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Abstract: Difficulties with inference in predictive regressions are generally attributed to

strong persistence in the predictor series. We show that the major source of the problem is

actually the nuisance intercept parameter and propose basing inference on the Restricted Like-

lihood, which is free of such nuisance location parameters and also possesses small curvature,

making it suitable for inference. The bias of the Restricted Maximum Likelihood (REML) es-

timates is shown to be approximately 50% less than that of the OLS estimates near the unit

root, without loss of efficiency. The error in the chi-square approximation to the distribu-

tion of the REML based Likelihood Ratio Test (RLRT ) for no predictability is shown to be(
3/4 − ρ2

)
n−1 (G3 (·) − G1 (·)) + O

(
n−2
)
, where |ρ| < 1 is the correlation of the innovation

series and Gs (·) is the c.d.f. of a χ2
s random variable. This very small error, free of the AR

parameter, suggests that the RLRT for predictability has very good size properties even when

the regressor has strong persistence. The Bartlett corrected RLRT achieves an O
(
n−2
)

error.

Power under local alternatives is obtained and extensions to more general univariate regressors

and vector AR(1) regressors, where OLS may no longer be asymptotically efficient, are provided.

In simulations the RLRT maintains size well, is robust to non-normal errors and has uniformly

higher power than the Jansson-Moreira test with gains that can be substantial. The Campbell-

Yogo Bonferroni Q test is found to have size distortions and can be significantly oversized.
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1 Introduction

A question of interest in financial econometrics is whether future values of one series {Yt} can

be predicted from lagged values of another series {Xt}. The hypothesis of no predictability

is commonly tested under the assumption that the two series {Yt}n
t=1 and {Xt}n

t=0 obey the

following model:

Yt = η + βXt−1 + ut, (1)

Xt = μ + αXt−1 + vt, (2)

where |α| < 1, ut = φvt + et, (et, vt) ∼ N
(
0, diag

(
σ2

e , σ
2
v

))
are an i.i.d. series and X0 ∼

N
(
μ (1 − α)−1 , σ2

v

(
1 − α2

)−1
)
. Interest generally centers on the case where the regressor series

{Xt} possesses a strong degree of autocorrelation with the autoregressive parameter α lying close

to the unit root. It is well known (Stambaugh, 1999) that the standard ordinary least squares

(OLS) estimate of β is biased when the errors {ut, vt} are contemporaneously correlated, with

the amount of bias increasing as α gets closer to unity. This bias results in the corresponding

t-statistic being biased with poor size properties. However, Stambaugh (1999) provided a simple

estimable expression for the bias in the OLS estimate of β that allows the researcher to compute

a bias-corrected OLS estimate as well as a t-statistic based on it. See, for example, Amihud

and Hurvich (2004). There is currently, however, no known theoretical justification that such a

t-statistic based on the bias-corrected OLS estimate will have improved size properties relative

to the test based on the uncorrected OLS estimate. Indeed, Sprott and Viveros-Aguilera (1984)

and Sprott (1990) point out that if inference is the goal of the researcher, computing pivotal

t−statistics from bias corrected point estimates is not necessarily guaranteed to improve finite

sample performance. Sprott and Viveros-Aguilera (Section 6, 1984) provide an example where

even the use of the exact bias correction does not result in accurate finite sample inference since

the resulting t-statistic can still be very far from normal. (One could perhaps use conservative

bias corrections, such as in Lewellen (2004), which can yield tests that are under-sized but at

the cost of significant power loss. See page 232 of Lewellen, 2004). Instead, following Fisher

(1973), Sprott argued in a series of fundamental papers (1973, 1975, 1980, 1990) that from an

inferential point of view, issues such as the bias of point estimates may be irrelevant in small
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samples, and he stressed the importance of examining the likelihood.

At first glance, it may seem surprising that a likelihood ratio test may provide well-behaved

hypothesis tests in situations when the t -statistic does not since the two test statistics are closely

related. More specifically, under standard regularity conditions we can expand the Likelihood

Ratio Test, LRT (θ̂, θ), for a parameter θ in terms of its t-statistic, t(θ̂, θ), as

LRT (θ̂, θ) = t2(θ̂, θ) + Rn(θ̂),

where the remainder term Rn(θ̂) converges to zero in probability. This expansion suggests that

t-statistics with poor finite sample size properties would correspond to LRT′s that are also poorly

behaved. However, this intuition is misleading since it ignores a crucial property of a likelihood

that is not shared by the t-statistic, viz. invariance under 1-1 parameter transformations g (θ) .

As we argue next based on some of the key ideas in Sprott (1975, 1980), this property can prove

invaluable for the LRT. Since the LRT for θ is identical to the LRT for g (θ) due to invariance,

we can as well expand the LRT in terms of the t-statistic for g (θ) , yielding

LRT (θ̂, θ) = LRT (g(θ̂), g (θ)) = t2(g(θ̂), g (θ)) + Rn(g(θ̂)). (3)

Sprott argued that

(i) there may exist some transformation g (θ) such that the remainder term Rn(g(θ̂)) in the

above expansion is close to zero, thus making the likelihood ratio approximately quadratic

in the t-statistic based on that transformed parameter g (θ).

(ii) the conditions that allow for this quadratic approximation to be adequate also improve the

normal approximation to the distribution of the t-statistic t(g(θ̂), g (θ)) in the transformed

parameter.

As a result, it follows from these two observations and the expansion in (3) that the likeli-

hood ratio will be well approximated by a chi-square variable in finite samples as long as some

parametrisation satisfying (i) exists, even if one does not know what that parametrisation is.
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Sprott (1973, 1975, 1980) showed that such a parametrisation would exist if the “curvature” of

the log-likelihood1, as measured by a function of its higher order derivatives, was small. The

use of such a likelihood would then result in a well behaved likelihood ratio test (LRT) in finite

samples. See also Efron (1975) and McCullagh and Cox (1986) for a geometrical approach to

curvature and likelihood ratio based hypothesis testing.

The approach we take in this paper is guided by the intuition given above. We find that in

a univariate autoregressive (AR) process of order one, the likelihood has very small curvature

and hence yields tests with good finite sample behaviour when there is no intercept in the

model. However, the inclusion of an intercept in the model causes the likelihood ratio to lose

this property, thus pointing to the intercept as the source of the problem. This motivates the

use of the restricted likelihood, which is free of the nuisance intercept parameter and hence able

to imitate the likelihood of the no-intercept univariate model with its attendant small curvature.

This suggests that the restricted likelihood will also be useful in the related predictive regression

problem, which is a bivariate AR(1) with intercept. Indeed, we are able to obtain theoretical

results that demonstrate that the LRT based on the restricted likelihood (RLRT ) has good

finite sample performance for both estimation and inference in this context. A curvature related

approach to tackling the predictive regression problem for the model in (1) and (2) was also

taken by Jansson and Moreira (2006, henceforth JM). We compare our results in more detail

with those in JM, first on a theoretical basis in Section 3 and then through simulations in Section

5.

The layout of the paper is as follows. In Section 2, we provide motivation for considering the

restricted likelihood by studying the related problem of inference in the univariate AR(1) model.

We then obtain the restricted likelihood for the bivariate predictive regression model and provide

results on the bias of the REML estimates. In Section 3, we state our result on the finite sample

behaviour of the RLRT for β and compare its power under a sequence of Pitman alternatives to

that of the restricted likelihood based Wald and Rao score test. A comparison with the results

in JM is also provided. Section 4 provides results on extensions of the REML method to higher
1There are several formal measures of curvature based on higher order derivatives of the likelihood in the

literature. See, for example, Kass and Slate (1994). We will not define any such measure explicitly since that is
not the focus of our work here.
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order AR processes for the regressor series, as well as multivariate AR(1) regressors. The finite

sample performance of the REML estimates and the RLRT is studied through simulations in

Section 5 and is compared to the performance of the procedures developed by Jansson and

Moreira (2006) and Campbell and Yogo (2006). All proofs are relegated to the Appendix at the

end of the paper.

2 Restricted Maximum Likelihood Estimation

To understand why the restricted likelihood may yield well behaved LRT’s in the predictive

regression context, it is instructive to consider LRT’s for α in the univariate AR(1) model given

in (2). If LRTα,μ denotes the LRT for testing H0 : α = α0 versus H1 : α �= α0 in that model

for |α0| < 1, then Theorem 2 of van Giersbergen (2006) in conjunction2 with the results of

Hayakawa (1977, 1987), Cordeiro (1987), Barndorff-Nielsen and Hall (1988) and Chesher and

Smith (1995) yields the following formal expansion3

P (LRTα,μ ≤ x) − G1 (x) = 0.25 (1 + 7α0) (1 − α0)
−1 n−1 (G3 (x) − G1 (x)) + O

(
n−2
)
, (4)

where Gs (x) is the c.d.f. of a χ2
s random variable. On the other hand, if LRTα denotes the LRT

for testing H0 : α = α0 versus H1 : α �= α0 in the univariate AR(1) model given in (2) with μ

known to be 0, then it follows from Theorem 1 of van Giersbergen (2006) that we get the formal

expansion

P (LRTα ≤ x) − G1 (x) = −0.25n−1 (G3 (x) − G1 (x)) + O
(
n−2
)
, (5)

It is obvious from (4) that LRTα,μ is very unstable when the autoregressive parameter α is

close to the unit root with the leading error term in the expansion going to infinity. In stark

contrast, we see from (5) that LRTα is very well behaved with the leading term in the expansion

of its distribution being both very small and free of α. Figure 1 shows the empirical densities
2van Giersbergen (2006) provides the expected value of the LRT, while the combined results from the remaining

references show that the leading term in the expansion (4) is half that expected value.
3All the expansions that we provide in this paper are formal. Though we do not attempt to do so here, it may

be possible to show that these expansions are valid by using the work of Chandra and Ghosh (1979).
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Figure 1: Empirical densities of cubic root transformed LRT statistics of AR(1) processes with-
out intercept, plot (a) and with intercept, plot (b). The vertical lines are 90th and 95th
percentiles. Both plots are based on 100,000 repetitions of an AR(1) with sample size n = 100
and AR coefficient α = .9, .975.and 99.

of LRTα and LRTα,μ based on samples of size n = 100 for various values of α = 0.9, 0.975 and

0.99 plotted together with the limiting χ2
1 density. (Since a χ2

1 density is very right skewed, we

plot the density of the cube root of the LRT to ensure a density that looks more symmetric in

order to make the comparisons in the right tail clearer). The empirical densities of LRTα (the

zero intercept case) are seen to be remarkably well-approximated by the limiting χ2
1 distribution,

both when α is far from the unit root as well as when α is close to unity, while those of LRTα,μ

(the intercept case) are far moved from that of the χ2
1. Simulation results in Figure 1 of van

Giersbergen (2006) further confirm the accuracy of the standard χ2
1 approximation for LRTα,

even when α is close to unity. Not surprisingly, van Garderen (1999) has found that for the

univariate AR(1) model in (2) with μ known to be 0, the Efron (1975) curvature (one of the

standard measures of curvature of the likelihood) is very small4, being of the order O
(
n−2
)

and

4Interestingly and somewhat surprisingly, van Garderen (1999) found that if the innovation variance σ2
v is

known the Efron curvature of the model is 2n−1 + O
(
n−2
)
, which, though still small, is larger than when σ2

v

is unknown and he provided a geometrical explanation for this phenomenon. Correspondingly, results in van
Giersbergen (2006) imply that the coefficient of the leading term in (5) increases from −0.25n−1 to −1n−1 when
σ2

v is known, indicating that the LRT is better approximated by the limiting chi-square distribution when the
innovation variance is unknown than when it is known, though, of course, both approximations are very good by
themselves.
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converging to zero as α → 1 for every fixed n.

These results indicate that the culprit in the finite sample failure of the LRT in the univariate

AR(1) model is the unknown intercept μ. Since the bivariate prediction model in (1) and (2) is a

vector AR(1) (with the first column of the coefficient matrix restricted to zero) with an intercept,

one is led to suspect from the discussion above that the LRT for β will also be poorly behaved

in finite samples due to the nuisance intercept vector. This is indeed the case, as seen in the

simulation study presented in Table I. Even when the AR(1) coefficient is 0.9, and thus far from

the unit root, the usual LRT for β has inflated size and the problem is exarcebated significantly

as either the correlation between the innovations (ut, vt) or the AR coefficient increases. Thus,

there is no advantage in using the usual LRT instead of the t-statistic in this case. However,

the discussion above leads us to believe that the LRT for β may perhaps be well behaved if

the intercept vector (η, μ) were known. Since the assumption that (η, μ) is known is extremely

unrealistic, we are prompted to seek a likelihood that does not involve the location parameters

and yet possesses small curvature properties similar to those of the model with known location

parameters. The restricted likelihood turns out to be the one that has such properties and we

turn next to defining it and stating some of its properties.

The idea of restricted likelihood was originally proposed by Kalbfleisch and Sprott (1970)

precisely as a means of eliminating the effect of nuisance location (more generally, regression

coefficient) parameters when estimating the parameters of the model covariance structure in a

linear model. More specifically, assume that we observe data on the vector Z which follows the

linear model

Z = Wθ + ε, (6)

where W and θ are the design matrix and coefficient parameter vector respectively and the

error vector ε ∼ N (0,Σ (ψ)) with ψ being the parameters that describe the variance covariance

matrix. Suppose that interest centers on the parameters ψ of the error covariance matrix Σ (ψ)

and that the regression coefficients θ are nuisance parameters. Kalbflesich and Sprott (1970)

defined the restricted likelihood to be the exact likelihood of the linearly transformed data TZ,

where T is any matrix of full row-rank equal to n − rank(W) such that TW = 0. Thus,
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the likelihood of the transformation TZ does not depend on the nuisance regression coefficient

parameters θ. The particular choice of the matrix T is irrelevant since the likelihood of TZ will

change only by a multiplicative constant for different choices of T (Harville, 1974) and hence

will have no effect on either estimation or testing of hypothesis. Harville (1974) showed that the

restricted likelihood for the process (6), up to a multiplicative constant, is given by

RL (Z,ψ) =
∣∣W′W

∣∣1/2 |Σ (ψ)|−1/2
∣∣W′Σ−1 (ψ)W

∣∣−1/2 exp
(
−1

2
Z̃ (ψ)′ Σ−1 (ψ) Z̃ (ψ)

)
, (7)

where Z̃ (ψ) = Z − W
(
W′Σ−1 (ψ)W

)−1 W′Σ−1 (ψ)Z. Harville (1977) showed that REML

estimates of the parameters of the covariance structure do not suffer any loss of efficiency due to

the linear transformation of the data. Harville (1974) also provided a Bayesian interpretation of

the restricted likelihood, while Smyth and Verbyla (1996) showed that the restricted likelihood

is also the exact conditional likelihood of the original data given the complete sufficient statistic

for the regression coefficient parameters. Though the restricted likelihood has been studied

primarily in the context of variance component models, there has also been some work on it in

the context of time series models. See, for example, Tunnicliffe Wilson (1989) and Rahman and

King (1997), among others. Francke and de Vos (2006) studied unit root tests for AR(1) models

based on the restricted likelihood, while Chen and Deo (2006, 2007) showed that confidence

intervals for the sum of the autoregressive coefficients of univariate AR(p) processes based on

the restricted likelihood have good coverage properties, even when the series is close to a unit

root process. The restricted maximum likelihood (REML) estimates also are less biased than

regular ML estimates in nearly integrated univariate AR models with intercept (Cheang and

Reinsel, 2000) and with trend (Kang, Shin and Lee, 2003).

The restricted likelihood can also be interpreted as the exact likelihood of the maximal invari-

ant (see Section 6.2 of Lehmann and Romano, 2005) which is invariant under transformations of

the form Z → Z + Wκ, where κ is some vector. There are references in the econometrics litera-

ture that use the Restricted Likelihood in some version of the form given in (7) while explicitly

stating that it is also the likelihood of the maximal invariant (See, for example Rahman and

King, 1997 and Francke and de Vos, 2006). The paper by JM also uses the Restricted Likeli-

hood for the model in (1) and (2), though they refer to it only as the likelihood of the maximal
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invariant. Since JM make the simplifying assumption that μ = 0 in (2), they are able to write

the Restricted Likelihood of the process, which becomes the exact likelihood of (yt − yt−1, xt)

without having to exploit the form in (7). There is another strand of the literature in economet-

rics (eg., Dufour and King, 1991) that considers tests that are invariant under transformations

of the form Z → Z + Wκ, but this literature focuses on point optimal tests and hence does not

derive the likelihood of the maximal invariant of the form in (7). We now exploit the expression

in (7) to obtain the Restricted Likelihood for an AR(1) with intercept, which helps develop some

intuition for why the RL can be of use in the bivariate predictive regression model.

When X = (X0, ...,Xn)′ follows the univariate AR(1) model in (2), we can express the vector

X in the form (6), where now the design matrix W is a vector of ones, the regression coefficient

parameter θ is given by μ (1 − α) and the error vector ε is a vector following a zero-mean AR(1)

process. As a result, the restricted likelihood for this model is merely the exact likelihood of the

first differences {Xt − Xt−1}n
t=1 and from the expression (7) above, the restricted log-likelihood

of X is given by

LR

(
σ2

v , α,X
)

= −
(n

2

)
log σ2

v +
1
2

log
(

1 + α

(n − 1) (1 − α) + 2

)
− 1

2σ2
v

Q (α) , (8)

where

Q (α) = X′Σ−1
X X−

(
X′Σ−1

X 1
)2

1′Σ−1
X 1

(9)

and ΣX ≡ V ar (X) . On the other hand, the regular likelihood of X for model (2) with known

μ (set, w.l.o.g., to zero) is

L
(
σ2

v , α,X
)

= −
(

n + 1
2

)
log σ2

v +
1
2

log
(
1 − α2

)− 1
2σ2

v

X′Σ−1
X X. (10)

On comparing (8) and (10) and noting that the second term in Q (α) is O (1) whereas X′Σ−1
X X

is O (n) , it immediately becomes apparent that the restricted likelihood in this case differs on

a relative scale by only an order O
(
n−1
)

from the likelihood of the AR(1) process with known

intercept μ . As a matter of fact, Cheang and Reinsel (2000) show that the restricted likelihood

for the AR(1) provides REML estimates of α whose bias is −2αn−1+O
(
n−2
)
, which is identical,

up to order O
(
n−1
)
, to the bias of the maximum likelihood estimate when the intercept is known
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(Marriott and Pope, 1954). Since the bias of the maximum likelihood estimate of α when the

intercept is not known is − (1 + 3α) n−1 +O
(
n−2
)
, the REML estimate is able to achieve a bias

reduction of approximately 50% when the autoregressive parameter is close to the unit root.

The ability of the Restricted Likelihood to imitate the regular likelihood of a zero-mean process

goes even further. A little simple algebra shows that the higher order derivatives (w.r.t the

parameters α, σ2
v) of the restricted likelihood in (8) are identical, up to O(n−1), to those of the

zero-mean regular likelihood in (10). As a result, we can use the calculations in van Garderen

(1999) obtained for the zero-mean AR(1) model and establish that the Efron curvature properties

of the restricted likelihood for the AR(1) are the same as those of the AR(1) model with known

intercept, up to order O
(
n−1
)
. In addition, we also get the following Theorem which provides

a formal expansion for the distribution of the RLRT in the model in (2) by arguments identical

to those for Theorem 1 of van Giersbergen (2006), established for the zero-mean AR(1) model

(See also footnote 2) .

Theorem 1 Let X = (X0, ...,Xn)′ follow the univariate AR(1) model in (2) and let RLRTα

denote the restricted likelihood ratio test based on the expression in (8) for testing H0 : α = α0

vs. H1 : α �= α0, |α0| < 1. Then,

P (RLRTα ≤ x) − G1 (x) = −0.25n−1 (G3 (x) − G1 (x)) + O
(
n−2
)
.

Remark 1 It is worth noting that the result of Theorem 1 continues to hold if the initial value

X0 in the AR(1) model is assumed to follow N
(
μ, σ2

v

)
instead of the stationary distribution.

The reason for this is that the leading terms in the derivatives of the Restricted Likelihood are

unaffected by the specification of the initial value.

Comparing the result in Theorem 1 with the expressions in (4) and (5), we see that the

distribution of the RLRT for α in the model with intercept behaves like that of the regular

LRT for the zero-mean model and should be well approximated by the χ2
1 even when α is close

to the unit root. This can also be seen in the empirical densities of the RLRT for α in an

intercept model shown in Figure 2, which are plotted together with the limiting χ2
1 density.
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Figure 2: Empirical densities of cubic root transformed Restricted LRT statistics of AR(1)
processes with intercept. The vertical lines are 90th and 95th percentiles. The plot is based on
100,000 repetitions of an AR(1) with sample size n = 100 and AR coefficient α = .9, .975, and
.99.

(As in Figure 1, we plot the density of the cube root of the RLRT ). Furthermore, Table II

shows that the simulation rejection percentages of the RLRT based on χ2
1 critical values are

close to the nominal levels. The discussion above shows that the restricted likelihood provides

a great advantage for both hypothesis testing and estimation for the univariate AR(1) model

through the elimination of the nuisance intercept parameter. The general problem of RLRT

based inference in univariate AR(p) models with intercept/trend is studied in Chen and Deo

(2007). In this paper, we focus our attention on the use of the restricted likelihood for carrying

out inference on β in the bivariate predictive regression model in (1) and (2). We first obtain a

tractable expression for the restricted likelihood for this model.

We start by noting that the vector (Y′,X′)′ = (Y1, . . . , Yn,X0, . . . ,Xn)′ defined by (1) and

(2) can be expressed in the form (6), where the design matrix W is now of the form

W =

⎡⎣ 1n 0

0 1n+1

⎤⎦ , (11)

where 1 is a vector of ones and the regression coefficient vector is of the form θ = (η + βμ/ (1 − α) , μ/ (1 − α))′ .
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However, the covariance matrix of the resulting error vector ε in this representation takes on

an awkward form. As a result, though in principle we could obtain the restricted likelihood

of (Y′,X′)′ by using the form (7) given above, the resulting expression is not simple to study.

Hence, we derive the restricted likelihood by appealing to its basic definition and exploiting

the structure of the model. We start by noting that since the design matrix W now has the

form (11), the restricted likelihood of (Y′,X′)′ is the exact likelihood of (Y′T′
1,X

′T′
2)

′ , where

T1 and T2 are full row rank matrices of dimension (n − 1) × n and n × (n + 1) respectively,

satisfying T11 = 0 and T21 = 0. (In other words, the RL in this context is the exact likelihood

of {(Yt − Yt−1)nt=2 , (Xt − Xt−1)nt=1}). We next note that the exact likelihood of (Y′T′
1,X

′T′
2)

′

can be factorised as

L
((

Y′T′
1,X

′T′
2

)′) = L (T1Y | T2X) L (T2X) .

By definition, the likelihood L (T2X) is just the restricted likelihood of X given in (8) above. In

the Appendix, we obtain a simple expression for L (T1Y | T2X) by using the model structure,

and in conjunction with (8) thus obtain a simple expression for the restricted likelihood of the

predictive regression model. This simple expression for the restricted likelihood that we state in

Theorem 2 below allows both very easy calculation of the REML estimates as well as a useful

expression for their finite sample bias. We first define some quantities that will be useful to us

in stating our results.

For the observed data (Y′,X′)′ = (Y1, . . . , Yn,X0, . . . ,Xn)′ define X1 = (X1, . . . ,Xn)′

and X0 = (X0,X1, ...,Xn−1)
′ . Define the sample means Ȳ = n−11′Y, X̄ = (n + 1)−1 1′X,

X̄1 = n−11′X1 and X̄0 = n−11′X0 and the sample mean corrected data Yc = Y − 1Ȳ ,

Xc =
[
X1 − 1X̄1, X0 − 1X̄0

]
. Define

S (φ, β, α) = (Yc − φXc,1 − (β − φα)Xc,2)
′ (Yc − φXc,1 − (β − φα)Xc,2) (12)
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and note that for computational purposes Q (α) given in (9) can be written as

Q (α) =
n∑

t=0

(
Xt − X̄

)2 + α2
n−1∑
t=1

(
Xt − X̄

)2 − 2α
n−1∑
t=0

(
Xt − X̄

) (
Xt+1 − X̄

)
− (1 − α) α2

(n − 1) (1 − α) + 2
[
X0 + Xn − 2X̄

]2
.

We now can state the following theorem.

Theorem 2 For the model given by (1) and (2), the REML log-likelihood up to an additive

constant is given by

L
(
β, α, φ, σ2

v , σ2
e

)
= −

(
n − 1

2

)
log σ2

e − 1
2σ2

e

S (φ, β, α) (13)

−
(n

2

)
log σ2

v +
1
2

log
(

1 + α

(n − 1) (1 − α) + 2

)
− 1

2σ2
v

Q (α) .

The REML estimates ψ̂ =
(
β̂, α̂, φ̂, σ̂2

v , σ̂
2
e

)
are given by

α̂ = arg min
α

{
n log Q (α) − log

(
1 + α

(n − 1) (1 − α) + 2

)}
,

(
φ̂, β̂
)′

=

⎡⎣ 1 0

α̂ 1

⎤⎦(X′
cXc

)−1 X′
cYc,

σ̂2
e =

S
(
φ̂, β̂, α̂

)
n − 1

and

σ̂2
v =

Q (α̂)
n

.

The bias in
(
α̂, β̂
)

is given by

E (α̂ − α) = − 2α
n − 1

+ o
(
n−1
)

13



and

E
(
β̂ − β

)
= φE (α̂ − α)

= − φ

(
2α

n − 1

)
+ o
(
n−1
)
,

and

E
(
φ̂ − φ

)
= 0.

Remark 2 It is obvious that obtaining the REML estimates is computationally easy since all

the estimates are obtained in succession after the optimisation of a one-dimensional function

which is almost quadratic.

Remark 3 Note that the restricted likelihood in (13) is well defined at the unit root α = 1,

without having to assume that the initial value X0 is fixed when |α| < 1.

It is interesting to compare the bias in β̂ with the bias in the OLS estimate β̂OLS , given by

(see Stambaugh 1999)

E
(
β̂OLS − β

)
= φE (α̂OLS − α) = −φ

(
1 + 3α
n − 1

)
+ o
(
n−1
)
,

where α̂OLS is the OLS estimate of α. Thus, the bias in β̂ depends upon the bias in α̂ in a

manner identical to the way the bias in β̂OLS depends on the bias in α̂OLS. Consequently, the

approximately 50% reduction in bias that α̂ achieves compared to α̂OLS close to the unit root is

inherited by β̂, relative to β̂OLS . The bias expression in Theorem 2 also suggests a bias corrected

version of the REML estimate of β that may be computed as

β̂c = β̂ + φ̂

(
2α̂c

n − 1

)
,

where

α̂c = α̂

(
n + 1
n − 1

)

14



is the bias corrected REML estimate of α. Since the bias correction term φ2α (n − 1)−1 is smaller

than φ (1 + 3α) (n − 1)−1, one would expect the bias corrected REML estimate β̂c to have both

less bias and a smaller variance than its bias corrected OLS counterpart,

β̂OLS,c = β̂OLS + φ̂

(
1 + 3α̂c

n − 1

)
,

particularly since the parameter φ can take any value in (−∞,∞) 5. This is indeed the case, as

we see in the simulations reported in Section 5 below.

The restricted likelihood given in (13) is derived for the situation where we assume that

the initial value X0 comes from the stationary distribution N
(
μ (1 − α)−1 , σ2

v

(
1 − α2

)−1
)

. A

similar argument can be used to obtain the restricted likelihood for the model in (1) and (2)

where the regressor series follows an asymptotically stationary process, given by Xt = μ + X̃t,

where X̃t = αX̃t−1 + vt for t ≥ 1 and X̃0 = v0. Under this assumption, the restricted likelihood

is given by

L̃
(
β, α, φ, σ2

v , σ2
e

)
= −

(
n − 1

2

)
log σ2

e −
1

2σ2
e

S (φ, β, α) (14)

−
(n

2

)
log σ2

v +
1
2

log
(

1
n (1 − α)2 + 1

)
− 1

2σ2
v

Q̃ (α) ,

where

Q̃ (α) = (X0 − μ̂ (α))2 +
n∑

t=1

(Xt − μ̂ (α) − α (Xt−1 − μ̂ (α)))2

and

μ̂ (α) =
X0 + (1 − α)

∑n
t=1 (Xt − αXt−1)

1 + n (1 − α)2
.

The bias results of Theorem 2 continue to hold for the REML estimates under this initial value

condition.

In the next section, we provide a theorem that shows that the REML based LRT has very

good finite sample properties, in that its finite sample distribution approaches the limiting one
5Based on monthly data with a sample size of n = 379, Amihud and Hurvich (Table 3, 2004) find the empirical

estimate of φ to be approximately −92. The corresponding estimate of β is approximately 2 and that of α is 0.99.
In their other empirical study based on annual data with n = 45, they find that φ � −95, β � 20 and α � 0.9
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very quickly and is practically unaffected by nuisance parameters, while also maintaining power

against local alternatives when compared to the Wald and score test.

3 REML Likelihood Ratio Test

One standard method for testing the composite hypothesis H0 : β = 0 vs. Ha : β �= 0 is

the likelihood ratio test (LRT) which compares the log-likelihood evaluated at the unrestricted

estimates of the parameters to the log-likelihood evaluated at the parameter estimates obtained

under the restriction that the null hypothesis H0 : β = 0 is true. Using the quantities defined

in (12) and just above it, it can be easily verified that under H0 : β = 0 the restricted estimates

ψ̂0 =
(
0, α̂0, φ̂0, σ̂

2
v0, σ̂

2
e0

)
are obtained as

α̂0 = arg min
α

n log Q (α) − log
(

1 + α

(n − 1) (1 − α) + 2

)
+ (n − 1) log R (α) ,

where

R (α) = Y′
c

(
I − Zc (α)

(
Z′

c (α)Zc (α)
)−1 Z′

c (α)
)
Yc,

Zc (α) = X1 − 1X̄1 − α
(
X0 − 1X̄0

)
,

φ̂0 =
(
Z′

c (α̂0)Zc (α̂0)
)−1 Z′

c (α̂0)Yc,

σ̂2
v,0 =

Q (α̂0)
n

, σ̂2
e,0 =

1
n − 1

R (α̂0) .

Just as in the unrestricted case, it is obvious that obtaining the restricted estimates requires only

the optimisation of a nearly quadratic one dimensional function. The REML based likelihood

ratio test (RLRT ) for testing H0 : β = 0 vs. Ha : β �= 0 is now given by

RT = −2L
(
ψ̂0

)
+ 2L

(
ψ̂
)

, (15)

where L (·) is the REML log-likelihood presented in (13). Under H0 : β = 0, the asymptotic

distribution of RT is χ2
1, the chi-square distribution with one degree of freedom. The follow-

ing Theorem provides insight into the finite sample behaviour of the RLRT through a formal
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expansion of its distribution.

Theorem 3 Under H0 : β = 0 in the model given by (1) and (2), we have

P (RT ≤ x) = P
(
χ2

1 ≤ x
)

+
(
3/4 − ρ2

)
n−1

[
P
(
χ2

3 ≤ x
)− P

(
χ2

1 ≤ x
)]

+ O
(
n−2
)
, (16)

where ρ = Corr (ut, vt) .

Theorem 3 in conjunction with the result of Barndorff-Nielsen and Hall (1988) yields the

following corollary.

Corollary 1 If the Bartlett corrected RLRT is defined as

RTB =
(
1 + 2

(
3/4 − ρ̂2

)
n−1
)−1

RT ,

where

ρ̂2 =
(
φ̂2σ̂2

v + σ̂2
e

)−1
φ̂2σ̂2

v ,

then

P (RTB ≤ x) = P
(
χ2

1 ≤ x
)

+ O
(
n−2
)
.

Remark 4 Inspection of the proof of Theorem 3 shows that the expansion (16) depends entirely

on the expected values of the higher order derivatives (w.r.t. the parameters) of the restricted

log-likelihood. Hence, the results of Theorem 3 and Corollary 1 continue to hold for the restricted

likelihood given in (14) when the initial condition X0 is not from the stationary distribution.

The results of Theorem 3 obviously imply that the χ2
1 approximation to RT is very good

and almost unaffected by the nuisance parameters. Most importantly, the leading term in the

error is free of the AR parameter, which most affects the finite sample performance of t-statistic

based tests, particularly when it is close to unity. Theorem 3 also suggests two very simple ways

in which one could adjust the p-value when carrying out a test of H0 : β = 0. One would be

17



to use the first two terms on the right hand side of (16), with ρ2 replaced by ρ̂2. The other

is to use the Bartlett corrected statistic RTB . However, (16) suggests that the original test RT

used in conjunction with the standard χ2
1 distribution should be very well behaved and any

improvements will be minimal at best. This belief is supported by the simulations that we

provide in Section 5. Also, the correction factor 1 + 2
(
3/4 − ρ̂2

)
n−1 in Corollary 1 is almost

unity for any reasonable sample size and hence the correction will be negligible. Hence, we

do not pursue the use of the Bartlett corrected test in Corollary 1, merely noting that it can

achieve an O
(
n−2
)

error rate. It is also worth noting that though the REML likelihood does

not provide an unbiased estimate of β (indeed, the bias of β̂ can be arbitrarily large due to the

fact that φ is unbounded, as noted below Theorem 2), the REML likelihood yields a very well

behaved test for β, irrespective of how large φ is. This result serves to illustrate the point that

it may be more desirable at times to carry out tests of hypothesis using appropriate likelihoods

rather than using parameter point estimates and supports the idea that bias can be irrelevant

in inference, as described in the Introduction.

It is worthwhile to compare our results above with those provided in JM. We first note that

the Restricted Likelihood approach provides a way of not only carrying out reliable inference but

also yields point estimates with significantly reduced bias, as well as an estimable bias correction

unlike the procedure in JM which is only a hypothesis test. JM assumed that the error covariance

parameters (φ, σe, σv) are known, that the series {Xt} has zero intercept (i.e. μ = 0) and that

the initial value X0 is known to be 0. Under these assumptions, JM obtained a test with

certain finite sample optimality properties. Such assumptions, however, would normally not be

satisfied in practice. In their Theorem 6, JM allow for an unknown μ taking potentially non-

zero values. However, in this Theorem 6 they provide asymptotic results on the size and power

properties of their test statistic only along a sequence of local-to-unity parameter values for the

autoregressive coefficient α, which is parametrised as α = 1 − cn−1 for some fixed c ≥ 0. The

limiting distribution for their test statistic R̂, which is not ”self-normalised” unlike, for example,

the t-statistic for α in a univariate AR(1) process, will be asymptotically degenerate even if the

AR coefficient were approaching unity at a rate slower than n−1 (for example α = 1 − ck−1
n

for k−1
n + knn−1 → 0) based on the results of Phillips and Magdalinos (2007) and Giraitis
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and Phillips (2006). The kn in the above framework may be arbitrarily ”close” to n, such as

kn = n/ log (log n) .

The result provided in Theorem 3 for the RLRT is for a fixed value α of the AR coefficient

and is thus a point-wise result. Though we do not currently have any results on the behaviour

of the RLRT under a local-to-unity framework, our simulations reported below show that the

RLRT works very well even in such scenarios. At the boundary value α = 1, the distribution of

the RLRT will not be chi-square and the chi-square approximation will fail. In practice however,

the boundary value of α = 1 is not relevant in most finance applications since the predictor series

is stationary by construction. For example, Baker, Taliaferro and Wurgler (2006) assert on page

1715 that ”The predictor variables we consider are theoretically stationary by construction

(although in any given small sample, of course, one might not be able to reject a unit root).”

A similar case for stationarity of the predictor series is made on page 213 of Lewellen (2004).

Furthermore, the dependent series yt in most finance applications is a returns series, which is

unquestionably stationary and hence, as Lewellen (2004) states on page 213, ”It also makes

little sense to predict returns with a nonstationary variable”. In light of this context in which

the predictive regression model is most often used, we argue that the boundary case of the unit

root, where the chi-square approximation to the RLRT will fail, is not as relevant as it is in

univariate AR modelling of economic series.

The fact that the leading error term in (16) is minimised at ρ = ±√3/4 and not at ρ = 0

seems somewhat puzzling in light of the observation that the t-statistic for β provides exact

inference when ρ = 0. This puzzling result can be explained by comparing the quality of the

chi-square approximation in Theorem 3, where all four parameters
(
α, φ, σ2

v , σ2
e

)
are nuisance

parameters, to the approximation in the case where the parameters
(
φ, σ2

v , σ2
e

)
are known and α

is the only nuisance parameter. From equation (36) and the discussion below it in the proof of

Theorem 3, it can be seen that if
(
φ, σ2

v , σ2
e

)
are known the relevant RLRT for testing H0 : β = 0,

denoted by RT,1, would have a distribution that satisfies the formal expansion

P (RT,1 ≤ x) = P
(
χ2

1 ≤ x
)− ρ2n−1

[
P
(
χ2

3 ≤ x
)− P

(
χ2

1 ≤ x
)]

+ O
(
n−2
)
. (17)
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In this situation, the RLRT will be best approximated by a χ2
1 variable when ρ = 0. As a

matter of fact, some trivial calculations show that under the assumption that
(
φ, σ2

v , σ
2
e

)
are

known the RLRT when ρ = 0 is exactly a χ2
1 variable. By comparing the result in (17) with

that in Theorem 3, one sees that the quantity 3/4 is a measure of the extent to which lack of

knowledge of the innovation parameters (φ, τv, τe) affects the finite sample distribution of RT .

Since supρ ρ2 > supρ

∣∣ρ2 − 3/4
∣∣ for ρ ∈ (−1, 1) , the chi-square approximation to the RLRT

is better in a ”minimax” sense over all possible values of ρ for the case when the innovation

covariance parameters are unknown than when they are known6. Hence, though the RLRT

may not provide exact inference when ρ = 0, it is able to keep the error in check over the entire

parameter space of ρ, whereas the t-statistic for β works perfectly at ρ = 0 but fails badly as ρ

moves away from 0.

The result in Theorem 3 guarantees that the RLRT will yield a test that is almost of exact

size in finite samples. However, one would also like to ensure that this is not achieved at the

expense of loss of power. The obvious tests that are competitors to the RLRT are the Wald

and Rao score test based on the restricted likelihood. It is a well known fact that just as these

three tests share the identical limiting distribution under the null hypothesis, they also have

the same power properties to first order. Hence, in order to distinguish between them one has

to consider a sequence of local Pitman alternatives given by Ha : β = β0 + ξn−1/2. The next

Theorem obtains the power function of the RLRT , Wald and Rao score test against such local

alternatives.

Theorem 4 Let RLRT, W and RS denote the LRT, Wald test and Rao score test respectively

of H0 : β = β0 based on the restricted likelihood in (13) of the model in (1) and (2). Assume

that the true value of β is given by β = β0 + ξn−1/2. Define

Δ =
1

1 − α2

σ2
v

σ2
u

ξ2 + O
(
n−1
)
,

C1 =
−2αφσ4

vξ3

(1 − α2)2 σ4
u

6This finding is very much in keeping with the results of van Giersbergen (2006) for the LRT in the univariate
AR(1) model that we described in the footnote at the beginning of section 2.

20



and

C2 =
−3αφσ2

vξ

(1 − α2) σ2
u

.

Let Ḡs,Δ (x) denote the survival function of a non-central χ2 random variable with s degrees of

freedom and non-centrality parameter Δ. Then,

P (RLRT > x) = Ḡ1,Δ (x) +
C1

n1/2

(
Ḡ3,Δ (x) − 0.5Ḡ1,Δ (x) − 0.5Ḡ5,Δ (x)

)
+ O

(
n−1
)
,

P (W > x) = P (RLRT > x) + O
(
n−1
)
,

and

P (RS > x) = P (RLRT > x) +
C1

n1/2

(
0.5Ḡ5,Δ (x) − 0.5Ḡ7,Δ (x)

)
(18)

+
C2

n1/2

(
0.5Ḡ1,Δ (x) − 0.5Ḡ5,Δ (x)

)
+ O

(
n−1
)
.

From Theorem 4 we see that the RLRT and the Wald test based on the restricted likelihood

have identical power up to second order (i.e. up to O
(
n−1
)
) against local Pitman alternatives.

Since Ḡs,Δ (x) − Ḡl,Δ (x) < 0 for all x > 0 when l > s, it follows from (18) that RLRT will be

guaranteed to be more powerful than the Rao score test against local alternatives if C1 > 0 and

C2 > 0. This will be the case if φ < 0 and ξ > 0, which is exactly the part of the parameter space

which is of relevance in empirical applications in finance and economics. It is also interesting to

note that the non-centrality parameter Δ, which will be the main source of power, increases as

α gets closer to the unit root.

In the next Section we derive the REML likelihood under more general models for the

regressor series as well as for multiple regressors and discuss some efficiency and computational

issues.
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4 REML for more general regressor models

It is easy to generalise the REML likelihood in two directions that are both of practical interest.

One generalisation is to the case where the predictor series is a multivariate AR(1) process.

Applications of such models can be found, for example, in Amihud and Hurvich (2004), who

considered dividend yield and earnings to price ratio as bivariate predictors of market returns.

The other generalisation is to the case where the univariate predictor follows a higher order

AR process. We will state the REML log-likelihood for both these cases, starting with the

multivariate AR(1) predictor model. The method of obtaining the log-likelihood is identical to

that used in Theorem 2.

4.1 Multivariate regressors

Assume that the data (Y1, ..., Yn,X′
0, ...,X

′
n) follows

Yt = η + β′Xt−1 + ut, (19)

Xt = μ+ AXt−1 + vt, (20)

where ut = φ′vt + et, (et,v′
t)
′ ∼ N

(
0, diag(σ2

e ,Σv)
)

is an i.i.d. series and A is a k × k matrix

with all eigenvalues less than unity in absolute value. Let Σv ≡ V ar (vt) and ΣX ≡ V ar (Xt) ,

given by

vec (ΣX) = (Ik2 −A ⊗ A)−1 vec (Σv)

and define

τ̂ =
[
Σ−1

X + n (I− A)′ Σ−1
v (I− A)

]−1

[
Σ−1

X X0 + (I − A)′ Σ−1
v (I − A)

n∑
t=1

Xt

]
.

Lemma 1 Then the REML log-likelihood up to an additive constant for the model in (19) and
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(20) is given by

LM = −
(

n − 1
2

)
log σ2

e −
1

2σ2
e

S (φ,β,A) − 1
2

log |ΣX | − n

2
log |Σv| (21)

− 1
2

log
∣∣Σ−1

X + n (I − A)′ Σ−1
v (I − A)

∣∣
− 1

2

{
(X0 − τ̂ )′ Σ−1

X (X0 − τ̂ ) +
n∑

t=1

(Xt − τ̂ − A (Xt−1 − τ̂ ))′ Σ−1
v (Xt − τ̂ −A (Xt−1 − τ̂ ))

}
.

where

S (φ,β,A) =
n∑

t=1

(
Yt,c − φ′Xt,c −

(
β′−φ′A

)
Xt−1,c

)2
,

Xt,c = Xt − n−1
∑n

t=1 Xt and Xt−1,c = Xt−1 − n−1
∑n

t=1 Xt−1.

To ease the computational burden during optimisation, the likelihood can be defined in

terms of the re-parametrised set
(
Σv, σ

2
e ,A,φ,γ

)
, where γ = β−Aφ. This re-parametrisation

allows us to concentrate
(
σ2

e ,φ,γ
)

out of the likelihood, thus reducing the dimensionality of the

optimisation problem. The likelihood can then be sequentially optimised, first over (Σv,A),

with the REML estimates of
(
σ2

e ,φ,γ
)

being then obtained by OLS through the minimisation

of S (φ,γ) . A further simplification of the above likelihood occurs if the coefficient matrix A is

diagonal, given by A = diag (α1, ..., αk) with maxi |αi| < 1, in which case one gets

V ar (Xt) ≡ ΣX =
((

σv,ij

1 − αiαj

))
,

where Σv = ((σv,ij)) . Amihud and Hurvich (2004) find evidence to support this model with a

diagonal coefficient matrix in the empirical example that they consider. It should be noted that

in the case where A can be assumed to be a diagonal matrix, the predictive regression model is

no longer a SUR system and hence OLS will no longer be efficient. However, REML will clearly

retain efficiency, no matter what the form of A is, thus giving it an advantage both in terms of

asymptotic efficiency and power over any OLS based procedure.

Since the dimension of the parameter space is very large in the vector case, it is not feasible

to obtain a result such as Theorem 3 in the most general case. However, in the case where A is

a diagonal matrix and where
(
σ2

e ,φ,Σv

)
are assumed known with Σv diagonal, we are able to
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obtain the following result on the finite sample behaviour of the RLRT for testing H0 : β = 0.

The proof follows along lines similar to those for Theorem 3 and is omitted.

Theorem 5 In the model given by (19) and (20), assume that A = diag (α1, ..., αk) , with

maxi |αi| < 1, and that
(
σ2

e ,φ,Σv

)
are known with Σv = diag

(
σ2

v,11, ..., σ
2
v,kk

)
. Let RM denote

the RLRT based on the restricted likelihood in (21) for testing H0 : β = 0. Then,

P (RM ≤ x) = P
(
χ2

k ≤ x
)−n−1

(
k∑

i=1

φ2
i σ

2
v,iiσ

−2
e

1 + φ2
i σ

2
v,iiσ

−2
e

)[
P
(
χ2

k+2 ≤ x
)− P

(
χ2

k ≤ x
)]

+O
(
n−2
)
.

Since 0 < n−1
∑k

i=1 φ2
i σ

2
v,iiσ

−2
e

(
1 + φ2

i σ
2
v,iiσ

−2
e

)−1
< n−1k trivially, the result shows that the

χ2 distribution once again provides a very good approximation to the RLRT in this situation.

It is useful to note that Theorem 5 shows that the quality of the χ2 approximation to the

RLRT is affected only minimally by the dependence between ut and vt, over which one has no

control. However, once one X variable has been chosen, we can control which other X variables

should be included in the model and it is preferable to use a group of X variables that have

low (ideally zero) correlation among themselves to avoid unnecessary multicollinearity. Hence,

the assumption in the Theorem that Σv is diagonal is not very unreasonable. Finally, from the

discussion below equation (5) and below Theorem 3, one would expect the χ2 approximation to

continue to work well when
(
σ2

e ,φ,Σv

)
are unknown (with Σv diagonal) and, indeed, we find

this to be the case in our simulations in Section 5 below. As a matter of fact, the simulations

show that the RLRT behaves very well even when the cross-correlation in the X variables is as

high as 0.9

The restricted likelihood for the AR(p) regressor case can be derived in a manner analogous

to that for the AR(1) case and is given next.
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4.2 Higher order autoregressive regressors

Let the observed data (Y1, ..., Yn,X−p+1,X−p+2, ...,Xn) follow

Yt = η + βXt−1 + ut (22)

and

Xt = μ + α1Xt−1 + ... + αpXt−p + vt, (23)

where ut = φvt + et and (et, vt) ˜N
(
0, diag

(
σ2

e , σ
2
v

))
are an i.i.d. series. Furthermore, assume

that all the roots of the polynomial zp −∑p
s=1 zp−sαs lie within the unit circle. Define

Yc = Y − 1Ȳ , Xc =
[
X1 − 1X̄1, ..., X−p+1 − 1X̄−p+1

]
,

where Xi = (Xi,Xi+1, ...,Xn−1−i) and X̄i = n−11′Xi.

Lemma 2 The REML log-likelihood up to an additive constant for the model in (22) and (23)

is given by

L
(
α, β, φ, σ2

e , σ2
v

)
= −

(
n − 1

2

)
log σ2

e − 1
2σ2

e

S (φ, β, α1, ..., αp) (24)

−
(

n + p − 1
2

)
log σ2

v − 1
2

log |Σ| − 1
2

log
∣∣1′Σ−11

∣∣− 1
2σ2

v

(X− 1τ̂)′ Σ−1 (X − 1τ̂)

where V ar (X) = σ−2
v Σ, τ̂ =

(
1′Σ−11

)−1 1′Σ−1X and S (φ, β, α1, ..., αp) = Z′
cZc where

Zc =

(
Yc − φXc,1 − (β − φα1)Xc,2 +

p∑
i=2

αc,iXc,i+1

)
.

Though at first glance the expression in (24) looks formidable, it is actually very easy to

compute. The quantity S (φ, β, α1, ..., αp) is, of course, just a quadratic form. It is also well

known that both the determinant |Σ| and bilinear/quadratic forms of the type y′Σ−1x are

very easy to compute for AR(p) models, since for such models Σ−1 can be easily expressed as

B′B for some lower triangular matrix B. (See equation 30 below). After a re-parametrisation
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γ = β−φα1, the parameters
(
σ2

e , σ
2
v , φ, γ

)
can be concentrated out of (24) and the concentrated

log-likelihood optimised over the remaining parameters (α2, ..., αp) .

In the next Section we report the results of our simulations.

5 Simulations

We first study the performance of four estimators of β: (i) The OLS estimate β̂OLS (ii) The

bias corrected OLS estimate β̂OLS,c (iii) The REML estimate β̂ and (iv) The bias corrected

REML estimate β̂c. The bias corrected estimators are defined below Theorem 2. The data was

simulated from the model given by equations (1) and (2) with sample sizes, n = 50, 100, 200

and 400. For each sample size, the predictive regression slope coefficient β was set to 0 while

the autoregressive coefficient α was set to α = 1− cn−1 for c = 1, 5 and the initial value X0 was

drawn from its stationary distribution. The innovation variances were set as σ2
u = σ2

v = 1 and

φ = −0.98. When σ2
u = σ2

v = 1, the parameter φ reduces to the correlation between (ut, vt) .

This normalisation of the innovation variances was also used in Campbell and Yogo (2006) and

Jansson and Moreira (2006). The high negative value of φ was chosen to reflect the kind of

values seen empirically (See Campbell and Yogo, 2006).

Tables III and IV report the simulation means and standard deviations of these four estimates

based on 10,000 replications for each of the values of α. As predicted by the theory, the bias of

β̂ is uniformly less than that of β̂OLS , and approximately half its value when α is close to unity.

At the same time, β̂ does not suffer any loss of efficiency, indeed having a uniformly smaller

standard deviation than that of β̂OLS. The bias of β̂c is also always substantially less than that of

β̂OLS,c, at times by as much as 80% and its standard deviation is uniformly lower too. To get an

idea of the magnitude of the bias and the impact of the bias correction, we note that Campbell

and Yogo (Table 5, 2006) report empirical estimates of β (after normalisation to ensure unit

innovation variances, as above) that range between 0.01 and 0.02 for monthly data and between

0.03 and 0.3 for annual data. Similarly, from page 826 of Amihud and Hurvich (2004), we get an

estimated (normalised) β of approximately 0.17 for annual data and 0.02 for monthly data. The
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simulation results clearly demonstrate the advantage enjoyed by the REML estimate as well as

its bias-corrected version, in terms of both bias and standard deviation over the corresponding

OLS counterparts. To test the robustness of the procedure to non-normal thick tailed errors,

we also generated data from the same model and parameter configurations, but letting (et, vt)

be independent t5 errors. The results are presented in the second set of columns in Tables II

and III and it is seen that once again, β̂ and β̂c are consistently better than β̂OLS and β̂OLS,c

respectively in terms of both bias and standard deviation.

We next turn to studying the quality of the χ2
1 approximation to the distribution of the

RLRT for the above model and parameter configurations with both normal and t5 innovations.

The χ2
1 approximation was assessed by two measures (i) QQ plots of the RLRT against the

theoretical quantiles of a χ2
1 distribution and (ii) simulation sizes at the 5% and 1% level. The

simulation sizes are reported in Table V while the QQ plots are shown in Figure 3. (We present

the QQ plots only for the normal innovations since the plots for t5 errors are qualitatively similar

in nature). The RLRT is seen to be very well approximated by the χ2
1 distribution according

to each of the two measures. Comparing the results of Table V with the performance of the

usual LRT shown in Table II demonstrates the significant advantage that the RLRT provides

over the usual LRT . It is also worth stressing again that the performance of the RLRT is not

affected by the bias of β̂ at all.

We also carried out a simulation study to compare the size and power of our procedure with

that of Jansson and Moreira (2006) and Campbell and Yogo (2006). We note that the RLRT

procedure is very straighforward to use while the Jansson-Moreira procedure is much more

complex. The sample size was set to n = 100, 200 and 400 while α = 1−cn−1 with c = 0, 1, 5, 10

and 20. The innovation variances were set as σ2
u = σ2

v = 1 and φ = Corr(ut, vt) = −0.98. The

initial value X0 was drawn from N
(
0, σ2

v

)
, since the JM (2006) and Campbell and Yogo (2006)

procedures require the initial value to be op

(
n1/2

)
. As a result, the RL used was of the form

in (14). Following JM, the parameter β was defined as β = n−1b
√

1 − φ2, where b = 0, 25 and

50. Thus, b = 0 corresponds to the size simulations while b = 25, 50 corresponds to the power of

the procedure against local alternatives.

27



Table VI shows the size of the Campbell and Yogo (2006) Bonferroni Q procedure for a

variety of parameter values across 10,000 replications. It is seen that their procedure can produce

significant size distortions even when local-to-unity (which is the framework for which their test

is designed), with the tests being significantly over-sized under the null hypothesis. Since these

tests are based on a Bonferroni style inequality, it is not clear as to how one should compute

size-adjusted power for them and as a result we do not provide a power comparison with the

Campbell and Yogo (2006) procedure, simply noting that it can be significantly over-sized. It

is somewhat puzzling that a test which is supposed to be based on a Bonferroni style inequality

yields sizes that are significantly larger than the declared nominal size. However, we point out

that in the simulation results that Campbell and Yogo (2006) themselves present in their Table 3,

the nominal 5% Bonferroni Q-test has rejection percentages as large as 0.117 and 0.09 in 10,000

replications, which is well above what is to be expected even after accounting for simulation

error. One potential cause for this poor performance may be the fact that the Campbell Yogo

procedure mean corrects the predictor series by subtracting a GLS estimate of the mean that is

computed under the assumption that α = 1− 7n−1 (See Campbell and Yogo, 2005). If the true

value of α deviates substantially from this assumption, the mean adjustment will poor and may

potentially degrade the size performance of the test.

The results of the comparison between the RLRT and the JM procedures are reported in

Table VII for 5,000 replications. As is to be expected from the simulation reported above in

Table V, the RLRT maintains its size very well at all the stationary parameter configurations,

while JM shows a little size distortion when c = 20. The RLRT is oversized when the predictor

series is non-stationary and Corr(ut, vt) � −1, which is not surprising since the chi-square

limit distribution will no longer hold at the boundary value of α = 1. As we see in Table VIII

however, the RLRT is not oversized at the unit root when Corr(ut, vt) = −0.5, suggesting that

the chi-square approximation is degraded at the boundary only when the innovation correlation

is extremely high. Furthermore, as argued in the discussion after Theorem 3, we note again that

the case of a non-stationary predictor series is not relevant in financial applications where the

predictive regression model is most commonly used.

The power comparison between the two procedures in Table VII shows that the RLRT
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provides uniformly higher power than JM at all the alternatives considered, with significant

power gains ranging from twice as much to seven times as much. These simulations provide

strong evidence that the RL procedure performs significantly better than the JM procedure

in terms of both size and power even when the predictor series is nearly integrated, while

also yielding estimates with low (and estimable) bias. The RLRT also does not impose any

restrictions on the specification of the initial value and extends easily to the multivariate regressor

case.

We also include a comparison between the RLRT and the JM procedure using the parameter

configuration in Table II on page 702 of JM. This configuration sets the innovation correlation

at −0.5 and 0.5 and allows us to compare the RLRT against the various procedures reported

in Table II in JM. The results of this comparison, based on n = 1000 and 500 replications to be

consistent with the design in JM, are reported in Table VIII. We first note that the RLRT is now

no longer oversized at the unit root, suggesting that the chi-square approximation works even

at the boundary value α = 1 if the innovation correlation is not very high. Furthermore, the

RLRT maintains nominal size at all the configurations while once again uniformly dominating

the JM procedure in terms of power.

We finally generate data from a model in which the regressors are a bivariate AR(1) model.

More specifically, we use the model Yt = β′Xt−1 + ut and Xt = AXt−1 + vt, where ut =

φ′vt + et. The sample size was set at n = 200, the slope vector β was set to zero, while

φ = (−80,−80). Two configurations of the autoregressive coefficient matrix A were considered,

diag (0.95, 0.8) and diag (0.95, 0.95) . The innovation matrix Σv was set to one of the following

three configurations: (a) the identity matrix (b) variances equal to 2 and correlation ρv = 0.5

(c) variances equal to 10 and correlation ρv = 0.9. In all cases, the innovation variance σ2
e was

set to unity. This design (except for Σv = I) matches that used in Amihud and Hurvich (2004).

The number of replications for each parameter configuration was 5,000 in the vector case. As

before, the quality of the χ2
2 approximation to the distribution of the RLRT was assessed via two

measures (i) QQ plots of the RLRT against the theoretical quantiles of a χ2
2 distribution(Figure

4) and (ii) simulation sizes at the 5% and 1% level. The results are provided in Tables VII

and VIII. As noted in sub-section 4.1 above, OLS is no longer asymptotically efficient if A is
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a diagonal matrix since the system is no longer a SUR. Hence, not only does REML afford a

dramatic reduction in bias over OLS, it also provides a great reduction in the standard deviation,

as can be seen in Table VII with the reduction being as much as 80%. Furthermore, for the

inference problem it is once again seen that the RLRT is very well approximated by the χ2

distribution in all the cases we consider.

The overall conclusion to be had from the simulations is that the REML procedure yields

point estimates that are much less biased than their OLS counterparts and also an RLRT that

is very well behaved, even when the regressors are close to being integrated.

6 Appendix

Proof of Theorem 2:

As noted at the start of Section 2) above, the REML likelihood corresponds to the likelihood

of T(Y′,X′)′, where T is any full row rank matrix such that T1 = 0. We will obtain this

likelihood by choosing T to have the form

T =

⎡⎣ T1 0

0 T2

⎤⎦ ,

where T1 and T2 are full row rank matrices of dimension (n − 1)×n and n×(n + 1) respectively,

satisfying T11 = 0, T21 = 0, T1T′
1 = I and T2T′

2 = I and using the fact that

L
(
T(Y′,X′)′

)
= L (T1Y | T2X) L (T2X) .

We first obtain L (T1Y | T2X) . Since ut = φvt + et, where φ = σuv/σ
2
v and et˜N

(
0, σ2

e

)
is a

series independent of {vt} , we get

Yt = η + βXt−1 + φ (Xt − μ − αXt−1) + et (25)

= η + φXt + (β − φα) Xt−1 + et.
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Let Ỹ = T1Y, X̃1 = T1X1 and X̃0 = T1X0. From (25) it then follows that

Ỹ = X̃θ + ẽ, (26)

where X̃ =
[
X̃1, X̃0

]
, ẽ = T1e, e = (e1, ..., en)′ and θ = (φ, β − φα)′ . Since Xt is a function

only of {vt, vt−1, ...} , the series {Xt} is independent of {et} . Furthermore, knowledge of T2X,

where T2 is any full row rank matrix such that T21 = 0, implies knowledge of X̃. Hence, from

(26) the conditional distribution of Ỹ given T2X is N
(
X̃θ, σ2

eI
)

, since T1T′
1 = I. It follows

that the conditional log-likelihood of
(
Ỹ | T2X

)
up to an additive constant is given by

l1

(
Ỹ | T2X, θ, σ2

e

)
= −

(
n − 1

2

)
log σ2

e − 1
2σ2

e

(
Ỹ − X̃θ

)∗ (
Ỹ − X̃θ

)
.

Note, however, that X̃θ = T1 [X1, X0] θ. Thus,

(
Ỹ − X̃θ

)∗ (
Ỹ − X̃θ

)
= (Y − [X1, X0] θ)

′ T∗
1T1 (Y − [X1, X0]θ) .

Since the matrix T1 when augmented by the row n−1/21′ is an orthogonal matrix, it follows

that T∗
1T1= I−n−111′ and hence

(
Ỹ − X̃θ

)∗ (
Ỹ − X̃θ

)
= (Y − [X1, X0]θ)

′ [I−n−111′] (Y − [X1, X0] θ)

= S (φ, β, α) .

Thus, we get

l1

(
Ỹ | X̃,θ, σ2

e

)
= −

(
n − 1

2

)
log σ2

e − 1
2σ2

e

S (φ, β, α) . (27)

The log-likelihood of T2X is obtained from Harville (1974) and up to an additive constant is

given by

l2
(
T2X, α, σ2

v

)
= −

(n

2

)
log σ2

v − 1
2

log |Σ| − 1
2

log
∣∣1′Σ−11

∣∣− 1
2σ2

v

(X− 1τ̂ )′ Σ−1 (X− 1τ̂) ,

(28)

where τ̂ =
(
1′Σ−11

)−1 1′Σ−1X and Σ = σ−2
v V ar (X) . From (27) and (28), we obtain the log-
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likelihood of (T1Y, T2X) up to an additive constant to be

L
(
T1Y, T2X, α, β, φ, σ2

v , σ2
e

)
= −

(
n − 1

2

)
log σ2

e − 1
2σ2

e

S (φ, β, α) (29)

−
(n

2

)
log σ2

v − 1
2

log |Σ| − 1
2

log
∣∣1′Σ−11

∣∣− 1
2σ2

v

Q (α) .

The final form, as stated in (13) is obtained by algebraic simplification, using the fact that

Σ−1 = B′B, where B is the (n + 1) × (n + 1) matrix given by

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1 − α2 0 0 · · · 0 0

−α 1 0 · · · 0 0

0 −α 1 · · · 0 0
...

...
...

...
...

0 0 0 −α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

and noting that

τ̂ =
(1 − α)

∑n−2
i=0 Xi + X−1 + Xn−1

(n − 1) (1 − α) + 2
.

To obtain the REML estimates of
(
α, β, φ, σ2

e , σ2
v

)
, it helps to consider the re-parametrised set of

parameters
(
α, γ, φ, σ2

e , σ2
v

)
, where γ = β − φα. It is then immediately obvious from inspecting

(29) that the REML estimates of
(
α, σ2

v

)
are obtained by simply maximising just

l2
(
T2X, α, σ2

v

)
= −

(n

2

)
log σ2

v − 1
2

log |Σ| − 1
2

log
∣∣1′Σ−11

∣∣− 1
2σ2

v

(X− 1τ̂ )′ Σ−1 (X− 1τ̂) .

In other words, the REML estimates of
(
α, σ2

v

)
are just those estimates that would have been ob-

tained by maximising the REML likelihood function of (X1, ...,Xn) . It thus follows immediately

from Cheang and Reinsel (2000) that the bias of α̂ is

E (α̂ − α) =
2α

n − 1
+ o
(
n−1
)
.

The REML estimates of (φ, γ) are obtained as the least squares estimates

(
φ̂, γ̂
)′

=
(
Xc

′Xc

)−1 Xc
′Yc,
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which then yields the REML estimate β̂ = γ̂ + φ̂α̂. Since

⎛⎝ φ̂

β̂

⎞⎠ =

⎡⎣ 1 0

α̂ 1

⎤⎦⎛⎝ φ̂

γ̂

⎞⎠ ,

it follows that the REML estimates of the original parameters (φ, β) can also be obtained in

a direct regression of Yc on
(
X1 − 1X̄1 − α̂(X0 − 1X̄0), X0 − 1X̄0

)
. Thus, β̂ is identical to

the ARM estimate considered by Amihud and Hurvich (2004) using the REML estimate α̂ as

a proxy for α. Hence, the bias of β̂ can be obtained from Theorem 2 of Amihud and Hurvich

(2004) and is

E
(
β̂ − β

)
= φE (α̂ − α)

= − 2αφ

n − 1
+ o
(
n−1
)
.

Finally, Lemma 1 of Amihud and Hurvich (2004) implies that E
(
φ̂
)

= φ.

Proof of Theorem 3:

Since the LRT is invariant to re-parametrisation we choose to work with the re-parametrisation

λ = (β, α, φ, τv , τe) ≡ (β, λ2) , where τv = σ−2
v and τe = σ−2

e since this greatly reduces the burden

of our computations. For the REML log-likelihood given in (13), we will denote expectations of

the log-likelihood derivatives as

κrs = n−1E

(
∂2L

∂λr∂λs

)
, κrst = n−1E

(
∂3L

∂λr∂λs∂λt

)
, κ(t)

rs =
∂κrs

∂λt
.

Letting δ = τe/τv, it is easily seen that the information matrix K = ((−κrs)) is given by

K =

⎡⎣ Kβ,α 0

0 Kφ,τv,τe

⎤⎦+ O
(
n−1
)
, (31)

where

Kβ,α =
δ

1 − α2

⎡⎣ 1 −φ

−φ
(
φ2 + δ−1

)
⎤⎦ ,
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and

Kφ,τv,τe = diag
{

δ,
1

2τ2
v

,
1

2τ2
e

}
.

Let κrs denote the entries of −K−1 and κ̃rs denote the entries of −K−1
22 , where K22 is the lower

right 4 × 4 sub-matrix of K.

Theorem 1 of Hayakawa (1977) provides an expression for the formal expansion of the dis-

tribution of RT . This expression is in notation that is not easy to use and also contains a term,

A2, which was subsequently shown (Chesher and Smith, 1995) to be identically zero in regular

models. As a result, we use the notation of Cordeiro (1987) and from the discussion on page

342 of Cribari-Neto and Cordeiro (1996) obtain the expansion

P (RT ≤ x) = P
(
χ2

1 ≤ x
)

+ An−1
[
P
(
χ2

3 ≤ x
)− P

(
χ2

1 ≤ x
)]

+ O
(
n−2
)
, (32)

where

A =
1
2

⎧⎨⎩∑
λ

(lrstu − lrstuvw) −
∑
λ2

(
l̃rstu − l̃rstuvw

)⎫⎬⎭ , (33)

lrstu = κrsκtu

(
1
4
κrstu − κ

(u)
rst + κ

(su)
rt

)
, l̃rstu = κ̃rsκ̃tu

(
1
4
κrstu − κ

(u)
rst + κ

(su)
rt

)
,

lrstuvw = κrsκtuκvw

(
1
6
κrtvκsuw +

1
4
κrtuκsvw − κrtvκ

(u)
sw − κrtuκ(v)

sw + κ
(v)
rt κ(u)

sw + κ
(u)
rt κ(v)

sw

)
and

l̃rstuvw = κ̃rsκ̃tuκ̃vw

(
1
6
κrtvκsuw +

1
4
κrtuκsvw − κrtvκ

(u)
sw − κrtuκ(v)

sw + κ
(v)
rt κ(u)

sw + κ
(u)
rt κ(v)

sw

)
.

Exploiting the near diagonal (up to O
(
n−1
)
) structure of K, we can simplify the term

∑
λ (lrstu − lrstuvw)

in A as

∑
λ

(lrstu − lrstuvw) =
∑
(β,α)

(lrstu − lrstuvw) +
∑

(φ,τv,τe)

(lrstu − lrstuvw)

+
∑

((β,α),(φ,τv,τe))

(lrstu − lrstuvw) + O
(
n−1
)
, (34)
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where
∑

((β,α),(φ,τv,τe)) denotes that at least one index in the summand must come from (β, α) and

at least one index from (φ, τv, τe) . By the same logic, we can simplify the term
∑

λ2

(
l̃rstu − l̃rstuvw

)
in A as

∑
λ2

(
l̃rstu − l̃rstuvw

)
=
∑
α

(
l̃rstu − l̃rstuvw

)
+

∑
(φ,τv,τe)

(
l̃rstu − l̃rstuvw

)
+

∑
(α,(φ,τv,τe))

(
l̃rstu − l̃rstuvw

)
+ O

(
n−1
)

=
∑
α

(
l̃rstu − l̃rstuvw

)
+

∑
(φ,τv,τe)

(lrstu − lrstuvw)

+
∑

(α,(φ,τv,τe))

(
l̃rstu − l̃rstuvw

)
+ O

(
n−1
)
, (35)

where the last step in (35) follows from the fact that the entries of K for (φ, τv, τe) are diagonal

up to O
(
n−1
)

. It thus follows from (33), (34) and (35) that

A =
1
2

⎧⎨⎩∑
(β,α)

(lrstu − lrstuvw) −
∑
α

(
l̃rstu − l̃rstuvw

)⎫⎬⎭
+

1
2

⎧⎨⎩ ∑
((β,α),(φ,τv,τe))

(lrstu − lrstuvw) −
∑

(α,(φ,τv,τe))

(
l̃rstu − l̃rstuvw

)⎫⎬⎭+ O
(
n−1
)

≡ A(β,α) + Cλ + O
(
n−1
)
, (36)

It is obvious from the structure of A(β,α) in (36) that A(β,α) would be the leading remainder

term in the expansion of the distribution of RT of the form in (32) if (φ, τv , τe) were known and

α were the only nuisance parameter. The term Cλ, thus, is a measure of the extent to which

lack of knowledge of the parameters (φ, τv, τe) affects the finite sample distribution of RT . We

now compute the two terms A(β,α) and Cλ, beginning with A(β,α).

Though (β, α) are not orthogonal, the computation of
∑

(β,α) (lrstu − lrstuvw) can be simpli-

fied by working with the transformed parameters (γ, α) , where γ = β−φα, since γ is orthogonal

to α (Note that as stated above, when computing A(β,α) the remaining parameters (φ, τv, τe)

are fixed). Since (γ, α) is an affine transformation of (β, α) , we can exploit the fact that the
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first term of A(β,α) is invariant under such transformations (see page 371 of Hayakawa 1977) and

thus get
1
2

∑
(β,α)

(lrstu − lrstuvw) =
1
2

∑
(γ,α)

(lrstu,p − lrstuvw,p) , (37)

where the extra subscript p will mean that the computation is being carried out for the re-

parameterised form of (13) with γ = β − φα. The right hand side of (37) is much simpler to

compute due to the fact that κγα,p = κ
(γ)
γγ,p = κ

(γγ)
γγ,p = 0 and all the terms κrst,p and κrstu,p

are at most O
(
n−1
)
, for all permutations of the subscripts. Since κγγ,p = −δ

(
1 − α2

)−1 and

καα,p = − (1 − α2
)−1

, it follows that

1
2

∑
(γ,α)

lrstu,p =
1
2
καα

p καα
p

(
κ(αα)

αα,p

)
+ O

(
n−1
)

= − (1 + 3α2
) (

1 − α2
)−1 + O

(
n−1
)

(38)

and

1
2

∑
(γ,α)

lrstuvw,p =
1
2
καα

p καα
p καα

p 2
(
κ(α)

αα

)2
+ O

(
n−1
)

= −4α2
(
1 − α2

)−1 + O
(
n−1
)
. (39)

¿From (37), (38) and (39), we get

1
2

∑
(β,α)

(lrstu − lrstuvw) = −1 + O
(
n−1
)
. (40)

The second term in A(β,α) is not invariant under affine transformations and we revert to the

original log-likelihood (13) to compute it. Noting that καα = − (φ2δ + 1
) (

1 − α2
)−1 and κ̃αα =

− (φ2δ + 1
)−1 (1 − α2

)
, we have

1
2

∑
α

(
l̃rstu − l̃rstuvw

)
=

1
2
κ̃αακ̃αα

(
κ(αα)

αα

)
− 1

2
κ̃αακ̃αακ̃αα2

(
κ(α)

αα

)2
+ O

(
n−1
)

= − 1
φ2δ + 1

+ O
(
n−1
)
. (41)

¿From (40) and (41) we conclude that

A(β,α) = − φ2δ

φ2δ + 1
+ O

(
n−1
)

= −ρ2 + O
(
n−1
)
. (42)
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We now turn our attention to computing the second term, Cλ, in (36). We first note from the

near diagonal structure of K that

1
2

∑
((β,α),(φ,τv,τe))

(lrstu − lrstuvw) =
1
2

∑
(β,(φ,τv,τe))

lrrtt +
1
2

∑
(α,(φ,τv,τe))

lrrtt (43)

− 1
2

∑
(β,(φ,τv,τe))

lrrttvv − 1
2

∑
(a,(φ,τv,τe))

lrrttvv

− 1
2

∑
(β,α,(φ,τv,τe))

lrstuvw.

Each of the terms in (43) are now computed. The details are not provided here, both to

save space and also because the computation does not afford any special insight into the

problem. The detailed calculations, however, are available from the authors. The terms in∑
(α,(φ,τv,τe))

(
l̃rstu − l̃rstuvw

)
can be decomposed in a manner similar to that in (43), except

that in this case there are no terms in β. When all these terms are put together, one gets

Cλ =
3
4

+ O
(
n−1
)
. (44)

The theorem now follows from (32), (36), (42) and (44).

Proof of Theorem 4:

The expansion of the distribution of the LRT and the Wald test under local Pitman alter-

natives is given in Hayakawa (1975), while that of the distribution of the Rao score test is given

by Harris and Peers (1980). These results are consolidated using simpler notation in Cordeiro,

Botter and Ferrari (1994) and we follow the notation used in their work. To obtain the results

of Theorem 4, we calculate the quantities in equations (1) - (5b) on page 711 of Cordeiro et

al. (1994). Letting λ = (β, α, φ, τv , τe) , where τv = σ−2
v and τe = σ−2

e , we note that the quan-

tities κij = n−1E
(
∂2L/∂λi∂λj

)
have been already obtained in (31). To obtain the quantities

κi,jk = n−1E
[
(∂L/∂λi)

(
∂2L/∂λj∂λk

)]
and κi,j,k = n−1E [(∂L/∂λi) (∂L/∂λj) (∂L/∂λk)] , we

exploit the Bartlett identities (Bartlett, 1953) to obtain

κi,j,k = 2κijk − ∂κjk

∂λi
− ∂κik

∂λj
− ∂κij

∂λk
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and

κi,jk = −κijk +
∂κjk

∂λi
.

The quantities ∂κjk/∂λi are then calculated using (31). Using the same notation (note, however,

that we define all our cumulants κ to be O (1) whereas Cordeiro et al. (1994) define them to be

O (n)) as in equations (3a) - (5b) of Cordeiro et al. (1994), we get

b10 = −0.5n−1/2C1+O
(
n−1
)
, b11 = n−1/2C1+O

(
n−1
)
, b12 = −0.5n−1/2C1+O

(
n−1
)
, b13 = 0,

b20 = −0.5n−1/2C1+O
(
n−1
)
, b21 = n−1/2C1+O

(
n−1
)
, b22 = −0.5n−1/2C1+O

(
n−1
)
, b23 = O

(
n−1
)

and

b30 = −0.5n−1/2C1 + O
(
n−1
)
, b31 = n−1/2 (C1 + C2) + O

(
n−1
)

b32 = −n−1/2C1 + O
(
n−1
)
, b33 = −0.5n−1/2C1 + O

(
n−1
)
.

The result now follows from equation 2 of Cordeiro et al. (1994).
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Table I. Rejection Rates of LRT for Predictive Regressions with 5% Nominal Rate

β = 0, σ2
v = σ2

u = 1

φ -.5 -.98

α n 50 100 200 400 50 100 200 400

.90 .0680 .0620 .0532 .0528 .1127 .0838 .0690 .0604

.95 .0784 .0696 .0580 .0546 .1570 .1149 .0843 .0696

.99 .0904 .0882 .0791 .0639 .3114 .2392 .1748 .1260
.995 .0946 .0936 .0897 .0713 .3629 .3095 .2370 .1700

Table II. Rejection Rates of RLRT for AR(1) Processes

intercept intercept & trend

α 10% 5% 1% 10% 5% 1%

.9 .1025 .0504 .0112 .1026 .0499 .0106

.95 .1006 .0505 .0112 .0903 .0435 .0091

.99 .0847 .0404 .0095 .0927 .0442 .0088

.995 .0827 .0403 .0091 .0927 .0437 .0089

Table III. Mean and Standard Deviation of β̂: c = 1

β = 0, α = 1 − c/n , φ = −.98, σ2
v = σ2

u = 1

innovations Gaussian errors t5 errors

n α β̂
OLS

β̂
REML

β̂
OLS,c

β̂
REML,c

β̂
OLS

β̂
REML

β̂
OLS,c

β̂
REML,c

50 .98 bias .0945 .0484 .0164 .0097 .0953 .0491 .0173 .0105
s.d. .0841 .0789 .0884 .0821 .0839 .0785 .0883 .0817

100 .99 bias .0486 .0247 .0094 .0052 .0491 .0254 .0010 .0059
s.d. .0436 .0401 .0447 .0409 .0442 .0408 .0453 .0416

200 .995 bias .0245 .0124 .0049 .0027 .0247 .0125 .0051 .0028
s.d. .0226 .0204 .0228 .0207 .0225 .0206 .0227 .0208

400 .9975 bias .0123 .0061 .0025 .0012 .0126 .0065 .0028 .0016
s.d. .0114 .0104 .0114 .0104 .0114 .0104 .0114 .0105

7Tables I, II and III are based on 10,000 replications.

43



Table IV. Mean and Standard Deviation of β̂: c = 5

β = 0, α = 1 − c/n , φ = −.98, σ2
v = σ2

u = 1

innovations Gaussian errors t5 errors

n α β̂
OLS

β̂
REML

β̂
OLS,c

β̂
REML,c

β̂
OLS

β̂
REML

β̂
OLS,c

β̂
REML,c

50 .90 bias .0796 .0370 .0058 .0011 .0811 .0389 .0074 .0031
s.d. .0927 .0927 .0981 .0965 .0926 .0933 .0980 .0971

100 .95 bias .0424 .0199 .0043 .0011 .0427 .0206 .0047 .0018
s.d. .0493 .0482 .0506 .0492 .0492 .0489 .0506 .0499

200 .975 bias .0219 .0103 .0026 .0007 .0222 .0109 .0029 .0014
s.d. .0255 .0247 .0258 .0249 .0256 .0252 .0260 .0255

400 .9875 bias .0110 .0051 .0013 .0002 .0113 .0056 .0015 .0007
s.d. .0132 .0128 .0133 .0128 .0129 .0127 .0129 .0128

Table V. Rejection Rates, Simulation Mean and Variance of RLRT – univariate regressor

β = 0, α = 1 − c/n , φ = −.98, σ2
v = σ2

u = 1

c = 1 c = 5

Gaussian t5 Gaussian t5

n α 5% 1% 5% 1% α 5% 1% 5% 1%

50 .98 .0445 .0084 .0449 .0092 .90 .0506 .0100 .0519 .0131
100 .99 .0444 .0095 .0504 .0101 .95 .0472 .0093 .0548 .0123
200 .995 .0429 .0093 .0456 .0104 .975 .0460 .0103 .0533 .0134
400 .9975 .0443 .0108 .0473 .0097 .9875 .0497 .0103 .0550 .0136

Table VI. Sizes of Campbell Yogo procedure

β = 0, α = 1 − c/n , φ = −.98, σ2
v = σ2

u = 1

c = 1 c = 5 c = 20

5% 2.5% 5% 2.5% 5% 2.5%
n 2-side 1-side 2-side 1-side 2-side 1-side

100 .0647 .0604 .0724 .0590 .0999 .0541
200 .0572 .0519 .0664 .0496 .0758 .0325
400 .0490 .0433 .0586 .0406 .0670 .0302

8Tables IV, V and VI are based on 10,000 replications.
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Table VII. Rejection Rates for Testing H0 : β = 0

True β = b/n
√

1 − φ2, φ = −.98, α = 1 − c/n, 5,000 replications

b = 0 b = 25 b = 50

c n RLRT J&M RLRT J&M RLRT J&M

0 100 .0852 .0462 1.000 .7718 1.0000 .9852
200 .0880 .0544 1.000 .7846 1.0000 .9940
400 .0860 .0448 1.000 .7906 1.0000 .9992

1 100 .0556 .0506 .9982 .4796 1.0000 .9990
200 .0530 .0522 .9984 .4688 1.0000 .9990
400 .0496 .0500 .9980 .4680 1.0000 .9996

5 100 .0552 .0492 .3300 .0782 1.0000 .5454
200 .0500 .0500 .3386 .0828 1.0000 .5352
400 .0486 .0568 .3328 .0886 .9988 .5124

10 100 .0566 .0560 .1612 .0724 .6508 .1110
200 .0488 .0500 .1598 .0650 .6932 .1016
400 .0456 .0570 .1690 .0728 .7082 .1044

20 100 .0530 .0610 .1162 .0646 .3180 .0784
200 .0496 .0570 .1072 .0634 .3066 .0770
400 .0474 .0622 .1088 .0684 .3196 .0804

Table VIII. Rejection Rates for Testing H0 : β = 0

True β = b/n
√

1 − φ2, α = 1 − c/n, n = 1, 000, 500 replications

c 0 5 10 15

φ b RLRT J&M RLRT J&M RLRT J&M RLRT J&M

−.5 0 .058 .054 .046 .058 .042 .042 .048 .066
5 .516 .424 .240 .102 .170 .076 .130 .080

10 .898 .826 .644 .338 .450 .180 .340 .154
15 .984 .946 .914 .702 .782 .392 .650 .230

.5 0 .052 .046 .050 .036 .044 .018 .048 .022
5 .368 .412 .195 .132 .146 .054 .110 .040

10 .754 .602 .526 .220 .402 .122 .306 .088
15 .922 .720 .780 .274 .634 .196 .546 .082
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Table IX. Mean and Variance of β̂ – bivariate regressor

β = 0, φ = c(−80,−80), σ2
e = 1.

diagA (.95, .80) (.95, .95)

ρv β̂1,OLS β̂2,OLS β̂1,REML β̂2,REML β̂1,OLS β̂2,OLS β̂1,REML β̂2,REML

0 bias 1.8375 2.0377 0.7480 0.6828 2.1131 2.1399 0.7579 0.7653
s.d. 3.3518 5.4121 2.3268 3.6798 3.5761 3.6521 2.3144 2.4042

.5 bias 2.4394 1.2751 0.6125 0.7532 2.1007 2.1479 0.7012 0.7411
s.d. 4.3870 7.1407 2.0053 3.2747 5.0234 5.1596 2.0516 2.1255

.9 bias 3.9979 -1.2468 0.3587 0.5306 2.0745 2.1766 0.6291 0.6384
s.d. 6.5038 10.1373 1.2865 2.1064 11.4054 11.5401 1.6685 1.6961

Table X. Rejection Rates, Simulation Mean and Variance of RLRT– bivariate regressor

β = 0, φ = c(−80,−80), σ2
e = 1.

diagA (.95, .80) (.95, .95)

ρv 5% 1% 5% 1%

0 .0494 .0106 .0554 .0124
.5 .0536 .0112 .0558 .0132
.9 .0572 .0122 .0548 .0104

9Tables IX and X are based on 10,000 replications.
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Q−Q Plots: simulated RLRT vs. theoretical  χ1
2

10,000 repetitions

n = 50 n = 100 n = 200 n = 400

c 
=

 5
c 

=
 1

Figure 3: QQ plots of RLRT from simulations of 10,000 repetitions with n = 50, 100, 200 and 400.
The vertical dashed lines are the 99th percentile of χ2

1. Data are generated from Yt = βXt−1 +ut,
where β = 0, Xt = αXt−1 + vt with α = 1 − c/n with c = 1, 5, and corr(vt, ut) = −.98.
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5,000 repetitions, n = 200

α 1
1

=
0.

95
, α

22
=

0.
8

α 1
1

=
0.

95
, α

22
=

0.
95

ρv = 0 ρv = 0.5 ρv = 0.9

Figure 4: QQ plots of LRT from simulations of 5,000 repetitions with n = 200. The vertical
dashed lines are the 99th percentile of χ2

2. Data are generated from Yt = β′Xt−1 + ut, where
β = 0, Xt = AXt−1 + vt with A = diag(α11, α22)′ and ρv = 0, .5 and .9.
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