0 or

γ01 < 0 < γ02 < γ03, while γ02 and γ03 are complex if ∆ < 0.

We are now in a position to state our result.

Theorem 1 Assume that α = 1 in model (2) and let α̂ denote the REML estimate obtained as

α̂ = arg min
[−1+δ,1]

{
(n− 1) log Q (α)− log

(
1 + α

(n− 2) (1− α) + 2

)}
,

where Q (α) is as defined in (6) and δ > 0 is fixed. Then

6
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Figure 2: Empirical densities of cubic root transformed RLRT statistics of AR(1) processes when

α → 1 and the limiting distribution of cubic root transformed RLRT at unit root, RT (1). The

vertical lines are 90th and 95th percentiles of χ2
1.

(i) α̂
P−→ 1

(ii) n (α̂− 1) D−→ Γ ≡ −γ0I
(
T 2 ≤ 1

)−γ03I (A) where A =
(
T 2 > 1

)∩(γ03 > 0)∩(g (γ03) < 0) ,

where γ0 and γ03 are as defined in Lemma 1

(iii) For the RLRT to test H0 : α = 1 versus Ha : α < 1 given in (8), we have

RT (1) D−→ R ≡ −g (γ0) I
(
T 2 ≤ 1

)− g (γ03) I (A)

The expression for the limiting distribution of the RLRT in Theorem 1 looks awkward at first

glance. However, the random variables G,H and T are very easy to simulate using the infinite

series representation in (9) and hence the limiting distributions of both n (α̂− 1) and RT (1) can

be simulated very easily. In Table I we present the quantiles of these two limiting distributions

based on 200,000 replications, using the series representations in (9) truncated at 500,000. These

values are very close to the finite sample values of the same distributions given in Table 2 of

Francke and de Vos (Note: They report critical values for 0.5×RLRT instead of RLRT). The

truncation value of 500,000 was found to be more than adequate to get stable results since we

got almost identical results by using a truncation value of 100,000 and 10,000. In the 200,000

replications, the set (T 2 ≤ 1) occurred 68.383 % times, while the set A of Theorem 1 occurred
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only 0.132% times. The convergence of the RLRT distribution at the unit root to its limit given

in Theorem 1 occurs very quickly for samples as small as n = 100. This can be seen in the plot

on the right in Figure 2, where we plot the densities of the cube root of the limit distribution R

as well as that of the RLRT for n = 100.

As we had postulated earlier, we expect the limiting distribution of RT (1) to be very close to

that of a χ2
1 in the right tail. To check this, we also present in Table I the values of P (RT (1) > qχ2

1
)

for various values of qχ2
1
, where qχ2

1
are the quantiles of the χ2

1 distribution and the probability

is computed as the proportion of exceedances in the 200,000 replications of RT (1) . It is seen

that these probabilities are very close to, but a little smaller, than the nominal values for

quantiles from 90% onwards. As a result, inference for the unit root based on RT (1) with the

χ2
1 distribution used as a reference will result in tests that have size just a little less than nominal.

This close yet conservative approximation in the right tail by the χ2
1 distribution continues to

hold for the RLRT distribution for values of α that are less than but very close to 1. This can

be seen in the plot on the left in Figure 2, where we plot the densities for α = 0.995, 0.999 and

1. Correspondingly, confidence intervals for α obtained by inverting the acceptance region of

RT using the χ2
1 distribution will result in intervals that will have almost exact coverage in the

neighbourhood of the unit root, with slight over-coverage at the unit root.

The theory in Theorem 1 has been established for an AR(1) process with intercept. In

this paper, we do not attempt to extend the theory to higher order AR(p) processes and to

processes with trend, though we conjecture that the result of Theorem 1 will continue to hold in

intercept models for any p ≥ 1. Based on the simulation results of Francke and de Vos (2006),

it is apparent that the limiting distribution of the RLRT will be slightly different in the case of

trend though the difference does not seem to be large enough to compromise the approximation

by the χ2
1 distribution in the right tail.

Table I. Critical Values from Limiting Distributions of n(α̂− 1) and RT

1% 2.5% 5% 10% 20% 30% 40% 50%

Γ 17.5868 13.8811 10.9997 8.1232 5.2684 3.5554 2.3412 1.3834

R 6.4937 4.8544 3.6218 2.4564 1.3725 0.7933 0.4393 0.2084

P (R > qχ2
1
) 0.0093 0.0227 0.0442 0.0857 0.1667 0.2446 0.3207 0.3945
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Appendix:

Proof of lemma 1: Proof: We note that G−H2 > 0 by the Cauchy Schwarz inequality.

(i) Consider T 2 < 1. We can write f (z) as

f (z) = p1 (z)− p2 (z) ,

where

p1 (z) = 2
(
G−H2

)
z3 +

{
8

(
G−H2

)
+

[
H2 + (T −H)2

]}
z2

+ 4
{

4G + 4 (T −H)2
}

z + 2T 2

and

p2 (z) =
(
z2 + 3z + 2

)
.

Since G−H2 > 0, we have limz→∞ f (z) = ∞ while f (0) = 2
(
T 2 − 1

)
< 0, implying that f must

have at least one positive root. If f (γ0) = 0 for some γ0 > 0, then we must have p1 (γ0) = p2 (γ0) .

Thus, the number of positive real roots of f (z) = 0 are the same as the number of values of z for

which p1 (z) = p2 (z) . Note that p1 (0) < p2 (0) since T 2 < 1 and limz→∞ p1 (z) > limz→∞ p2 (z)

(since p1 is a cubic with a3 > 0 whereas p2 is merely a quadratic). Hence, p1 must cross p2 at

least for one value of z > 0. However, because all the coefficients of p1 and p2 are positive, it

implies that both p1 and p2 are convex for z > 0. Hence, p1 can cross p2 exactly for one z > 0,

which is equivalent to f (z) = 0 having exactly one positive real root.

(ii) Consider T 2 > 1. We can write f (z) as f (z) = a3 (z − r1) (z − r2) (z − r3) , where ri are

the roots of f (z) . This implies that −a3r1r2r3 = f (0) = 2
(
T 2 − 1

)
> 0. Since α3 > 0, this

implies that at least one root has to be real negative. The existence of real/complex roots when

∆ < 0 or ∆ > 0 follows from standard theory on the roots of cubic polynomials.

Proof of Theorem 1: As noted in (7), the concentrated likelihood is

l (α) = (n− 1) log Q (α)− log
{

1 + α

(n− 2) (1− α) + 2

}

and

α̂ = arg min
α∈[−1+δ,1]

l (α)
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for some positive δ. Some simple algebra establishes that l (α) is a function of the random

quantities X1, Xn and

Sn =
n∑

t=2

v2
t , Gn =

n−1∑

t=2

X2
t , Hn =

n−1∑

t=2

Xt, Un =
n∑

t=2

vtXt−1,

where (see Fuller 1996),

n−2Gn
D−→ σ2

vG = σ2
v

∫ 1
0 W 2 (s) ds,

n−3/2Hn
D−→ σvH = σv

∫ 1
0 W (s) ds, (12)

n−1/2Xn
D−→ σvT = σvW (1) , n−1/2X1

D→ 0

n−1Un
D−→ 1

2
σ2

v

(
T 2 − 1

)
= (1/2)σ2

v

{
W 2 (1)− 1

}
,

n−1Sn
P→ σ2

v ,

and the random variables G,H and T are as defined in (9). By Skorohod’s device (See Billingsley,

1991), there exists a probability space on which one can define random sequences (S̃n, G̃n, H̃n, Ũn,

X̃n, X̃1)′ which are identically distributed as (Sn, Gn,Hn, Un, Xn, X1)′ respectively but for which

the convergence results of (12) hold almost surely. It follows that the minimiser α̃ = arg minα l̃(α),

where l̃(α) is defined analogously to l(α) but using (S̃n, G̃n, H̃n, Ũn, X̃n, X̃1)′ instead of (Sn, Gn,Hn,

Un, Xn, X1)′ will be identically distributed as α̂. Hence, any strong convergence result that is

obtained for n(1− α̃) will hold in a ”convergence in distribution” sense for n(1− α̂). We will now

proceed to obtain a limiting strong convergence result for n(1−α̃) and for the rest of the proof we

will work on the part of the sample space on which the convergence of (S̃n, G̃n, H̃n, Ũn, X̃n, X̃1)′

holds with probability 1. To establish the limiting behaviour of α̃, we start by investigating the

nature of the sign changes of l̃′(z) as well as the positive real roots of l̃′(z) = d
dz l̃′(z) = 0, where

z = 1− α. Some tedious algebra shows that

l̃′ (z) = −(n− 1)K (z)
(n− 2) z + 2

{
A (z) +

B (z)
(n− 2) z + 2

+
C (z)

[(n− 2) z + 2]2

}
,

where K(z) is a strictly positive function for z ∈ [0, 2),

A (z) = 2G̃nz2 + (2Ũn − 4G̃n)z − 4Ũn,

B(z) = −3H̃nz3 +
{

6H̃n − 2G̃n − 4(X̃1 + X̃n)H̃n

}
z2

+
{

8(X̃1 + X̃n)H̃n − (X̃1 + X̃n)2 − 4Ũn

}
z + 4Ũn + 2X̃1X̃n

10



and

C(z) = (n− 2)H̃nz4 + 2
{

(n− 2)(X̃1 + X̃n)H̃n − (n− 3)H̃n

}
z3

+
{

(n− 2)(X̃1 + X̃n)2 − 4(n− 3)(X̃1 + X̃n)H̃n

}
z2 − 2(n− 3)(X̃1 + X̃n)2z.

Thus, the order of sign changes and positive real roots of l̃′ (z) are the same as those of g̃ (z) ,

where

g̃ (z) = −1
4

{
[(n− 2) z + 2]2 A (z) + [(n− 2) z + 2]B (z) + C (z)

}

≡ c4nz4 + c3nz3 + c2nz2 + c1nz + c0n, (13)

where

c4n = −1
2

(n− 2)2 G̃n +
1
2

(n− 2) H̃n

c3n = (n− 2)(n− 7
2
)G̃n − (n− 3)H̃n − 1

2
(n− 2)2Ũn +

1
2
(n− 2)

(
X̃1 + X̃n

)
H̃n,

c2n = 4
(

n− 9
4

)
G̃n − 3H̃n + (n− 2)(n− 3)Ũn − (n− 3)

(
X̃1 + X̃n

)
H̃n,

c1n = 4G̃n + 3(n− 2)Ũn − 4
(
X̃1 + X̃n

)
H̃n +

1
2

(n− 2)
(
X̃1 + X̃n

)2
,

and

c0n = 2Ũn − 2X̃1X̃n.

The order of sign changes and roots of the polynomial in (13) are the same as those of

Pn (z) = −z4 + b3nz3 + b2nz2 + b1nz + b0n, bkn = −ckn/c4n, k = 0, . . . , 3. (14)

From (12) we have

n3b0n → b0 ≡ 2
(
T 2 − 1

) (
G−H2

)−1
,

n2b1n → b1 ≡ 4T 2 + 8G− 8HT − 3
G−H2

, (15)

nb2n −→ b2 ≡ 8G− 6H2 − 2HT + T 2 − 1
G−H2

and

b3n −→ b3 ≡ 2.

Thus, b3n = 2 + O
(
n−1

)
, b2n = O

(
n−1

)
, b1n = O

(
n−2

)
, b0n = O

(
n−3

)
and it follows that

the roots of Pn (z) , say z1n, z2n, z3n and z4n, converge to 0, 0, 0 and 2 respectively. Since the

polynomial Pn (z) has real coefficients, any complex roots that it may possess must occur in
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complex-conjugate pairs. Hence, z4n must be real, since otherwise its complex-conjugate would

also have to be a root with an imaginary coefficient converging to zero. This would imply the

existence of two roots of Pn (z) that converge to 2, contradicting the fact that only one root

converges to 2. Armed with the observation that at least one root, viz. z4n, is real we now

proceed to study the sign changes and real roots of Pn (z) lying in [0, 2 − ε) for any ε > 0. We

consider two separate cases, T 2 < 1 and T 2 > 1.

Case (i) T 2 < 1: Since G −H2 > 0, it follows from (15) that b0n = Pn (0) < 0 for large n.

This fact in conjunction with the observations that the coefficient of z4 in Pn (z) is −1 and that

z4n is real implies that Pn (z) must have either exactly two positive real roots or all four positive

real roots, i.e. the positive real roots must occur in pairs. Since b0n = Pn (0) < 0 for large n, it

also follows that one of these positive roots, and not the boundary value z = 0, is the minimiser

of l̃ (z) . We now consider the limiting behaviour of the positive real roots in [0, 2). Let γ0 > 0

be the positive root of f (z) in Lemma 1. From (15) and Lemma 1 it follows that for any ε > 0,

n3Pn

(
γ0 + ε

n

)
= −(γ0 + ε)4

n
+ b3n (γ0 + ε)3 + nb2n (γ0 + ε)2 + n2b1n (γ0 + ε) + n3b0n (16)

→ f (γ0 + ε) > 0.

A similar argument shows that

n3Pn

(
γ0 − ε

n

)
→ f (γ0 − ε) < 0. (17)

This implies that at least one of the remaining real positive roots, say z1n, lies in (n−1(γ0 −
ε), n−1(γ0 + ε)). Since ε > 0 is arbitrary, this implies that nz1n → γ0 > 0. If Pn (z) has

exactly two positive real roots, then the preceding argument has shown that one of the roots

is converging to 2 while the other, z1n, lies asymptotically in (0, 2) and satisfies nz1n → γ0.

We now consider the possibility that Pn (z) has all four positive roots. Rewriting Pn (z) =

− (z − z1n) (z − z2n) (z − z3n) (z − z4n), expanding this product and equating the coefficient of

z2 with that in (14), we have

z3nz4n + z2nz4n + z2nz3n + z1nz4n + z1nz3n + z1nz2n = −b2n

and hence

z4n (nz3n + nz2n + nz2nz3n) + nz1n (z4n + z3n + z2n) = −nb2n. (18)

Since nz1n → γ0, z4n → 2, z2n → 0 and z3n → 0 and since by assumption z2n ≥ 0, z3n ≥ 0, it

follows from (15) that nz2n and nz3n are bounded. Consider first nz2n. Since this is a bounded

12



sequence, it must have at least once convergent subsequence nkz2nk
with non-negative limit, say,

γ1. Using the fact that z1n is a solution of Pn (z) , we then get

0 = n3
kPnk

(nkz2nk
) = −n−1

k z4
2nk

+ b3nk
z3
2nk

+ nkb2nk
z2
2nk

+ n2
kb1nk

z2nk
+ n3

kb0nk
→ f (γ1) . (19)

From Lemma 1 it follows that γ1 = γ0 and hence nkz2nk
→ γ0. This argument shows that every

convergent subsequence of nz2n must converge to γ0 and hence we have nz2n → γ0. A similar

argument establishes that nz3n → γ0. Thus, if all four roots of Pn (z) are real positive, then

z4n → 2, while the other three roots zin, i = 1, 2, 3 lie in (0, 2 − ε) for any ε > 0 and satisfy

nzin → γ0 for i = 1, 2, 3. All of the above arguments taken together show that when T 2 < 1,

there exists an α̃ in (−1, 1) that minimises l̃ (α) on the set (−1, 1] and satisfies n (1− α̃) → γ0.

Case (ii) T 2 > 1 : It follows from (15) that b0n = Pn (0) > 0 for large n. Hence, Pn (z) must

have either

(I) exactly two real roots, one positive and the other negative or

(II) all four real roots with one positive and three negative or

(III) all four real roots with one negative and three positive.

We now study the behaviour of n (α̃− 1) for each of these three cases on the sets (γ03 > 0) ∩
(g (γ03) < 0) , (γ03 > 0)∩(g (γ03) < 0)c , (γ03 > 0)c∩(g (γ03) < 0) and (γ03 > 0)c∩(g (γ03) < 0)c .

Consider first (γ03 > 0) ∩ (g (γ03) < 0) . Since it has been shown above that z4n → 2 is real,

both cases (I) and (II) imply that asymptotically there is no real positive root in (0, 2 − ε)

for any positive ε > 0. However, an argument similar to that used in (16) and (17) above

establishes that there exists a positive real root, say z3n, such that nz3n → γ03, where γ03 > 0

by assumption. Hence, cases (I) and (II) cannot happen when (γ03 > 0)∩ (g (γ03) < 0) . For case

(III), an argument similar to that in (16) and (17) as well as (18) and (19) implies that nz1n → γ01

and nz2n → γ02, where z1n < 0 < z2n < z3n < z4n → 2. Since b0n = Pn (0) > 0 for large n, it

implies that l̃ (z) is increasing in the neighbourhood of 0 with a local maxima at z2n and hence

arg minz∈[0,2) l̃ (z) is either the boundary value z = 0 or z = z3n. Since for any γ > 0 we have

limn l̃
(
1− n−1γ

)− l̃ (1) = g (γ) , it follows that on the set
(
T 2 > 1

)∩ (γ03 > 0)∩ (g (γ03) < 0) we

have g (0) = 0 > g (γ03) = limn l̃ (1− z3n)− l̃ (1) and hence arg minz∈[0,2) l̃ (z) = z3n from whence

we get n (1− α̃) → γ03. Similar arguments show that on the remaining three sets, n (α̃− 1) = 0.

The above arguments establish part (ii) of Theorem 1, from whence the consistency result

of part (i) follows immediately. The result in part (iii) of Theorem 1 follows from part (ii) and

by noting that limn l̃
(
1− n−1γn

)− l̃ (1) = g (γ) for any γn → γ > 0.
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