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ABSTRACT
This paper provides an empirical analysis of alternative tech-
niques for incorporating human resources into the data min-
ing process, in particular, for data acquisition for classifier
induction in domains exhibiting extreme class imbalance.
The approaches analyzed were motivated by the problem
of applying data mining to build systems for “safe” online
advertising: helping advertisers to control the content adja-
cent to their advertisements. Objectionable categories such
as hate speech, pornography, etc., are quite rare in the nat-
ural distribution of web pages faced by most advertisers.
However, wholesome nature of most brands necessitates re-
ducing the occurrence of such content as much as possible
much more still. The problem faced by data mining in such
settings is that traditional methods for procuring labeled
training data, including both labeling random samples and
active learning, are much less effective under such extreme
class imbalance. On the other hand, there is an alternative
way to deploy human resources for training-data acquisi-
tion: have them “guide” the learning by searching explicitly
for training examples of each class. We show that under ex-
treme skew, even basic techniques for guided learning com-
pletely dominate smart (active) strategies for applying hu-
man resources to select cases for labeling. Thus, it is critical
to consider the relative cost of search versus labeling, and
we demonstrate the tradeoffs for different relative costs. Fi-
nally, we show that in cost/skew settings where the choice
between search and active labeling is equivocal, a hybrid
strategy can combine the benefits of each.

1. INTRODUCTION
This paper concerns the interaction of humans in the data

acquisition phase of the process of building classification
models from data. Consider the following example data
mining application: classifying web pages for the purpose
of safe advertising. Advertisers and advertising networks
(hereafter, advertisers) would like a rating system that esti-
mates whether a web page or web site displays certain objec-
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tionable content. With such a system, advertisers can con-
trol the destination of their ads, advertising only on those
pages deemed unlikely to display such unacceptable content
(depending on the advertiser, objectionable categories in-
clude: adult content, kids content, hate speech, malware,
etc.).1 Evaluating each potential advertising opportunity
involves classifying the web page with respect to these ob-
jectionable categories. The classification system can take
into account various evidence, including the URL, the page
text, anchor text, DMOZ categories, third-party classifica-
tions, position in the network of pages, and so on [14, 1]. For
this paper, we will consider only the textual html source for
each page, but the ideas generalize to any type of available
feature data.

Manually examining every page encountered by such a
system would be prohibitively expensive. This is particu-
larly true in safe advertising, where models for new classifi-
cation categories must be built rapidly to meet the chang-
ing demands of each customer and campaign. Furthermore,
assuming that these classifications are based on statistical
models, predictions will be more or less effective depending
on the particular cases used for training and on the amount
and distribution of training data used in their construction.
For a given budget, some subset of the cases can be exam-
ined by humans—potentially at very low cost using a micro-
outsourcing system [17] such as Amazon’s Mechanical Turk
[2]—to produce training data.

An important question then is: which cases should be
selected for training? Simply sampling cases uniformly at
random is unlikely to be the best strategy, as is evidenced
by the rich field of research comprising active learning[15].
Settings with extreme class imbalance, as is frequently the
case on the web, further reduce the effectiveness of random
sampling since for reasonable labeling budgets, only rarely
would such sampling produce a positive training example at
all. For instance, we would hope that the distribution of
pages that are offered an advertiser for ad placement con-
tain only a tiny fraction of pages containing hate speech.
For safe advertising, depending on the category, the base
rate of the minority class can be 1

104 to 1
107 . Occasionally

filters can be provided on the data (for example, based on
selected phrases), to reduce the skew by orders of magni-
tude, however, generally we see base rates of less than 1

102 .
These filters introduce a new problem: they bias the data—
training and test—toward particular “disjuncts” [21] of the

1This site rating system may be best developed and main-
tained by a third party to avoid conflicts of interest, but
that complexity does not affect the development here.



objectionable category. In the very extreme cases, active
learning simply finds no minority-class examples. For gen-
erality this paper considers lower skews; the trends to the
far extreme are clear.

While many active learning techniques have seen a great
deal of success in many settings, extreme class imbalance
introduces the same complication for active learning: exam-
ples of the positive class (e.g., adult content, hate speech)
appear too infrequently in the pool of cases considered for
labeling. Any strategy for selecting examples automatically
that does not solve the classification problem itself, will
be likely to select mostly negative examples. As demon-
strated below in Section 5, as the minority class becomes
more and more scarce, standard active learning strategies
have increased difficulty finding instances that improve per-
formance on held-out data.

The contribution of this paper is not the introduction of
new, sophisticated data mining techniques. The methods
we use for the most part either are existing techniques, or
are fairly straightforward. This paper presents an empirical
analysis of different strategies for applying human resources
to inducing classifiers in domains where the base rate of an
important category is very low. The main novelty is in the
consideration of alternative ways to apply human resources
to the data mining process. The main contributions of the
paper are threefold (as follows).2

First, the paper provides an empirical analysis of the per-
formance of traditional active learning techniques in highly
skewed settings. This investigation reveals the deficiency of
many active learning techniques in the extreme imbalance
setting; dependency of the active learner on an uninforma-
tive model leads to repeatedly making the same mistakes,
often leading to selecting mainly majority-class instances for
labeling, while important portions of the minority class re-
main completely unrepresented in the training data.

Second, the paper contrasts active learning with “guided
learning.” Active learning is based on the availability of
human resources that can be applied to the labeling of spe-
cially selected examples. Guided learning applies those re-
sources specifically to search for examples satisfying some
criteria; for example, humans could be directed to search
specifically for positive examples. For example, for safe ad-
vertising adult content or hate speech may have a fairly low
prevalence among the pages supported by a particular ad-
vertiser (or on the web more generally); however, a human
with a search engine may be able to find examples fairly
quickly. We examine the relative benefit of using humans
for labeling cases (in combination with an active learning
strategy) versus using humans for searching for cases.

The results are striking. Looking ahead to Figure 3, it
is clear that that straightforward guided learning strongly
dominates active learning—improving accuracy much faster
as examples are added to the training set. The details of all
techniques will be covered below. This is important not only
as practical guidance. This result shows that the dominant
problem in these domains is simply finding minority-class
examples, not finding otherwise “informative” examples or
examples near the classification boundary. The paper pro-
ceeds with a deeper empirical analysis of this phenomenon.
For example, does this result still hold if search for examples

2As a minor contribution we introduce the application of
classification for safe advertising, which exhibits extremely
skewed class distributions.

is more expensive than labeling examples?
Third, the paper presents and evaluates hybrid strategies

for cost-effective guided learning, that utilize both search
and active labeling. The results show that these hybrid
strategies can perform better than either pure guided learn-
ing or pure active learning, when the setting does not provide
clear dominance of one over the other. An ultimate goal for
this sort of learning would be to judge the relative benefit-
per-unit-cost of each sub-strategy, and allocate resources to
labeling or to search accordingly.

The techniques described here are operating in produc-
tion as part of the technology underlying the rating system
of AdSafe Media.3 Human analysts are tasked with labeling
and with search for guided learning; they are supported by
systems for web-page labeling and for web search. Models
are built across various categories of objectionable content,
including adult content, hate speech, violence, and others.
Guided/active learning procedures feed analysts with search
tasks and with examples to be labeled. The resultant models
are used to reduce objectionable on-line advertising adjacen-
cies. In practice, we find that mixing guided learning and
active learning is preferable to either in isolation.

The remainder of this paper proceeds as follows: Section
2 covers the baseline techniques used for comparison and
explains the details and motivation behind guided learn-
ing. Section 3 covers prior work on classification and ac-
tive learning in imbalanced settings. Section 4 presents the
experimental framework and datasets used for evaluation.
Section 5 covers the results of these experiments. Section 6
covers the behavior of guided learning under different cost
settings, and presents and evaluates hybrid guided/active
data acquisition strategies. Section 7 provides further dis-
cussion of the issues raised by this work, offers concluding
remarks, and notes.

2. LEARNING WITH HUMAN INTERVEN-
TION

As discussed, this paper analyzes two different methods
for incorporating human resources in the data mining pro-
cess. Specifically, via labeling carefully chosen examples,
or via searching for examples. We assume that the reader
is familiar with the notion of active learning for choosing
examples for labeling; Settles provides a comprehensive sur-
vey [15]. We call the search for examples based on particular
criteria “Guided Learning.” Here we describe the particular
techniques that we study in this paper.

2.1 Active Learning
For active learning, this study employs two strategies.

The first, uncertainty sampling, is by far the most popu-
lar active learning strategy, and is closely related to model-
specific strategies such as actively selecting instances closest
to a separating hyperplane [19].4 The second is a variation of
the popular Query-by-committee [16] technique, specifically
introduced to deal with skewed class distributions [18].

• Uncertainty Sampling: instances with the smallest

3http://www.adsafemedia.com
4For example, for an SVM that produces probability esti-
mates via the common technique of applying a simple logis-
tic regression to the orthogonal distance of an example from
the separating hyperplane, uncertainty sampling will select
the unlabeled examples closest to the separator.



margin are chosen for inclusion at each fold. Here we
calculate margin as |p(0)− p(1)| [11].

• Boosted Disagreement with QBC: instances are
ordered by a class-weighted disagreement measure,

−
P

j∈{0,1} bj
V (kj)

|C| log
V (kj)

|C| , where V (kj) is the num-

ber of votes from a committee of size |C| that an in-
stance belongs to a class kj . bj is a weight correspond-
ing to the importance of including the a certain class; a
larger value of bj corresponds to a increased tendency
to include examples that are thought to belong to this
class. From a window, W of examples with highest
disagreement, instances are selected greedily based on
the model’s estimated class membership probabilities
so that the batch selected from the window has the
highest probability of having a balanced class mem-
bership.

2.2 Guided Learning
Guided Learning is an alternative technique for utilizing

human resources for model development, beyond traditional
(active) instance labeling. Here, humans are tasked with
seeking examples satisfying some criteria. For this paper,
the basic guided learning task is straightforward: find exam-
ples representing the different classes in some proportion, ρ.
These instances are provided as input to classifier induction.

Humans, using tools such as web search engines combined
with their own background knowledge on the criteria defin-
ing the task, can often find examples with an efficiency far
exceeding those selected by a model-based active learner.
This is particularly true in the early stages of active learn-
ing where the model does not have a refined knowledge of
the input space.

Guided learning is motivated by the results of Weiss &
Provost [20, 22], who address the question “if only n train-
ing examples are to be selected, in what proportion should
the classes be represented?” Their results show that the best
proportion varies across domains; however, if one wants to
maximize the ranking of cases (i.e., the AUC) a proportion
of ρ = 0.5 is a very good choice. In principle the problem
of this paper is different: how to use human resources to
search for valid examples using all tools available to them—
including both active learning and guided learning. Never-
theless, this paper’s analysis could be seen as a follow-on
to this prior work; in our experimental setting we simulate
guided learning by class-conditional random sampling. We
describe the simulation below.

More specifically, a thorough evaluation of a guided learn-
ing system in the wild would require a sizable labeled pool
of instances, in effect defeating the cost savings of the tech-
niques proposed here. In order to compare and contrast dif-
ferent techniques, all guided learning experiments presented
here are performed in the following way: given an initial
pool of labeled instances P with some subset of minority
and majority instances, P+ and P− respectively, along with
a selection ratio, ρ, at each batch, the guided learning sim-
ulator selects ρ|b| instances from the P+ uniformly at ran-
dom and (1− ρ)|b| instances uniformly at random from P−,
where |b| is the size of the batch selected at each selection
epoch. This process proceeds until either pool is exhausted,
at which point, the process switches over to purely random
sampling from the other class. This simulation is similar to
the procedure of Weiss & Provost who assume that examples

can be produced randomly by class.

3. RELATED WORK
As mentioned above, guided learning was motivated by

the results of Weiss and Provost [22, 20]; they investigate
the influence of class distribution on classifier performance,
empirically showing that given a training set of n exam-
ples, barring domain-specific information a balanced class
distribution tends to offer the best AUC on held out data.5

Lomasky et al [13] also investigate the problem of select-
ing instances for model creation when their class is known
a priori. In both of these lines of work, examples are se-
lected randomly from class-conditional distributions, which
is directly related to our experimental setting, but not nec-
essarily to actual guided learning (see the discussion of lim-
itations in Section 7. This paper could be seen as following
this line of work, providing an analysis of the effectiveness
of these strategies for highly skewed data, comparing with
active learning strategies, and combining different strategies
for applying human resources to data acquisition.

A closely related task was addressed by Weiss & Provost [22,
20] and Lomasky et al. [13]: given that we can obtain ex-
amples by class, how do we decide which classes to choose
from, either in general, or in an active selection process.
This is a complementary task to what we address in this
paper. Our analysis assumes simply that examples will be
provided in a particular proportion (balanced by class for our
experiments). Incorporating techniques for better choosing
the class distribution in the training data could improve the
guided learning results presented below and is a direction
for future work.

There is an extensive body of work investigating strategies
for learning in highly skewed settings. This work includes
over-sampling the minority class or under-sampling the ma-
jority class [5, 12]. A different branch of work investigates
the application of non-uniform misclassification costs during
training in order to give additionalconsideration to the class
of interest [6].

There has been some work on active learning on skewed
data. Tomanek [18] investigates Query By Committee-based
approaches to sampling labeled sentences for the task of
named entity recognition. The goal of their selection strat-
egy is to encourage class-balanced selections by incorporat-
ing class-specific costs. This work assumes that classifiers
can often accurately infer which instances belong to the mi-
nority class, giving higher weight to instances thought to
belong to the minority class and with a high degree of un-
certainty. Our work differs from this by extending to ex-
treme cases where initial performance is poor. Additionally,
our techniques are more general, able to extend beyond the
tasks faced in NLP.

Bloodgood and Shanker [4] use a similar approach to [18],
incorporating class specific cost factors to encourage choos-
ing from the minority class in the skewed setting. Here the
base rate is estimated on a small random sample. We note
that in many realistic settings, random samples may not re-
veal any minority instances, thereby foiling this technique.

Zhu and Hovy [23] investigate active learning in conjunc-
tion with over and under-sampling to alleviate the class im-
balance problem. Here active learning is used to choose a

5Many practitioners used this as a rule of thumb prior to
Weiss & Provost’s research.



set of instances for labeling, with sampling strategies used
to improve the class distribution. Our work differs by seek-
ing strategies for acquiring a good class distribution in the
data, removing the necessity for performing sub-sampling.

The work of Ertekin et al [9] is the learning on highly
imbalanced data sets. Given a large, imbalanced pool of la-
beled instances, the authors randomly sub-sample instances,
choosing to keep only those that are closely positioned to the
margin of a SVM classifier. The authors do not address the
problem of seeking unlabeled instances in the wild. Fur-
thermore, the margin-based active learning heuristic is very
similar to uncertainty sampling, a strategy that we demon-
strate to exhibit difficulty in the extremely skewed cases.

We note that many active learning strategies depend to
some degree on the quality of the current model– until the
model “warms up”, the instance selection is essentially ran-
dom. This cold-start problem has been examined by Zhu et
al [24], work extended by Donmez and Carbonell [7]. This
work seeks to find “clusters” of distinct content among the
unlabeled instances. While the offers greater potential over-
coming the cold-start than many common active learning
techniques, it is still unlikely to succeed in the extremely
skewed case; there is often so much diversity within the
majority that the method will miss any minority instances.
Additionally, these complex methods don’t scale well to the
data sizes necessary to experience an extreme class skew.

Donmez et al [8] propose a hybrid active learn technique
whereby a density-sensitive learning technique is used to
overcome the initial deficiencies of uncertainty sampling un-
til the derivative of the learning rate decreases below some
threshold. After this point, traditional uncertainty sampling
is incorporated to the instance selection. The intuition here
is that the density-sensitive technique is better for explor-
ing the space, while uncertainty sampling is better at “fine
tuning” the decision boundary.

4. EXPERIMENTAL SETUP
The experiments for this paper are performed on six data

sets with similar characteristics; all represent a task of sep-
arating examples of one minority class from examples of a
diffuse collection of other topics. While all use text as the
raw feature data, the techniques illustrated here apply to any
other type input. The first two are taken directly from the
domain of safe advertising; the others are publicly available
surrogate data sets with similar problem structure. Specifi-
cally, the data sets are:

1. Safe-Adult A proprietary set of 35, 000 pages labeled
based on the presence of adult content. Positive in-
stances here are deemed unsafe for advertising.

2. Safe-Guns A set containing 55, 000 pages labeled based
on the presence of guns, ammunition, bombs, or other
destructive equipment. Often advertisers choose not
to be associated with this type of content.

The two previously mentioned datasets represent random
sub-samples from much larger datasets for experimental con-
venience. Safe-Adult has a class skew of approximately
20 : 1 while Safe-Guns has a class skew of roughly 150 : 1.

The next three data sets were taken from urls contained
in the topical hierarchical taxonomy of the Open Directory
Project [1]. This data set is a result of a crawl of approxi-
mately 4, 000, 000 urls, and instances are assigned class la-

bels based on their membership in top-level DMOZ cate-
gories. To eliminate confusion, pages belonging more than
one category were eliminated from this experiment. Data
sets were further down-sampled in order to induce a greater
degree of skew.

3. DMOZ-Science: Positive instances belong to the top
level category of Science, while the minority instances
belong to all other categories. This set has approx-
imately 130, 000 instances. While this data set was
used for experiments of varying skew, the nominal class
distribution for this set is 200 : 1.

4. DMOZ-News: Here positive instances are pages found
in the News top level DMOZ category. This data set
has 100, 000 instances with a class skew of 100 : 1.

5. DMOZ-Games: Urls samples from the Games cat-
egory make up the positive category in this data set,
sub-sampled to give 100, 000 instances with a 100 : 1
class skew.

6. 20-News-Groups: This data set is derived from the
popular 20 News Groups set frequently used in text
mining evaluation [3]. The data set is modified from
the original data by assigning a positive label to all
science related articles, and a negative label otherwise.
Positive instances are randomly removed from the data
set to give a highly skewed label distribution of roughly
80 to 1.

Classification and probability estimation are performed
with logistic regression trained using stochastic gradient de-
scent. The choice of logistic regression was based on this
algorithm’s efficiency during training and induction, critical
given the massive numbers of experimental runs performed
in this work. Preliminary experiments lead indicate that the
main effects described in this work are independent of the
type of model used; other machine learning algorithms could
be substituted with similar results.

All experiments compare the area under the receiver oper-
ating characteristic curve (AUC) at various stages in learn-
ing [10]. This metric allows a comparison of model perfor-
mance that is largely insensitive to the class prior in the eval-
uation set. This is critical in a highly skewed setting where
simply choosing the majority label for each instance would
yield very high (and misleading) classification accuracy. The
results presented are averages computed after a ten fold
of cross validation for every experiment. As the baseline
against which to comparing human-intervention strategies
we use uniform random sampling.

5. ACTIVE VS. GUIDED
Figure 5 compares the four acquisition strategies covered

in sections 2.2 and 4 on the six high-skew data sets under
consideration. These plots show how the the area under the
ROC curve (AUC; vertical axis) improves with additional
labeled training data, as acquired by the different strate-
gies. From these plots we can see that even with moderate
imbalance in the class distribution, random sampling almost
always underperforms the basic active strategies.

The results show that searching for examples of each class
in even proportion, even without any“active” selection at all,
provides substantially more informative data to the mod-
eling process. For 20-News-Groups, the guided learning



achieves very good class separation (AUC in the high .90s)
with considerably fewer examples than are required by the
active strategies and random sampling. For Safe-Adult we
see similarly that guided learning very quickly reaches max-
imal accuracy.6

On 20-News-Groups we see an interesting behavior: un-
certainty sampling and boosted disagreement perform quite
well initially, followed by plateaus, as they apparently can-
not find the instances that will improve the model beyond
a certain point; only after they exhaust a large number of
seemingly uninformative examples do they choose examples
for labeling that again provide improvement over random
sampling. This behavior seems to suggest that the minority
class is disjunctive, with portions of the class lying within the
high-certainty (of majority) regions of the example space.
Examples from these disjuncts are only selected when the
less-certain instances are exhausted. As a result, little im-
provement is offered after repeated example selection. In
effect, the ability of the underlying model to find examples
of the as-of-yet unexplored disjuncts hinders the success of
the active learning techniques.

Additional interesting behavior is observed in the learn-
ing curve of guided learning in Figure 1(e). Here guided
learning quickly achieves a high AUC, followed by a grad-
ual decline. We should note that due to the constraints of
this simulation, there are only a limited number of minority
instances for the guided learner to select (see below), after
which the algorithm simply performs random selection from
the majority class. It is possible that there is sufficient la-
bel noise in this case that the good data set provided in the
initial epochs is simply washed out as more data is added.
This provides a strong motivation for the hybrid techniques
covered in Section ??.

Boosted disagreement—though designed specifically de-
signed for active learning in skewed settings by favoring un-
certain instances belonging to the minority class—seems to
suffer from the same problems as uncertainty sampling, with
few exceptions. The models forming the committee are sim-
ply unaware of much of the minority class; the method has
limited ability to find instances that would improve the gen-
eralization performance of the system.

These results suggest either that the active learning heuris-
tics are ill-suited for learning these concepts, perhaps just
missing certain subclasses, or more probably that the active
learning techniques are having difficulty finding positive ex-
amples at all, due to the class imbalance. Finding examples
of a rare class is critical. The guided learning used here
has no provisions whatsoever to find difficult-to-classify, or
otherwise uncertain, examples.

Figure 2 examines graphically the relative positions of the
minority examples through the active learning. The black
curve shows the AUC (right vertical axis) of the models
learned by uncertainty sampling on the 20-News Groups
data set as in Figure 5 (rescaled as follows). At each epoch
we sort all instances by their predicted probability of mem-
bership in the majority class, P̂ (y = 0|x). The blue dots
in Figure 2 represent the minority class instances, with the
value on the left vertical axis showing their relative position
in this sorted list. The x-axis shows the active learning epoch
(here each epoch requests 30 new instances from the pool).

6With a larger absolute number of instances generalization
performance is better, but the qualitative comparison re-
mains the same.

Figure 2: A comparison of the underlying model’s
ordering of the pool with the quality of the cross
validated AUC

The blue trajectories mostly show examples’ relative posi-
tions changing. Minority examples drop down to the very
bottom (certain minority) either because they get chosen for
labeling, or because labeling some other example caused the
model to “realize” that they are minority examples.

We can see that all the way up to the end of the first
major plateau, there are (groups of) minority examples all
through the sorted probability list, whose relative position
does not change much with each epoch (the dribbling down
is due to many known majority examples moving to the
top of the list). It’s not until the end of the plateau that
we see an effect on these minority examples. Even on the
final plateau, when the AUC suggests a very good model,
there are minority examples (or groups of examples) whose
estimated class-membership probability is not affected at all
by the active learning: the active learning procedure does
not explore their regions of the example space.

The motivation for introducing guided learning was to fa-
cilitate cost-effective learning in settings with high to ex-
treme class skew. We now assess the relative benefit of
guided learning for different skews. Figure 3 presents the
learning curves for three different instance sampling strate-
gies at different base rates, as induced on out DMOZ-Science
data set. Specifically, this plot displays the AUC for three
different labeling strategies, uniform random sampling, un-
certainty sampling, and guided learning with ρ = 0.5. We
see that as the skew increases, uncertainty sampling and
random sampling have increased difficulty selecting minority
instances, resulting in poor AUC. In the most skewed set-
ting, random sampling and uncertainty sampling are unable
reliably select any minority instances given 10, 000 draws
from the available pool. This likely results in a complete
lack of understanding of the space, effectively giving worse-
than-random performance.

For this experiment, skew was induced by taking a large
data set and randomly removing instances belonging to the
minority class. This limitation on the number of available
minority instances adversely effects the maximum perfor-
mance that model achieve as the skew increases. We note
that this experimental limitation has the effect of handi-
capping guided learning; on the web, even cases that occur
extremely infrequently in relation to the web as a whole
still occur in great numbers in the absolute sense. While a
guided learning scheme my require greater cost and effort



(a) Safe-Adult (b) Safe-Guns

(c) DMOZ-Science (d) DMOZ-Games

(e) DMOZ-News (f) 20-News-Groups
Figure 1: Comparison of active learning strategies and guided learning. The vertical axis shows the general-
ization performance of the learned models, measured by the area under the ROC curve (AUC). The horizontal
axis shows the number of examples labeled/acquired. (Weighted) uncertainty sampling outperforms random
sampling. Guided learning dominates by a large margin.

to get new minority instances as the number of epochs in-
creases, there is unlikely to be a hard cap on performance as
seen in this experiment. It is clear that given enough infor-
mation, a model can reach AUC measurements in excess of
0.9; the performance of guided learning is therefore under-
estimated. The alternative experimental setting of adding
more majority instances to induce such high skews is not
practical.

6. COST-SENSITIVE GUIDED LEARNING
AND HYBRID ACQUISITION STRATE-
GIES

The per-instance cost for a guided learning strategy is
likely to differ from strictly label-based active learning. Search-
ing for an example of an obscure class may require more ef-
fort than simply identifying if a given sample belongs to the
class of interest. Alternatively, using tools like web search
engines, clear-cut examples may be readily found, whereas



Figure 3: Comparison of Random Sampling, Uncertainty Sampling, and Guided Learning on the same data
set with induced skews ranging from 5 : 1 to 10, 000 : 1.

labeling would require time-consuming analysis of each case.
The relative costs of guided learning and instance labeling
vary from setting to setting, and in this section we seek to
investigate the behavior in a variety of cost scenarios.

Figures 4 compare various instantiations of our guided
learning approach with uncertainty sampling on the three
data sets, where the curves show the increase in general-
ization performance as a function of investment in human
effort (labeling or search). The horizontal axis shows the
total cost expended by each strategy; to normalize, we fix
the cost of labeling to be 1. For active learning, we only re-
port for uncertainty sampling. The different instantiations
of guided learning vary the cost of search from 0.5 to 16,
doubling each step.

Figure 4: Comparison of guided learning and active
learning under different relative costs for search and
labeling (20-News-Groups data set). Vertical axis
shows AUC; horizontal axis shows total cost, nor-
malized to 1 for acquiring one label. For this data
set, guided learning and active learning have equiva-
lent performance-per-unit-cost when search is about
8 times more expensive than labeling.

By construction, the performance-per-unit-cost of guided
learning declines gradually as the cost is increased. These
results show how one can judge the relative value of applying
human resources for search and for labeling. For example,
for 20-News-Groups, in terms of performance-per-unit cost
uncertainty sampling seems to be approximately equivalent
to guided learning when search is approximately 8 times

more expensive than labeling.
Note that practical experience with micro-outsourcing sys-

tems have revealed that several hundred minority class web
pages can be obtained for model induction at about double
the cost-per-page required to label an example pages. Of
course, the time required to perform this task tends to be
longer than is required to perform page labeling, and the
costs and time required to perform this work may vary as
the requested number of examples increases.

6.1 Hybrid Strategies
As discussed, guided learning seems to be most appropri-

ate in cases where the class priors are extremely unbalanced,
and the cost structure is skewed in the opposite direction:
discovering missing instances from the minority class is more
expensive than missing examples from the majority class.
The results presented up to this point have assumed that one
would have to choose either guided learning or active learn-
ing. In practice, it might be better to mix strategies. For
example, one might bootstrap the active learning process by
first searching for good training data, potentially at a higher
cost-per-example; alternatively, if one suspects that the ac-
tive strategies have reached a plateau (as in Figure 1(f)),
search may be used to inject additional information.

Given a budget, B, a data set, D, and a cost struc-
ture, C, policies for guided/active learning will allocate B
to some combination of guided search and instance label-
ing. The goal of this of this section is to illustrate hybrid
guided/active strategies can be designed to offer superior
performance for a given B than either strategy would be
capable of in isolation.

While such a hybrid strategy could take many functional
forms, here we propose a switching strategy based on the
DUAL technique used by Donmez et al [8]. We rely on our
background knowledge that guided learning excels at finding
different examples of the minority class, while many tradi-
tional active learning techniques are better at fine-tuning
the decision boundary of the base model.

First, the benefit to model generalization of a purely guided
selection strategy as a function of the cost of human effort
is estimated. When the returns for further guided selection
are sufficiently low, we switch to a purely active strategy.
We note that almost any conventional active learning strat-
egy may be employed for this phase of our hybrid approach.
Due to it’s simplicity, documented success, and ubiquity, we
chose uncertainty sampling as the active learning heuristic



used in this second phase.
More succinctly, given a certain cost structure represent-

ing the cost-per-query to an oracle performing guided learn-
ing, we perform guided learning by selecting instances from
both classes in proportion ρ. After each phase of guided
learning, we estimate the performance, A, using this per-
formance estimate to construct a learning curve. When the
expected gain for performing additional guided learning as
a function of cost is sufficiently low, ∂A

∂c
≤ t, we switch from

guided learning to a more traditional active learning strat-
egy that requires only choosing examples from the pool for
which to request labels.

In order to determine when to switch phases in our pro-
posed switching strategy, we must understand how the per-
formance of a model is changing under a given selection
scheme, as a function of that scheme’s cost , ∂A

∂c
. This re-

quires careful estimation of the model’s performance at each
epoch. To accomplish this, we compute x-validated accu-
racy of the current model on the available pool of instances.
Progress of learning curve is estimated using Local Regres-
sion in order to smooth the variances in estimated learning
rates at each epoch. More succinctly, the learning rate at
any point is estimated by computing the slope of a least-
squares linear regressor fit to performance estimates (in this
case x-validated accuracy). When the slope of accuracy as
a function of cost drops below some threshold, t, we change
strategies from guided learning to active learning.

As discussed above, certain cost/skew structures are likely
to be best managed by simply performing a guided search.
In the case of the 20-News-Groups data set, the cost setting
offering a break even point between guided learning and ac-
tive learning seems to be about 8 : 1, one guided search costs
as much as eight label requests.

The learning curves traced by our proposed hybrid tech-
nique on the 20-News-Group dataset are presented in Fig-
ure 5, using the approximate break even cost of 8 labels per
search result. We see that under this cost setting, a switch
from guided learning to active learning does indeed improve
the learning rate beyond that which is possible from either
component technique in isolation. Note that as the cost
approaches approximately 2, 000, the slope of the learning
curve increases drastically as the selection strategy switches
from guided learning to active learning. The ability of tra-
ditional active learning to refine the class boundary excels
given the strong base classifier enabled through guided learn-
ing. We note that our hybrid technique is able to reach AUC
levels in the high 0.9’s at a far smaller cost that either guided
learning or active learning in isolation. While space con-
straints prevented identical plots from being presented on
the other data sets considered, the results are qualitatively
similar.

7. CONCLUSION & LIMITATIONS
The main result of this paper—that guided learning can

dominate active learning so strongly—raises the possibly
contentious question of: when should we be doing active
learning at all? Through analysis of the hybrid techniques
presented in the previous section, it is clear that such situa-
tions exist (for instance, under low class skews and high-cost
search settings), however, the results presented in this paper
(Figure 4) make it clear that the question warrants further
investigation.

This is not a trivial point. Research on active learning

Figure 5: Comparison of our proposed switching
strategy with pure guided learning and uncertainty
sampling

almost always makes one (or both) of two assumptions: (i)
that labeling via initial random sampling is going to pro-
duce a model sufficiently accurate to do active learning, or
(ii) that there is some “cold start” process that provides the
system with a small set of labeled examples to prime the pro-
cess with a model of sufficient accuracy for active learning
to be effective. With even moderately high skews, assump-
tion (i) very often does not hold. With even 999 : 1 skew, a
labeler would have to label 30, 000 examples just to get 30
minority examples.

So most research starts with assumption (ii) that some
unspecified process has produced a small labeled training
set (often balanced). The results of this paper raise the
question: why not just continue with that process? Why do
active learning at all? It is possible that the process was an
unrepeatable (historic) stroke of good fortune.7 Otherwise,
these results suggest that we may want to put more research
emphasis on this process that procured the initial training
set. What is the relative cost as compared to active learn-
ing? Under what conditions does it make sense to continue
with it, versus switching to active learning, versus applying
some combination of both. Moreover, perhaps we should
be investing more effort in reducing the cost of search for
examples.8

A major limitation of the analysis presented in this paper
is that the guided learning was simulated as class-conditional
random sampling. Real, live guided learning setting is likely
to be conducted via a searching system—for our running ex-
ample, a search engine or a list of resources such as DMOZ.
As a result, the instances returned from a guided learn-

7For example, in our safe advertising example, an advertiser
complained about a particular set of web pages on which her
ad appeared, which then become labeled training data.
8An initial reaction to the question of quantifying the rel-
ative cost of search versus labeling often is: search has to
be more expensive than labeling, since with search one must
find the examples as well as label them. However, with a
search engine and a human brain, it may be less costly to
envision what a case might look like and find it, than to
examine a presented case in detail to be sure. For example,
one may be able to search and find examples of all manner
of hate speech on the web more efficiently than reading care-
fully through a borderline web page to determine whether
or not it contains some form of hate speech.



ing system are likely to differ significantly from a class-
conditioned uniform random selection. This could bias the
results above in either way: they could be overly pessimistic
if initial instances returned would in some sense be the best,
most informative representatives of that particular class.
They could be overly optimistic if the internal biases of the
search engine or the human user made the selection of cer-
tain examples unlikely. Research has shown repeatedly that
classifiers’ errors are concentrated in the “small disjuncts”—
the model’s representations of the rare cases [21]. It is un-
clear just how that relates to the result presented above.

Relatedly, above we mentioned that in practice extreme
imbalance often is reduced by orders of magnitude via fil-
ters on examples. Such filters can be though of as codified
search procedures for guided learning. These filters suffer
from the same potential bias problems, and our experience
is that the bias is substantially more extreme than with hu-
man searchers, because of the inflexibility. These filters bias
the data largely toward particular disjuncts of the intersting
category. In practice, this introduces a particularly insidi-
ous problem for data mining: the testing data are biased as
well!

Thus, it is necessary to provide tools that simultaneously
reduce the cost of search, and challenge humans to explore
the “far reaches” of the category. This suggests a different
integration with active learning: guiding the human search
away from cases already “known” by the model to be mem-
bers of the class, and (somehow) toward as-of-yet unexplored
disjuncts.

Our simulation has other important differences from a
real-world implementation of guided learning, particularly in
the case of document search on the web. First, the extreme
size of the web is likely to yield a near-unlimited number
of instances belonging to almost any category. Thus, unlike
with our experiments, the guided learning curves would not
run out of minority class examples (which is often the appar-
ent reason they “knee over” so sharply). On the other hand,
many instances in the web’s long tail may be increasingly
difficult to find. This could mean that the constant-cost
model is simplistic; search probably incurs increasing cost
as the number of requested instances increases, and as the
exploration of the class probes the smaller disjuncts.

This paper does not explore the possibility that guided
learning might focus solely on finding minority classes. In
cases of extreme skew, one likely could just presume a ran-
domly selected case to be a majority class, and deal with
the small amount of resultant noise. This would effectively
halve the cost of guided learning as we present it.

There still is much to do to understand the best ways to
employ human resources for some combination of search and
labeling, to produce the best models per unit investment in
training data. We hope that this paper has made useful
headway.
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