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Abstract

This paper examines social interactions when social networking is endogenous. It employs
a linear-quadratic model that accommodates contextual effects, and endogenous local inter-
actions, that is where individuals react to the decisions of their neighbors, and endogenous
global ones, where individuals react to the mean decision in the economy, both with a lag.
Unlike the simple V AR(1) structural model of individual interactions, the planner’s problem
here involves intertemporal optimization and leads to a system of linear difference equations
with expectations. It highlights an asset-like property of socially optimal outcomes in every
period which helps characterize the shadow values of connections among agents. Endogenous
networking is easiest to characterize when individuals choose weights of social attachment
to other agents. It highlights a simultaneity between decisions and patterns of social at-
tachment. The paper also poses the inverse social interactions problem, asking whether it is
possible to design a social network whose agents’ decisions will obey an arbitrarily specified
variance covariance matrix.
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1 Introduction

Most of the empirical work on social interactions tries to analyze and identify econometrically
interactions of a mean-field type. This literature typically assumes that individual agents are
influenced by the average behavior of the social group to which they belong. Such reliance
on a broad class of mean field models has shifted attention away from other features of social
interactions, such as individuals’ deliberate efforts to acquire desirable, or avoid undesirable,
social connections. Ioannides and Zabel (2002) explicitly model group membership but the
groups or neighborhoods they specify are non-overlapping and within each neighborhood,
mean-field type interactions are assumed. The nascent experimental literature on network
formation (see Kosfeld, 2004, for a survey) is a promising development. These studies focus,
however, is on the evolution of networks in rather stylized small scale games.

The present paper differs from other approaches to endogenous group formation by its
emphasis on macroeconomic aspects of network structure associated with the social groups
which result from individuals’ social networking: their initiatives to link with others. The
paper investigates the link between social networking and social interactions when patterns of
social interactions may be more complex than in the mean field case. If individuals in choosing
their own actions, which we interpret as incomes, are affected by social interdependence but
do not react strategically to it, individual income outcomes may be restricted with respect
to the universe of social outcomes that may reached. Patterns of interdependence may also
reflect self-selection associated with individuals’ choice of groups.

The particular approach adopted by this paper is in part motivated by the desire to explore
in greater depth the notion of social settings where some individuals may be more “influential”
than others, and the observation that within groups, subgroups or cliques of agents exist
with more intense mutual interaction. A natural question to pose pertains to the potential
for econometric identification when observational data may be used to make inferences about
interaction topology (also referred in the literature as network geography or morphology)
along with individuals’ behavioral parameters. A key consequence of social interactions in
modelling social phenomena is that even if individuals are subject to random shocks that are
independent, their individual reactions may end up being stochastically dependent, precisely
because individual reactions reflect influences from others directly — one’s own actions reflect
those of others — or indirectly, because one’s own actions reflect characteristics of others that
influence behavior. Interdependence may also follow from the fact individuals take deliberate
efforts to form social groups [ Moffitt (2001) ].
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When association with others is valuable, it is also appropriate to wonder about existence
of markets through which such “social networking” may be mediated. In fact, networking
markets appear to be thriving sometimes and not so much at other times, at least according
to the popular press; see, for example, Rivlin (2005a; 2005b). Creation of such markets is
conceptually related to completing asset markets in an economy, an intuition which could be
explored further in the paper.

The remainder of the paper is organized as follows. The paper first introduces a model
of individual decisions that allows for local and global interactions. The model allows for the
full range of social interactions with continuous outcomes, as they have been formalized by
a number of researchers, including notably Bisin et al. (2004), Brock and Durlauf (2001),
Glaeser, Sacerdote and Scheinkman (2003), Glaeser and Scheinkman (2001), Manski (1993;
2000), Moffitt (2001) and Weinberg (2004) in the economics literature. Our paper is most
notably related to Weinberg (2004) who introduces utility from social interaction with others
and emphasizes the role of the interaction structure on thresholds and of inputs, like own
time, that an individual may associate with a given set of neighbors. Weinberg shows that
endogeneity of association introduces additional structure that aids identification, thus relax-
ing the Manski “social reflection” problem.2 Weinberg also provides empirical results with
data from Add Health from the National Longitudinal Study of Adolescent Health. Unlike
Weinberg, we are also exploring dynamic aspects of social networking Suitable specification
of such interactions makes it possible to express a rich variety of patterns of social interdepen-
dence that may have important consequences in the context of the life cycle model as well,
along the lines of earlier research by Binder and Pesaran (1998; 2001). Unlike Weinberg but
similarly to Binder and Pesaran, we are also exploring dynamic aspects of social networking.
We go beyond than those authors in obtaining precise analytical results when networking
is endogenous. The paper is conceptually related to the problems addressed by Bala and
Goyal (2004) and Goyal and Vega-Redondo (2004) but like Binder and Pesaran, op. cit., and
Weinberg, op. cit., uses very different techniques in order to render results that are more
amenable to empirical analysis.

The relationship of this paper to those earlier works will be clarified further below. We
employ the model first in a static setting, which allows us to explore its implications for
interdependence of individual outcomes in the long run. This development allows us to
examine the “inverse social interactions” problem, that is whether or not an arbitrary social

2This is, in principle, the same effect as the one that endogeneity of neighborhood choice introduces into
even a linear model [Brock and Durlauf (2001; Durlauf (2004)].
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outcome, that is one that has been defined as a random vector with a given probability
distribution, may be reached as a limit state of social interactions in the long run.

Next the paper turns to investigation of the range of social outcomes that may be reached
when individuals choose deliberately how much they wish to be influenced by other individu-
als. Conceptually, this is related to choice of social groups or neighborhoods to belong to. We
explore the literature in neighborhood choice and in formation of friendships in articulating
different possibilities that may result in sorting in terms of observables or of unobservables.
We explore similarities between the motivation that individuals have for social networking
and the incentives to fully share risks.

2 Social Setting and Preferences

We employ the concept of social networking in the sense of acquiring access to benefits
that emanate from activities of other individuals within a particular social setting, or, put
differently, of acquiring access to desirable and avoiding undesirable social interactions.

We specify a social setting in terms of a social interactions topology. A social interactions
structure, or topology, is defined in terms of the adjacency matrix Γ [Wasserman and Faust
(1994)] of the graph G among i = 1, . . . , N individuals as follows:

γij =

{
1 if i and j are neighbors in G;
0 otherwise.

(1)

The adjacency matrix will be time-subscripted when appropriate. If social interactions are
assumed to be undirected, the adjacency matrix (or sociomatrix) Γ is symmetric. We define
an individual i’s neighborhood as the set of other agents she is connected with in the sense of
the adjacency matrix, j ∈ ν(i), ∀j, Γij = 1. Γi denotes row i of the adjacency matrix, whose
nonzero elements correspond to individual i’s neighbors. Further below, it will be important
to allow for a weighted adjacency matrix.

Social interactions may be embedded in a variety of settings, such as consumption activi-
ties, human capital accumulation, or more generally income-generating activities. We choose
that last setting and assume that individual i derives utility Uit from an income generating
activity, income for short, yit in period t net of the (utility) cost of doing so. Utility Uit is
assumed to be concave in yit. It also depends on the incomes and the characteristics of i’s
neighbors in the sense of the social structure and possibly on the average income in the entire
economy. Specification of the dependence on income and characteristics of others allows us
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to express a variety of social interactions, neighborhood and peer effects. We discuss these
after we introduce notation.

Let

Yt := (y1t, y2t, . . . , yNt)′ denote the (column) vector with elements all individuals’ incomes
at time t;

xi : a row K−vector with i’s own characteristics;

X : a N ×K matrix of characteristics for all individuals;

xν(i) : a row K−vector with the mean characteristics of i’s neighbors, j ∈ ν(i), xν(i) =
1

|ν(i)|ΓiX;

ι : a row N− vector of ones.

φ, θ, α and ω are column K−vectors of parameters.

We assume individual i at time t enjoys socializing with individuals with specific char-
acteristics. This is expressed through taste over the mean characteristics of i’s neighbors
j ∈ ν(i), 1

|νt(i)|Γi,tXφ, a level effect. We allow for the marginal utility of own income to de-
pend on neighbors’ mean characteristics, which is expressed through the term 1

|νt(i)|Γi,tXθyit,

and separately, on her own characteristics, through a term xiαyit. The former may be referred
to as a local contextual effect.

We allow, symmetrically, individual i at time t to be affected by her neighbors’ income
in two ways. One may be thought of as conformism: individual i suffers disutility from a
gap between her own income and the mean income of her neighbors in the previous period,
yit− 1

|νt−1(i)|Γi,tYt−1. A second way allows for the effect of a change in a neighbor’s income to
depend on i’s own characteristics through a term 1

|νt(i)|Γi,tYt−1xiω. This allows the effect of
the neighbors income to depend on individual background characteristics, e.g. younger people
may experience a greater disutility from living in a high-income neighborhood. We also allow
for a global conformist effect, through the divergence between an individual’s current income
and the mean income among all individuals in the previous period, yit − ȳt−1. This implies
endogenous global interactions.

We assume that each individual i incurs a (utility) cost for maintaining a connection with
individual j at time t is a quadratic function of the “intensity” of the social attachment as
measured by γij , that is, −c1Γi,tι−c2Γi,tΓ′i,t, with c1, c2 > 0, where ι denotes an N−column
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vector of 1s.3 This component of the utility function matters when we consider weighted
adjacency matrices in section 6.

Finally, we allow for an individual’s own marginal utility to include an additive stochastic
shock, εit, which will be discussed in further detail below. Lagging the effect of neighbors’
decisions, while keeping the contemporaneous neighborhood structure, is analytically con-
venient but not critical. We discuss below in more detail the consequences of including
contemporaneous effects of neighbors’ decisions.

All these effects are represented in a quadratic utility function, the simplest possible
functional form that yields linear first order conditions:4

Uit = Γi,tXφ + (α0 + xiα + Γi,tXθ + εi,t) yit − 1
2
(1− βg − β`)y2

it

− βg

2
(yit − ȳt−1)

2 − β`

2

(
yit − 1

|νt(i)|Γi,tYt−1

)2

+
1

|νt(i)|Γi,tYt−1xiω − c1Γi,tι− c2Γi,tΓ′i,t. (2)

As we see below, some of these terms do not contribute to individuals’ reaction functions, but
do affect the utility an individual derives from networking with particular other individuals.
This allows for social effects in the endogenous social networking process.

Our specification of the utility function nests a number of existing approaches in the
literature, including Durlauf (2004), Glaeser, Sacerdote and Scheinkman (2003), Horst and
Scheinkman (2004), and Weinberg (2004). Regarding the general formulation of the social in-
teractions problem by Binder and Pesaran (1998; 2001), we note the following. First, Binder
and Pesaran (2001) assume that the social weights are constant across individuals, whereas
we posit an arbitrary adjacency matrix which may accommodate the full range between local
and global interactions. Second, those authors do not examine deliberate social network-
ing. Yet, they do provide an exhaustive analysis of solutions of rational expectations models
for certain classes of social interactions. They also address the infinite regress problem (of
forecasting what the average opinion expects the average opinion to be, etc.) by condition-
ing on public information only. Our utility function is analytically quite similar to that in

3When entries of the adjacency matrix are restricted to zero-one values, the total cost to individual i can
be written simply as −(c1 + c2)Γi,tι.

4An additional advantage of quadratic utility functions is that they lend themselves quite easily to formu-
lation of decision problems as robust control problems, that is when agents make decisions without knowledge
of the probability model generating the data. See Backus et al. (2004) for a simple presentation and Hansen
and Sargent (2005) for a thorough development of robust control as a misspecification problem.
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ibid. and to Weinberg (2004). By appropriate redefinition of the adjacency matrix it may
accommodate habit persistence.5 6 It is possible that individuals may differ with respect to
attitudes towards conformism or altruism, which would require a more general specification
of preferences than (2).

3 Individual Decision Making

At the beginning of period t, individual i augments her information set Ψit by observing her
own preference shock, εit, her neighbors’ actual incomes in period t−1, Γi,tYt−1, and the mean
lagged income for the entire economy, ȳt−1, and chooses an income plan {yit, yit+1, . . . |Ψit },
so as to maximize expected lifetime utility conditional on Ψit,

E
{∑

s=t

δs−tUi,s |Ψit

}
, (3)

where δ, 0 < δ < 1, is the rate of time preference and individual utility is given by (2). We
note that individual i in choosing her plan recognizes that yit enters Ui,t+1 only if βg 6= 0,

that is only if endogenous global interactions are assumed. That is due to the fact that yit

enters period t + 1 utility functions of all agents j other than agent i, j 6= i. That is, in our
definition of the adjacency matrix, γii = 0, and the term Γi,t+1Yt does not contain yit.

7

The first order condition with respect to yit, given the social structure, is:

yit =
β`

|νt(i)|Γi,tYt−1 + βgȳt−1 + δ
βg

N
E {(yi,t+1 − ȳt) |Ψit }+ α0 + xiα + Γi,tXθ + εit. (4)

5That is, adopting their assumption would yield quadratic components of the form

1

2
(yit − ηyi,t−1)

2 − β

2

(
yit − ηyi,t−1 −

(
1

|ν(i)|ΓiYt − η
1

|ν(i)|ΓiYt−1

))2

,

as in Binder and Pesaran (2001), Equ. (14)), with parameter β > 0 measuring conformism. They model
conformism by expressing a tradeoff between individual-specific growth in consumption, on one hand, and
the gap between that growth and its counterpart among an individual’s neighbors, on the other. They model
altruism by expressing a tradeoff between the excess of one’s own current income over target lagged income
and its counterpart among one’s neighbors.

6Following Equ. (15)) in ibid. would yield

−1

2

(
yit − ηyi,t−1 + τ

(
1

|ν(i)|ΓiYt − η
1

|ν(i)|ΓiYt−1

))2

,

with parameter τ > 0 reflecting altruism and τ < 0 reflecting jealousy.
7See Bisin, Horst and Özgür (2004) while assuming only one-sided interactions also allow for a global effect.
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The interdependencies between individuals’ decisions are clearer when the first order condi-
tions for all individuals are put concisely in matrix form. We simplify by setting βg = 0 and
have:

Yt = At + β`DtΓtYt−1 + εt, (5)

where εt ≡ (ε1t, ε2t, . . . , εNt)′, is the N−vector of shocks, Dt is an N ×N diagonal matrix
with elements the inverses of the size of each individual’s neighborhood,

Dii,t = 1/|νt(i)| = 1/(ΓtΓt)ii,

and
At ≡ (. . . , α0 + xiα + Γi,tXθ, . . .)′

is a column N−vector of individual and contextual effects.
The evolution of the state of the economy, defined in terms of Yt, the vector of individuals’

incomes, is fully described by (5), a VAR (1, 1) model, given the information set Ψt =
⋃

i Ψi,t,

and provided that the sequence of adjacency matrices Γt, t = 0, 1, . . . , is specified. Intuitively,
the economy evolves as a Nash system of social interactions that adapts to external shocks
of two types, deterministic ones, as denoted by the evolution of the social structure Γt, and
stochastic ones, as denoted by the vectors of shocks εt, as t = 1, . . . ,∞.

To fix ideas, let us assume that the random vectors εt, t = 1, . . . , are i.i.d. over time
and drawn from a normal distribution with mean 0 and variance covariance matrix Q, εt ∼
N (0,Q). Then, by a standard derivation from stochastic systems theory [ Kumar and Varaiya
(1986), p. 27 ]of the t−step transition probability, the distribution for Yt, at time t, is
characterized by the following proposition, whose proof is elementary that thus not repeated
here.
Proposition 1.

Given the initial state of the economy, Y0, and under the assumption that the shocks εt

are independent and identically distributed with a multivariate normal distribution N (0,Q),
then the distribution of the state of the system at time t, Yt, is normal,

Yt ∼ N



t∏

s=1

AsY0 +
t−1∑

j=0




t∏

s=j+1

As


Aj ,Σt|0


 , (6)

where At is the N ×N matrix defined as:

At ≡ β`DtΓt,
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and the variance covariance matrix Σt|0 above is given from the time-varying linear difference
equation:

Σk+m|k = Ak+m−1Σk+m−1|kA′
k+m−1 + Q, m > 1;Σk|k = [0]. (7)

Σk+m|k is the matrix of mean-squared errors of the m-step predictor for Yt.

Not surprisingly for a dynamic model, given a starting point Y0, the mean of vector of indi-
viduals’ incomes after t periods reflect the full sequence of contextual effects, {A0, . . . ,At−1},
weighted by the respective adjacency matrices. The dispersion of individual incomes, on
the other hand, reflects the compound effect of weighted interactions as they augment the
dispersion of the underlying shocks.

4 Properties of Social Outcomes at the Steady State

It is easier to see the properties of the state of the economy at the limit when t → ∞.

Then under the assumption of a time-invariant adjacency matrix, At = A, and vector of
contextual effects, At = A and the limit of the mean of Yt, Y∗, is well defined and given by
the unique solution to

Y∗ = A+ AY∗. (8)

A solution for the vector of mean individual incomes exists, provided that matrix I−A

is invertible. For this, it suffices that A be stable, namely that all its eigenvalues have
magnitudes that are strictly smaller than one. Since A comes from an adjacency matrix,
“normalized” by each row sum and scaled by β`, its stability is ensured by assuming 0 <

β` < 1. So we have:
Y∗ =

[
I + A + A2 + . . .

]
A. (9)

The asymptotic behavior of the variance covariance matrix of the vector of individuals’
incomes, according to Equ. (5), is also easy to study provided that the adjacency matrix
Γi,t is time-invariant. The limit Σ∗ from Equ. (7) of the variance covariance matrix Σt,

as t → ∞, exists. Theorem (3.4), in Kumar and Varaiya, op. cit., or Proposition 4.1, in
Bertsekas, op. cit., as a special case, ensure that if matrix A is stable then the limit solution
of (7) is a unique positive semidefinite matrix. We may state this in a slightly more general
case by relaxing the assumption that the random vectors εt are independent draws from a
given multivariate distribution and instead assume that they are defined in terms of factor
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loadings,
εt = Gwt, (10)

where G is an N ×M mixing matrix and wt a random column M−vector, that is indepen-
dently and identically distributed over time and obeys a normal distribution with mean 0

and variance covariance matrix R, wt ∼ N (0,R). This case is of particular interest, because
it allows us to express the contemporaneous stochastic shock in a factor-analytic form of
contemporaneously interdependent components and therefore shocks to different individuals
may be correlated. This approach also allows for a general form of serial correlation in the
wts [ ibid., p. 27 ].8

Put succinctly in a proposition, whose proof readily follows from (7) and (10), we have:
Proposition 2.

The variance covariance matrix of vector of individuals’ incomes when t →∞, that is the
limit of (7) when εt assumes the factor-analytic form according to (10), satisfies

Σ∞ = AΣ∞A′ + GRG′. (11)

The matrix Σ∞ in the equation above would not be a proper variance covariance matrix
unless it is positive definite. This is ensured, provided the random error wt along with the
matrix A “allow” the economy to reach all social outcomes in a well-defined sense. Clarifying
this involves the concept of controllability, according to which a pair of matrices A,G are
controllable, if the matrix [G, AG, . . . ,AN−1G] with N rows and NM columns has rank
N , that is all its rows are fully independent.
Proposition 3. If the pair of matrices A,G is controllable, then stability of matrix A is
equivalent to existence of a unique solution to Equ. (11) that is positive definite and vice
versa.

Proof. Matrix A is indeed stable, as we discussed earlier above. Then, Theorem (3.9), in
Kumar and Varaiya, op. cit., applies. Alternatively, by applying Equ. (11) recursively we
have that if limt→∞AtGRG′(A′)t = [0], then

Σ∞ =
∞∑

j=0

AjGRG′(A′)j .

8Such a factor-analytic approach links social interaction models with factor models in large cross-sections
of time series that have been employed in generalizing the dynamic index models of business cycle research.
See Reichlin (2002) for an excellent review of this recent literature.
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It then follows that stability of matrix A is necessary and sufficient for the existence of Σ∞.

Q.E.D.

The interpretation of the condition for controllability is quite revealing in our context.
If the N × NM matrix [G|AG| . . . |AN−1G] has rank N , then there exists a sequence of
vectors

∼
w0, . . . ,

∼
wN−1, that take the economy from any arbitrary initial point to a designated

final point in N steps. Let
∼
Y0 and

∼
YN be these points, respectively, defined as deviations

from Y∗, the unique solution of (8).
By applying Equ. (5), transformed in terms of deviations from Y∗,

∼
Yt≡ Yt −Y∗,

∼
Yt= A

∼
Yt−1 +Gwt, (12)

successively N times we stack the N equations so as to have
∼
YN −AN

∼
Y0 on the LHS

and the column NM−vector obtained by stacking up the input vectors as the unknowns,
∼
w0, . . . ,

∼
wN . Controllability ensures that the solution for the input vectors, the

∼
wt’s, is

unique. Put differently, for the economy to move from anywhere to anywhere in N steps, as
many input vectors are needed as there are members of the economy.

4.1 Extensions

We address next a number of possible extensions and generalizations. First, the stochastic
shocks do not need to be Gaussian. As long as their second moments exist, the counterpart
of (7) may be derived.

Second, we may generalize the model and interpret At as a vector of decision variables
that contributes to the evolution of individual outcomes in the manner indicated by Equ.
(5). That is, At may assume the form of closed-loop control and therefore could reflect the
state of the economy as of time t − 1, Yt = BtAt + AtYt−1 + εt, where At,Bt are given
matrices and the vector At, the control, is optimally chosen so as to optimize an objective,
which also includes a quadratic term in At. Such a model would be very similar to a life cycle
optimization of consumption decisions. This, of course, continues to be true in the presence of
social interactions, as in the work by Binder and Pesaran (1998; 2001), discussed earlier. The
optimal control, in this case, is defined through a matrix that satisfies an algebraic Riccati
equation [ Bertsekas (1995), 132–133 ].

Third, the properties that we have discussed earlier really pertain to a sequence of static
problems that evolve over time. A number of straightforward generalizations that imply
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intertemporal tradeoffs can render the model genuinely dynamic. The simplest possible one,
as we discussed above, would be to allow for a global effect, that is by allowing βg 6= 0.

Fourth, an interesting extension would be to allow for the stochastic shocks to be decision
variables. The simplest way to do so would be via endogenizing the factor loadings, that is
by letting individuals set the elements of the mixing matrix in Equ. (10), G, which could
also be time-varying. This would then resemble a dynamic portfolio analysis problem, which
we know to be quite tractable when individuals’ utility functions are quadratic. We note
the special interpretation that the choice of a portfolio of factors would confer: individuals
choose factor loadings in order to offset shocks associated with the decisions of others that
enter directly their own utility functions and therefore their own decisions as well.

Fifth, suppose that an arbitrarily chosen state of the economy may be specified via a
random N−vector Y, with a given distribution function, Y ∼ N (F, ς). That is, the incomes
of the individual members of the economy are assumed to be stochastically interdependent
and distributed in the above fashion. We define the inverse social interactions problem as
whether such a state could be reached as an outcome of social interactions, that is as the
limit vector of individuals’ incomes, satisfying (5), when t → ∞. That is, given (F, ς) and
the distributional characteristics of the random vector of factors wt, wt ∼ N (0,R), can we
find a social interactions structure, defined by a vector of coefficients A, an adjacency matrix
Γ, and a mixing matrix G of dimension N ×M, such that the random vector Y is the limit,
when t →∞, of the vector of individual outcomes, Yt,

Yt = A+ AYt−1 + Gwt. (13)

The inverse social interactions problem is the counterpart here of problems posed by the
business cycle literature, that is whether it might be possible to define vector autoregressive
system that yields any desirable pattern of correlations among the shocks [Jovanovic (1987);
Sargent (1987)]. We note that this problem is more general than examining the limit of the
distribution of income in this economy.

First we note that given F, (13) implies that F = [I −A]−1A. If a mixing matrix G is
given, then we may define the square root S of GRG′, SS′ = GRG′. The problem of finding
a positive symmetric matrix of full rank N , A, is overdetermined: there exist 1

2N(N +1)+N

equations and 1
2N(N − 1) unknowns. Therefore, there exist up to 2N degrees of freedom

which may be used for the determination of the mixing matrix.
This result is readily interpretable in terms of weighted adjacency matrices. Imposing

the restriction that the social interaction matrix takes the form of a matrix of zeros and
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ones, with A = βDΓ, translates to the requirement that given ς, a matrix Γ and a social
interactions coefficient β may be found that provide sufficient spanning for ς to be the limit
distribution satisfying Equ. (11). Relaxing the requirement would be to allow for individuals’
interaction coefficients to differ, (β1, . . . , βN ), or alternatively, for the adjacency matrix to
assume a weighted form with arbitrary positive entries, instead of just 0s and 1s. The case
of a weighted adjacency matrix is taken up further below in section 6.

5 A Social Planner’s Problem

Next we introduce a social planner who recognizes the interdependence of agents and also
takes it into consideration in setting individuals’ outcomes while respecting an existing topol-
ogy of social interactions. This analysis helps assess the scope for social intermediation, as
we shall see shortly below.

The planner seeks to choose individuals’ incomes that maximize the sum of individuals’
expected lifetimes utilities.9 The planner is forward-looking and in recognizing individuals’
interdependence she conditions her decisions on knowledge of all incomes in the previous
periods, {Y0,Y1, . . . ,Yt−1}, and of all individual preference information available as of the
beginning of every time period, Ψt. At the beginning of each period t, the planner chooses
a plan {Yt,Yt+1, . . . , } so as to maximize the expectation of individuals’ lifetime utility,
according to

N∑

i=1


Uit + E





∑

s=t+1

δs−tUi,s|Ψt






 . (14)

The planner’s maximization assumes actual outcomes as of time period t and the exogenous
evolution of the adjacency matrix Γt, and where we have also simplified utility function (2)
by assuming that βg = 0, ω = 0.

Differentiating objective function (14) with respect to yit, i = 1, . . . , N, yields the first
order conditions:

yit + δβ`

∑

j 6=i

γji,t+1

|νt+1(j)|
1

|νt+1(j)|Γj,t+1Yt

=
β`

|νt+1(i)|ΓitYt−1 + δβ`

∑

j 6=i

γji,t+1

|νt+1(j)|E {yj,t+1|t}+Ait + Giwt. (15)

9We eschew introduction of arbitrary positive weights λ1, . . . , λN , because they are not really necessary for
expressing the planner’s problem. There are sufficient degrees of freedom elsewhere in the individuals’ utility
functions.
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We may rewrite these conditions for all i’s in matrix form as follows:

[
I + δβ`Γ′t+1Dt+1Dt+1Γt+1

]
Yt

= At + β`Dt+1ΓtYt−1 + δβ`Γ′t+1Dt+1 E {Yt+1|Ψt}+ Gwt. (16)

By working in the standard fashion for linear-quadratic rational expectations models, we
solve for Yt as a function of Yt−1 and of E {Yt+1|t} . Specifically, we simplify by assuming
that the adjacency matrix and the matrix of contextual effects are time invariant, and define:

H = I + δβ`Γ′DDΓ

Then solving Equ. (16) yields:

Yt = H−1 [A+ β`DΓYt−1 + δβ`Γ′D E {Yt+1|Ψt}+ Gwt
]
. (17)

By advancing the time subscript, taking expectations and using the law of iterated expec-
tations, we may express E {Yt+1|Ψt} in terms of Yt and E {Yt+2|Ψt} , and so on. That
is:

E {Yt+1|t} = H−1 [A+ β`DΓYt + δβ`Γ′D E {Yt+2|t}
]
.

By iterating forwards from time t + 1, we obtain the standard form of the forward solution
for systems of linear rational expectations models. Put concisely in the form of a proposition
we have:
Proposition 4.

Part A. Maximization of expected social welfare, defined as the sum of expected life time
utilities of all agents requires that the vector of outcomes Yt satisfies the system of linear
difference equations (16) with expectations.

Part B. The expectation of the vector of optimal outcomes at the steady state, when all
covariates are time-invariant, Ỹ∗, satisfies

E
{
Ỹ∗

}
= A+ β`DΓE

{
Ỹ∗

}
+ δβ`Γ′D [I−DΓ] E

{
Ỹ∗

}
, (18)

and is well defined and unique.
The economic interpretation of Equ. (18) is straightforward. At the steady state, the

vector of expected outcomes is equal to the vector of contextual effects, of the own lagged
feedbacks, and of the net “conformist” effect on one’s neighbors in the following period.
Precise results regarding the properties of the solution to the above model may be obtained
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by applying Proposition 3, Binder and Pesaran (1998). We plan to return to this issue in a
later version of the paper. We do note that a richer behavioral model than the one in Section
3, while possible and attractive, would have complicated considerably the use we make of our
behavioral model later on in the paper.

A number of remarks are in order. First, systems of linear difference equations with
expectations, like (16), have been studied extensively and are amenable to solution in the
standard fashion for such models [Sargent (1987); Binder and Pesaran, op. cit.]. Expectations
enter because the planner recognizes that setting individual i’s period t outcome affects the
expectation of the utilities of her neighbors in the following period. In contrast, individuals’
optimization considerations are backward looking, and therefore the first-order conditions
yield a simple vector autoregression of order 1.

Second, by employing the methods used earlier and summarized in Proposition 1 above,
it is possible to extend Proposition 4 so as to clarify the evolution of the variance-covariance
matrix for the socially optimal outcomes vector.

Third, iterating Equ. (17) forwards demonstrates an asset-like property of socially optimal
period t outcomes, Yt. That is, the value from setting an individual’s outcome in this period
depends upon others’ outcomes next period, and so on. This confers an element of asset to
agents’ outcomes and leads to an asset theory of social interactions. At the social optimum,
individual outcomes at time t reflect the present value of the future stream of contextual
effects of all current neighbors, adjusted by discount factors that are functions of the rate
of time preference and multiplied by the social interactions coefficient and weighted by the
directness of the connections between agents. It is not surprising that the planner is forward
looking in assessing the effects that different individuals’ actions have on their own outcomes
and those of their neighbors. The one period forward dependence is, of course, translated
into the standard infinitely forward dependence familiar from rational expectations models.

Fourth, we note that there is another aspect of the social value of social interactions which
the effect discussed above does not capture. That is, the value for an agent of having versus
not having a particular connection with another agent. Associated with every solution path is
an expected value of the social welfare function, the planner’s objective function. Therefore,
in principle, we may assess the impact of a change in the adjacency matrix on the socially
optimal solution and thus on the expected value of the planner’s objective function. That is,
adding a new link changes the solution path in a particular way and produces an increment in
the expected value of the planner’s objective function. In general, this yields a shadow value
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for the corresponding link which is a benchmark by means of which we may measure the
social value of intermediation. This calculation is straightforward conceptually. In practice,
it is quite tedious to compute the social value of an additional connection.

Since the individually optimal outcomes are inefficient, the social optimum may be imple-
mented, at least conceptually, through an appropriately chosen set of prices, πit, i = 1, . . . , N.

By adapting individual i’s utility so as to include a term −πityit, maximization of Uit−πityit

brings about the social optimum, provided that the prices are set equal to the respective
marginal social effects, which in view of quadratic utility functions are equal to the differ-
ence between the socially optimal and individually optimal outcomes. For completeness, we
also need to impose conditions of incentive compatibility and allow for transfers that leave
individuals at least indifferent while budget balance is satisfied.

So far we have assumed that the network of social connections is given. We next turn to
the situation where this network is endogenous. In that case, implementing individual prices
πit in general is insufficient as a tool for the social planner to implement the social optimum
of outcomes and network connections.

6 Endogenous Networking

How could social network connections come about? This section explores the notion that
they are initiated by means of individuals’ initiatives, when individuals stand to benefit by
doing so. We examine endogenous networking by assuming that individuals choose weights
which they associate with their connections with other individuals. This approach assuages
the inherent difficulty of dealing with discrete endogenous variables while taking advantage
of a natural interpretation of weighted social connections. Individuals’ social attachments
do differ: they vary from close friendships to mere acquaintances. And, naturally, weighted
adjacency matrices are used in the social science literature. A formulation of endogenous
networking in a discrete setting of the model of social connections we have been working with
so far is relegated to an appendix in a working paper version of the paper. It demonstrates
that characterization of individual networking initiatives is quite awkward, and so is the
associated welfare analysis.

Analysis of endogenous networking is facilitated by assuming a finite horizon, T, version
of the typical individual’s problem and considering the networking decision prior to setting
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the period T outcome.10 The impact on utility in period T is easier to obtain when we work
with the indirect utility function, given a network topology. Setting yiT so as to maximize
the expectation of period T utility,

UiT = Γi,TXφ + (AiT + εiT ) yiT − 1
2
(1− β`)y2

iT

−β`

2

(
yiT − 1

|νT (i)|Γi,TYT−1

)2

+
1

|νT (i)|Γi,TYT−1xiω − c1Γi,Tι− c2Γi,TΓ′i,T, (19)

yields an indirect utility function for agent i :

ŨiT (ΓT ;YT−1) ≡ Eεt

[
max
yiT

: UiT | Ψi,T−1

]

= Γi,TXφ +
1
2
A2

iT + (β`AiT + xiω)
1

|νT (i)|Γi,TYT−1

− 1
2
β`(1− β`)

(
1

|νT (i)|Γi,TYT−1

)2

− c1Γi,Tι− c2Γi,TΓ′i,T +
1
2

σ2
ε . (20)

A network of connections among N individuals is defined by means of a N ×N weighted
adjacency matrix Γt, of intensities of social attachment:

γij,t

{
6= 0, if i is influenced by j in G;
= 0, otherwise.

(21)

This formulation combines the notion of an adjacency matrix in graphs with the notion of
varying intensities of social contacts11 and at the same time allows for the network to be
directed. For c2 > 0 the marginal cost of a connection are increasing with intensity. This
has an interpretation in terms of opportunity cost: short and superficial encounters e.g. at
parties bear a lower opportunity cost than spending quality time together. We return below
to an interpretation of individuals’ choice of intensities of social attachment as neighborhood
choice.

Individuals are assumed to choose by which other individuals they are influenced under
the assumption that they optimize their own outcomes for any given social structure and take

10The analytics employed and intuition gained by the finite horizon approach may be used to extend the
model to an infinite horizon setting. See Bisin, et al., op. cit. for an extension with one-sided local but global
social interactions, as well.

11We thank Alan Kirman and Bruce Weinberg who emphasized this interpretation.
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all others’ decisions as given.12 All previous derivations in the paper so far readily apply to
the case of a weighted adjacency matrix, except that it is no longer necessary to normalize by
the size of neighborhood. Formally, individual i seeks to maximize expected period T utility,
given by (20), with respect to

Γi,T = (γi1,T , . . . , γij,T , . . . , γiN,T ), with γij,T ≥ 0, j = 1, . . . , N,

and conditional on her information set Ψit. The results are summarized in the following
proposition.
Proposition 5.

The indirect utility function (20) for individual i is concave with respect to Γi,T , individual
i’s vector of social weights, provided that X = 0. It admits a unique maximum with respect
to Γi,T in that case.

Proof. By differentiating (20) twice with respect to Γi,T yields the Hessian,

H = [Xθ + β`YT−1] (Xθ)′ + β` [Xθ − (1− β`)YT−1]Y′
T−1 − 2c2I

= Xθ(Xθ)′ + β`

[
XθYT−1 + (XθY′

T−1)′
]− β`(1− β`)YT1Y

′
T−1 − 2c2I.

To ensure concavity, H must be negative semidefinite. In the simple case in which X = 0,
H reduces to H = −β`(1 − β`)YT1Y

′
T−1 − 2c2I, which is negative semidefinite as long as

β` < 1, which ensures that the only terms in equation (20) that are quadratic in Γi,T receive
a negative sign. For X 6= 0, interpretation of the condition is more involved. Since the term
Xθ(Xθ)′ is positive definite and the term XθYT−1 + (XθY′

T−1)′ is ambiguous in sign, a
sufficiently large coefficient of the marginal connection cost would be required to make the
utility function concave with respect to the weighted adjacency matrix. In case H is negative
semidefinite, the first order conditions,

Γ′i,T = − {
[Xθ + β`YT−1] (Xθ)′ + β` [Xθ − (1− β`)YT−1]Y′

T−1 − 2c2I
}−1×

[Xφ +AiTXθ + (β`AiT + xiω)YT−1 − c1ι] , (22)

characterize the unique maximum. We note that (22) is in the form of a linear system in
terms of Γ′i,T .

Q.E.D.
12In the terminology of DeMarzo et al. (2003), if γij > 0, then i “listens” to j. A weighted adjacency matrix

may come about even when connections are indicated by either 0 or 1. One such possibility would be when
agents update their beliefs using Bayes theorem. See DeMarzo et al. (2003).
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A number of remarks are in order. First, for certain applications, it may be important
to require the entries of the adjacency matrix to be positive and normalized. Restricting
Γi,T so that it lies in the positive orthant of RN , γij,T ≥ 0, j = 1, . . . , N, a convex set, is
straightforward but quite stringent. That is, that would translate to restrictions on values of
parameters and of variables. While some of the variables are constant, others depend on the
actual state of the economy as of the preceding period, YT−1. These values accumulate past
values of stochastic shocks and are therefore random. Consequently, endogenous weighted
networking implies that agents in setting their period T − 1 decisions must take into con-
sideration that ΓT , the social adjacency matrix in period T, is an outcome of individuals’
uncoordinated decisions and stochastic. We note that positivity of the γij,T s is quite criti-
cal for a meaningful interpretation of endogenous networking as being akin to neighborhood
choice. If the adjacency matrix were to be restricted to be positive, then particular patterns
in Γ, like a block-diagonal structure with many small blocks is reminiscent of so-called “small
worlds,” emerging endogenously.

Second, endogenous determination of the social adjacency matrix introduces intertempo-
ral linkages in the individual’s decision making for two reasons: first, period T − 1 decisions
affect the period T adjacency matrix ΓT ; and second, unlike when the adjacency matrix
was taken as given and the assumption was made that all diagonal terms were assumed to be
equal to zero, γii,t = 0, now they may well be nonzero, thereby strengthening habit formation.
From a psychological perspective, one can argue whether positive γii,t’s should be interpreted
as the result of willful acts or are expressing addiction. This intertemporal linkage in turn
leads to a clarification of the asset value of a connection between agents. Because of our
functional specification for individual utility according to Equ. (2), additional information,
in the form of total and marginal contextual effects, is brought to bear upon the problem
of determining the social structure and also enters the asset value of social connections. In
particular, additional information is included, over and above information included in the
reaction function, such as the term Xφ. Third, once the connection weights are endogenized,
weights are not necessarily equal, that is the adjacency matrix is not symmetric, let alone
constant over time.

We refrain from pursuing further these issues in the present paper. However, in an
important sense, networking, once it has been endogenized no longer implies that social
interactions assume the form of the mean field case. Furthermore, variable intensities of
attachment subsume the issue of strong versus weak ties [Grannovetter (1994)] as a special
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case.

6.1 Endogenous Networking and Individual Decisions

In obtaining the first-order conditions for individual i’s decision in period T − 1 we need to
recognize that γii,T , which is optimally chosen and satisfies (22) above, need not be equal to
zero. Therefore yi,T−1 enters period T indirect utility ŨiT via the term Γi,TYT−1.

13 Therefore,
we now have for all yi,T−1 in matrix form:

[δβ`(1− β`)[DiagΓT]ΓT + I]YT−1 = δ[DiagΓT][β`AT + Xω] + β`ΓT−1YT−2 +AT−1 + εT−1.

(23)
where [DiagΓT] denotes the diagonal matrix made up of the diagonal terms of ΓT.

Not surprisingly, the strength of the effect depends on δγii,T . This weighs the own period
T individual and contextual effects Ai,T and the own endogenous local interaction effect
on period T utility, as they are added to the period T − 1 individual and contextual effects,
Ai,T−1. It also weighs the own conformist effect of the current decision yi,T−1 on itself through
its presence in period T utility.

Finally, we turn to the joint evolution of individual decisions and the social network. We
note that the setting of YT−1 and ΓT are based on the same information. Therefore, (23) and
(22) may be treated as a simultaneous system of equations: period T −1 individual decisions
and period T weights of social attachment are jointly determined. These equations may be
rewritten schematically as:

ΓT = G (ΓT ,YT−1|X) ,

YT−1 = Y (ΓT ,YT−1,YT−2, εT−1|X) .
(24)

The above system of equations is autonomous with only a contemporaneous stochastic shock,
the vector εT−1. It exhibits complicated dynamic dependence: it is second-order with re-
spect to YT−1 and first-order with respect to ΓT . It is amenable to the usual treatment
for dynamical systems, but the fact that ΓT is a matrix makes matters cumbersome. One
especially has to ensure that the system is dynamically stable, perhaps by imposing a kind
of transversality condition that restricts the absolute value of entries in the Γ matrix. We
plan to pursue further the properties of this system in future research.

13It also enters indirectly through the dependence of the endogenous Γi,T on YT−1, but by the envelope
theorem, those terms cancel out.
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6.2 Comparison with Exogenous Networking

As a contrast to exogenous networking, consider a stylized exogenous networking setting
where individuals engage in social networking by progressively connecting with the acquain-
tances of their acquaintances, and so on. Tracking the evolving acquaintance sets is quite
straightforward [ Brueckner and Smyrnov (2004) ]. Starting with an adjacency matrix Γ0,

it is straightforward to see that all individuals acquire connections with their second neigh-
bors, that is the acquaintances of their acquaintances, then the adjacency matrix becomes
Γ1 = Γ0 + Γ2

0. Extending to third neighbors (graph-distance three), the adjacency matrix
becomes Γ2 = Γ1 + (Γ1)2 = Γ0 + 2Γ2

0 + 2Γ3
0 + Γ4

0. Endogenous networking as examined
earlier would lead only by chance to such a description of the evolution of networking at the
aggregate. Brueckner and Smyrnov (2004) derive a number of results for the case in which
Γ0 is irreducible, that is, in networks in which every agent is directly or indirectly connected
to every other agent. Notwithstanding the tractability of the network evolution process, one
drawback of this approach is that it is hard to come up with an economic justification of this
particular evolution process.

7 Conclusions

We conclude by first providing a brief summary. This paper examines social interactions
when social networking may be endogenous. It employs a linear-quadratic model that ac-
commodates contextual effects and endogenous interactions, that is local ones where indi-
viduals react to the decisions of their neighbors, and global ones, where individuals react
to the mean decision in the economy, both with a lag. Unlike the simple V AR(1) form of
the structural model, the planner’s problem involves intertemporal optimization and leads
to a system of linear difference equations with expectations. It also highlights an asset-like
property of socially optimal outcomes in every period which helps characterize the shadow
values of connections among agents. Endogenous networking is easiest to characterize when
individuals choose weights of social attachment to other agents. It is much harder to do so
when networking is discrete. The paper also poses the inverse social interactions problem,
that is whether it is possible to design a social network whose agents’ decisions will obey an
arbitrarily specified variance covariance matrix.

We would like to think of this paper as addressing problems that pursue further the logic
of one of Alan Kirman’s greatest contributions. That is, to further study economies with
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interacting agents in ways that help bridge an apparent gap with mainstream economics
[Kirman (1997; 2003)]. Although the paper does not deal with another of Kirman’s key
areas of interest, aggregation, it hopes to contribute indirectly in the following fashion. First,
aggregation that ignores the presence of social interactions is a tricky venture [c.f. Kirman
(1992)]. Second, social interactions give rise to a social multiplier, construed here in the sense
of Glaeser, Sacerdote and Scheinkman (2003). That is, social multiplier is defined as the ratio
of the coefficient of a contextual effect obtained from a regression with aggregate data to that
obtained from a regression with individual data. As a consequence of aggregation, the social
multiplier overstates individual effects, in varying degrees that depend on precise patterns
of interdependence and sorting in the data. The tools developed in this paper allows us to
explore the following hypothesis. Might the social multiplier be due to the exogeneity of
social interactions as assumed by earlier papers? We know from ibid. that sorting across
groups on the basis of observables reduces the social multiplier, but sorting on unbservables
has an ambiguous effect. Our model involves both effects, by positing what is essentially an
optimal “social” portfolio problem. Endogenous social networking makes the case forcefully
that non-market interactions need not be of the mean field type.

In a mechanical sense, our model represents endogeneity of the infrastructure of trade.
Dependence on neighbors’ income could be a reduced form for the benefits derived from
trading with others. In our model, agents are vying to choose a desirable set of others to
be influenced from. We would like to think of this as a precursor to opening up routes for
trading. That is a much harder problem, but one that promises attractive payoffs. When
markets are incomplete, opening up new markets is a tricky business from the viewpoint of
social welfare [Newbery and Stiglitz (1984)]. An alternative interpretation of the model is in
terms of endogenous group formation, and could be pursued further. Therefore, for several
reasons the type of phenomena that Alan Kirman has chosen to emphasize throughout his
work are central to making economics more relevant and a better tool for understanding how
societies function.
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9 APPENDIX: Endogenous Discrete Networking

We consider next the problem of individual i at time t = T − 1, who is contemplating a
networking initiative, denoted by the matrix [∆ΓT ], prior to setting the period T decision.
The resulting network topology is given by:

ΓT = ΓT−1 + ∆ΓT . (25)

We simplify derivation of the impact of networking by considering first its effect in the last
period of a finite horizon version of the problem of individuals’ lifetime utility maximization.
This does not impose any undue restrictions because individually optimal outcomes satisfy
conditions which are backward looking.

Since networking is defined in terms of the entries of the adjacency matrix, which are
discrete variables, the contribution of different networking initiatives to optimum utility may
now be defined in terms marginal but discrete changes, [∆Γij ] to the adjacency matrix.

Specifically, given ΓT−1 and YT−1, marginal changes in the network topology may be
ranked in terms of their contributions to expected utility. The admissible changes in the
network topology, [∆γij,T ], may be defined as follows. If a connection does not exist in
period T − 1 between agents i and k, γik,T−1 = 0, then it may be created or not created; if
such a connection does exist, γij,T−1 = 1, then it may be severed or not severed. That is:

if γik,T−1 = 0, and Dik,T ≥ 0, then: ∆γik = 1, γik,T = 1;
if γik,T−1 = 0, and Dik,T < 0, then: ∆γik = 0, γik,T = 0;
if γik,T−1 = 1, and Dik,T < 0, then: ∆γik,T = −1, γik,T = 0;
if γik,T−1 = 1, and Dik,T ≥ 0, then: ∆γik,T = 0, γik,T = 1,

(26)

where the quantity Dik,T is defined as follows:

Dik,T = Xkφ + [β`(2− β`)AiT + xiω]
1

|νT−1(i)|+ 1
yk,T−1 − 1

2
β`[1− β`]


 1
|νT−1(i)|2


y2

k,T−1 +
∑

j 6=i

γij,T−1γik,T−1yj,T−1yk,T−1


 +

(|νT−1(i)|+ 1)2 − |νT−1(i)|2
|νT−1(i)|2(̇|νT−1(i)|+ 1)2


∑

j 6=k

γij,T−1yj,T−1




2

 .

(27)
These definitions may be applied symmetrically for the networking decisions contemplated
by individual k. Consequently,

Dki,T = Xiφ + [β`(2− β`)AkT + ω]
1

|νT−1(k)|+ 1
yk,T−1 − 1

2
β`[1− β`]
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|νT−1(k)|2


y2

i,T−1 +
∑

j 6=k

γkj,T−1γki,T−1yj,T−1yi,T−1


 +

(|νT−1(k)|+ 1)2 − |νT−1(k)|2
|νT−1(k)|2(̇|νT−1(k)|+ 1)2


∑

j 6=i

γkj,T−1yj,T−1




2

 .

(28)
These definitions along with the transition functions (26), suitably adapted for all agents,
define convex sets in RN which describe fully the motion of the system at any point in time.
So, we summarize the networking decisions of all agents by stating that:

∆ΓT = DT−1 (YT−1,ΓT−1) . (29)

with D(·) an N ×N matrix.
Working backward in the fashion of dynamic programming, we have that agent i at the

beginning of period T − 1 chooses yi,T−1, given Γi,T−1 so as to maximize the expectation
of remaining lifetime utility. However, because under the assumptions of the basic model
ŨiT (Γi,T ;YT−1) depends on the components of YT−1 other than yiT−1, its optimal value is
given by equation, Equ. (5), as above. By adapting the definition of indirect utility in Equ.
(20), we have that remaining expected lifetime utility becomes:

ŨiT−1 (Γi,T−1;YT−2) + δŨiT (Γi,T ;YT−1) . (30)

Individual i chooses her period T − 1 networking, ∆Γi,T−1, given Γi,T−2 and prior to the
realization of that period’s shocks, and plans to choose ∆Γi,T , given Γi,T−1 so as to maximize
the optimum value of remaining expected utility. Although individual i ignores the effects
that her own actions have on the utilities of others, she still needs to form expectations about
the effects of networking by others on the entire pattern of social interactions and therefore
on her own utility. These considerations suggest that the economy’s adjacency matrix in
the following period is to be regarded as random. However, the dynamic programming
formulation may still be used, but in the context of the classic optimal control literature, the
system matrix becomes stochastic [ Bertsekas (1995), p. 141 ].

We have considered so far the consequences of only a single networking initiative by each
agent. Since the indirect utility function, defined in (20) is quadratic in Γ, the impacts
of deliberate networking with various other agents, which is initiated by individual i and
described according to (27), may be ranked. With the assumption of utility costs of forming
new connections, which additional connections each agent will undertake is fully determined,
and so is the law of motion for the evolution of the patterns of social interactions in the
economy. We summarize by stating that

Γt = L (Yt−1,Γt−1) , (31)
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where the function L(·) summarizes the above results.
A number of remarks are in order. First, we note that although the law of motion (31)

is stated in terms of quantities that are known as of time t, the evolution of the state of
the economy over time depends on realizations of shocks in every period. Second, although
the contribution to agent i’s utility from opening up a connection with agent k is defined
symmetrically to the contribution to agent k’s utility from opening up a connection with
agent i, those two different contributions need not both have the same sign. This raises
the possibility that opening and severing of connections would cycle, unless we impose the
condition that directly affected agents must be in mutual agreement. However, presence of
costs does introduce friction, which mitigates some of these issues. Third, an extension of the
model would be to allow individual the option of initiating contacts with others according to
a Poisson clock in the style of Blume (1993).
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