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Abstract

Background Risk and Trading in a Full-Information Rational
Expectations Economy

In this paper we assume that investors have the same information, but trade due to the
evolution of their non-market wealth. In our formulation, investors rebalance their portfolios
in response to changes in their expected non-market wealth, and hence trade. We assume an
incomplete market in which risky non-market wealth is non-hedgeable and independent of
the market risk and thus represents an additive background risk. Investors who experience
positive shocks to their expected wealth buy more stocks from those who experience less
positive shocks.
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1 Introduction

It has long been a challenge for financial economists to explain trading in the context of
rational expectations asset pricing models. For example, in the complete markets Arrow-
Debreu model, agents choose state-contingent claims on the initial date, but do not trade
at subsequent dates, since they have already purchased claims that hedge against various
future outcomes; thus, there is no need for them to adjust their portfolio holdings as the
state of the world is revealed. This inability to explain trading in a rational model flies
in the face of evidence that there is a large volume of trading in various securities: bonds,
stocks, and increasingly in various types of contingent claims, such as options and futures
contracts.

Several attempts have been made in the literature in the past to explain trading by relaxing
some of the assumptions of completeness of markets and information available to agents in
the economy. One possibility is that when investors have asymmetric information, this gives
them an incentive to trade in order to profit from that information. However, as Grossman
and Stiglitz (1980) point out, the mere act of trading reveals the information possessed
by a particular agent and this gets reflected in market prices. While there may be some
“sand in the gears” introduced if the process of expectations formation is noisy, the central
intuition that prices reflect private information still prevails, reducing the motivation to
trade substantially.

This argument was taken one step further by Milgrom and Stokey (1982) who argue that
when the agents begin with a Pareto optimal allocation relative to their prior beliefs, they
do not trade upon receiving private information, even at equilibria that are less than fully
revealing, since “the information conveyed by price changes swamps each traders private
information.” This surprisingly general result arises because if the initial allocation is Pareto
optimal, there is no valid insurance motive for trading. The willingness of other traders to
take the opposite side implies at least to one trader that his own bet is unfavorable. Hence
no trade is acceptable to all traders. The Milgrom and Stokey propositions rely on two
crucial assumptions: a) that it is common knowledge that when a trade occurs it is feasible
and acceptable to all agents, and b) the agents beliefs are concordant, i.e., that they agree
about how the information should be interpreted.

Another strand of the literature that has provided a motivation for trading is on market
micro-structure, most prominently by Kyle (1985) and Glosten and Milgrom (1985). These
models try to explain the bid-offer spread in markets by appealing to asymmetric informa-
tion. However, a crucial assumption in such models is the existence of noise traders, who
trade for liquidity reasons, and these are not explicitly modeled. Furthermore, it is unclear
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why in such models, investors trade for liquidity reasons in risky securities such as stocks,
rather than trading bonds, unless some market imperfection is assumed. In the Milgrom
and Stokey sense, it must be the case that the allocation in these models is not ex-ante
Pareto optimal, and/or that the beliefs are not concordant.

The broad conclusion from the information-based literature on trading is that the Milgrom
and Stokey “no-trade” result will obtain, unless there is some market imperfection, signifi-
cant deviation from rational expectations equilibria or an exogenous reason to trade, such
as liquidity motivations.

In this paper, we explore an alternative motivation for trading, which is the existence
of non-marketable wealth. Non-marketable wealth may take many forms, but the most
obvious example is wealth arising from labor income. Human capital, which is the value
of future labor income, has been shown in many studies, both theoretical and empirical,
to have an influence on portfolio demand. Another example is housing wealth, which is a
significant component of the portfolios of households. Again, there is a extensive literature
documenting how housing wealth affects portfolio choice and, in turn, feeds back on to
the equilibrium prices of traded assets. The effect of non-market wealth is that it alters
the agents’ demand for the traded assets. An early example of this distortion is the work
of Bodie, Merton and Samuelson (1992) in the context of non-stochastic, positive non-
marketable wealth for an agent with constant relative risk aversion. They show that this
agent acts much like another agent with a lower, but increasing relative risk aversion.

The problem gets more complex when the non-marketable wealth has stochastic properties.
There is a extensive literature on background risk that studies the portfolio behaviour of
agents with such non-marketable wealth, whose future cash flows are also stochastic. For
most common utility functions, the existence of background risk makes agents more risk
averse and hence reduces their demand for risky securities. [See, for example, Gollier and
Pratt (1996), Kimball (1993) and Eekhoudt, Gollier and Schlesinger (1996).] The natural
question is how the changes in the agents’ portfolio decisions affect the portfolio demand
and sharing rules of the marketable securities in equilibrium, a problem first analyzed by
Franke, Stapleton and Subrahmanyam (1998) [FSS].

We extend this framework to consider a multi-period version of the FSS framework. Fol-
lowing the outcome of the background risk in the intermediate period, agents adjust their
holdings of the marketable securities, to be in line with their new level of derived risk aver-
sion in the presence of the updated distribution of background wealth. If the outcomes of
the background risk are heterogeneous across agents, it creates a motivation for trading,
as different agents may wish to adjust their portfolio holdings in opposite directions. We
explore this simple intuition formally for investors with constant relative risk aversion in
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our analysis.

Section 2 presents the set up of the model and derives the portfolio demand for traded
state-contingent claims. Section 3 describes the evolution of the background risk over time
Section 4 derives optimal demand in the special case where all uncertainty of background
risk is resolved at time 1. Section 5 generalizes the results using an approximation. Section
6 presents our conclusions.

2 Setup of the Model

Our model is an extension of the model in Franke, Stapleton and Subrahmanyam (1998)
[FSS]. In FSS, it is assumed that the agents maximise the expected utility of wealth ,w at
the end of a single period. For agent i, wi = xi + ei, where xi is a set of claims on a single
aggregate market cash flow, Xa and ei is an independent, zero mean background risk. Each
agent solves the following maximization problem:

max
x
E[Ee[u(x+ e)]], s.t. E[φ(Xa)x] = E[φ(Xa)x0], (1)

given an initial endowment of x, x0. In (1), φ(Xa) is the forward pricing kernel. The budget
constraint states that the forward price of the chosen portfolio of claims has to equal the
forward value of the endowed claims. In FSS, agents have utility functions ui(wi) which
belong to the HARA class, excluding the exponential function. Here, we assume essentially
the same setup with

ui(wi) =
w1−γi

i

1− γi
, (2)

where wi = xi +ai +ei. In this formulation, ai is a constant representing the expected value
of non-market wealth. Utility for wealth is a power function, exhibiting constant relative
risk aversion, but the derived utility for xi is of the HARA form, when the background risk
ei does not exist.

Let λi be the Lagrangian multiplier associated with the budget constraint of investor i.
Then, the first order condition of the optimization problem is:

Ee[(xi + ai + ei)−γi ] = λiφ(Xa).

Following Kimball (1990), we can define the precautionary premium ψi by the relation

Ee[(xi + ai + ei)−γi ] ≡ [xi + ai − ψi]−γi (3)
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Hence (xi + ai −ψi)−γi is the certainty equivalent of Ee(xi + ai + ei)−γi . Note that ψi itself
will be a function of xi and also depends on the distribution of ei.

It follows that:
xi = (λi)−1/γiφ(Xa)−1/γi − ai + ψi. (4)

Using the market clearing condition 1
I

∑
i xi = X , where I is the number of agents and

assuming γi = γ for all i, we have:1

X = λ−1/γφ−1/γ −A+ ψ, (5)

where

ψ =
1
I

∑

i

ψi, (6)

A =
1
I

∑

i

ai, (7)

λ−1/γ =
1
I

∑

i

λ
−1/γ
i . (8)

Note that the aggregate ψ is a function of the state indexed by X and it depends also on
the distribution {ei}i=1,...,N .

Solving this we find
φ(X) = (X + A− ψ)−γλ−1. (9)

Now using the no-arbitrage condition that E(φ) = 1 we find

λ = E[(X + A− ψ)−γ ] (10)

and φ(X) =
(X + A− ψ)−γ

E[(X + A− ψ)−γ ]
. (11)

Substituting (10) and (11) into the demand equation (4) , yields

xi = λ
−1/γ
i φ(X)−1/γ − ai + ψi

= λ
−1/γ
i

[
E(X +A − ψ)−γ] 1

γ (X + A− ψ)− ai + ψi. (12)

1It is convenient to define market aggregates in terms of per capita values for the ‘average’ agent, without
loss of generality. Note φ(Xa) can be written φ(X).
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Having solved φ(X) from the market clearing condition, we next solve for λi. Substitute the
solution of xi in (12) above back into the individual budget constraint using the expression
for φ(X):

E[φ(X)xi] = w0,ir,

where w0,i is wealth at time 0 and r is the gross risk-free rate. It then follows [again using
E(φ) = 1] that:

w0,ir = E[φ(λ−1/γ
i φ−1/γ − ai + ψi)]

= λ
−1/γ
i E(φ1−1/γ) − ai +E(φψi).

Then, λi is:

λi = (Eφ1−1/γ)γ [w0,ir + ai −E(φψi)]−γ

= [E(X +A− ψ)1−γ]γ [E(X +A− ψ)−γ]1−γ [w0,ir + ai − E(φψi)]−γ. (13)

Hence, the optimal individual investor demand is:

xi =
E(X + A− ψ)−γ

E(X + A− ψ)1−γ
(X +A− ψ)[w0,ir + ai −E(φψi)]− ai + ψi,

=
E[(X +A − ψ)−γ(x0i + ai − ψi)]

E[(X + A− ψ)1−γ]
(X + A− ψ)− ai + ψi. (14)

The expression for the demand for contingent claims in (14) is complex. If there would
be no background risk for all investors, ψ would be zero and xi linear in X . However, in
general both ψ and ψi are convex functions implying a non-linear demand function. Also,
the optimal demand is implicit since ψi is a function of xi for each i.

3 The Evolution of Background Risk Over Time

So far, we have assumed that agents face a background risk ei which is resolved at the end
of a single period. As in FSS, ei has a zero mean and is independent of the market cash flow,
X . We now introduce a multiperiod model in which the risk, ei, evolves over time. This
is required to study trading volume in the following sections, since trading is essentially an
intertemporal issue.

We begin by assuming for simplicity that wi = xi + ei with ai = 0. Also, E0(ei) = 0 and
ei is independent of X for all i. We now model the background risk ei as the sum of two
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independent, zero-mean random variables:

ei = ξi + ηi, (15)

where the outcome of ξi is determined at t = 1 and the outcome of ηi is determined at t = 2.
In this case the outcome of ξi is the conditional expectation of ei at t = 1. For example, in
the following analysis we assume a simple binomial distribution for ξi, where ξi = ±a with
equal probability. In this case, if ξi = +a, then wi = xi + a+ ηi. Alternatively, if ξi = −a,
then wi = xi − a + ηi. The investor then solves the maximization problem at t = 1, given
the outcome of ξi.

The trading at t = 1 depends on the outcome of ξi for different investors. Without loss of
generality, assume there are just two groups of investors indexed by M and N . For each
group we again suppose that ξi = ±a. Now, if it happens that the outcome ξi is the same
for both groups of investors there will be no trade. However, if for one group ξi = +a and
for the other group ξi = −a, then there will be trade in general.

In the multiperiod model, we need to distinguish the pricing kernel and the precautionary
premium at t = 0 and t = 1 respectively. Let ψi,t, t = 0, 1 be the precautionary premium
for investor i and ψt, t = 0, 1 be the average precautionary premium across investors. Also,
let φt, t = 0, 1 be the pricing kernel for valuation at those dates. We proceed by first
considering a special case where the precautionary premia at t = 1 are zero for all investors.

4 A Special Case: Full Resolution of Background Risk at

Time 1

In this section, we investigate the case where all the uncertainty of ei is resolved at t = 1.
As discussed above, in the general case the demand for contingent claims is an implicit
function. This is due to the fact that the precautionary premium is a function of the
demand itself. However, in the special case where all the uncertainty of ei is resolved at
t = 1, the precautionary premium is zero at time 1. So in this case there is an explicit
solution for the optimal demand at time 1.

We again assume that there are two sets of investors in the economy indexed by M and N .
At time 0, all the investors are identical, and only differ in the resolution of the uncertainty
of ei. Since the investors are identical at t = 1 and since ei has the same distribution for
all i, they must hold the same portfolios at t = 0. That implies that the initial demand
xi = X , since X is the average alloction of claims across investors. Now we assume again
that ξi has two outcomes ξi = ±a.
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At t = 1, there will be two situations depending on the realization of ξi, (i = M,N) as
discussed above:

• Homogeneous case: (ξM , ξN) = (±a,±a). In this case all investors are in the same
situation at t = 1. The average per capita realization of background risk is A =
1
2(ξM + ξN ) = (±a). Again, because of symmetry, each set of agents will hold the
same amount of contingent claims x1i = X, i = M,N .

Since all background risk is resolved at t = 1, the precautionary premia, ψi,0 and ψ0

are zero. It follows that the pricing kernel at t = 1 is:

φ1(X) =
[(X ± a)−γ ]
E1[(X ± a)−γ ]

.

and there is no trading volume.

• Heterogeneous case: In this case, the outcomes of ξi differ between the two sets
of agents. We assume (ξM , ξN) = (±a,∓a). The average per capita realization of
background risk is A = 1

2(ξM + ξN ) = 0. Again ψ1 = 0.

Let us consider the case when (ξM , ξN) = (a,−a). The case where (ξM , ξN) = (+a, a)
is similar.

According to the general demand equation(14), the demands of two types of investors
at t = 1 are:

x∗1M = E1[X
−γ(X+a)]

E1[X1−γ ]
X − a = X + aE1[X

−γ ]
E1[X1−γ ]

X − a, (16)

x∗1N = E1[X
−γ(X−a)]

E1[X1−γ ]
X + a = X − aE1[X

−γ ]
E1[X1−γ ]

X + a. (17)

It follows that the trading volume is then:

|∆| =
∣∣∣∣∣
aE1[X−γ ]
E1[X1−γ]

X − a

∣∣∣∣∣

The above equation has an intuitive interpretation. If there exists a stock which pays
of average per capital endowment X , then with the revelation of the background risk
a, the average trading volume will be aE1(X−γ)/E1(X1−γ) shares. The additional
−a term is because investors cannot use the revealed expected income a to buy the
shares. So instead the investor has to trade a dollars worth of risk-free bond to offset
the trading of shares.
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To confirm this, note the pricing kernel at time t = 1 is:

φ1 =
X−γ

E1(X−γ)
.

So the total value of aE1(X−γ)/E1(X1−γ) shares is:

E1

(
φ1
aE1[X−γ]
E1[X1−γ]

X

)
=

aE1[X−γ]
E1[X1−γ]

E1 (φ1X)

=
aE1[X−γ]
E1[X1−γ]

E1

(
X−γ

E1(X−γ)
X

)

= a.

The trading volume in the heterogeneous case is a linear function of the average per capita
endowment. A straightforward extension of the above analysis shows that what is really
needed is A = 0. In other words, as long as there is no aggregate growth in background risk,
the trading volume will be a linear function of the average per capita endowment regardless
of the number of states.

In the above setup, there are just two extreme outcomes: either there is aggregate (positive
or negative) increase in expected non-market wealth and a homogeneous background risk
shock, or there is no aggregate increase in expected non-market wealth and a heterogeneous
shock. In general (with multiple states), there will exist situations that there are both
aggregate changes in background wealth and agents are heterogeneous. In this case, the
trading volume may not be a linear function of average per capital endowment.

5 The General Case

As we saw earlier, in the general case where there is unresolved background risk at time
1 the optimal demand cannot be solved analytically. The demand xi depends on the pre-
cautionary premium, which in turn depends on the demand. We solved the problem above
by considering a special case. We now analyse the general case, but with the use of an
approximation.

We start with an approximation for ψi. From equation (3)

Ee(xi + ai + ei)−γ ≡ (xi + ai − ψi)−γ
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Taking the Taylor expansion for the left hand side we have

Ee(xi + ai + ei)−γ = (xi + ai)−γEe

(
1 +

ei
xi + ai

)−γ

≈ (xi + ai)−γEe

[
1 − γ

ei
xi + ai

+
γ(γ + 1)

2

(
ei

xi + ai

)2
]

= (xi + ai)−γ

[
1 +

γ(γ + 1)σ2
ei

2(xi + ai)2

]
.

where, in the last step, we use the assumption that Eei = 0.

Reversing the two sides, we can write:

(xi + ai − ψi)−γ = (xi + ai)−γ

[
1 +

γ(γ + 1)σ2
ei

2(xi + ai)2

]

and hence

xi + ai − ψi = (xi + ai)

[
1 +

γ(γ + 1)σ2
ei

2(xi + ai)2

]−1/γ

≈ (xi + ai)

[
1 −

γ(γ + 1)σ2
ei

2(xi + ai)2

]

= xi + ai −
(1 + γ)σ2

εi

2(xi + ai)
.

Which yields the approximate result for ψi:

ψ ≈
(1 + γ)σ2

εi

2(xi + ai)
.

Thus we have an approximate solution for ψi as a function of xi. As we can see, it satisfies
all the properties for the precautionary premium, ψi, as stated in FSS:

ψi > 0,
∂ψi

∂x
< 0,

∂2ψi

∂x2
> 0, (18)

∂ψi

∂σ
< 0,

∂2ψi

∂σ∂x
< 0,

∂3ψi

∂σ∂x2
> 0. (19)

Also the approximation has additional implications with respect to the constant mean
change in ai:

∂ψi

∂a
< 0,

∂2ψi

∂a2
> 0 (20)
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Finally, the cross relationships on σ and ai are similar to those on σ and xi.

Using the approximation for ψi, we now proceed to derive the optimal demand. Assuming
that the the agent i has wealth w0,i:

xi = (Eφ1−1/γ)−1φ−1/γ [w0,iR+ ai −E(φψi)]− ai + ψi (21)

= βφ−1/γw0,iR+ (βφ−1/γ − 1)ai +
(1 + γ)σ2

ei

2

(
1

xi + ai
− βφ−1/γE

φ

xi + ai

)
(22)

where
β ≡ (Eφ1−1/γ)−1. (23)

.

Another way of writing the above demand function is:

xi + ai = βφ−1/γ(w0,ir + ai) +
(1 + γ)σ2

ei

2

[
1

xi + ai
− βφ−1/γE

φ

xi + ai

]
(24)

Note that the expectation is here taken only with respect toX because ψi takes into account
of the expectation with respect to ei.

As in FSS, the optimal demand can be decomposed into three parts. The first term indicates
that as Wi increases, agents increase their holdings for all contingent claims proportionally.
This is consistent with prior literature. When agents are initially endowed with more wealth,
agents become less risk-averse and invest more in the contingent claims. The second term
is the demand due to the existence of the income ai. Again the investors will regard the
income as if given, then subtract the sure amount from each contingent claim. The third
term is the non-linear demand from the background risk.

The general case with unresolved background risk ηi cannot be solved analytically. Thus
we will use the approximation formula derived earlier. The basic idea is to approximate to
the order of σ2

η and ignore all the higher order terms.

Recall the optimal demand of an agent, say M, at t = 1 is:

x1M =
E1[(X − ψ1)−γ(X + a− ψ1M)]

E1[(X − ψ1)1−γ ]
(X − ψ1) − a + ψ1M , (25)

where

ψ1M =
(1 + γ)σ2

η

2(x1M + a)
.
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For convenience, define:

Y ≡ x1M + a (26)
Z ≡ x1N − a. (27)

We further define:

Y ∗ ≡ x∗1M + a = E1[X
−γ(X+a)]

E1[X1−γ ]
X (28)

Z∗ ≡ x∗1N − a = E1[X
−γ(X−a)]

E1[X1−γ ] X, (29)

where x∗1M , x
∗
1N are the optimal demand in the special case discussed above.

Then the above optimal demand function becomes:

Y =
E1[(X − ψ1)−γ(X + a− ψ1M)]

E1[(X − ψ1)1−γ ]
(X − ψ1) + ψ1M ,

where

ψ1M =
(1 + γ)σ2

η

2Y
.

Furthermore, the average ψ is:

ψ1 =
1
2
(ψ1M + ψ1N) =

(1 + γ)σ2
ηX

2Y Z

First, we look at the terms in the pricing kernel using the above definition of Y and Z:

(X − ψ1)−γ =
[
X − (1+γ)σ2

η

2
X

Y Z

]−γ

= X−γ

[
1− (1+γ)σ2

η

2Y Z

]−γ

≈ X−γ

[
1 + γ(γ+1)σ2

η

2Y Z

]
,

where the last step we use the approximation that σ2
η/(Y Z) is small.

Similarly we obtain the approximation:

(X − ψ1)1−γ ≈ X1−γ

[
1−

(1− γ2)σ2
η

2Y Z

]
.
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Thus:

1

E1

{
X1−γ

[
1 − (1−γ2)σ2

η

2Y Z

]} ≈ 1
E1(X1−γ)





1 +
E1

[
(1−γ2)σ2

ηX1−γ

2Y Z

]

E1(X1−γ)





Substituting these into the optimal demand function, it follows:

Y = Y ∗ + (1+γ)σ2
η

2

(
B1YX +B2Y

1
X

)
(30)

Z = Z∗ + (1+γ)σ2
η

2

(
B1ZX + B2Z

1
X

)
, (31)

where B1Y , B2Y , B1Z , B2Z are constants. Equations (30) and (31) and the associated con-
stants are derived in the appendix.

The effect of remaining unresolved uncertainty in background risk involves trading in both
stock, bond and derivatives. The extent of the trade in derivatives depends crucially on the
size of the coefficient B2,Y (and B2,Z).

6 Conclusion

There is an extensive literature on background risk, which arises from stochastic cash flows
generating non-marketable wealth. Since this risk cannot be directly hedged, it affects the
derived risk aversion of the individual agent. Generally speaking, as documented by several
researchers and synthesized by Gollier (2001), in the presence of background risk, agents
generally become more risk-averse in their derived utility functions, and thus, behave like
a more risk-averse agent would, in the absence of such a risk. This, in turn, influences the
demand for insurance.

There has been rather less attention devoted to the pricing of securities and sharing rules
in equilibrium, when agents in the economy face background risk. A notable early paper is
by FSS, who analyze the equilibrium in such an economy, and derive the portfolio demand
of individual agents in this equilibrium. The agents take into account their non-marketable
background risk in optimally determining their demand for the marketable assets. Specifi-
cally, FSS show that agents with background risk depart from the linear sharing rule that
characterizes behavior in complete markets, and may buy or sell non-linear contingent claims
such as options.
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In this paper, we take the presence of background risk and its influence on risk taking in
a different direction. We explore how the prices of assets are determined in equilibrium by
the interplay of portfolio demands across agents in the economy, which take into account
the background risks they face. If the agents face different background risks, it is reasonable
to expect that their portfolio demands will differ: this is the argument first made by FSS.
We extend this argument to the multi-period setting and derive the changes in the portfolio
demand of different agents as the background risk is revealed over time. To the extent that
these changes differ across agents, it establishes a motive for trading, even in the presence
of symmetric (full) information across agents.

The equilibrium we obtain turns out to be fairly complex, since portfolio demands depend
on the changed derived risk aversion of agents in the presence of background risk, which
in turn, depends on the portfolio holdings. We break this circularity by considering special
cases of the evolution of background risk, as well as by using some approximations. We
confirm these results by numerical computations.

We have thus been able to derive a theory of trading in the presence of full information,
without running afoul of the powerful no-trade results of Grossman and Stiglitz (1980) and
Milgrom and Stokey (1982) in the context of asymmetric information models. We believe
our theory can be extended in several directions to separate the trading in linear (stocks
and bonds) versus non-linear (options) claims. Potentially, our theory is testable, if one can
quantify the influences of background risks such as human and housing wealth. This could
be of interest to researchers in asset pricing, where the focus is mainly on returns, but could
also be related to the aspects of trading analyzed in this paper.
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7 Appendix: Derivation of Demand Equations: The General

Case

In this appendix, we derive the demand equations in the general case [equations (30) and
(31)].

Substituting the approximations:

(X − ψ1)−γ ≈ X−γ

(
1 +

γ(γ+ 1)σ2
η

2Y Z

)
,

(X − ψ1)1−γ ≈ X1−γ

(
1 −

(1 − γ2)σ2
η

2Y Z

)
,

1

E1

[
X1−γ

(
1 − (1−γ2)σ2

η

2Y Z

)] ≈ 1
E1[X1−γ]





1 +
E1

(
(1−γ2)σ2

ηX1−γ

2Y Z

)

E1[X1−γ ]





in the demand equation (25) and defining Y ≡ x2,M + a and Z ≡ x2,N − a we have

Y ≈ E1

[
X−γ

(
1 +

γ(γ + 1)σ2
η

2Y Z

)(
X + a−

(1 + γ)σ2
η

2Y

)]
1

E1[X1−γ]


1 +

E1

(
(1−γ2)σ2

ηX1−γ

2Y Z

)

E1[X1−γ]




.

(
X −

(1 + γ)σ2
ηX

2Y Z

)
+

(1 + γ)σ2
η

2Y
. (32)

Then, assuming terms in σ4/Y 2 → 0 we have

Y ≈ E1

[
X−γ

(
X + a+

γ(1 + γ)σ2
η(X + a)

2Y Z
−

(γ + 1)σ2
η

2Y

)]
1

E(X1−γ)
X

.


1 −

(1 + γ)σ2
η

2Y Z
+
E1

(
(1−γ2)σ2

ηX1−γ

2Y Z

)

E1[X1−γ]


+

(1 + γ)σ2
η

2Y

=

{
E1[X−γ(X + a)]

E1[X1−γ]
X +

(1 + γ)σ2
η

2E1[X1−γ ]
X

[
E1

(
γX−γ(X + a)

Y Z

)
−E1

(
X−γ

Y

)]}
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.


1 −

(1 + γ)σ2
η

2Y Z
+

(1 + γ)σ2
η

2

E1

(
(1−γ)X1−γ

Y Z

)

E1[X1−γ]


+

(1 + γ)σ2
η

2Y
(33)

Multiplying out the brackets and with σ4/Y 2 → 0 and σ4/Y Z → 0:

Y ≈ E1[X−γ(X + a)]
E1[X1−γ]

X +
(1 + γ)σ2

η

2E1[X1−γ]
X

[
E1

(
γX−γ(X + a)

Y Z

)
− E1

(
X−γ

Y

)]

−
(1 + γ)σ2

η

2Y Z
E1[X−γ(X + a)]

E1[X1−γ]
X +

(1 + γ)σ2
η

2

E1

(
(1−γ)X1−γ

Y Z

)

E1[X1−γ]
E1[X−γ(X + a)]

E1[X1−γ]
X

+
(1 + γ)σ2

η

2Y
(34)

=
E1[X−γ(X + a)]

E1[X1−γ]
X +

(1 + γ)σ2
η

2E1[X1−γ]

{[
E1

(
γX−γ(X + a)

Y Z

)
− E1

(
X−γ

Y

)
+

E1

[
X−γ(X + a)

] E1

(
(1−γ)X1−γ

Y Z

)

E1[X1−γ]


X −E1[X−γ(X + a)]

X

Y Z
+
E1(X1−γ)

Y



(35)

Finally, the approximate explicit solution is found by substituting Y = Y ∗, Z = Z∗ to
obtain

Y ≈ Y ∗ +
(1 + γ)σ2

η

2E1[X1−γ]

{[
E1

(
γX−γ(X + a)

Y ∗Z∗

)
− E1

(
X−γ

Y ∗

)

+ E1

[
X−γ(X + a)

] E1

(
(1−γ)X1−γ

Y ∗Z∗

)

E1[X1−γ]


X −E1[X−γ(X + a)]

X

Y ∗Z∗ +
E1(X1−γ)

Y ∗





= Y ∗ +
(1 + γ)σ2

η

2

{
B1Y X − E1[X−γ(X + a)]X

E1(X1−γ)Y ∗Z∗ +
1
Y ∗

}

= Y ∗ +
(1 + γ)σ2

η

2

[
B1YX +B2Y

1
X

]
,

where

B1Y =
1

E1[X1−γ]


E1

(
γX−γ(X + a)

Y ∗Z∗

)
− E1

(
X−γ

Y ∗

)
+ E1

[
X−γ(X + a)

] E1

(
(1−γ)X1−γ

Y ∗Z∗

)

E1[X1−γ ]


 ,

B2Y =
E1[X1−γ]

E1[X−γ(X + a)]
− E1[X1−γ]
E1[X−γ(X − a)]

.
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Similarly,

Z = Z∗ +
(1 + γ)σ2

η

2

[
B1ZX + B2Z

1
X

]
,

where

B1Z =
1

E1[X1−γ]


E1

(
γX−γ(X − a)

Y ∗Z∗

)
− E1

(
X−γ

Z∗

)
+ E1

[
X−γ(X − a)

] E1

(
(1−γ)X1−γ

Y ∗Z∗

)

E1[X1−γ ]




B2Z =
E1[X1−γ]

E1[X−γ(X − a)]
− E1[X1−γ]
E1[X−γ(X + a)]

.
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