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Abstract

We study the impact of financial innovations on real investment decisions within the frame-
work of an incomplete market economy comprised of firms, investors, and an intermediary. The
firms face unique investment opportunities that arise in their business operations and can be
undertaken at given reservation prices. The cash flows thus generated are not spanned by the
securities traded in the financial market, and cannot be valued uniquely. The intermediary
purchases claims against these cash flows, pools them together, and sells tranches of primary or
secondary securities to the investors.

We derive necessary and sufficient conditions under which projects are undertaken due to
the intermediary’s actions, and firms are amenable to the pool proposed by the intermediary,
compared to the no-investment option or the option of forming alternative pools. We also
determine the structure of the new securities created by the intermediary and identify how
it exploits the arbitrage opportunities available in the market. Our results have implications
for valuation of real investments, synergies among them, and their financing mechanisms. We
illustrate these implications using an example of inventory decisions under random demand.
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1 Introduction

In the standard paradigm of financial economics, the value of a project is derived from capital market

prices based on the twin assumptions that the cash flows from the project can be replicated in the

financial market and that all agents are price-takers with respect to the market for financial claims.

However, firms often have opportunities that are unique to them and generate future cash flows that

cannot be replicated by transactions in the existing securities in the market. Such opportunities

can include capacity expansion, inventory procurement, new product launches, setting up of new

retail stores and supply chain infrastructure, etc. We collectively call such opportunities as real

investments, real assets or projects, since they involve the creation of physical rather than financial

assets.

When markets are incomplete, the value of a real asset cannot always be uniquely computed

using capital market prices, but only bounds can be placed on its present value. Projects whose

values are unambiguously greater than their reservation prices are financed, and those whose values

unambiguously fall below their respective reservation prices are rejected. However, nothing specific

can be said when the reservation price lies between these price bounds. In such cases, do innovations

in capital markets permit investments in real assets that would otherwise not occur because they are

too costly to finance? In other words, do such innovations impact real investment decisions, aside

from providing arbitrage opportunities to the innovators? Our paper addresses these questions.

Three alternative mechanisms may be responsible for the improved attractiveness of projects as

a result of financial innovations. The first is the effect of the innovation on the amelioration of in-

formation asymmetry between the investors and the entrepreneur/manager of the firm. The second

is a reduction in market frictions, such as transaction costs, as a result of the innovation. The third

is through improved matching of the project cash flows to the needs of investors in various states of

the nature, in the context of an incomplete financial market. The first two mechanisms have been

studied in the literature in a variety of models dealing with financial innovation, financial interme-

diation, or securitization. We focus on the third mechanism, which has not been adequately studied

thus far, using the no-arbitrage principle without making explicit assumptions about transaction
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costs or information asymmetry. Moreover, while models in the literature describe innovation in

the context of existing assets owned by firms, we examine its implications for investment in new

real assets.

The specific financial innovation we consider is securitization, although our framework lends

itself to the analysis of other financial innovations, such as venture capital and private equity.

Since its beginning in the 1970s, the phenomenon of securitization is now widespread in financial

markets: mortgages, credit card receivables and various types of corporate debt instruments have

been securitized using a variety of alternative structures. The common feature of these structures

is that an intermediary purchases claims on cash flows issued by various entities, pools these claims

into a portfolio, and then tranches them into marketable securities that cater to the investment

needs of particular clienteles of investors.

To take the example of collateralized debt obligations (CDOs), the basic structure is that

a financial intermediary sets up a special purpose vehicle (SPV) that buys a portfolio of debt

instruments - bonds and/or loans - and adds credit derivatives on individual “names.” This is

referred to as pooling. The SPV then issues various claims against the pooled portfolio, which enjoy

different levels of seniority ranging from a super-senior claim, i.e., a high-grade AAA claim, which

has a negligible probability of not meeting its promised payment, to a medium-grade mezzanine

claim, say rated BBB+, which has a low but non-trivial probability of such default, and finally, to

an equity security, which is viewed as risky. The structuring of claims to match investor tastes and

risk preferences is referred to as tranching and the claims are referred to as tranches.1

In our model, securitization transactions take place among three types of agents, firms, investors,

and financial intermediaries. Firms have opportunities to create unique assets at given reservation

prices, and seek to maximize the time-zero value of these assets. Investors are utility maximizers.

Intermediaries purchase claims from firms that are fully backed by project cash flows, and issue

two types of securities that are sold to investors, those that are within the span of the financial

market (marketable securities), and those that are not spanned by the market (secondary securities).

Throughout our analysis, we assume that all agents are price-takers, i.e., these transactions are not
1This description is a slight simplification of the real structure in practice. See Tavakoli (2003) for details.
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large enough to influence the prices of existing securities traded in the market. In an arbitrage-free

setting, we study whether the transactions undertaken by the intermediary create value for firms

and investors. The value for firms is created by permitting investments in real assets that would not

be undertaken otherwise. The value to investors is created by satisfying demand for consumption

better than by simply trading primary securities in the financial market.

The main results of our paper are as follows. We first consider only pooling. In this setting, the

financial intermediary pools cash flows from the assets of several firms or divisions of a firm, and

issues only such securities as are within the span of the market. Firms may not behave altruistically,

so we allow them to form coalitions with some or all of the other firms in order to seek financing.

Therefore, the outcome of the firms’ decision problem can be modeled as a cooperative game. We

show that the cooperative game results in the creation of a maximal pool of assets. This pool

maximizes the value enhancement provided by pooling, and may or may not consist of all assets

of all firms. We prove a simple condition, given by the set of pricing measures and the cash flows

and reservation prices of new assets, that is necessary and sufficient for a firm to participate in the

game. Thus, we show that pure pooling (sans tranching) can not only provide value enhancement,

but also sustain the synergy through a price mechanism.

We then consider joint pooling and tranching. Through tranching, the intermediary can cus-

tomize securities to the needs of investors. Therefore, we expect pooling and tranching to provide

greater value than pure pooling. We show that the additional value can be characterized using the

structure of securities created by the intermediary. These securities can have up to three compo-

nents; a component that is marketable, a second type that exploits arbitrage opportunities available

in the market due to the intermediary’s special ability to design and sell securities to a subset of

investors, and a third component that is the remainder of the asset pool. The presence or absence

of these three components in the tranching solution has a direct bearing upon the composition of

the asset pool, and therefore, upon value creation due to financing additional projects. We find

that tranching plays a somewhat different role than pooling. While it increases the value of the

projects financed similar to pooling, it could also result in more selective financing. Due to this

effect, the set of viable projects could shrink or expand, when compared to pooling alone.
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Our results imply that the optimal real investment decision of a firm depends on the form of

financing chosen by it. In a complete market, there can be no benefit from pooling and tranching.

The standard approaches of asset pricing and valuation of real options are equivalent to our model

for the pricing of traded assets, but do not show the value of securitization for non-traded assets

in incomplete markets. Thus, the value creation studied in our paper is complementary to the

mechanisms of operational flexibility and operational hedging studied in the operations management

literature since it is based on pricing of non-marketed risks, whereas models of operational flexibility

have generally been studied in the context of a complete market.

Real asset securitization, asset monetization, and off-balance-sheet financing have been used by

many firms in practice. For instance, firms in the pharmaceuticals and credit card industries, as

well as Peoplesoft Corp., General Motors Corp., Ford Motor Company, and Scott Paper Co. have

spun off divisions/subsidiaries as separate companies (Fink (2002), Gorton and Souleles (2005),

Gourdon and Reynolds (2001)). The noted benefits of asset monetization and setting up SPVs

include reduction of debt, reduction of cost of capital, focus on core competency, and increased

ability to invest in additional opportunities. However, these examples relate to selling assets already

owned by a firm or a bank, and thus, do not consider the valuation implications of securitization

on new investments decisions. They also do not consider the optimal composition or the benefits of

pooling and tranching. Our paper focuses on these aspects. Moreover, alternative to securitization,

firms may consider other types of financing for new projects, such as issuance of debt or equity.

Our paper does not evaluate the costs and benefits of these alternative approaches. It only studies

securitization as a form of financing in depth.

This paper is organized as follows: in §2, we review the related literature on incomplete markets

and securitization; in §3, we present the model setup and assumptions; in §4, we analyze the

conditions under which there is value in pooling, and firms willingly participate in the creation of

the asset pool; in §5, we analyze the value in joint pooling and tranching; §6 presents a numerical

example illustrating the results of our paper for a prototypical inventory optimization problem; and

in §7, we conclude the paper with a discussion of the limitations and implications of our analysis.

An appendix compares our model with the capital asset pricing model (CAPM) and also contains
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all the proofs.

2 Literature Review

Several real investment decisions have been studied in the literature in the areas of operations

management and real options, under varying assumptions on asset pricing. Kogut and Kulatilaka

(1994), Huchzermeier and Cohen (1996) and Kouvelis (1999) investigate the effect of exchange rate

uncertainty in a global production/distribution network; Smith and McCardle (1999) analyze real

options in a multi-period oil drilling project; and Birge (2001) determines value maximization for

a multi-period capacity planning model. All these papers assume market completeness and risk

neutral decision-makers. Another set of papers, Buzacott and Zhang (2004), Li et al. (2005) and

Birge and Xu (2005), characterize the interaction between operational and financial decisions in the

context of market frictions such as bankruptcy and costly debt. Several other papers apply pref-

erence based valuation to study operational and financial hedging for risk-averse decision-makers;

these include Van Mieghem (2003), Gaur and Seshadri (2005), Dong and Liu (2007), and Ding et

al. (2007).

Our paper contributes to this research by examining real investment decisions in incomplete

markets, without making assumptions about market frictions or preference-based valuation. Thus,

in our model, firms face the problem of ambiguous valuation of future cash flows. We study

how pooling and tranching provide value enhancement and affect real investment decisions under

uncertainty. In this way, our paper differs from the literature cited above by considering market

incompleteness as a source of interaction between operational and financial decisions. We show

that market incompleteness affects operational decisions because the value of such decisions may

no longer be additive, and this is a key input for stochastic optimization models.

In the literature on incomplete markets, three approaches have been adopted for pricing con-

tingent claims, through bounds based on no-arbitrage, preference-based approaches that impose

restrictions on the utility functions of consumers, and approximate arbitrage-based arguments. We

apply the first approach, i.e., the arbitrage-based pricing approach of Harrison and Kreps (1979).
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In this approach, the assets whose cash flows are not spanned by the existing market do not have a

unique price, but have price bounds based on the no-arbitrage principle because the pricing mea-

sure is not unique, or equivalently, the investors do not have equal marginal utility growth rates in

all states of nature. Cochrane (2001) calls this approach as the discount factor representation, and

shows that it is equivalent to the beta representation as well as the mean-variance representation.

Thus, we are not advocating only this approach. Indeed, one can derive an alternative formula-

tion of our framework in the other two approaches by imposing additional restrictions on investor

preferences or the reward-to-risk ratio in the market. This would require more assumptions, and

thereby, yield more specific conclusions. By using an arbitrage-free framework, the question we are

able to answer is whether an intermediary can enhance the value by pooling assets from different

firms and tranching them for sale to investors.

Examples of the preference-based approach can be found in the literature on option pricing using

preference restrictions, e.g., Perrakis and Ryan (1984), Levy (1985), Ritchken (1985), Ritchken and

Kuo (1989), and Mathur and Ritchken (1999). In this stream of literature, coherent risk measures

are similar to the valuation approach used by us (Artzner et al. 1999). Examples of the approximate

arbitrage-based approach include Shanken (1992), Hansen and Jagannathan (1991), Cochrane and

Saa-Requejo (2000), Bernardo and Ledoit (2000), and Bertsimas et al. (2001). In another approach,

Mayers (1973, 1976) extends the single-period single-factor CAPM framework to the valuation of

non-marketable assets, such as human capital. He shows that the exact valuation of such assets

for an investor introduces into the standard CAPM a second term that measures the correlation of

returns with the non-marketable part of that investor’s portfolio. This and other properties shown

by Mayers are consistent with our model, although they represent particular parameterizations.2

The rationale for the widespread use of securitization in the asset-backed securities market

is largely based on two alternative economic explanations, information asymmetry and market
2In addition, Cerny (1999) studies the minimum martingale measure in the context of no-good-deal bounds

of Bernardo and Ledoit (2000), Geanakoplos and Shubik (1990) study the properties of the CAPM in a general

equilibrium in incomplete markets, and Weil (1994) analyzes the CAPM with a non-traded asset similar to Mayers

(1973).
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frictions such as transaction costs. Several researchers have studied the effect of information asym-

metry between issuers and investors in the context of securitization.3 Pooling and tranching of

assets are considered beneficial to both an informed issuer as well as an uninformed investor. The

benefits to the issuer result from reducing the incentive to gather information (Glaeser and Kallal

1997), reducing liquidity costs (DeMarzo and Duffie 1999), and designing low-risk debt securities

that minimize information asymmetry with investors (DeMarzo 2005). The benefits to the investor

result from the ability to split cash flows into a risk-less debt and an equity claim (Gorton and

Pennacchi 1990), and reducing the adverse selection problem (DeMarzo 2005).

The role of transaction costs is less clear as shown by Allen and Gale (1991). They examine the

incentive for a firm to issue a new security in an incomplete market in the presence of transaction

costs. They study the exchange equilibrium that results after the introduction of the new security.

The main finding is that even if a single firm amongst many similar ones innovates, the new security

results in a readjustment of consumption by investors, which, in turn, leads to a change in asset

prices that may benefit similar firms, thus reducing the incentive of any one firm to innovate.

The above papers based on informational asymmetry and transaction costs do not model the

firms’ decisions to invest in new real assets. Instead, they assume that the assets are given on

the balance-sheets of firms. Our paper differs from these streams of literature in this respect. We

study the optimal design of both the pool and the tranches, and assess the effect of securitization

on real investment. Moreover, we examine market incompleteness as the mechanism for value

enhancement.

We draw upon Allen and Gale (1991) by defining the roles of different types of agents analogous

to their paper. However, our research objectives and approach differ from theirs in significant ways.

First, Allen and Gale study the incentives of one firm to innovate, whereas we study securitization

and the role of intermediaries. Second, they allow short sales of new securities by investors in the
3There is an extensive literature on security design in the context of asymmetric information between “insiders”

and investors, which can be traced back to the signalling model proposed by Leland and Pyle (1977). We mention

here only those papers that are directly related to the securitization of claims by pooling and tranching. DeMarzo

and Duffie (1999) and DeMarzo (2005) provide a more detailed discussion of the broader literature.
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context of a general equilibrium approach. We limit short sales of secondary securities, and apply

a partial equilibrium approach as is standard in asset pricing. Thus, we can obtain more specific

and detailed results, without considering the complex feedback effects that a general equilibrium

analysis would entail. This also enables us to study the effect of intermediation and whether it

helps more firms to undertake investments (or firms to invest in more projects); if investors could

short sell secondary securities, then investors could also intermediate. Therefore, we confine the

financial innovation activity to designated financial intermediaries. Lastly, we use a game-theoretic

setting to ensure participation by firms in the formation of the asset pool.

3 Model Setup

We consider an Arrow-Debreu economy in which time is indexed as 0 and 1. The set of possible

states of nature at time 1 is Ω = {ω1, ω2, . . . , ωK}. For convenience, the state at time zero is denoted

as ω0. All agents have the same informational structure: The true state of nature is unknown at

t = 0 and is revealed at t = 1. Moreover, the K states are a complete enumeration of all possible

events of interest, i.e., the subjective probability of any decision-maker is positive for each of these

states and adds up to one when summed over all the states. Our model can be extended to a

multi-period setting with some added complexity in the notation. However, the basic principles

and results derived would still obtain.

3.1 Securities Market

Our pricing assumptions are equivalent to standard models in the literature on asset pricing as

discussed in §2. Identical pricing assumptions are also set out by Ekern and Wilson (1974), Magill

and Quinzii (2002), and Pliska (1997).

We start with a market in which N primary securities are traded via a financial exchange.

Security n has price pn and payoff Sn(ωk) in state k. These securities are issued by firms and pur-

chased by investors through the exchange. The securities market is arbitrage-free and frictionless,

i.e., there are no transaction costs associated with the sale or purchase of securities. To keep the
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analysis uncluttered, cash flows are not discounted, i.e., the risk-free rate of interest is zero.

From standard theory, the absence of arbitrage in the financial market is equivalent to postu-

lating that there exists a set, Θ, of risk neutral pricing measures over Ω under which all traded

securities are uniquely priced, i.e., Eq[Sn] = pn, for all n and for all q ∈ Θ. It is well known that

the set Θ is spanned by a finite set of independent linear pricing measures.4 We label them as

{ql, l = 1, . . . , L}. In particular, when the set Θ is a singleton, the market is complete, else it is

incomplete.

Not every claim can be priced uniquely in an incomplete market. When a claim cannot be

priced uniquely, the standard theory provides bounds for the price of a claim Z that pays Z(ωk)

in state k. Let V −(Z) = max{E[S] : S ≤ Z, S is attainable}, and let V +(Z) = min{E[S] : S ≥

Z, S is attainable}. V −(Z) and V +(Z) are well-defined and finite, and correspond to the lower

and upper bounds on the price of the claim Z on the set Θ. Given that Θ is spanned by a finite

set of independent linear pricing measures labeled {ql, l = 1, . . . , L}, this can be formalized in the

following Lemma.

Lemma 1. (i) V +(Z) = maxl∈LEql [Z].

(ii) V −(Z) = minl∈LEql [Z].

(iii) If the payoffs from the claim Z(ωk) are non-negative in all states, then these bounds are

unaffected by the inability of agents to short sell securities.

This lemma is needed for several proofs in the Appendix as well as for models in §4 and §5.

3.2 Agents

We consider three types of agents in our model: investors, firms, and intermediaries. Investors are

utility maximizers. Their decision problem is to construct a portfolio of primary securities (subject

to budget constraints), so as to maximize expected utility. Investors can buy or sell primary
4A linear pricing measure is a probability measure that can take a value equal to zero in some states, whereas

a risk neutral probability measure is strictly positive in all states. Thus, the set Θ is the interior of the convex set

spanned by the set of independent linear pricing measures. The maximum dimension of this set equals the dimension

of the solution set to a feasible finite-dimensional linear program, and thus, is finite. See Pliska (1997).
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securities, but cannot issue securities or short secondary securities. Firms own (real) assets and

issue primary securities that are fully backed by the cash flows from these assets. Firms can also

create new assets and sell claims against the cash-flows from these assets to intermediaries.5 They

negotiate with intermediaries to get the highest possible value for their assets that is consistent with

the prices prevailing in the financial market. Intermediaries facilitate transactions between firms

and investors by repackaging the claims purchased from the firms and issuing secondary securities

traded on the over-the-counter securities market.

We stipulate that the claims sold by firms to the intermediaries are fully backed by their asset

cash flows, and the claims issued by the intermediaries are fully backed by the assets purchased

from firms. We do not allow short sales of secondary securities or tranching of primary securities by

intermediaries or investors. These assumptions have a few advantages in our analysis. First, since

there are many reasons for the existence of intermediaries in practice, our assumptions enable us to

isolate the roles of the three types of agents, and explicitly study the phenomenon of securitization

through the intermediaries. Second, they enable us to avoid profits that can arise in an incomplete

market from tranching existing securities. The value creation in our model is instead due to the cash

flows of new projects. This matches the construction of standard asset-backed CDOs, as opposed

to synthetic CDOs. With synthetic CDOs, there can be an opportunity to complete the market,

leading to a new equilibrium, in which no specific conclusions about value creation can be obtained.

In our model, secondary securities cannot be sold short, and we apply the “small firm” argument.

Thus, the creation of secondary securities has a negligible effect on the prices of primary securities,

and we avoid getting into the computation of a new general equilibrium.6 A third reason for these
5The new assets created by firms may also include assets that are already in place, but not yet securitized. For

example, the loans made by a bank that are presently held on the asset side of its balance sheet may be candidates

for securitization in a collateralized loan obligations structure. The bank would be a “firm” in the context of our

model. In these cases, of course, the decision to acquire the assets in question has already been made and, to that

extent, part of the analysis in this paper would not apply directly.
6In practice, borrowing and shorting secondary securities would require a liquid market for borrowing and lending

in these securities, with modest transaction costs. Such a market might not exist particularly since the tranches are

“bespoke,” making it difficult to engage in short sales of illiquid securities.
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assumptions is to avoid transactions that permit default in some states, because that would lead

to complex questions relating to bankruptcy and renegotiation, which are outside the purview of

this paper.

We describe the decision making problems of the various agents as below:

Investors: We model investors by classifying them into a finite set of investor types denoted I. The

utility derived by type i investors is given by a von Neumann-Morgenstern function Ui : <×< → <+.

Ui is assumed to be concave, strictly increasing, and bounded above. Investors maximize their

expected utility subject to the constraint that consumption is non-negative in every state.

For each type i investor in state k, let ei(ωk) denote the investor’s endowment, xik denote the

consumption, and Pi(ωk) be the subjective probability of state k. Also, let the portfolio of primary

securities held by a type i investor be denoted as the N -tuple of real numbers (αi1, αi2, . . . , αiN ),

where αin is the amount of security n in the portfolio. The investor derives expected utility equal

to
∑K

k=0 Pi(ωk)Ui(xi0, xik). The type i investor’s decision problem can be written as

max
{∑K

k=0 Pi(ωk)Ui(xi0, xik) :

xik = ei(ωk) +
∑N

n=1 αinSn(ωk), ∀ k = 1, 2, . . . ,K,

xi0 = ei(ω0)−
∑N

n=1 αinp(n), xik ≥ 0, ∀ k = 0, 1, 2, . . . ,K.
}

The first constraint equates the consumption in each state at time 1 with the cash flow provided

by the portfolio and the endowment. The second specifies the budget constraint for investment in

primary securities at time 0. The third constraint specifies that the cash flow in each state at time

1 should be non-negative.

We denote the derivatives of Ui with respect to xi0 and xik, k ≥ 1, as Ui1 and Ui2, respectively.

We shall assume, as customary, that the current period consumption is strictly bounded away from

zero for investor types. It follows that, at optimality,

K∑
k=1

Pi(ωk)
Ui2(xi0, xik)∑K

k=1 Pi(ωk)Ui1(xi0, xik)
Sn(ωk) ≤ pn.

Here, we obtain an inequality because of the restriction on consumption. The choice of the zero for

the minimum consumption level is arbitrary, and could be changed to any other level of consumption

that an investor type is loathe to fall below. The same effect is produced by short sales restrictions
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placed on individual investors. The inequality suggests that, in state k, type i investors are willing

to buy an infinitesimal amount of consumption at a price, mik given by

mik = Pi(ωk)
Ui2(xi0, xik)∑K

k=1 Pi(ωk)Ui1(xi0, xik)
.

These values are called the (personal) state prices of investors. We require that each security

is present in the optimal portfolio of at least one investor type. If no restrictions are placed on

consumption levels or short sales of primary securities, then the state prices of each investor type

will belong to the set Θ.

Due to market incompleteness, the state prices for an unspanned state may differ amongst

investor types. An investor of type i is willing to buy not only consumption that is specific to state

k, but also secondary securities issued by the intermediary if the price of the secondary security is

below that given by valuing its state dependent cash flows, using the investor’s state prices. We

require at least two investor types in our model, otherwise the state prices of all investors will be

identical and will give a single pricing measure even though the market is incomplete; see Cochrane

(2001: Chapter 3) for a discussion of investors’ state prices and risk-neutral pricing measures. We

do not require the set of investor types to be fully specified or the intermediary to have access to

all investor types.

Firms: Let J denote the number of firms that wish to undertake investment projects at time 0.

Each firm maximizes the time 0 expected value of its investments. Firm j can create an asset Xj

that is unique to it. The asset provides a positive cash flow of Xj(ωk) in each state k, at time

t = 1. The firm can sell claims issued against Xj to the intermediary. Recall that we require that

claims issued against Xj should be fully backed by Xj ; in other words, the sum promised should

not exceed the cash flow from Xj in any state of nature. We assume that firm j has a reservation

price rj on Xj . The reservation price is exogenous. It includes financial, physical, and transaction

costs incurred at time 0, such as due to use of labor inputs for implementing the new project.

It could also include opportunity costs of the key decision-makers of the firm that are required to

create the asset. The firm invests in the asset if the net present value, determined by subtracting its

reservation price from the selling price of future cash flows offered by the intermediary, is positive.
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Note that, in incomplete markets, the firm’s objective is unclear because it is difficult to concep-

tualize unanimity of shareholders in valuing future cash flows.7 Our use of securitization resolves

this problem because the price offered by the intermediary for the cash flows from the asset is paid

at time 0.

We assume that the total cash flow available from this set of firms in any state k,
∑J

j=1Xj(ωk),

is small relative to the size of the economy. Each firm, therefore, behaves as a price-taker in

the securities market. However, when the asset cannot be priced precisely, it negotiates with the

intermediary for obtaining the highest possible price for securitization of the asset. In the rest of

this paper, we use Xj to refer to both the j-th asset and the cash flows from the j-th asset.

Intermediaries: Intermediaries are agents who have knowledge about the firms’ and investors’

asset requirements. Such knowledge is different from receiving a private signal regarding the future

outcome. Hence, intermediaries have no superior information about future cash flows, relative to

other agents in the economy. The intermediaries purchase assets from firms and repackage them

to sell to investors. They seek to exploit price enhancement through securitization operations that

increase the spanning of available securities. They use this superior ability to negotiate with the

firms for the prices of their assets. They use the knowledge about the investors’ preferences to create

new claims and price them correctly. An important aspect of the model is that intermediaries act

fairly by paying the same price for the same asset, independent of which firm is selling it to the

pool, and charging the same price for the same product even though it is sold to different customers.

The rationale for these fairness requirements is the possibility of entry and competition from other

intermediaries. However, we do not explicitly model competition amongst intermediaries beyond

imposing the fairness requirements and the participation constraints by firms that are discussed in

the next section. Hence, in what follows, we consider the securitization problem from the viewpoint

of a single intermediary.

The intermediary purchases claims from firms, pools them, and packages them into different
7See Magill and Quinzii (2002: Chapter 6). The project is new and is not included in the stock price of the firm.

Its value will further depend on the type of financing and the benefits of pooling and tranching, which we seek to

determine.
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tranches, and sells them as collateralized secondary securities. Pooling is defined as combining the

cash flows from claims issued by different firms in a proportion determined by the intermediary.

We do not restrict the intermediary to purchasing only all or none of a firm’s cash flows. Instead,

it can purchase fractions (between 0 and 1) of the available assets. Our results show conditions in

which different types of pooling solutions are obtained. Tranching is defined as splitting the pooled

asset into sub-portfolios to be sold to different groups of investors, with the constraint that the

sub-portfolios be fully collateralized, i.e., fully backed by the claims purchased from the firms. We

assume that the intermediary can sell secondary securities to investors in a subset of the investor

classes, which is denoted as I1 ⊂ I.

Securitization naturally leads to the problem of moral hazard since firms may not have the

incentive to service the cash flows that they have sold to the intermediary. This issue is addressed

in the literature on information asymmetry, such as in DeMarzo (2005). The same results apply

to our model as well, for example, if the firm and/or the intermediary retain an equity tranche

themselves.

4 Value of Pooling

We attribute the beneficial role played by the intermediary to two factors: the value enhancement

provided by pooling alone, and the value provided by tranching. This section considers the former.

We analyze the problem of pooling the cash flows of some or all projects in the available set and

valuing the pooled asset by replicating its cash flows in the securities market. We use the lower

bound, V −(·), as a measure of value, and thus, compute the lowest price at which the pooled

asset can be sold without presenting opportunities for arbitrage. There are several reasons to take

the minimum value representation, V −(·), as a measure of value: First, it is the price at which

the claim can be sold for sure in the market without assuming any knowledge about investors’

preferences and state prices. Second, using V −(·) minimizes the problem of adverse selection since

the individual valuations cannot do worse than the minimum even with adverse selection (Mas-

Colell et al. 1995:p.436). Third, V −(·) is a transparent measure of value since it is consistent with
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the prices of primary (traded) securities and can be computed by all agents in the market using

knowledge of prices of primary securities alone. Fourth, the value of the marketable portion of the

asset pool is unambiguous and the choice of V −(·) only affects the valuation of cash flows outside

the span of the market. Moreover, the conditions under which pooling can create value do not

depend on the use of V −(·). Of course, a price higher than V −(·) is possible when preferences and

state prices are known at least for a subset of investors. In §6, we address how such higher value

can be realized by solving the tranching problem.

Consider any given firm j. If rj ≤ V −(Xj), then clearly, firm j can profitably invest in asset Xj ,

even without pooling. If rj ≥ V +(Xj), then it does not make sense for the firm to invest in the asset

Xj . The interesting case is the one where V +(Xj) ≥ rj ≥ V −(Xj), because, in this case, the basis

for the decision to invest in Xj is ambiguous. To define the value of pooling, suppose that a pooled

asset is created with cash flows X(ωk) =
∑

j Xj(ωk) for all k. Clearly, V −(X) ≥
∑

j V
−(Xj).8

However, it is important to note that this inequality is not sufficient to determine the value of

pooling. We still need to consider the reservation prices of firms to determine if pooling reduces

the ambiguity regarding investment in assets. We postulate that there is value to pooling in this

latter sense if there is a linear combination of assets with weight 0 ≤ αj ≤ 1 for asset j such

that V −(
∑

j(αjXj)) ≥
∑

j(αjrj) and αj > 0 for at least one firm j for which V −(Xj) < rj .

Another way of defining this type of value creation is that the set of projects fully or partially

financed from payments derived from the asset pool is larger than the set of such projects prior

to pooling. Furthermore, in our formulation, firms need not behave altruistically in creating the

asset pool; therefore, as an additional condition for value creation, we require that firms should

have an incentive to pool their assets only when they cannot benefit, individually or severally, from

breaking away from the pool.

Theorem 1 shows the necessary condition for creating value through pooling. The rest of the

section determines sufficient conditions for value creation.

8The left hand side is given by minimizing the sum of the cash flows from all assets over the set of probability

measures, whereas the right hand side is the sum of the minimum of each individual cash flow. The minimum of the

sum is always larger than or equal to the sum of minimums.
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Theorem 1. (i) If there is a q ∈ Θ such that rj ≥ Eq[Xj ] ∀ j, then value cannot be created by

pooling the Xj’s.

(ii) Conversely, if there is no q ∈ Θ such that rj ≥ Eq[Xj ] ∀ j, then value can be created by

pooling the Xj’s.

The first part of the theorem states that if the reservation price for each asset is higher than its

value under a common pricing measure, then additional value cannot be created through pooling.

Conversely, if the condition in part (i) of the theorem fails to hold, then part (ii) states the positive

part of the result, that is, there exists a vector of weights (αj) such that pooling leads to value

enhancement. However, αj need not be unique. For ease of presentation, we initially assume that

the condition in Theorem 1(ii) holds for αj = 1 for all j, i.e., there is value in pooling all the cash

flows from all firms. We first present all the results under this assumption. Then, we generalize

them to the case when the condition in Theorem 1(ii) holds, but necessarily with 0 < αj < 1 to

create value by pooling.

As mentioned before, even when the value of the pooled asset exceeds the sum of the reservation

prices, some firms might be unwilling to participate in the asset pool. This could happen, for

example, if one firm has a very high reservation price, so that the remaining firms are better off

keeping it out of the pool. This naturally leads to the following set of questions: Can we characterize

reservation prices such that there is an incentive for firms to pool their assets? Can a fair price be

set for each Xj? How many asset pools would be created and what would be the composition of

these asset pools? The remainder of this section answers these questions.

We stipulate that firms will participate in the pool only if they cannot do better by forming

sub-coalitions amongst themselves. We, therefore, model the firms’ participation problem as a

cooperative game, G (Owen 1995). Let Jw denote a subset of the set of all firms, J , wherein

each firm j contributes a fraction wj ∈ [0, 1] of its cash flows with proportional reservation price

wjrj . Let Jc
w = J − Jw denote the complement of Jw, wherein the contribution of each firm j

is (1 − wj)Xj and reservation price is (1 − wj)rj . Also let X(Jw) =
∑

j∈Jw
wjXj . We consider

the cooperative game in which the value of each coalition, V (Jw), is defined as V −(X(Jw)). In

this game, we allow coalition formation with fractional assets being pooled together. Following
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standard terminology for cooperative games, we say that there is a solution to this game, i.e., its

core is non-empty, if the grand coalition of all firms cannot be blocked. The theorem below provides

sufficient conditions for the core of the game to be non-empty, as well as conditions that guarantee

that payments can be made to the firms to cover their reservation prices. These results can be

related to the arguments for pooling presented in the context of information asymmetry by Leland

and Pyle (1977), Subrahmanyam (1991), and especially DeMarzo (2005). In these papers, the

benefits from pooling arise from a reduction in adverse selection costs and improvement in liquidity

due to pooling. In our case, the benefits from pooling arise from the exploitation of arbitrage that

occurs even after compensating the particular firms for their reservation prices. Both arguments

complement each other in explaining real world applications of pooling.

Theorem 2. (i) If rj ≤ V −(Xj) for all j, then the core of game G is not empty.

(ii) There is a solution in the core to G such that the payments to all firms exceed their reser-

vation prices if and only if for every subset Jw of J , we have V (J) ≥ max(V (Jw),
∑

j∈Jw
wjrj) +

max(V (Jc
w),
∑

j∈Jcw
(1− wj)rj).

The first part of this theorem follows from a proof in Owen (1975). In the context of securitiza-

tion, we infer from this result that even when the reservation prices are so small that projects can

be financed without pooling, there may still be incentive to create the pool and share the benefits.

When the reservation prices are larger, Theorem 2(ii) states that the necessary condition for the

payments to firms to support the core is also sufficient to guarantee its existence. The necessary

part of Theorem 2(ii) is immediate, because under every solution in the core, each coalition Jw

should get at least max(V (Jw),
∑

j∈Jw
wjrj). If this condition does not hold, then either some

coalition does not get its value (and can do better on its own) or the payment to the firms in some

coalition cannot cover the sum of the reservation prices. The sufficiency part uses a different argu-

ment and is new. It shows that when the condition holds for all possible Jw, all firms participate

and all projects are financed in full. Notice that we do not need to verify the condition in Theorem

2(ii) for all possible partitions of J . Instead, verifying the condition for partitions of size two is

sufficient.
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Notice also that the inequalities in Theorem 2(ii) must be tested not only for partitions with

wj = 0 or 1 for all j, but also those with fractional values of wj , i.e., partitions where a firm belongs

to two or more subsets and divides its cash flows between them. This continuum of partitions makes

it virtually impossible to use Theorem 2(ii) directly in practice to determine the composition of the

asset pool. However, this task can be avoided. We show that there is a simple condition that is

necessary and sufficient for all the inequalities in 2(ii) to be satisfied. Thus, under this condition,

the cash flows from each asset Xj are included fully in the pool and the core of the cooperative

game is not empty.

Theorem 3. Let q ∈ Θ be a pricing measure under which
∑

j Eq[Xj ] = V −(
∑

j Xj). If Eq[Xj ] ≥ rj

for all j and some such q, then the sufficiency conditions in Theorem 2(ii) are satisfied. The

converse is also true.

We remark on the symmetry between this result and Theorem 1(i). The result in Theorem 1(i)

is that if, under a common pricing measure, each asset’s value is less than its reservation price then

there is no value in pooling. The new result is that if, under a pricing measure that minimizes the

value of the asset pool, the value of each asset equals or exceeds its reservation price then value can

be created unambiguously by pooling all assets. Value is also created (in the sense that additional

projects are undertaken) if some project whose value was below the reservation price gets financed

through the pooling effect.

While Theorems 2 and 3 show that there exist payment schemes such that firms are willing to

participate in the game G, we need to address the question of actually determining the payment

scheme to the firms, which we now turn to. It is possible to show that there could be many such

schemes, but we also require the scheme to be “fair.” It is difficult to work with the concept of

“fairness” in complete generality. However, a case can be made that if all firms are paid the same

price for a unit cash flow in state k, then the scheme is fair. We therefore restrict ourselves to

payments determined using a linear pricing measure. The following corollary complements the

results so far by using the sufficient condition of Theorem 3 to construct a linear pricing scheme.

Corollary 1. If a pricing measure qp exists that is either an extreme point of the set of risk
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neutral probability measures, or a convex combination of such extreme points, such that
∑

j EqpXj =

V −(
∑

j Xj), and the reservation prices satisfy rj ≤ EqpXj, then the grand coalition of all firms can

be sustained when firm j is paid EqpXj.

Corollary 1 implies that pooling creates value from two perspectives. The first is given by the

change in the pricing measure that is necessary to value the assets correctly. Suppose that firm j

cannot decide whether to invest in the project based on the minimum valuation, i.e., rj ≥ V −[Xj ] =

Eqj [Xj ], where qj is the pricing measure that gives the lower bound on the value of firm j’s asset,

and depends on the cash flow of the asset. From Corollary 1, the measure qp to determine the

value when the project is considered to be part of the asset pool depends on the cash flow of the

entire asset pool. The use of this measure yields a higher value for each project. Thus, firm j

surely gains when the reservation price lies within these two bounds. The second perspective is

that more projects are financed than without pooling. When we are restricted to compensate firms

using the same pricing measure, we are assured that the gain from pooling can be used to induce

all firms to participate when rj ≤ EqpXj . There are other interesting aspects to the corollary. The

pricing scheme is fair because it uses the same pricing formula for each firm. It also prices the

traded securities correctly. Thus, firms can use a market benchmark to assure themselves that the

intermediary is fair.

The above results characterize the situations in which all firms participate and contribute all

their assets. A critical condition for full participation by firms is Eqp(Xj) ≥ rj for all j and qp

as defined in Corollary 1. However, note that according to Theorem 1, there are situations where

there is value in pooling only fractions of cash flows of the firms. Further, the value of {αj} for

each firm j that provides value in pooling may not be unique. The following corollary highlights

one such solution. We show that there exists an optimal value of {αj} for each j, denoted {α∗j},

that maximizes the value of the pool. Further, if we treat α∗jXj ’s as the constituent assets instead

of Xj ’s, then Theorems 2 and 3 still apply to this asset pool.

Corollary 2. If the condition in Theorem 1(ii) holds, then the value of pooling is maximized by

solving the linear program: maxV −(
∑

j αj(Xj))−
∑

j αjrj, subject to 0 ≤ αj ≤ 1, ∀j. An optimal
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solution to this linear program, α∗j for all j, is in the core of G. The assets of firms whose value

exceeds their respective reservation price will be included fully in this asset pool. Moreover, the cash

flows left over, {(1− α∗j )Xj}, do not provide any value in pooling.

Corollary 2 is consistent with Theorem 3, because if Eqp [Xj ] ≥ rj for all j, then it can be shown

that setting α∗j = 1 for all j gives an optimal solution to the linear program in Corollary 2. When

some α∗j is fractional, it is difficult to construct a fair payment scheme, because it simultaneously

requires limiting the fraction of assets purchased at that price. Moreover, value creation from both

perspectives is possible, but, it is difficult to separate out the benefits given by the formation of

the pool from those due to securitization.

In summary, this section characterizes the value in pooling. Theorem 1(i) and (ii) show the

conditions under which there is no value in pooling, and those under which there is such value. In

the latter case, Theorems 2 and 3 and Corollary 2 together show that there is a maximal coalition

that can be sustained. This coalition achieves the maximum value of pooling. It includes all

the assets when the condition in Theorem 3 holds, and fractional assets otherwise. Corollary 1

guarantees the existence of a linear payment scheme for this coalition. The assets not included in

this coalition cannot be reconstituted as a separate value enhancing pool. The value creation comes

about due to synergies in cash flows amongst assets as viewed from the market prices of primary

securities. The value-maximizing behavior of a firm or a subset of firms does not impede the correct

(value maximizing) pool from forming. Thus, intermediation and pooling are predictable outcomes,

without reference to the preferences of individual agents.

5 Value of Pooling and Tranching

In this section, we assume that, in addition to tranches that are replicas of primary securities

already traded in the securities market, the intermediary can also create and sell new securities,

fully backed by the pool of assets, directly to investors. We call the former marketable tranches, and

the latter non-marketable tranches or secondary securities. If the sum of the prices of marketable

tranches (which are unique) and the prices of non-marketable tranche (which are obtained by selling
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each tranche at investor-specific state prices mik) exceeds the value obtained by pure pooling, then

we shall conclude that tranching provides value enhancement beyond pure pooling.

In general, the cash flows from a given asset pool, say,
∑

j wjXj can be split into several

tranches, and each tranche offered to every investor type. Recall that mik denotes the state price

of investor type i, for a unit consumption in state k. Let

m∗k = max
i∈I1

mik. (1)

where I1 is the subset of investor classes to whom the intermediary can sell secondary securities.

It is clear that the cash flow in state k should be sold to the investor type that values it the most.

Therefore, the maximum price that the intermediary expects from a tranche sold in state k is m∗k.

Thus, we do not use V −(·) as the valuation criterion. Instead, the set of investors about whom the

intermediary has information provides the valuation criterion. We first derive the optimal tranching

solution for a given asset pool. Later on, we examine whether the additional ability to tranche the

pool, in turn, influences the choice of the asset pool in the first place.

Given the asset pool, we formulate the problem of designing the optimal tranches that maximize

the value of the asset pool as follows:

V T (J) = max
∑

k

m∗k(Yk − lk) +
∑

n

pnβn (2)

such that

Yk +
∑

n

βnSn(ωk) ≤
∑
j∈J

wjXj(ωk) for all k (3)

∑
n

βnSn(ωk) + lk ≥ 0, for all k (4)

Yk, lk ≥ 0, βn unrestricted for all k, n. (5)

Here, βn is the weight of primary security n in the marketable tranche, lk equals the amount

of negative cash flow from the marketable tranche in state k, and Yk − lk is the cash flow of

the non-marketable tranche in state k. The objective is to maximize the combined value of the

tranches. The objective function removes the cash flow, lk, from the intermediary’s profits to

prevent the intermediary from exploiting any arbitrage opportunities available in the market by
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tranching primary securities. Constraints (3)-(4) specify that the tranches should be fully backed

only by the asset pool. In constraint (3), we state that the sum of cash flows of the tranches must

be less than the cash flow of the asset pool in each state k. In constraint (4), we preclude the

possibility that the intermediary may short primary securities and use the proceeds to create a

new non-marketable tranche. This formulation captures the constraint placed on SPV’s that any

security issued by an SPV should be backed by the asset pool and not from any market operation.9

Finally, the non-negativity constraints on Yk in (5) specify that short sales of secondary securities

are not allowed, i.e., the non-marketable tranche should only have positive components. This is

justified by recalling that consumption should be non-negative in all states.

The optimal tranching results are based on the dual of (2)-(5) formulated as below:

DT (J) = min
∑

k

λk

∑
j∈J

wjXj(ωk) (6)

such that

λk ≥ m∗k for all k (7)

δk ≤ m∗k for all k (8)∑
k

(λk − δk)Sn(ωk) = pn for all n (9)

λk, δk ≥ 0, for all k. (10)

Here, λk and δk are the dual variables corresponding to constraints (3) and (4), respectively, of

the primal problem. The dual program’s objective function states that λk are the state prices that

determine the optimal value of the asset pool realized by tranching. Constraint (9) implies that

(λ1 − δ1, . . . , λK − δK) ∈ Θ because this vector is non-negative and prices all primary securities

correctly. Thus, δk measure the distance of the state prices obtained by allowing tranching from

the set Θ. Let Ωa be the set of states in which δk > 0 in the optimal dual solution.

The following lemma formally states that the optimal solution of the dual problem lies in

a bounded region, and therefore, by implication, the primal problem does not lead to infinite
9A less stringent constraint, allowing for partial use of the proceeds of the short sales of primary securities to

augment the pool, would expand the feasible set. However, this would only introduce a somewhat different shadow

price, but would be qualitatively similar to the rest of the analysis presented here.
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arbitrage (see the Fundamental Duality Theorem, Murty (1983:p.192)). The lemma shows that we

preclude the intermediary from issuing new secondary securities by short selling primary securities,

and thus, taking advantage of arbitrage in an obvious way. For the purposes of this lemma, let

SDT be the set of feasible solutions to the dual program, and B be a bounded polyhedral convex

set defined as
∏

k[0,max(1,maxk m
∗
k)]× [0,max(1,maxk m

∗
k)].

Lemma 2. The optimal solution to the dual problem is obtained by computing the value of the

asset pool at each extreme point of B
⋂
SDT and taking the minimum value as the solution.

From this lemma, the primal problem V T (J) has a finite optimal solution. Therefore, the

tranching solution exploits only those arbitrage opportunities in the securities market that are

available to the intermediary due to the access to the asset pool and the subset of investors I1. It

does not include possible arbitrage opportunities that may exist in the market due to discrepancies

between the prices of primary securities in the market and the secondary securities demanded by

investors.10 The following theorem defines such opportunities and shows that they are completely

characterized by the set Ωa.

Theorem 4. (i) If there exists a non-negative contingent claim Z such that
∑

k′m
∗
k′Z(ω′k) >

V +(Z), then there is no feasible solution to the dual in Θ. In particular, Ωa is not empty.

(ii) If there exists a non-negative contingent claim Z such that
∑

k′m
∗
k′Z(ω′k) > V +(Z), then

Z is strictly positive in some state k ∈ Ωa.

(iii) If Ωa 6= ∅, then there exists a non-negative contingent claim Z that is strictly positive in

some state(s) k ∈ Ωa and zero elsewhere, such that
∑

k′m
∗
k′Z(ω′k) > V +(Z).

(iv) If there exists a non-negative contingent claim Z such that
∑

k′m
∗
k′Z(ω′k) > V +(Z), then

there does not exist any q ∈ Θ such that qk ≥ m∗k for all k.

Theorem 4(i)-(ii) show that contingent claims that present arbitrage with the given subset of

investors must have positive cash flows in one or more states in the set Ωa. The intermediary

can short primary securities to create a contingent claim that pays off in these states and sell the
10This is in line with the argument of DeMarzo (2005) that incomplete markets may not explain the securitization

of existing marketable assets.
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tranches to the subset of investors to realize an immediate profit. This is the consequence of the

value to the investors exceeding V +(Z). Note that part (ii) also implies that if a claim does not

have positive cash flows in any of the states in Ωa, then the upper bound on the price of the claim

exceeds the value to the subset of investors. Theorem 4(iii) strengthens the role of the set Ωa. It

states that if Ωa is non-empty, then there is a non-negative contingent claim with cash flows in this

set of states only, whose value to investors exceeds V +(Z). The last part of Theorem 4 is the dual

characterization which is mathematically the most useful of the three. Using this result, we can

now state the general structure of the secondary securities.

Let Y ∗k , l
∗
k, and β∗n denote the optimal solution to the primal problem, and λ∗k and δ∗k denote

the optimal solution to the dual problem. We partition the optimal tranching solution into three

parts that we denote as T a, T I and Tm. Let T a
k = Y ∗k − l∗k if δ∗k > 0 and zero otherwise, let

T I
k = Y ∗k − l∗k − T a

k , and let Tm
k =

∑
n βnSn(ωk). Here, Tm is the marketable tranche, T a consists

of the cash flows of the non-marketable tranche in states belonging to the set Ωa, and T I consists

of the cash flows of the non-marketable tranche in the remaining states. We partition the non-

marketable tranche in this manner by applying the complementary slackness property (Murty

1983:p.197). By this property, δ∗k > 0 implies that l∗k +
∑

n β
∗
nSn(ωk) = 0, which further implies that

Y ∗k − l∗k =
∑

j wjXj(ωk), i.e., all the cash flows in state k are sold as secondary securities. Thus,

according to Theorem 4, T a is based on exploiting the arbitrage opportunities in the securities

market due to the ability to design and sell secondary securities to a subset of investors, while Tm

and T I are not based on the existence of arbitrage. T a is zero if there are no arbitrage opportunities

available to the intermediary.

Note that the complementary slackness property also implies that the intermediary tranches all

of the cash flows in the asset pool in the states belonging to the set Ωa in the form of T a. Indeed,

we have Ta · Tm = 0 and Ta · TI = 0. Thus, the optimal solution to the primal problem V T (J) is

separable into one that corresponds to the tranches Ta and another that corresponds to the rest.

The value of T a is independent of changes in the cash flows of the asset pool in states Ω \Ωa, and

likewise, the values of Tm and T I are independent of the cash flows in states Ωa. To see this, define

X̂(ωk) =
∑

j wjXj(ωk)− T a
k as the asset pool after tranching T a. Set m̂∗k = 0 for the states where
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δ∗k > 0, and m̂∗k = m∗k otherwise. Let D̂T denote the new dual problem. Clearly, D̂T has a feasible

solution in Θ. Due to the fact that T a is orthogonal to Tm and T I , the optimal solution to DT is

given by Tm and T I . Thus, the values of Tm and T I are independent of the value of T a. Therefore,

the asset pool decomposes into an ‘arbitrage part’, a marketable part and a residual part. In the

terminology of the securitization industry, roughly speaking, the first component can be referred

to as a “bespoke” tranche, the second one as a super-senior tranche, and the last one as the equity

tranche.

We can now specify the complete structure of the optimal tranching solution for a given asset

pool as stated in the theorem below. This theorem uses the results of Theorem 4 to show the

conditions under which the different tranches come about.

Theorem 5. The optimal solution to the tranching problem is represented by (T a, Tm, T I) as

defined above. Further,

(i) If there exists q ∈ Θ such that qk ≥ m∗k for all k, then T a ≡ 0.

(ii) If there exists q ∈ Θ such that qk ≤ m∗k for all k and qk < m∗k for some k, then there exists

an optimal tranching solution in which Tm = T I ≡ 0.

(iii) Otherwise all three types of tranches may occur in the optimal solution.

We note from Theorem 5 that the differences among the three types of solutions to the tranching

problem do not depend on the cash flows in the asset pool, but only on the set Θ and the state

prices m∗k. Thus, an intermediary can verify the results in Theorems 4-5 without knowing the

cash flows in the asset pool or the willingness of individual firms to participate in the asset pool.

Further, the tranches in Tm might be bought by a different set of investors than I1, which is the

set of investors that buys tranches T a and T I .

Theorem 5 also clearly delineates the incremental value realized by tranching the given asset

pool
∑

j wjXj . In case (i), λ∗ ∈ Θ, and thus, the optimal solution to the dual problem lies inside

the price bounds V −(
∑

j wjXj) and V +(
∑

j wjXj). By the constraints of the dual problem, this

solution is obtained in the set Θ
⋂
{(λ1, . . . , λK) : λk ≥ m∗k for all k}. Since this is a subset of Θ,

pooling and tranching provides incremental value beyond V −(
∑

j wjXj). In case (ii), the optimal
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solution is given by Em∗ [T a], which is greater than V +(T a). In case (iii), the value of tranches Tm

and T I is as in case (i) and the value of tranche T a is as in case (ii). Due to the orthogonality of

T a with Tm and T I , the total value is equal to the sum of these two components. Thus, the value

from pooling and tranching is higher than V −(
∑

j wjXj).

Thus far in this section, we have presented results for a given asset pool. We now examine the

implications of tranching on the formation of the asset pool. First, note that the optimal value

created through pooling and tranching will always be at least as large as that from pure pooling.

However, the asset pool that maximizes the value from pooling and tranching may not be the same

as that which maximizes the value from pure pooling. This naturally gives rise to questions whether

the optimal asset pool under pooling and tranching will be larger than that under pure pooling,

and whether it will include all the assets in the latter pool. We examine these questions for each

case in Theorem 5.

In case (i), all results of §4 apply if attention is restricted to the smaller set of pricing measures

ΘT = {q : qk ≥ m∗k, q ∈ Θ}. Thus, using the inferences in §4, the asset pool may consist of cash

flows from the individual firms in fractions or in full. Further, the mix of projects that get financed

may change compared to the solution in §4, however, the total value of the projects financed will

always increase. Note that, in this case, the minimum value actually corresponds to selling the

assets to the restricted set of investors in a particular way with the unsold part having no value

to those investors. In case (ii), the optimal solution is linear in the cash flows X(ωk). Thus, the

solution degenerates into a pure tranching solution and there is value from tranching, but there

may not be value from pooling. The decision for each firm to go through the intermediary is made

separately based on whether Em∗ [Xj ] ≥ rj or not. Thus, each firm either participates in the pool

in full or not at all. The mix of projects financed may again change compared to §4, however,

there will be no fractional pooling in this case. In case (iii), the pooling and tranching solution lies

outside the set Θ. The remaining implications in this case are the same as in case (i). Thus, we

obtain the counter-intuitive conclusion that the optimal asset pool in pooling and tranching may

not include all the assets included in pure pooling, and may in fact be smaller than the latter.
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6 Numerical Example

We illustrate the insights from our model, focusing on the role of reservation prices of potential new

assets in determining the optimal pooling and tranching solution, its sustainability, and its effect

on real investment. The example of a real investment decision we consider is an inventory decision

with random demand.

Suppose that there are four states of nature at time 1 denoted Ω = {ω1, . . . , ω4}, and there are

two primary securities in the financial market with payoffs S1 = (1, 1, 1, 1) and S2 = (1, 0, 0.5, 1.5)

at time 1 and prices p1 = p2 = 1 at time 0. The set of risk neutral pricing measures over Ω is

Θ = {(x + 3y, x − y, 0.5 − 2x, 0.5 − 2y)}
⋂

[0, 1]4 with two degrees of freedom denoted x and y.

The set Θ is spanned by three linear pricing measures, Q1 = (0, 1/3, 0, 2/3), Q2 = (1, 0, 0, 0), and

Q3 = (0, 0, 1/2, 1/2). Q1 corresponds to x = 1/4, y = −1/12, Q2 corresponds to x = 1/4, y = 1/4

and Q3 corresponds to x = 0, y = 0.

Consider two investor types in this market with identical preferences given by Ui(c1, c2) =

c0 − e−5c1 for i = 1, 2, where c0 denotes consumption at time 0 and c1 denotes consumption at

time 1. The investor types differ in their endowments in different states, being given as e1 =

(10, 0.4, 1.6, 1, 0) and e2 = (10, 0.5, 0, 0, 0.1). Such differences in endowments can occur due to

differences in demographics, geographical location, or lifecycle. Both investor types have the same

subjective probabilities for the four states given as P = (0.4, 0.1, 0.15, 0.35). Each investor solves

the decision problem specified in §3.2 in order to maximize total expected utility. Table 1 shows

the equilibrium investments and state prices of the investor types with and without constraints on

the short sale of primary securities by investors.

Suppose that there are three firms facing inventory decisions at time 0 as follows. Firm 1 has

random demand D1 = (1, 1, 0, 0) at time 1, firm 2 has demand D2 = (0, 0, 1, 0), and firm 3 has

demand D3 = (0, 0, 0, 1). The selling price is normalized to 1 and the per unit procurement prices

are r1, r2 and r3, respectively. We will consider different values of these prices, and thus, r1, r2 and

r3 will be specified later. The firms’ decisions are the amounts of inventory of the three products to

procure at time 0 in order to maximize the respective value to shareholders. If firm j buys inventory
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Table 1: Equilibrium consumption, investments, and state prices for the two investor types before
introduction of secondary securities

Equilibrium
demand

Investor for equity Consumptions State prices Expected
type (S1, S2) c0 c1 mik Utility

With short sales constraints:
1 (0.1474, 0) 9.8526 (0.5474, 1.6, (0.1295, 0.0002, 9.7100

1.0737, 0.2212) 0.0035, 0.5792)
2 (0, 0.1813) 9.8187 (0.6813, 0.1813, (0.0663, 0.2020, 9.6187

0.1813, 0.2813) 0.3030, 0.4288)
Without short sales constraints:

1 (1.0414, -1.1804) 10.1390 (0.2610, 0.4196, (0.5423, 0.0614, 9.9390
0.3403, 0.3817) 0.1368, 0.2595)

2 (-0.0785, 0.2544) 9.8241 (0.6759, 0.2544, (0.0681, 0.1401, 9.6241
0.2152, 0.2366) 0.2558, 0.5360)

αj , then the procurement price is αjrj and the cash flow at time 1 is Xj = min{αje4, Dj}, where

e4 = (1, 1, 1, 1). For example, if α1 = 0.5, then X1 = (0.5, 0.5, 0, 0). These cash flows are unique to

the firms due to uniqueness of their products, customer base, or supply chain network.

This setting maps to our model since Xj can be interpreted as cash flows from the firms’ real

investment decisions with reservation prices αjrj . This is a simple example since D1 + D2 + D3

gives us the risk-free bond. Even so, it suffices to illustrate the values of reservation prices that

yield different pooled assets and different inventory decisions. We see that Xj are not spanned by

Θ for any positive value of inventory, and thus, do not have unique prices in this market. The

price bounds on X1 are [V −(X1), V +(X1)] = [0, α1], and on X2 and X3 are [0, α2/2] and [0, 2α3/3],

respectively. Therefore, if each firm considers its decision in isolation and use the lower bound

V −(Xj) as the measure of value, then its optimal inventory will be zero.

Before describing our solution, it is instructive to apply the CAPM to this example, similar to

Anvari (1987) for the case of complete markets. In the appendix, we present the valuations and

optimal inventory levels obtained from the CAPM. The results show that the CAPM yields present

values for the cash flows which do not agree with the state prices of any of the investors. This is so

because the CAPM implicitly assumes a unique pricing measure in the market. Therefore, a more

general approach such as ours that recognizes the existence of multiple pricing kernels in the market

and chooses a conservative valuation is necessary. In the rest of this section, we first illustrate the
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pure pooling solution, and then the pooling and tranching solution. The pure pooling solution does

not depend on the short sales constraint on investors, whereas the pooling and tranching solution

does.

Value of pure pooling. Clearly, not all values of r1, r2 and r3 will lead to value creation. The

optimal inventory quantity for each firm is zero if there is no value from pooling X1, X2, and X3

in any proportion. This condition is given by Theorem 1(i). Upon applying this theorem, we find

that there is no value from pooling if the reservation prices satisfy the following inequalities for

some a, b, c ∈ [0, 1]:

1
3
a+ b− r1 ≤ 0,

1
2
c− r2 ≤ 0,

2
3
a+

1
2
c− r3 ≤ 0, a+ b+ c = 1. (11)

The optimal inventory quantity for the three firms is 1 unit each if there is value from pooling and

the pool is a grand coalition of the three products. This condition is given by Theorem 3. We

find that the grand coalition is sustainable if the reservation prices of the three assets satisfy the

following inequalities for some a, b, c ∈ [0, 1]:

1
3
a+ b− r1 ≥ 0,

1
2
c− r2 ≥ 0,

2
3
a+

1
2
c− r3 ≥ 0, a+ b+ c = 1. (12)

If neither system of inequalities, (11) or (12), has a feasible solution, then there is value from

fractional pooling, i.e., the optimal inventory quantity is less than 1 for at least one firm.

To see these three solutions, we consider different values of reservation prices. Suppose that

r1 = 0.2, r2 = 0.3 and r3 = 0.52. Then, the system (11) is feasible, and thus, the optimal inventory

quantity is 0 for each firm. If r1 = 0.17, r2 = 0.33 and r3 = 0.45, then the system (12) is feasible,

and the optimal inventory quantity is 1 for each firm. The total value is 0.05, which can be divided

among the firms in such a way as to sustain the grand coalition. If r1 = 0.25, r2 = 0.4 and r3 = 0.25,

then neither system of inequalities is feasible, implying that there is value from pooling but the

grand coalition of the three products is not feasible. To find the maximal asset pool for these

reservation prices, we solve the LP given in Corollary 2:

max {z − 0.25α1 − 0.4α2 − 0.25α3 :

1/3α1 + 2/3α3 ≥ z, α1 ≥ z, 1/2α2 + 1/2α3 ≥ z, αj ∈ [0, 1] for all j} .
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Table 2: Optimal pooling and tranching solutions for different values of reservation prices when
the intermediary has access to investors of type 2 only

Optimal Tranches
Reservation Short sales inventory T a Tm T I Optimal

Case prices constraints (α1, α2, α3) (β1, β2) value
A 0.2, 0.3, 0.52 Yes (1, 1, 1) (0, 1, 0, 0) (0, 2/3) (1/3, 0, 2/3, 0) 0.073
B 0.2, 0.3, 0.52 No (1, 0, 1) (1, 1, 0, 1) (0, 0) (0, 0, 0, 0) 0.024
C 0.17, 0.33, 0.45 Yes (1, 1/3, 1) (0, 1, 0, 0) (0, 2/3) (1/3, 0, 0, 0) 0.161
D 0.17, 0.33, 0.45 No (1, 0, 1) (1, 1, 0, 1) (0, 0) (0, 0, 0, 0) 0.124
E 0.25, 0.4, 0.25 Yes (1, 1/3, 1) (0, 1, 0, 0) (0, 2/3) (1/3, 0, 0, 0) 0.257
F 0.25, 0.4, 0.25 No (0, 0, 1) (0, 0, 0, 1) (0, 0) (0, 0, 0, 0) 0.286

Note: The optimal inventory for each firm determines its cash flow, and thus, the total cash flow of the asset

pool. For the non-marketable tranches, T a and T I , the table shows cash flows in each of the four states. For the

marketable tranche, Tm, the table shows the weights, β1 and β2, of the two primary securities, S1 and S2. The

optimal value shown in the last column is net of the cost of procurement of inventory at respective reservation prices

of the firms.

Here, the decision variable αj is the amount of inventory to be purchased by firm j in the pool.

The optimal solution is α1 = 1
2 , α2 = 0, and α3 = 1, with an optimal value of 1

8 . The asset pool is

given by (1
2 ,

1
2 , 0, 0) + (0, 0, 0, 1) = (1

2 ,
1
2 , 0, 1). The convex combination, 1

4 of Q2 and 3
4 of Q3, yields

the pricing measure q = (1
4 , 0,

3
8 ,

3
8), under which Eq[X1] = 1

4 and Eq[X3] = 3
8 , both of which are

greater than or equal to the corresponding reservation prices. Thus, from Theorem 3 and Corollary

2, this fractional pool is sustainable. Thus, the optimal decisions are for firm 1 to buy 0.5 units,

firm 2 to buy 0, and firm 3 to buy 1 unit, with a total value of 1
8 .

Value of pooling and tranching. In Table 6, we present the optimal tranching solutions cor-

responding to the reservation prices discussed above. We show the results both with and without

constraints on short sales of primary securities by investors. In each case, we allow the intermedi-

ary to have access to investors of type 2 only. Thus, the intermediary can create tranches that are

marketable or those that are priced for investors of type 2, but not type 1. In the table, we show

the composition of the asset pool in the optimal solution, the structure of the tranches, and the

total value obtained. The value of m∗ is obtained from the state prices in Table 1 for all cases.

In cases A and B in Table 2, r1 = 0.2, r2 = 0.3, and r3 = 0.52. When no short sales by investors

are allowed, the optimal pooling and tranching solution gives the grand coalition of the three firms,

i.e., α = (1, 1, 1). The value of the solution is 0.073. Moreover, the dual solution to the pooling

and tranching problem is λ∗ = (0.066, 0.202, 0.303, 0.521). This gives
∑

k λ
∗
kXj(ωk) ≥ rj for all j.
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Thus, the grand coalition is sustainable. Table 2 shows that the optimal solution consists of all

three types of tranches, T a, Tm, and T I . When short sales by investors are allowed, the optimal

solution is α = (1, 0, 1) and we pool X1 and X3, with a value of 0.024. The dual solution to the

pooling and tranching problem is λ∗ = (0.068, 0.140, 0.256, 0.536). In this case,
∑

k λ
∗
kX2(ωk) < r2,

implying that firm 2’s optimal inventory amount is 0.

In cases C and D, the values of reservation prices are r1 = 0.17, r2 = 0.33, and r3 = 0.45. We find

that
∑

k λ
∗
kXJ(ωk) < rj for j = 2 both with and without short sales constraints on investors. Thus,

the grand coalition is not sustainable under pooling and tranching. With short sales constraints,

the optimal solution is α = (1, 1/3, 1), with a value of 0.161, and without short sales constraints, it

is a different pool, α = (1, 0, 1), with a value of 0.124. In cases E and F, the values of reservation

prices are r1 = 0.25, r2 = 0.4, and r3 = 0.25. Again, the grand coalition is not sustainable under

pooling and tranching both with and without short sales constraints, and we obtain results similar

to cases C and D.

In comparing pure pooling with pooling and tranching, we see that the latter yields a higher

value for each instance of reservation prices shown above. The optimal pool under tranching may

be larger or smaller than the optimal pool under pure pooling. In our example, it is larger in cases

A, B and E, but smaller in cases C, D and F. Note that the structure of the tranches corresponds

to Theorem 5(ii) in cases B, D and F, and Theorem 5(iii) in cases A, C and E. Similar results are

obtained when the intermediary has access to investors of type 1 only or to both investor types.

In summary, due to the interaction with the financial market, securitization through pooling

and tranching increases value and leads to a higher inventory procurement than if each firm had

considered its inventory decision in isolation. The exact solution depends on the reservation prices

since firms have to agree to join the coalition. While we considered simple inventory decisions, the

same concept and methodology can be applied for more complex operational decisions.
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7 Discussion

Securitization has become a large and rapidly growing industry since the 1970s, with trillions of

dollars of securitized assets. It has also come under criticism recently due to the events leading up

to the financial crisis and economic recession of 2008-09. Our paper does not seek to analyze the

practice of securitization, but studies the theoretical motivation for it. In this section, we reconcile

the results of our paper with the practical challenges of securitization and suggest directions for

future research.

One main result in our paper is that pooling and tranching are valuable in reducing ambiguity

surrounding the valuation of new real investments in incomplete markets. These ideas are applicable

to any operational decision, including, as we demonstrate, the newsvendor problem. Thus, the

focus of this paper differs from securitization in practice, which deals with existing financial assets,

and does not address new investment decisions. Further, our paper separately identifies the gains

due to pooling and tranching. It shows that pure pooling is valuable even in the absence of

tranching. In contrast, the implementation problems in securitization mostly deal with tranching

and the associated issues of distance and information asymmetry. Our results imply that, in the

simplest form, a large corporation could, instead of using a hurdle rate independently for each

project, consider its set of projects and their costs (i.e., reservation prices) jointly and see if there

are counter-balancing risks outside the marketed subspace that make the pool more valuable.

These relationships can be used in future empirical research to compare the optimal pool with real

investment decisions made by firms.

Another result of our paper relates to the construction of optimal tranches. In our optimal

solution, tranches are formed by partitioning the cash flows on a state-by-state basis. The states in

which a tranche has positive or zero cash flows are clearly defined. This contrasts with the practical

implementation of mortgage-backed securities, in which tranches are formed using a subordination

rule. Our tranches are categorized into three types that depend on spanning whereas the conven-

tional ones only consider default regardless of whether the states are spanned. The information

structure assumed by our model is simple and could be investigated in a practical setting. Addi-
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tionally, when there are different classes of investors with different marginal utilities, data for these

investor classes could be used to design optimal tranches.

The practical implementation of securitization requires consideration of moral hazard, which is

outside the scope of our model. In particular, Keys et al. (2008) analyze the subprime mortgage

loans market, and find evidence that securitization led to lax screening of borrowers. They remark

that the benefits of optimal securitization are limited by information loss in practice, but are not

negated by it. Others have commented on the lack of “skin in the game” by lenders as well as

other problems associated with rating agencies, regulation, and investors (Blinder (2007), Stiglitz

(2007)). In the theoretical literature, the problem of moral hazard has been addressed in models

of information asymmetry by requiring the issuer or financial intermediary to retain an equity

tranche on its books. This approach can be used in conjunction with our model. More generally,

in the literature, three sources of value from securitization have been identified—market frictions,

information asymmetry, and market incompleteness. Our paper addresses the third mechanism,

but all three mechanisms are important and are likely to occur in practice. Therefore, a practical

implementation may benefit from recognizing all of them.

Our paper can be extended and modified in subsequent research in other ways. First, while

the results in this paper are obtained under the strict definition of arbitrage, our analysis could

be combined with price bounds derived under approximate arbitrage as in the recent literature.

Under approximate arbitrage, market incompleteness should still continue to provide a rationale for

seeking value enhancement through pooling and tranching. However, the imposition of a constraint

that precludes “approximate arbitrage,” instead of arbitrage, would restrict the set of feasible

solutions to the optimization problems considered in this paper. Additional analysis is required to

determine the optimal pooling and tranching strategies when subjected to the tighter constraints.

Second, an interesting aspect of securitization is when the pool has to be created and managed

dynamically. This problem is commonly faced by private equity and venture fund managers. The

major differences are that firms within the pool might not have the option to leave the pool, while

firms that enter later might enjoy greater bargaining power. Further, firms and the intermediary

might have only an imperfect forecast about which assets will become available in the future. A
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third avenue for research is to compare the costs and benefits of alternative forms of financing

in incomplete markets. While we studied the benefits of pooling and tranching in securitization,

other types of financing may include issuance of new equity or debt. These alternatives may

be analyzed in a partial equilibrium setting such as ours or a general equilibrium setting where

investors are allowed to short sell the new assets so that the prices of existing assets in the market

may change. Finally, future empirical research may seek to quantify the benefits of securitization

for real investment decisions faced by firms in practice.
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Appendix

A. Application of the CAPM to the numerical example in §6

The application of the CAPM to our numerical example serves two purposes. It illustrates the

equivalence of our approach with the CAPM for the valuation of traded securities in the market.

It also shows that the CAPM does not lead to unambiguous definition of value for assets that are

outside the span of the market. Therefore, a more general approach such as ours is necessary.

To apply the CAPM, we need to translate it into a mean-variance setting. Therefore, we regress

the payoffs of the three new assets, X1, X2 and X3 on the payoffs of the two primary securities,

S1 and S2. The regression is done using minimum weighted least squares using the subjective

probabilities of the four states as weights. The intuitive explanation is that if we observed these

returns repeatedly, then the number of observations of each cash flow will be proportional to

the subjective probabilities. Thus, a regression on these historical returns would yield the same

equation.

Further, note that instead of a single-factor asset pricing model, we use a two-factor model

with S1 and S2 representing the two factors. S1 is a risk free bond in our example, but in general,

it need not be. This approach is described in Cochrane (2001: p.80-82). Usually, the factors in

a multi-factor model are proxies for aggregate consumption. Here, S1 and S2 represent only the

traded portion of aggregate consumption in our model. Thus, the application of the CAPM ignores

the non-traded portion of investors’ endowment; see Mayers (1973, 1976) for an extension of the
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CAPM to incorporate non-traded assets.

The regression results are functions of the inventory levels α1, α2 and α3. They are given by:

X1(α1) = 0.94α1S1 − 0.44α1S2 + error

X2(α2) = 0.48α2S1 − 0.33α2S2 + error

X3(α3) = −0.43α3S1 + 0.78α3S2 + error

Here, α1, α2, α3 ∈ [0, 1]. By definition, the residuals sum to zero. Therefore, the regression equations

give us the prices of X1, X2 and X3 at time 0 as functions of inventory levels, which can then be

used to compute the optimal inventory for each firm. For X1, we get the price of 0.5α1. Thus,

the optimal inventory level for firm 1 is 1 unit if the procurement price r1 is less than 0.5, and 0

otherwise. Likewise, the prices of X2 and X3 are 0.15α2 and 0.35α3, respectively. Thus, firm 2

would buy 1 unit of inventory if r2 < 0.15, and firm 3 would buy 1 unit of inventory if r3 < 0.35.

There are two problems with the above approach. First, the CAPM implies a unique pricing

measure. The above prices computed from the CAPM correspond to the pricing measure, (0.40,

0.10, 0.15, 0.35). This measure belongs to our set Θ, which is not surprising since the CAPM is

equivalent to our discount factor model for traded assets.11 However, its uniqueness is a strong

assumption since the market in our example is incomplete. In contrast to this assumption, our

analysis shows that there is an infinite number of pricing kernels admissible in the market, which

is why we conservatively uses the minimum value to price the untraded assets over the set of these

kernels.

Further, the pricing measure implied by the CAPM is not equal to the state prices of either

of the two investor types as shown in Table 1. This shows that investors may not agree with the

CAPM prices and will debate on prices since X1, X2 and X3 are outside the span of the market.

Therefore, the CAPM does not lead to an unambiguous definition of value for non-traded assets,

even though it gives a pricing measure consistent with our model and thus provides the same
11The existence of the pricing measure is noteworthy because the problem to find the pricing measure has three

unknowns (for four states) and five constraints (for the five securities), which may be an infeasible problem in general.

We also note that it is a coincidence that this pricing measure is equal to the subjective probability measure; this is

not true in general.
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valuation of traded assets.

B. Proofs

Proof of Lemma 1. We prove part (i). The proof for part (ii) is similar. Consider the linear

program:

min

{
z : z ≥

K∑
k=1

ql(ωk)Z(ωk) ∀l = 1, . . . , L, z unsigned.

}
If z ≥

∑
k ql(ωk)Z(ωk) for all l, then

∑
l δlz ≥

∑
l

∑
k δlql(ωk)Z(ωk) for all δl ≥ 0,

∑
l δl = 1.

Thus, z ≥ supq∈ΘEq[Z(ωk)]. Therefore, the optimal solution to the linear program must be greater

than or equal to V +(Z). On the other hand, z = maxl∈LEql [Z] is a feasible solution to the linear

program. But maxl∈LEql [Z] ≤ supq∈ΘEq[Z(ωk)]. Thus, V +(Z) = maxl∈LEql [Z].

For the proof of part (iii), consider the problem of maximizing the minimum marketable value

of a claim Z that pays Z(ωk) is state k.

max

{∑
n

αnpn :
∑

n

αnSn(ωk) ≤ Z(ωk) ∀k = 1, . . . ,K, αn unsigned ∀n = 1, . . . , N.

}

The objective is to maximize the market value of a portfolio of primary securities that pays less

cash flows than claim Z in every state k. The dual of this problem is given by:

min

{∑
k

λkZ(ωk) :
∑

k

λkSn(ωk) = pn ∀n = 1, . . . , N, λk ≥ 0 ∀k = 1, . . . ,K.

}

We require that
∑

k λ
∗
kSn(ωk) = pn for every security n in the optimal dual solution. But this

condition, by definition, implies that the optimal dual solution is a pricing measure that belongs to

the set Θ. The proof follows by applying part (i) of the lemma. The validity of the upper bound

can be proven similarly. 2

Proof of Theorem 1. To prove (i) of the theorem, we show the equivalent statement that if

value can be created by pooling, then there does not exist any q ∈ Θ such that Eq[Xj ] ≤ rj for all

j. Consider the linear program:

max

v −∑
j

αjrj : −
∑

k

ql(ωk)
∑

j

αjXj(ωk) + v ≤ 0 ∀l = 1, . . . , L, αj ≥ 0 ∀j = 1, . . . , J.
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Here, the vector (αj) denotes the proportion in which the assets (Xj) are pooled together, and v

denotes the value of the asset pool in the securities market. The value of the asset pool is defined

as V −(
∑

j αjXj) because this is the minimum price that the asset pool commands in the securities

market. To compute the value of the asset pool, we have used Lemma 1, i.e., the expected value

under each extreme pricing measure, ql, should be greater than or equal to the value v. The first L

constraints correspond to these requirements. The linear program seeks to obtain the combination

of assets that will maximize the difference between its value v and the combination of reservation

prices required to create the asset pool,
∑

j αjrj .

If value can be created by pooling, then there exist weights αj such that the linear program is

feasible and

v −
∑

j

αjrj > 0. (13)

Let θl ≥ 0 be any set of weights such that
∑

l θl = 1. Multiply each of the L constraints with the

corresponding weight θl and add. Because the linear program is feasible, we get

−
∑

k

∑
l

θlql(ωk)

∑
j

αjXj(ωk)

+ v ≤ 0. (14)

Here,
∑

l θlql is a pricing measure in Θ, which we denote by q. Hence, (14) can be rewritten as

−Eq

∑
j

αjXj

+ v ≤ 0. (15)

Combining (13) and (15), we get Eq

[∑
j αjXj

]
>
∑

j αjrj . Equivalently, there exists j such that

Eq [Xj ] > rj .

Since θl are arbitrary and the pricing measures constructed using the set {(θl) : θl ≥ 0,
∑

l θl =

1} are a superset of Θ, we conclude that, if value can be created by pooling, then there does not

exist any q ∈ Θ such that Eq[Xj ] ≤ rj for all j.

To prove (ii), consider the dual of the above linear program. The dual variables µl will be

associated with each of the constraints related to the expected value under extreme pricing measure

ql. The dual problem is:

min

{
0 :

∑
l

µl = 1,
∑

k

∑
l

µlql(ωk)Xj(ωk) ≤ rj ∀j = 1, . . . , J, µl ≥ 0 ∀l = 1, . . . , L.

}
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We wish to show that if no value can be created by pooling, then there exists q ∈ Θ such that

Eq[Xj ] ≤ rj for all j. Notice that by choosing all αj = 0, the primal problem is always feasible

and has a lower bound of zero. The only question is whether the primal has a bounded solution –

which by strong duality theorem can only be zero from the dual program’s objective function – or

an unbounded solution. The former situation is the one where pooling does not create value (and

the dual is feasible), and the latter situation is the one where pooling leads to value creation (and

the dual is infeasible). Thus, if no value can be created by pooling, then the primal has a bounded

solution and the dual is feasible. From the dual constraints, we observe that dual feasibility implies

that there exist weights µl such that under the pricing measure
∑

l µlql, we have E[Xj ] ≤ rj for all

j. This proves the converse. 2

Proof of Theorem 2. We first show the proof of this theorem for partitions where wj = 0 or 1

and then extend it to the case of fractional wj . Since we restrict wj to be 0 or 1, we denote the

cash flows for any subset Jw of J simply as
∑

j∈Jw
Xj and the corresponding reservation prices as∑

j∈Jw
rj .

The proof of part (i) of the theorem follows from the work of Owen (1975). We sketch the proof

for completeness. Consider the problem of maximizing the value of the portfolio formed from the

assets of coalition Jw by selling tranches of primary securities against it. The maximum value is

given by solving the linear program:

max

∑
n

βnpn :
∑

n

βnSn(ωk) ≤
∑
j∈Jw

Xj(ωk) ∀k = 1, . . . ,K, βn ≥ 0 ∀i = 1, . . . , N.


The dual to this problem is

min

∑
k

λk

∑
j∈Jw

Xj(ωk) :
∑

k

λkSn(ωk) ≥ pn ∀n = 1, . . . , N, λk ≥ 0 ∀k = 1, . . . ,K.


Notice that the constraints to the dual program do not depend on the coalition formed because

the Xj ’s enter only the objective function. Moreover, the dual is feasible because the market is

arbitrage-free, that is, any q ∈ Θ will satisfy the dual constraints, i.e.,
∑

k qkSn(ωk) = pn, ∀n, q ∈ Θ.

Finally, as Xj(ωk) ≥ 0 for all j, the solution to the dual program is finite, as it cannot drop below
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zero. Solve the problem for the grand coalition of all firms and obtain the optimal dual solution λ∗k.

As Xj(ωk) ≥ 0 for all j, by applying the same reasoning as in Lemma 1(iii), we can also assume

that these dual values constitute a pricing measure in Θ.

Consider the following solution to the cooperative game: Let firm j receive the payment∑
k λ
∗
kXj(ωk). This is surely greater than or equal to V −(Xj), and therefore, by assumption,

larger than rj . By definition, the coalition Jw receives the sum of the payments to the firms in the

coalition. This sum equals or exceeds the maximum value obtained by solving the linear program

for just the coalition because: (a) the λ∗k’s constitute a dual feasible solution to the problem for

all Jw ⊆ J because, as noted earlier, the constraints of the dual problem do not depend on the

coalition formed; and (b) all dual feasible solutions are greater than or equal to the primal optimal

solution (by weak duality). This proves part (i).

For the proof of part (ii), the problem is to demonstrate the existence of a payment scheme that

works for all coalitions simultaneously. Redefine the value of a coalition without loss of generality to

be V (Jw) = max(V −(Jw),
∑

j∈Jw
rj). We first show that if the condition stated in part (ii) applies

to partitions comprised of two subsets, then it also applies to any arbitrary partition. That is, if

for every subset Jw of J , we have V (J) ≥ max(V (Jw),
∑

j∈Jα
rj) + max(V (Jc

w),
∑

j∈Jcw
rj), then for

every partition J1, J2, . . . , Jk of J , the same inequalities hold. (Note that the reverse statement can

also be proven, implying that the two conditions are equivalent.) The proof is by contradiction.

Assume that the condition does not hold for some partition, J1, J2, . . . , Jk. Thus, by assumption,

V (J) <
∑

i

max

V −(Ji),
∑
j∈Ji

rj

 .

Without loss of generality, assume that for i = 1, 2, . . . . , h, max(V −(Ji),
∑

j∈Ji
rj) = V −(Ji), and

for i = h + 1, h + 2, . . . . , k, max(V −(Ji),
∑

j∈Ji
rj) =

∑
j∈Ji

rj . Then, by super-additivity of the

value function (which follows from the definition of V −),

V −

(
h⋃

i=1

Ji

)
≥

h∑
i=1

V −(Ji).

Let Jw =
⋃h

i=1 Ji. By the condition given in part (ii) of Theorem 2, the definition of V (·), and the
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discussion above, we have

V (J) ≥ V (Jw) + V (Jc
w)

≥
i=h∑
i=1

V −(Ji) +
k∑

j=h+1

∑
j∈Ji

rj

=
∑

i

max(V −(Ji),
∑
j∈Ji

rj).

This provides the necessary contradiction. The proof of part (ii) now appears to be immediate

because, under every solution in the core, each coalition Jw gets at least max(V (Jw),
∑

j∈Jw
rj).

Thus, the payment is sufficient to cover the reservation price. However, it must further be shown

that this can be done simultaneously for every coalition and not just coalition by coalition.

Consider the primal problem:

min 0

subject to

∑
j∈Jw

πj ≥ V (Jw), for all Jw ⊆ J,∑
j

πj = V (J),

πj ≥ 0, for all j.

This program if feasible determines the payment schedule for the firms, i.e., firm j receives a

payment πj . The dual problem is:

max
∑

Jw⊆J

λJwV (Jw) + λV (J)

subject to

∑
Jw:j∈Jw

λJw + λ ≤ 0, j = 1, . . . , J,

λJw ≥ 0, λ unsigned.

The dual variables λJw correspond to the first set of constraints in the primal problem, and the

dual variable λ corresponds to the second constraint. Obviously, the dual problem is always feasible

(set all variables equal to zero). The dual solution will equal zero. Moreover, λ has to be less than
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or equal to zero. All we need to show is that zero is the maximum possible solution to the dual. If

not, then the dual will be unbounded (by scaling all variables as large as desired), and therefore,

the primal will be infeasible. We proceed to show that the solution to the dual problem is bounded.

Consider the constraint to the dual corresponding to j = 1. This constraint along with λ ≤ 0

implies that: ∑
Jw:1∈Jw

λJwV (Jw) + λmax(V (Jw) : 1 ∈ Jw, Jw ⊆ J) ≤ 0.

Similarly, the constraint corresponding to j = 2 yields

∑
Jw:2∈Jw and 1∈Jcw

λJwV (Jw) + λmax (V (Jw) : 2 ∈ Jw and 1 ∈ Jc
w, Jw ⊆ J) ≤ 0.

We can write analogous inequalities for larger values of j. In general, we have

∑
Jw:j∈Jw and {1,...,j−1}⊆Jcw

λJwV (Jw) +λmax (V (Jw) : j ∈ Jw and {1, . . . , j − 1} ⊆ Jc
w, Jw ⊆ J) ≤ 0.

The sets where the maximum is attained over (Jw : j ∈ Jw and {1, . . . , j − 1} ⊆ Jc
w, Jw ⊆ J) are

disjoint and their union is less than or equal to J . Adding up these inequalities gives

∑
Jw⊆J

λJwV (Jw)+λ(max(V (Jw) : 1 ∈ Jw, Jw ⊆ J)+max (V (Jw) : 2 ∈ Jw and 1 ∈ Jc
w, Jw ⊆ J)+. . .) ≤ 0.

Recalling that V (J) is greater than equal to the sum of the V (Ji)’s over any partition of J we

obtain ∑
Jw⊆J

λJwV (Jw) + λV (J) ≤ 0.

Therefore, the optimal value of the dual problem is bounded above by zero. This implies that the

dual problem is feasible and bounded, and therefore, has an optimal solution. Therefore, by strong

duality theorem, the primal has a feasible solution.

This proves the theorem for wj = 0 or 1 for all j. The same proof applies for the case of

fractional wj when the number of subdivisions of each asset is finite. Thus, if each asset is broken

into a finite number of parts, treating each subdivided asset as a ‘undivided’ asset we get the result.

2
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Proof of Theorem 3. Consider a partition of the assets, such that one coalition pools
∑

j wjXj

with a reservation price of
∑

j wjrj and the other coalition pools
∑

j(1−wj)Xj with a reservation

price of
∑

j(1 − wj)rj . By assumption,
∑

j EqlwjXj ≥
∑

j wjrj , and by definition
∑

j EqlwjXj ≥

V −(
∑

j wjXj). Thus,
∑

j EqlwjXj ≥ max(
∑

j wjrj , V
−(
∑

j wjXj)). Similarly,
∑

j Eql(1−wj)Xj ≥

max(
∑

j(1− wj)rj , V −(
∑

j(1− wj)Xj)). Adding these, we get

V −

∑
j

Xj

 ≥ max

V −(
∑

j

wjXj),
∑

j

wjrj

+ max

V −(
∑

j

(1− wj)Xj),
∑

j

(1− wj)rj

 .

This proves the sufficiency part of the theorem.

For the necessity part, suppose that the solution with wj = 1 for all j is in the core, but the

condition in Theorem 3 does not hold, i.e., for each q ∈ Θ that achieves V −(
∑

j Xj), there exists a

firm j such that Eq[Xj ] < rj . Consider the following linear program:

max v −
∑

j

wjrj

subject to

v −
∑

j

wjEql(Xj) ≤ 0 for all l,

wj ≤ 1 for all j,

v unsigned, wj ≥ 0 for all j.

This LP seeks the optimal fractions (wj ∈ [0, 1]) of all assets Xj to construct the asset pool if we

can buy the claim wjXj for the reservation price wjrj and the objective is to maximize the value

of the pool. The ql are the extreme risk-neutral pricing measures. The dual program is

min
∑

j

γj

subject to

∑
l

λl = 1,

−
∑

l

λlEql(Xj) + γj ≥ − rj for all j,

γj , λl ≥ 0 for all j, l.
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In this formulation, the λl’s are the dual variables corresponding to the first set of primal constraints,

and the γj ’s are the dual variables corresponding to the second set of primal constraints. Suppose

that the optimal solution to the dual problem is achieved at some values λ∗l , γ
∗
j . Let q∗ ∈ Θ be

such that
∑

l λ
∗
l ql = q∗. By assumption, the optimal solution to the primal problem is w∗j = 1 for

all j, and v∗ = V −(
∑

j Xj) −
∑

j rj . By complementary slackness applied to w∗j variables, we get

that the second constraint in the dual problem must be binding for all j in the optimal solution.

Thus, we have γ∗j = Eq∗ [Xj ] − rj for all j, and since γ∗j ≥ 0, we further have Eq∗ [Xj ] ≥ rj for

all j. Thus, the optimal solution to the dual problem is Eq∗ [
∑

j Xj ] −
∑

j rj . Equating this to

the optimal primal solution, we get that q∗ achieves the lower bound on the price of the pool, i.e.,

Eq∗ [
∑

j Xj ] = V −(
∑

j Xj). By assumption, this implies that there must be some firm j∗ for which

the second constraint in the dual problem has a slack, i.e., Eq∗(Xj∗) < rj∗ . However, this gives a

contradiction, and thus, proves the necessity part of the theorem. 2

Proof of Corollary 1. The choice of qp in part (i) follows from Lemma 1. Notice that when

the lower bound, V −(
∑

j Xj), is achieved at several extreme points then a linear mixture of these

measures also gives the same lower bound. The second part follows from part (ii) of Theorem 2.

To see this, the optimal solution to the grand coalition’s problem is the highest value that can be

obtained by pooling all assets, which must equal Eqp(
∑

j Xj). Moreover, any linear pricing measure

that supports the core must be an optimal dual solution to the problem of determining V −(
∑

j Xj).

Also, all optimal solutions to the dual problem are obtained as convex combinations of the optimal

extreme points solutions. Thus, if one such pricing measure can be found that not only supports

the core but also gives a value of each Xj larger than rj , then all firms will willingly participate in

creation of the pool. 2

Proof of Corollary 2. The value is maximized because this is the highest surplus that can be

generated after meeting all the reservation prices. The set of projects financed is maximal because

if another project could be added to the set with an increase to the objective function then the

current solution is not optimal.

Let q be the measure under which the pooled assets attain their minimal value. Then, if asset
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j is at a positive level in the pool then, EqXj > rj otherwise the dual constraint of the form

−EqXj + γ > −rj will have slack, which will mean that the asset j is at zero level in the primal

solution. Also, the set of assets wjXj satisfy the conditions of Theorem 3.

To show that the remaining assets cannot be pooled to create value, observe that under the

extreme pricing measure that minimizes the value of the pooled fractions of assets, the expected

value of the unpooled fractions of each asset is below its reservation price. Thus, applying Theorem

1(i) we get the result. 2

Proof of Lemma 2. We first note that the dual problem DT (J) has a feasible solution located

in the bounded convex set given by the intersection of the set of feasible region of problem DT (J)

and B =
∏

k[0,max(1,maxk m
∗
k)] × [0,max(1,maxk m

∗
k)]. The proof of this assertion follows from

the fact that qk ≤ 1, so that we may bound the region in which we search for a feasible solution by

a hypercube that contains the largest values of λk and δk.

The proof of Lemma 2 now follows from the facts that the optimal dual solution is bounded

above by a feasible solution in B, and that the minimum is attained at an extreme point of B
⋂
SDT

(cf: Lemma 1). 2

Proof of Theorem 4. (i) Assume to the contrary that there exists a solution to the dual problem,

DT (J), in Θ. This solution must be obtained by setting δ = 0 and λ = q for some q ∈ Θ. Since

the solution must satisfy all the dual constraints, multiplying constraints (7) by Z(ωk) and adding,

we get
∑

k λkZ(ωk) ≥
∑

k m
∗
kZ(ωk). However, this gives a contradiction because

∑
k λkZ(ωk) =∑

k qkZ(ωk) < V +(Z). Therefore, there is no feasible solution to the dual problem in Θ. Further,

since λ /∈ Θ, we must have δk > 0 in some state k, so that Ωa 6= ∅.

(ii) Assume to the contrary that there exists a non-negative contingent claim Z such that∑
k m
∗
kZ(ωk) > V +(Z) but which is zero in all states in Ωa. Let (λ∗k, δ

∗
k) denote the optimal

solution of the dual problem. Because Z(ωk) = 0 for all k ∈ Ωa, we can set m∗k = 0 for these states.

Since δ∗k = 0 for all k solves the dual problem with Z as the asset pool, we have a feasible λ ∈ Θ.

Thus, applying the same step as in the proof of (i) above, we find that
∑

k λkZ(ωk) ≥
∑

k m
∗
kZ(ωk),

which contradicts the assertion that
∑

k m
∗
kZ(ωk) > V +(Z). This proves the result.
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(iii) Consider a modified primal problem where we drop the lk variables and the corresponding

constraints for k ∈ Ωa. Correspondingly, in the dual problem, we drop the variables δk and the

constraints δk ≤ m∗k for k ∈ Ωa. Note that the modified primal problem is always feasible, but the

modified dual problem is infeasible. Thus, the primal problem must be unbounded. This implies

that there is a marketable portfolio with cash flows that are used only in the states Ωa that can be

shorted to create non-marketable tranches to be sold to investors, and yields infinite profit.

(iv) As before, let Z ′ be the marketable security that gives the upper bound on Z. Arguing as

before, we get Eq[Z ′] < Em∗ [Z ′] for all q ∈ Θ. However, because Z ′ ≥ 0, if there is a q ≥ m∗, this

leads to a contradiction. 2

Proof of Theorem 5. (i) The proof of this part follows from Theorem 4(iv). If there exists

q ∈ Θ such that qk ≥ m∗k for all k, then the set Ωa is empty. Thus, by definition of T a, we obtain

that T a is zero in all states in the optimal solution.

(ii) If there exists q ∈ Θ such that qk ≤ m∗k for all k and qk < m∗k for some k, then consider

the solution to the dual problem, DT (J), obtained by setting λk = m∗k and δk ≥ 0 for all k. This

solution is feasible and yields an objective function value of
∑

k m
∗
k

(∑
j wjXj(ωk)

)
. Also consider

the solution to the primal problem, V T (J), given by Yk =
∑

j wjXj(ωk) for all k, lk = 0 for all k,

and βn = 0 for all n. This also gives an objective function value of
∑

k m
∗
k

(∑
j wjXj(ωk)

)
. Since

the primal objective function value is equal to the dual objective function value, these solutions are

optimal. Therefore, there exists an optimal tranching solution in which Tm = T I = 0.

(iii) This case is the complement of the possibilities covered in (i) and (ii). Hence, the proof

follows. 2

49


