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Abstract   
 
Proof of work (POW) is a set of cryptographic mechanisms which increase the cost of 
initiating a connection. Currently recipients bear as much or more cost per connection as 
initiators. The design goal of POW is to reverse the economics of connection initiation on 
the Internet. In the case of spam, the first economic examination of POW argued that 
POW would not, in fact, work. This result was based on the difference in production cost 
between legitimate and criminal enterprises. We illustrate that the difference in 
production costs enabled by zombies does not remove the efficacy of POW when work 
requirements are weighted. We illustrate that POW will work with a reputation system 
modeled on the systems currently used by commercial anti-spam companies. We also 
discuss how the variation on POW changes the nature of corresponding proofs from 
token currency to a notational currency.    
  
 

1. Introduction  
  
Spam is on its own a significant problem in that it consumes vast network and human 
resources. If the Internet is an attention span economy, then spam is wholesale theft. 
CipherTrust estimates in 2005 the volume of global email as exceeding 50 billion 
messages per day [1]. Spam is so profitable that estimates of spam as a percentage of all 
email has increased even as the total volume of email increases. Estimates of the percent 
of email sent (not delivered) range from 56% in 2003 to 80% in 2006.  Spam is a 
malicious network activity enabled by the otherwise virtuous cycle of network expansion. 
As the network expands, spam becomes more profitable, and thus increases. Spam is also 
a vector for other activities: distribution of malicious code, phishing attacks, and 
old-fashioned fraud.  
 
The core challenge in defeating spam is that the sender bears almost no cost to send 
email. The cost is borne by the network service providers and the recipients. In order to 
solve this problem, proof of work was designed to alter the economics of spam [2] by 
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requiring that the sender commit to a per-email cost. POW was presented as a business 
and economic solution to spam. However Laurie and Clayton illustrated that POW, on its 
own, it is not a solution to the problem of spam. [3]  
  
In this paper we will illustrate that POW systems can work if combined with a reputation 
system. We will start it by describing POW. We then identify the derivation of 
parameters by Laurie and Clayton used to determine that POW is indeed unworkable. In 
the next section we provide an overview of the current state of the art of deployed 
anti-spam reputation systems. We then combine POW and a stepwise reputation 
mechanism. We argue that this enables a POW system that works. We show that the 
system would work reasonably for all legitimate email users based on parameter 
selection. 
 

2. Defining Proof of Work   
 
The core enabling factor of spam is that spam is cheap to send. The negligible cost of 
sending spam makes solicitations with response rates in the tens of a percent profitable. 
Proof of work was deigned to remove the profit from spam.   
 
POW comprises a set of proposals. Different proposals require email senders to require 
fungible payment, perform a resource-intensive computation, [4], perform a series of 
memory operations [2], or post a bond, [5] for each message sent.  This section describes 
the initial POW proposal, and details different analysis. 
 
In 1992, the first computational technique for combating junk mail was presented by 
Cynthia Dwork and Moni Naor. Their fundamental intellectual contribution was to 
require an email sender to compute some moderately hard, but not intractable, function of 
the message and some additional information in order to initiate a transmission. Initiating 
a transmission means gaining access to the resources: the network for transmission, the 
users’ storage in an inbox, and the user’s attention span if the transmission is accepted. 
[4] 
 
The essence of POW is that “if you want to send me a message, then you must prove 
your email is worth receiving by spending some resource of your own”. Currently, email 
is a market that has the unusual property that consumption is more expensive than 
production. Therefore the key property of the POW functions is that they are very 
expensive for email sender to solve, but it is comparatively cheap for email recipient to 
verify the solution.  
  
The current most popular POW system is the hashcash system. Hashcash [6] was derived 
from MicroMint and PayWord. [7] Hashcash is implemented by requiring a sender to 
determine a hash collision, which can be easily checked but is relatively difficult to 
produce. [6] As business, these mechanisms can be used to throttle systematic abuse of 
un-metered internet resources such as email, and anonymous remailers, in which the 
sender is required to compute a cost function and produce a string which can be used as a 
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POW. [6]  
  
Of course, the time investment in any processing-intensive POW system depends upon 
the specific platform. Work that might take 20 seconds on a Pentium IV could take 
several minutes or more on a Pentium II, and be completely infeasible on a mobile phone. 
To address this problem, a POW pricing functions based on accessing large amounts of 
random access memory as opposed to raw processing power was originally proposed by 
Cynthia Dwork, Andrew Goldberg, and Moni Naor, with later work creating additional 
memory-bound mechanisms. [2] [8] Since memory speeds vary much less across 
machines than CPU speeds, memory-bound functions should be more equitable than 
CPU-bound functions. While processing speeds can vary by orders of magnitude, Dwork 
et. al. claim a factor of four between fastest and slowest memory operations. The current 
Microsoft implementation, Penny Black, is designed to be agnostic about the form of 
work and requires only some form of work. 
  
Processing costs was the basis of the original model and is the most examined.  This 
paper concerns itself with costs of performing some moderately expensive computation 
as POW, building upon the parameters in [3]. The objections to POW before [3] were 
primarily observations about the high variance in not only wealth of senders but also 
processing ability of devices. This model does not address that variance.  Yet the 
combination of reputation and POW proposed in this paper would work with any of the 
proposed POW systems.    
 

3. What Is Required for Proof of Work to Work  
  
Proof of work as a concept appears powerful enough to solve the junk email problem by 
changing the underlying economics of spam. Yet Ben Laurie and Richard Clayton 
showed that it is not possible to discourage spammers by means of a POW system 
without having an unacceptable impact on legitimate senders of email. [3] Obviously 
simply altering the parameters used in [3] would resolve the conflict between spammers 
and legitimate users. However, such a trivial argument would be neither productive nor 
engaging. Their numbers presented by Laurie & Clayton identify a critical issue, the shift 
in the production frontier, which must be resolved for POW to be feasible. We therefore 
use exactly their parameters to address the feasibility of POW systems. Note that the 
general models could be used with different parameters.  
  
In the following paragraphs, we review and discuss the parameters as calculated in [3]. 
By illustrating that POW can work for those parameters we solve the specific case. By 
providing the shape of an idealized reputation curve, we illustrate that POW solutions can 
in general work if augmented by a simple reputation system.   
  
To begin the review of the previously determined parameters, recall Radicati’s estimation 
[9] that as of November 2003, in an average, 5.7×1010 emails were sent per day by 
5.13×108 email users on the Internet using 9.02×108 email accounts. Brightmail’s 
estimation [10] was that 56% of all emails are spam.  The Internet Domain Survey’s 
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estimation [11] that there are totally 2.3×108 hosts, Laurie and Richard concluded from 
these numbers that there are 3.2×1010 junk emails and 2.5×1010 legitimate emails. This 
assumes that each machine would send an average of 125 emails per day. From their 
examination in the UK, Laurie and Richard further assumed that the proportion of 
legitimate non-list emails being sent by each machine is about 60%, thus a final average 
of about 75 legitimate non-emails being sent is determined. We accept these estimates.   
  
Using estimates of costs of processing power, the result is a price of $1.75 per machine 
per day for email operations. Considering spammers used to charge as much as 0.1 cents 
per email, one spammer must send at least 1750 emails per day to cover his cost. 
Therefore a POW calculation time has to be at least 50 seconds.  
  
At this point the critical difference between spam and legitimate email must be addressed.  
Spammers and legitimate senders of email have different production frontiers. Senders of 
legitimate e mail purchase equipment and services on a free and open market. Spammers 
use botnets, which consist of highly parallel theft of electronic services through 
subversion of end user machines.  
  
The difference of production frontiers means that spammers and legitimate senders of 
email have different costs, Laurie and Clayton first estimated that 1.1 million machines 
might be owned by spammers. The result is a pool of a million machines that could send 
32000 junk emails each per day. Using these numbers, a situation in which only 1% of 
email is spam means a POW calculation time must be at least 346 seconds.  
 
Thus economic terms, the availability of zombie machines shifts the production frontier 
for spammers. Spammers have a far lower cost of email production than legitimate users. 
Our proposal - a two-state reputation system - addresses this difference in cost.  In fact, if 
this difference in the production frontier were an order of magnitude, e.g. 10 or 20 times 
a decrease in cast the reputation-enhanced POW system described here would still work.  
  
Finally, Laurie and Clayton examined logging data from the large UK ISP. They found 
that although 93.5% of machines sent less than 75 emails per day, a POW mechanism 
would prevent legitimate activity by 1% or 13% of legitimate users. And considering that 
spammers may select fast machines while legitimate senders are using relatively slow 
machines, the impact on legitimate email senders could imaginably be worse.  
 

4. Current Anti-spam Reputation Mechanisms  
  
Proof of work has not been widely adopted as an anti-spam mechanism. Microsoft is 
endeavoring to change this, with the introduction of Penny Black. Yet the anti-spam 
market is dominated by subscriber services dedicated to blocking or filtering spam. These 
services include AppRiver, Brightmail, and CipherTrust. This section describes the 
reputation element of these various anti-spam entities.   
  
In general, a reputation system is designed to track the history of a sender of email. 
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Different mechanisms are used to track and rate sender behavior over time. Behavior is 
classified in these systems as good (i.e., sending legitimate email) or bad (i.e., sending 
spam or malicious mail). Malicious mail includes phishing attacks and mail containing a 
virus malicious code, such as a virus or worm. Reputation systems may also create 
profiles for identification of known historical behavior. For example, a previously trusted 
account sending out malicious mail may indicate a user who is trustworthy in moral terms 
(e.g., not a spammer) but has been subverted and can no longer be trusted because of a 
technical failure.   
  
The first generation reputation systems used simple blacklists and whitelists. The real 
time black hole list is the best known of these simple blacklists.  Blacklists contain the IP 
addresses of known spammers and virus senders, and whitelists contain the IP addresses 
of senders known to be legitimate. [12] Obviously the first generation of reputation 
systems had significant room for improvement. For example, a sender’s reputation was 
affected by the behavior of all senders with whom the sender shared network resources, 
or sender’s reputations could be affected by malicious code that was sent out with 
falsified fields or origin. [13] 
 
Second generation reputation systems addressed some subset of these difficulties.: Later 
systems included dynamically updated lists which allowed reputation systems to adjust to 
rapidly changing conditions, and more importantly automatic updates which mitigated 
the administrative burden of fighting spam. Increasing storage and processing power 
enabled more granular message scoring. Blacklists were replaced with per-email 
numerical scores were effectively probabilistic weighing of likelihood of spam. [12] 
Modern anti-spam mechanisms are difficult to evaluate in detail because the mechanisms 
for weighting and storing reputations are as much business intelligence as art or science.  
  
In the realm of open inquiry, researchers have created sets of requirements for reputation 
systems. Dingledine [14] argues that an effective reputation system must be dynamic, 
comprehensive and precise, and based on actual enterprise mail traffic in order to keep 
the spammers from gaining any advantage. [12] Today the latest reputation systems take 
a persistence testing approach to reputation scoring. Some systems also evaluate the 
social network of the sender to determine reputation scores. Both CipherTrust and gmail 
have significant information about the social network of recipients’ who subscribe to 
their services.    
  
Despite the existing commercial differentiation of systems, there is a common core to the 
anti-spam reputation systems. Most of the existing reputation mechanisms use the 
average of past feedback reports to assess the reputation of one agent. [12] Agents may 
be as broad as domain, based on IP address, or as narrow as email address. Different 
reputation system providers have different characteristics and therefore different cost 
functions, and different error rates. The error rates published by commercial providers 
may be goals as much as historical measurements.  
 
The critical observations for this work are that reputations systems exist that function on 
a per-email, per-address and per-domain basis. Complex rating mechanisms as well as 
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historical reputation mechanisms are currently used in commercial anti-spam technology. 
The mechanism we propose here is not unduly complex in comparison with current 
anti-spam products.  
 

5. Proof of Work Augmented with a Reputation Function  
  
We propose an extremely simple reputation system. Emails are rated based on a 
per-email or per-source basis.  The reputation is a step function: each email either has a 
low or high POW requirement. The high POW requirement is instantiated at the first 
detected spam, and held for a set duration.  
 
Based on an assumption that one zombie machine can be detected during a short time, we 
propose our model which combines a reputation mechanism and POW scheme in order to 
show the feasibility of POW. One way to detect a zombie machine quickly is to assume 
that each new entrant is malicious until proven otherwise, as is common in reputation 
mechanisms.  
 
In our model, the cost of POW would be variable based on a reputation score. The 
magnitude of the POW required is a function of reputation, e.g. R(s)=C.  R is the 
reputation function. C is the requirement for an email to be acceptable, i.e. the POW. s is 
the reputation score which is given by the past behavior. 
 
Newcomers are overwhelming malevolent in the world of SMTP servers. The research 
done by CipherTrust [1] identified that approximately 50 million IP addresses which send 
approximately 70% of all email on a daily or nearly daily basis. The other 30% comes 
from IP addresses which have not been previously encountered. More than 95% of that 
30% of emails from new or unknown IP addresses is malicious. In other words, an IP 
address which is encountered for the first time is ~95% likely be a zombie machine. 
 
The reputation mechanism in our model can be described as following. With an initial 
reputation score s1, email senders will bear a high POW cost C=H, where R(s1)=H. The 
reputation of any new or previously malicious new email source will not be fixed at the 
initial score s1 forever. Newcomers can overcome initial distrust by performing the POW 
as required and sending only legitimate emails. After bearing this cost for the first several 
emails, for example duration m emails, the reputation score jumps to s2. As a result of the 
change in reputation, the POW cost drops immediately to C=L where R(s2)=L. However, 
once one email is indicated as spam, the per-email POW cost to this sender will 
immediately increase to H. After that, at any time if one single spam is detected, 
regardless of the nature of the following m emails, all m of these emails bear the high cost 
H as punishment until the (m+1)th email after the last detected spam. 
 
Building on the success of commercial spam protection, we would propose giving each 
one new IP address an initial reputation score, which should be low enough to prevent 
this new machine being a profitable zombie if it is indeed infected. In other words, 
variable POW restricts new IP addresses to prevent them from sending more than 1% 
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spam among all legitimate emails per day by demanding a heavy burden in terms of 
POW. Based on the CPU analysis in Laurie and Clayton’s calculation [3], to make at 
most 1% spam among all legitimate emails, which is 250 emails each machine per day, a 
POW calculation time must be at least 346 seconds.  
  
Obviously m, H and L are critical variables.  Other significant variables are the rates of 
error in spam detection. There are two error rates: the probability of false identification of 
legitimate email as spam, and incorrect identification of malicious email as correct. 
Assume that there exists software that can detect one spam with P accuracy and may 
indicate a legitimate email as spam mistakenly with probability p. According to vendor 
reports, P is much greater than p. Again based on public vendor claims, P ranges between 
98%~99% and p is less than 1%. Vendors vary between their tolerances of error types: 
some vendors never throw our legitimate email but detect less spam, while others detect 
more spam but lose the occasional email.  
 
In gross game theoretic terms, the proposed model is a tit-for-tat model with forgiveness. 
Defection, in this case of sending spam, results in immediate punishment in the form of 
increased work. If the participant then behaves well for the next emails, then there is (in 
game theoretic terms) forgiveness. Therefore a user who is wrongfully identified as a 
spammer will not pay an indefinite price. Of course, in this simple model we do not 
address the existence of blacklists. Clearly, once an email address has been repeatedly 
identified as a spambot, no email would be accepted.  
 
To examine this proposal we developed a Matlab simulation to examine the average 
POW cost to end users who are ill or well-behaved.  In this simulation, each sending 
email is an event and is associated with some probability P. This probability decides the 
cost of each email with two possible variables.  For spam the cost is 350 seconds and for 
legitimate email the cost is 10 seconds as described above. The duration of the high cost, 
or punishment, is set to m=14 emails. Email that is rejected for inadequate POW is 
bounced to the sender. 
 
For spammers with a probability P=99% to be detected, the expected cost of each 
sending email will be around C=349 seconds. This is close to Laurie and Clayton’s 
estimation which is proved to be enough to discourage spammers. Also for legitimate 
users, with the probability p=1% to be wrongfully identified, the expected cost of each 
sending email is around C=52 seconds. Again this meets the requirement that end users 
who send legitimate email are in fact able to do so. These are averages over 100 emails 
based on repeated simulations.  
 
These results of suggest that this POW model combined with a step-wise reputation 
mechanism can work to discourage spammers without overloading high volume 
legitimate email users.   
 

6. Sensitivity analysis 
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In order to test this proof of work model in extended configurations, we describe the 
previous model in another way which is more general: if the nth sending email is detected 
as spam then the m following emails, from (n+1)th to (n+m)th,  will bear a POW cost H as 
punishment. The POW cost of (n+m+1)th email will be back to L. From now on, we 
adopt the following general assumptions and parameters: 
 

• m: the length of punishment in the number of sending email; 
• p:  the probability of error indicating which is usually between 0 to 1%; 
• P: the indicating accuracy which will be tested from 30% to 99%; 
• H: the high POW cost as a punishment of spam detection; 
• L: the low POW cost for legitimate users; 
• T: the testing period in the number of sending email and we assume that one 

zombie machine can be detected during the testing period T=10000 in this section. 
 
In previous section, we have examined one specific configuration of m=14, p=1%, 
P=99%, H=350, L=10. In this section, more configurations of the POW model will be 
tested and its sensitivity will be analyzed. All the original data is attached in appendix. 
 

a) POW cost sensitivity 
 
We ran 100 Monte Carlo simulations with m=10, p=0.01, and T=10000. The proof 
requirements for proof of work varied: H=[310, 390], L=[0, 50].  The resulting average 
POW cost for legitimate users is shown in Figure 1: 
 

 
 

Figure 1 Cost of Legitimate users 
 
 
Recall that legitimate users must have  a cost of 50 or under. This illustrates high costs of 
up to 390 are more than feasible, and indeed even with this highest consider cost a low 
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cost of above 40 is feasible.  
 
We ran 100 Monte Carlo simulations with m=10, p=0, and T=10000. The proof 
requirements for proof of work varied: H=[310, 390], L=[0, 50]. The resulting average 
POW cost for legitimate users is shown in Figure 2: 
 

 
Figure 2 Cost of Legitimate users 

 
The two following graphs consider accuracy rates and varying costs. The two graphs are 
highly similar, illustrating that with the appropriate selections of H and L, P is not critical 
for spammer’s cost. We ran 100 Monte Carlo simulations with m=10, P=0.98, and 
T=10000. The proof requirements for proof of work varied: H=[310, 390], L=[0, 50]. 
The resulting average POW cost for spammer is shown in Figure 3: 
 

 
Figure 3 Cost of Spammer 
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This graph illustrates that even a low cost of zero is feasible if spammers are identified a 
high percentage of the time.  Thus proof of work can work with no requirements on 
known trusted users.  
 
We ran 100 Monte Carlo simulations with m=10, P=0.99, and T=10000. The proof 
requirements for proof of work varied: H=[310, 390], L=[0, 50]. The resulting average 
POW cost for spammer is shown in Figure 4: 
 

 
Figure 4 Cost of Spammer 

 
 
Laurie and Clayton pointed out that a POW cost of 50 seconds would prevent legitimate 
activity less than 1%. And a POW cost of 346 seconds is the basic requirement to make 
spammer unprofited sending spam. [3]  
 
By using repeated simulations we have more narrow range of acceptable L and H. In 
subsection b, which follows, we will narrow and target on this range.  

b) Extended POW cost sensitivity 
 
In the previous section we considered various combinations of high and low of work. The 
result is a strong argument that a POW cost of L<50 and H>310 should be fairly robust. 
In this section, we evaluation two more variables: detecting probability and durations.  
First we offer two graphs in these ranges for L and H to illustrate that the results are 
within the range defined as tolerable.  
 
We ran 100 Monte Carlo simulations with m=10, p=0.01, and T=10000. The proof 
requirements for proof of work varied: H=[310, 500], L=[0, 20]. The resulting average 
POW cost for legitimate users is shown in Figure 5: 
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Figure 5 Extended POW cost of legitimate user 

 
 
We ran 100 Monte Carlo simulations with m=10, P=0.98, and T=10000. The proof 
requirements for proof of work varied: H=[310, 500], L=[0, 20]. The resulting average 
POW cost for spammer is shown in Figure 6: 
 

 
Figure 6 Extended POW cost of spammer 

 
 
The extended POW cost of legitimate user gives us a clue of how the cost H and L affect 
the average POW cost for legitimate email users. There are some easily identifiable key 
points, including (340, 20), (400, 15), (450, 10) and (490, 5). The second data table 
illustrates that the major factor affecting the average POW cost for spammer is the cost H 
and, unsurprisingly,  it should be greater than 350 in order to discourage spamming. 
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Although the current anti-spam market suggests that the spam detecting accuracy is 
around 98%, in next sensitivity analysis we would like examine the detecting accuracy 
sensitivity as a factor of the average POW cost for spammer. 

c) Sensitivity to duration and Probability 
 
The first set of graphs tells us that  we require H>350 and L<50. To look more closely 
we ran a second set of more granular changes in H and L. As a result we identified 
crossover points, where either legitimate user is charged too much or spammer too little. 
The following simulations illustrate how changes in probability of detection and duration 
of punishment alter the results. From previously discussed simulations, we selected two 
sample configurations H=370, L=20 and H=410, L=10. 
 
First, we evaluated alterations in probability of detection. We ran 100 Monte Carlo 
simulations with m=10, T=10000, H=370, and L=20. The detecting requirement for 
proof of work varied: P=[99%, 60%]. The resulting average POW cost for spammer is 
shown in Figure 7: 
 

 
Figure 7 Detecting Probability Sensitivity under H=370, L=20 

 
 
The above figure illustrates that the probability of detecting a spammer can be as low as 
60% and the proposed two level cost model will still be effective.  
 
We ran 100 Monte Carlo simulations with m=10, T=10000, H=410, and L=10. The 
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detecting requirement for proof of work varied: P=[99%, 60%]. The resulting average 
POW cost for spammer is shown in Figure 8: 
 

 
Figure 8 Detecting Probability Sensitivity under H=410, L=10 

 
 
The results of this detecting accuracy analysis showed that even the spam detecting 
accuracy is lower than 65%; the average POW cost for spammer is still strong enough to 
remove the profit from spam. This is an intuitive result,  because spammer is sending 
more emails than legitimate users and has a correspondingly greater probability being 
detected. Thus spammers will bear much higher POW cost for spamming.  

d) Duration Sensitivity  
In previous evaluations of the model, we had a set value for duration, m, m=14. It will be 
interesting to examine the sensitivity of different punishment duration m which is 
measured in number of emails. 
  
We ran 100 Monte Carlo simulations with T=10000, H=410, L=10, and p=1%. The 
duration requirement for proof of work varied: m=[1, 20]. The resulting average POW 
cost for legitimate user is shown in Figure 9: 
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Figure 9 Length Sensitivity under H=410, L=10, p=1% 

 
 
We ran 100 Monte Carlo simulations with T=10000, H=410, L=10, and P=98%. The 
duration requirement for proof of work varied: m=[1, 20]. The resulting average POW 
cost for spammer is shown in Figure 10: 
 

 
Figure 10 Length Sensitivity under H=410, L=10, P=98% 

 
 
We ran 100 Monte Carlo simulations with T=10000, H=370, L=20, and p=1%. The 
duration requirement for proof of work varied: m=[1, 20]. The resulting average POW 
cost for legitimate user is shown in Figure 11: 
 



  15 

 
 

Figure 11 Length Sensitivity under H=370, L=20, p=1% 
 
 
We ran 100 Monte Carlo simulations with T=10000, H=370, L=20, and P=98%. The 
duration requirements for proof of work varied: m=[1, 20]. The resulting average POW 
cost for spammer is shown in Figure 12: 
 

 
Figure 12 Length Sensitivity under H=370, L=20, P=98% 

 
 
The most interesting development is the shape of the relative curves. At low levels, even 
very short punishment durations have a great effect. The increase for spammers is 
obviously exponential. In contrast, the legitimate users experience a linear growth in cost 
with increased m. This m sensitivity analysis suggests that from the perspective of 
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lowering POW cost of legitimate user m should be between 4 and 10 with a H ={370, 
410}. At any point, the cost for the legitimate user increases linearly with m.  
 
For spammers there is a decreased efficacy of increasing the duration above 10. As the 
limit of the cost is obviously H, and spammers cost begins to asymptotically approach H 
at d=10.  Increasing the duration above 10 therefore harms the legitimate user without 
creating corresponding harm to the spammer.  
 
We suggest that the optimal m for the cost model is 10.  
 

7. The Nature of POW 
 
There is a fundamental distinction between proof of work as generally described and 
POW with the proposed reputation system. POW as initially described in a token 
currency. Recall that money is a mechanism of exchange, a store of value and a standard 
of value.  
 
With token money the value is inherent to the mechanisms of exchange. An exchange of 
a token is an exchange of value. Token money is either inherently valuable or represents 
value so that a token is not a function of the party exchanging it.  
 
In contrast, notational money is exchanged based on notations in a record-keeping 
system. Notational exchanges are not completed until verified by the record-keeping 
party. In this case, POW exchanges require the reputation-tracking party to verify if the 
payment is adequate and thus valid. Penny Black is an on-going research by Microsoft 
[15] which is a completely notational implementation of POW. Each user has an account, 
and each email recipient decreases or credits that account. The model allows those who 
fight spam to select costs based on the level of granularity which is  most effective. End 
users can keep history-based records and bounce email without POW. ISPs could also 
keep such records, so that the user history is not an issue when sending mail.  Penny 
Black is a traditional notational instantiation that associates each email with exactly one 
POW account.  
 
Note that there is no requirement that the record-keeper and the parties to the exchange 
are indeed distinct. In the case that record-keeping entity is a party to the exchange then 
POW would appear to function as a token. However, the fact remains that there must be a 
notational clarification for the POW to be accepted. An example of where 
reputation-based POW would have a single party evaluating and pricing might be in a 
DDoS attack. Those parties that have some history of transaction -- either as identified by 
a DDoS “cookie” or through another record of interaction -- can pay the lower cost. 
Those parties with no history will be required to pay the grater POW.   
 
Another example where the notational element is distributed to the individual presented 
with a token is the extreme case of L=0. The simulations displayed in the graphs and 
included in tabular form in the appendix illustrate that the case where the low cost is zero 
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and the high POW cost is >400 would indeed function within the parameters given. In 
this case, users either pay a very high POW cost to send email or are members of a 
whitelist.  Recall individuals could each maintain their own whitelists. Those who would 
initiate conversations would then either pay a premium or obtain an introduction.  
 
POW can work. However, POW requires some notational elements to function in a world 
where it is impossible to distinguish prima fact between the legitimate and criminal 
markets.  
 

8. Future Research 
 
The modeling in this paper illustrates that proof of work would work were the work 
factor high with a known user having a work factor of zero. Multiple mechanisms that are 
not considered traditionally POW can fit under that rubric.  Examples of this 
include challenge and response mechanisms that require anyone who is not part of the 
history of the recipient to respond to an email or perform some work (e.g., a CAPCHA) 
for the email to be received. Yet these mechanisms have not proven to reduce global 
spam. Therefore, the next level of research will be on market dynamics. 
 
In the model presented here, and in all other models of POW, there is an assumption that 
POW is ubiquitous. The assumption of instant, uniform adoption is common in both 
computer science and economics, and extremely rare in the world on which these 
sciences are focused. This model suggests the addition of a dynamic element to this 
model so that at any time t, the number of individuals who adopt a system is a function of 
the number of users at the previous time. To be more specific, set number of users of 
POW to POWu and the number of users who do not as POWn. At any time some 
percentage of users will reject POW, POWr, and others will adopt POW, POWa.  
 
POWu[t + 1] = POWu[t] + POWa[t] － POWr[t]    (eq.1)  
POWn[t] = POWn[t] + POWr[t] － POWa[t]    (eq.2) 
 
While the total number of users does not change,  
 
e.g., POWn[t+1] + POWu[t+1] = POWn[t] + POWu[t]   (eq.3)  
 
And individual decisions on accepting or rejecting POW depend on its ubiquity of 
adoption of POW. 
 
POWr[t+1] = －aPOWu[t] + bPOWn[t]     (eq.4) 
POWa[t +1] = cPOWu[t] － dPOWn[t]     (eq.5) 
 
These are the standard equations for a natural dynamic system. However, in these 
systems rate of infection, rate of recovery and mortality may be known. Also, due to birth 
and death, equation (eq.3) will not hold. In POW these are complete unknowns. Thus the 
model can be updated based on market adoption and network observations (available 
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through the data compiled at Indiana University Abilene NOC). Notice that a, b, c, and d 
are probably time-dependent rates that are less than zero. However, we will model them 
as constants.  
 
Note that the diffusion measure in this dynamic model is correlated with likelihood of 
spam detection in the probabilistic model above. This is obviously because is one some 
percentage s% use POW, then 100-s% will never detect spam in that detection requires 
POW.  The dynamic model will be informed by the parameters developed here.  
 
One implementation that is based on individual identity-linked accounts is the "Penny 
Black" implementation by Microsoft. [15] There are reasons not to adopt Microsoft’s 
Penny Black mechanisms unrelated to network effects or interoperability. Penny Black 
uses a centralized server that issues per-email tickets. Email recipients then contact the 
centralized server again to determine if the ticket is valid. This allows for per-user 
pricing. However, it also allows Microsoft unprecedented levels of social network 
information, information on internal corporate communications, and other information 
from traffic analysis. Of course, Penny Black does not require an “identity” be linked to 
an account; only that an email address is linked to  an account. While the potential for 
anonymous accounts is built in, its actual usability and anonymous strength is uncertain. 
Certainly no company competing in any market with Microsoft would be interested in 
providing such information, and end users may be similarly loath to provide such 
personal details. The observation of the diffusion of the Microsoft POW mechanism 
Penny Black will enable, over time, an empirical measure of these constants.  
 

9. Conclusions  
  
Proof of work reverses the cost model of email by charging the sender instead of the user. 
We have proposed the combination of POW and a simple reputation mechanism. We 
illustrated that, for legitimate email users, the cost is acceptable; for spammers, the costs 
are prohibitive.  By multiple simulations, we illustrated that POW with a simple 
reputation mechanism can work over a wide range of values.  
 
Recall that a uniform POW mechanism will not work because any price high enough to 
stop malicious email will be so high as to hinder legitimate users. In fact, the low cost of 
stolen network goods requires that the cost to a spammer be an order of magnitude higher 
than the cost to a legitimate user for POW to work.    
  
This work examines POW as part of a larger anti-spam effort. Current anti-spam efforts 
use reputation systems as well as per-email spam evaluation mechanisms. These efforts 
suffer from penalizing new IP addresses and discarding incorrectly identified email. The 
types of error are difficult to balance. Either new entrants are not allowed to send email, 
or each new IP address is allowed to send enough email that spam remains profitable. 
POW can be combined with per-email spam identification and source reputation to create 
more effective anti-spam technologies.  
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POW can work, using the economic conditions derived as necessary from previous work. 
In summary we have examined POW as an element of anti-spam technologies as 
combined with source identification or per-email evaluation. As such, Proof of Work 
works. 
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Appendix 
 

a) POW cost sensitivity 
 
As m=10, p=0.01, T=10000, H=310---390, L=0---50, the average POW cost for 
legitimate users is as following: (100 Monte Carlo loops) 
 
L\H(s) 310 320 330 340 350 360 370 380 390 
0 28.30 29.69 29.95 30.93 32.22 33.12 34.43 35.34 35.17 
10 37.27 38.06 39.30 40.19 41.53 42.31 43.15 43.31 44.94 
20 46.69 47.69 48.37 49.28 50.31 51.38 52.39 52.53 54.66 
30 55.49 56.84 57.76 58.62 59.35 59.92 61.45 62.51 63.54 
40 65.14 65.47 66.64 67.30 68.39 69.40 70.20 71.03 71.90 
50 73.86 74.71 75.96 76.49 77.68 78.27 79.09 80.32 80.89 
 
 
As m=10, p=0, T=10000, H=310---390, L=0---50, the average POW cost for legitimate 
users is as following: (100 Monte Carlo loops) 
 
L\H(s) 310 320 330 340 350 360 370 380 390 
0 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 
10 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 10.03 
20 20.03 20.033 20.03 20.03 20.03 20.03 20.03 20.03 20.03 
30 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 30.03 
40 40.03 40.03 40.03 40.03 40.03 40.03 40.03 40.03 40.03 
50 50.03 50.03 50.03 50.02 50.03 50.03 50.03 50.03 50.03 
 
 
As m=10, P=0.98, T=10000, H=310---390, L=0---50, the average POW cost for 
spammer is as following: (100 Monte Carlo loops) 
 
L\H(s) 310 320 330 340 350 360 370 380 390 
0 309.36 319.38 329.31 339.33 349.28 359.25 369.26 379.21 389.22 
10 309.37 319.39 329.34 339.32 349.30 359.30 369.29 379.25 389.23 
20 309.42 319.40 329.39 339.34 349.32 359.31 369.30 379.25 389.23 
30 309.42 319.41 329.39 339.36 349.33 359.33 369.32 379.30 389.27 
40 309.41 319.42 329.41 339.35 349.38 359.35 369.33 379.28 389.32 
50 309.48 319.44 329.42 339.42 349.40 359.35 369.35 379.33 389.30 
  
 
As m=10, P=0.99, T=10000, H=310---390, L=0---50, the average POW cost for 
spammer is as following: (100 Monte Carlo loops) 
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L\H(s) 310 320 330 340 350 360 370 380 390 
0 309.69 319.69 329.66 339.66 349.66 359.63 369.63 379.62 389.58 
10 309.70 319.69 329.66 339.66 349.64 359.64 369.62 379.62 389.58 
20 309.69 319.69 329.69 339.68 349.67 359.66 369.65 379.62 389.62 
30 309.71 319.69 329.70 339.67 349.68 359.66 369.66 379.65 389.64 
40 309.72 319.69 329.70 339.69 349.67 359.66 369.65 379.66 389.64 
50 309.74 319.71 329.70 339.71 349.71 359.67 369.68 379.65 389.66 
 
 

b) Extended POW cost sensitivity 
 
As m=10, p=0.01, T=10000, H=310---500, L=0---20, the average POW cost for 
legitimate users is as following: (100 Monte Carlo loops) 
 
L\H(s) 310 320 330 340 350 360 370 380 390 400 
0 28.37 29.09 30.69 30.62 31.63 33.44 33.77 34.91 35.17 36.78 
5 32.86 34.00 35.00 35.82 36.39 37.54 39.24 39.61 40.62 40.67 
10 37.58 38.62 39.15 40.79 41.11 42.11 42.91 43.54 44.53 46.62 
15 41.93 43.21 43.72 44.73 45.55 47.25 47.79 48.67 49.50 49.89 
20 46.72 47.10 48.65 49.23 50.05 51.56 52.55 53.44 53.63 54.75 
 
L\H(s) 410 420 430 440 450 460 470 480 490 500 
0 38.41 39.13 39.18 39.97 41.55 42.45 43.65 44.34 45.45 45.60 
5 42.42 42.82 43.52 44.20 45.74 46.80 47.35 48.61 49.66 50.05 
10 46.62 47.55 48.34 49.90 49.56 51.24 52.85 53.37 54.10 55.01 
15 51.35 52.35 53.23 54.29 54.15 55.80 57.61 56.50 58.28 59.88 
20 55.52 56.49 57.50 58.55 58.80 60.28 61.43 61.95 62.61 63.53 
 
 
As m=10, P=0.98, T=10000, H=310---500, L=0---20, the average POW cost for 
spammer is as following: (100 Monte Carlo loops) 
 
L\H(s) 310 320 330 340 350 360 370 380 390 400 
0 309.3 319.3 329.3 339.3 349.2 359.2 369.2 379.2 389.2 399.1 
5 309.3 319.3 329.3 339.3 349.2 359.2 369.2 379.2 389.1 399.1 
10 309.4 319.3 329.3 339.3 349.3 359.2 369.2 379.2 389.2 399.2 
15 309.3 319.3 329.3 339.3 349.3 359.2 369.2 379.2 389.2 399.2 
20 309.4 319.4 329.3 339.3 349.3 359.2 369.3 379.2 389.2 399.2 
 
L\H(s) 410 420 430 440 450 460 470 480 490 500 
0 409.1 419.1 429.1 439.0 449.0 459.0 469.0 479.0 488.9 498.9 
5 409.1 419.1 429.1 439.1 449.1 459.0 469.0 479.0 489.0 498.9 
10 409.2 419.2 429.1 439.1 449.0 459.1 469.0 479.0 489.0 499.0 
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15 409.1 419.1 429.1 439.1 449.0 459.0 469.0 479.0 489.0 498.9 
20 409.1 419.2 429.1 439.1 449.1 459.1 469.0 479.0 489.0 498.9 
 
 

c) Detecting accuracy sensitivity 
 
As m=10, T=10000, H=370, L=20, P=99%--60%, the average POW cost for spammer is 
as following: (100 Monte Carlo loops) 
 
99% 98% 97% 96% 95% 94% 93% 92% 91% 90% 
369.60 369.29 368.90 368.54 368.16 367.80 367.41 366.95 366.59 366.22 
89% 88% 87% 86% 85% 84% 83% 82% 81% 80% 
365.74 365.25 364.87 364.37 363.93 363.43 363.06 362.48 361.87 361.47 
79% 78% 77% 76% 75% 74% 73% 72% 71% 70% 
360.96 360.37 359.77 359.29 358.71 358.19 357.62 356.78 356.15 355.70 
69% 68% 67% 66% 65% 64% 63% 62% 61% 60% 
355.02 354.39 353.60 352.83 352.10 351.35 350.57 349.77 348.92 348.06 
 
 
As m=10, T=10000, H=410, L=10, P=99%--60%, the average POW cost for spammer is 
as following: (100 Monte Carlo loops) 
 
99% 98% 97% 96% 95% 94% 93% 92% 91% 90% 
409.58 409.18 408.74 408.38 407.91 407.49 407.00 406.56 406.02 405.57 
89% 88% 87% 86% 85% 84% 83% 82% 81% 80% 
405.20 404.63 404.14 403.53 403.14 402.54 401.98 401.49 400.95 400.33 
79% 78% 77% 76% 75% 74% 73% 72% 71% 70% 
399.52 399.01 398.43 397.76 397.07 396.26 395.66 394.88 394.25 393.56 
69% 68% 67% 66% 65% 64% 63% 62% 61% 60% 
392.77 392.05 391.19 390.46 389.60 388.78 387.81 386.87 386.07 384.99 
59% 58% 57% 56% 55% 54% 53% 52% 51% 50% 
383.82 382.71 381.99 381.13 379.79 378.51 377.18 376.57 374.77 373.70 
49% 48% 47% 46% 45% 44% 43% 42% 41% 40% 
372.30 371.02 369.32 368.32 366.72 364.62 363.14 361.30 360.02 357.84 
39% 38% 37% 36% 35% 34% 33% 32% 31% 30% 
355.80 354.08 351.79 349.66 347.32 345.42 342.25 339.85 337.17 334.03 
 
 

d) Sensitivity of punishment length  
 
As T=10000, H=410, L=10, p=1%, m=1--20, the average POW cost for legitimate user 
is as following: (100 Monte Carlo loops) 
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1 2 3 4 5 6 7 8 9 10 
14.10 17.95 21.88 25.36 29.37 32.97 36.11 39.66 43.49 46.57 
11 12 13 14 15 16 17 18 19 20 
49.98 53.48 56.93 59.45 62.06 65.66 68.45 71.84 74.15 76.99 
 
 
As T=10000, H=410, L=10, P=98%, m=1--20, the average POW cost for spammer is as 
following: (100 Monte Carlo loops) 
 
1 2 3 4 5 6 7 8 9 10 
401.99 405.98 407.26 407.97 408.35 408.68 408.81 409.02 409.10 409.18 
11 12 13 14 15 16 17 18 19 20 
409.26 409.34 409.39 409.43 409.45 409.46 409.51 409.54 409.55 409.60 
 
 
As T=10000, H=370, L=20, p=1%, m=1--20, the average POW cost for legitimate user 
is as following: (100 Monte Carlo loops) 
 
1 2 3 4 5 6 7 8 9 10 
23.54 26.99 30.21 33.51 36.89 39.92 43.09 46.30 49.55 51.85 
11 12 13 14 15 16 17 18 19 20 
54.59 57.94 60.66 63.41 66.22 68.44 71.37 74.15 76.54 78.53 
 
 
As T=10000, H=370, L=20, P=98%, m=1--20, the average POW cost for spammer is as 
following: (100 Monte Carlo loops) 
 
1 2 3 4 5 6 7 8 9 10 
362.97 366.50 367.62 368.23 368.57 368.81 368.98 369.09 369.19 369.28 
11 12 13 14 15 16 17 18 19 20 
369.37 369.38 369.46 369.48 369.49 369.55 369.58 369.60 369.62 369.65 
 


