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Abstract

This paper questions whether competition can replace sector-speci�c
regulation of mobile telecommunications. We show that the monop-
olistic outcome may prevail independently of market concentration
when access prices are determined in bilateral negotiations. A light-
handed regulatory policy can induce e¤ective competition. Call prices
are close to the marginal cost if the networks are su¢ ciently close
substitutes. Neither demand nor cost information is required. A
unique and symmetric call price equilibrium exists under symmet-
ric access prices, provided that call demand is su¢ ciently inelastic.
Existence encompasses the case of many networks and high network
substitutability.
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1 Introduction

The mobile telecommunications industry has changed dramatically during
the last �fteen years, in terms of technology as well as market organization.
While most national markets in the OECD area were monopolies in the late
1980:s, most of them now have three or more competing mobile networks.
This development is summarized in Table 1.
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Table 1: Competition in mobile phone infrastructure in 30 OECD countries 1989  2004.

89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04
Mono
poly 24 23 23 18 15 11 11 6 3 0 0 0 0 0 0 0

Duo
poly 6 7 7 11 12 14 13 16 18 14 9 5 4 4 4 4

Trio
poly 0 0 0 1 3 4 4 5 4 8 13 15 14 10 12 13

4 or
more 0 0 0 0 0 1 2 3 5 8 8 10 12 16 14 13

Source: OECD Communications Outlook 2005.

Also competition between existing wireless networks appears to have in-
creased. Consumers can easily compare the networks�prices on special web-
sites on the Internet. Consumers who want to switch networks may retain
their phone number, so-called number-portability. Since the networks are
required to interconnect, everybody can reach everybody else independently
of to which network they subscribe. Universal service obligations reduce the
di¤erentiation across mobile networks.
The customers in Western Europe pay much lower prices today than �ve

years ago. Figure 1 shows that the networks�mobile revenues, per originated
minute, has fallen by a third between 2001 and 2006.
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Figure 1: Mobile revenues per originated minute
in 9 European countries 2001  2006
Adapted from International Telecommunications Market , Ofcom
2007.
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With apparently �ercer competition today than ever before, we ask whether
now is the time to deregulate mobile telecommunications.

Call price competition and its limits There used to be good reasons
for regulation. While telecom networks compete for customers in the retail
market, they cooperate in the wholesale market by providing each other
call termination. Telecom companies have both a horizontal and a vertical
relation, which distinguishes telecommunications from most other markets.
By compensating a rival by means of an access price for every call terminated
in the rival�s network, the telecom company transfers some of the revenues
it collects from its customers to the rival. Therefore, each network may have
weak incentives to capture market shares by o¤ering the customers lower
call prices. In fact, competition can be so weak that the monopoly outcome
prevails.
In essence, the competitive conditions are determined in the termination

market. By agreeing to charge high (per-minute) access prices, the networks
commit to arti�cially high marginal costs for calls. Therefore, they indi-
rectly commit to charge high (per-minute) call prices from their customers.
Since interconnection agreements are legally enforceable, there is no need for
complicated punishment mechanisms to sustain the collusive price. Reduced
network di¤erentiation does not help since the networks can raise their access
prices to o¤set the increase in competition.
This phenomenon �often called access price collusion �was described in

the seminal papers by Armstrong (1998) and La¤ont, Rey and Tirole (1998a
and b), henceforth A-LRT. An important short-coming of their analysis is the
assumption that there are only two networks in the market. While duopolies
were common in the past, they have almost disappeared today. Since there
is a crucial di¤erence between duopolies and less concentrated markets, the
old insights must be reexamined.

Access price competition and its limits With more than two networks
in the market, one or more networks are left out of any bilateral access price
negotiation.1 The access prices might be expected to take the e¤ects on both
involved parties into account (as argued by Cave, 2004), but being largely
negligent about the e¤ects on the pro�ts of third-party rivals. This makes
a crucial di¤erence because of the competitive externalities caused by access
prices.

1Bilateral negotitations were common, for instance, in the Nordic countries prior to the
NRAs�decisions of industry wide access price regulations.
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We show that entry beyond duopoly stimulates a new form of competition
�which we call access price competition. Reducing their common access
price commits two networks to more aggressive call pricing in order to poach
customers from third-party rivals. Since subscription demand is more elastic
the more competitors there are, the networks have the incentive to reduce
access prices with every new network entering the market.
However, we also show that the access charges paid to third-party rivals

soften this access price competition considerably. With a larger number of
networks, the fraction of calls terminated by third parties will be larger and
more income will be drained from the two partners. Expressed di¤erently,
when the market is more fragmented, the share of calls subject to double
margins is higher.
In the present model, both the competitive e¤ect and the cost e¤ect are

proportional to the size of the customer base of the two networks and exactly
o¤set each other at the monopoly call price. Therefore, our �rst main result
is that market concentration has no e¤ect on call prices, if few restrictions
are placed on the networks�price setting strategies. The collusive outcome
prevails independent of the market concentration.
Our analysis therefore suggests that the observed decline in call prices

in Europe (see Figure 1, above) may partly result from the sector-speci�c
regulation that these countries have put in place to support the increase in
competition. It is not clear that the increase in competition would have led to
lower prices absent regulation. But regulation comes with substantial costs.

Regulation and its limits The European framework for electronic com-
munications is "market based," i.e. the obligations should be imposed only to
the extent they are deemed essential for competition to work. The National
Regulatory Authorities (NRAs) in the Member States therefore need to col-
lect a great deal of information to implement the regulation. As a �rst step,
they must assess the competitive situation in the relevant markets. This is
an exercise full of conceptual and practical problems. For instance, it is not
clear how to measure market power in the wholesale (i.e. termination) mar-
ket where there are only a few companies acting as both sellers and buyers
at the same time. At the next stage, if competition is deemed inadequate,
appropriate remedies must be found. If the operators are required to charge
access prices based on costs, a cost model must be constructed. This raises
several questions. Should the networks be valued according to the histor-
ical cost or the replacement value? How should joint costs be assigned to
call origination and call termination? Next, the NRAs must collect the rel-
evant cost data and the networks will also be burdened with compiling this
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information.
A recent Swedish o¢ cial report (SOU, 2006) describes excessive bureau-

cratic complications. Companies and regulators often have divergent views
of most issues, from the competitive situation to the level of cost, and the
decisions are usually appealed. Legal proceedings are known to drag on for
years. In addition, companies have great di¢ culties in predicting the eventual
decisions by regulatory agencies and courts. The o¢ cial report speculated
that this legal uncertainty reduces investments and limits the supply of ser-
vices to consumers. This conclusion is supported in a report to the European
Commission (London Economics, 2006) comparing investment in electronic
communications throughout the EU. It concludes that regulatory uncertainty
is sometimes detrimental to higher levels of investment. These conclusions
should be read in the light of the empirical studies suggesting that telecom
investments have a surprisingly large impact on economic growth. A third
of the growth in the OECD area over a 20-year period can be attributed
to the direct and indirect impact of telecommunications (Röller and Waver-
man, 2001; Waverman, Meschi and Fuss, 2005). Thus, the burden of telecom
regulation may have signi�cant e¤ects on the economy in general.
In view of these problems, it is not surprising that sector-speci�c rules are

typically regarded as intermediary solutions.2 In the words of the European
Commission (2005):

"Regulation is seen as essentially a temporary phenomenon, re-
quired to make the transition from the formerly monopolistic telecom-
munications industry to a fully functioning market system. ...
[A]s the sector evolves, operators will increasingly build their own
infrastructures and compete more e¤ectively. ... [R]egulation can
be rolled back, and competition law ... will replace sector-speci�c
intervention."

Despite this long-term objective, the European Commission (2007) recently
recommended continued regulation of mobile termination charges. This deci-
sion is consistent with our previous argument that competition and regulation
should also play complementary roles in the long run. But the decision also
raises new questions. Does there exist an alternative to the failures of the
unconstrained market and the burdens of detailed regulation? Is it possible
to devise structural rules for the networks�market behavior �rules that are
simple and informationally undemanding, yet e¤ective in preventing monop-
olization?

2See OECD (2006) and Kerf, Neto and Geradin (2005).
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How to reduce prices with limited information We study a regula-
tion �called STR-regulation �combining four well-known structural rules:
(i) interconnection is mandatory; (ii) networks are not allowed to charge
di¤erent prices for calls within the same network (on-net) and calls to other
networks (o¤-net); (iii) access prices must be the same in both directions
(reciprocal) and (iv) below a ceiling, which is independent of the cost level.
The �rst three rules are primarily designed to prevent the exploitation of
network externalities and to prevent that one network monopolizes the mar-
ket (see Stennek and Tangerås, 2008). The fourth rule is designed to prevent
access price collusion.
Our second main result is that increased competition (more �rms and

easier switching) leads to lower prices when the market is governed by STR-
regulation. Most interestingly, the equilibrium call prices even decline to-
wards the marginal cost as networks become increasingly closer substitutes.
The networks are simply unable to o¤set the increased competition by jacking
up the access price beyond a certain level. And when network di¤erentiation
is reduced even further, call prices must decline as well.
Remarkably, the exact level of the access price ceiling set by the regulator

may not be very important. In fact, any access price ceiling is su¢ cient to
push call prices down to the marginal cost when the networks are near-perfect
substitutes. The access price ceiling may be set very high, but the ceiling
may also be set low and even below cost. A special case of STR-regulation
is the Bill-and-Keep regime, in which access price are zero.
More generally, our results show that the equilibrium call price becomes

less responsive to changes in the access price ceiling as the networks become
closer substitutes. This result has an important implication for regulatory
policy. In particular, the regulator does not require detailed information
about costs if the networks are less di¤erentiated and consumer switching is
easy.

Contributions From a more theoretical point of view, a �rst main contri-
bution is the extension of the bilateral access pricing model from the duopoly
case to a general n-network oligopoly. Independently of whether negotiations
are bilateral or multilateral, the two-way structure of mobile telecommunica-
tions networks renders the condition that negotiated outcomes be immune to
(possibly secret) bilateral deviations a natural requirement. The extension
to general oligopoly is non-trivial because there will now be competition also
in the access price negotiations. This analysis is complicated by the fact that
the networks cannot observe the access prices negotiated between two other
networks.
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A second contribution is the derivation of a su¢ cient condition for the
existence of a pure strategy call price equilibrium in a market with STR-
regulation. Existence of a pure strategy equilibrium is far from trivial in
two-way access situations because the pro�t functions of the networks are not
necessarily concave in call prices. A network who �nds a small price reduction
unpro�table may still bene�t from a large price cut that monopolizes the
market and avoids all access prices. A-LRT�s solutions, an access price close
to the termination cost or highly di¤erentiated networks are not useful for
our purposes. We want to avoid the case in which regulators can tie access
prices to cost or demand data, and we want to evaluate the performance of
the regulation also when networks are close substitutes. Our analysis shows
that an equilibrium exists, provided that call demand is su¢ ciently inelastic.

Discussion of the assumptions The main assumption of the model is
that access prices are set in bilateral negotiations, as was e.g. the case in
the Nordic countries before industry-wide regulation was introduced. It is
the bilateral negotiations that open for access price competition. Much to
our own surprise, our results demonstrate that the monopoly outcome nev-
ertheless prevails. One may also show that multilateral negotiations result
in the same outcome. Monopoly pricing is thus relatively robust and does
not depend on the exact institutional framework.
We assume access prices to be secret. Commercial contracts are usually

private information, even so in telecom. With public access prices, and bi-
lateral negotiations, our conjecture is that the outcome of an unregulated
market would be even worse. Firms would then have an incentive to in-
crease access prices even above the monopoly level to induce a soft call price
response from their competitors.
In other respects, however, the market for telecommunications is clearly

much more complicated than the model we consider. To begin with, we have
focused on mobile telephony and neglected �xed telephony. Mobile penetra-
tion exceeds 100% in many developed countries, the UK and Sweden being
two examples. Mobile telephony is superior to �xed telephony in many di-
mensions, not only regarding mobility, but also in terms of available services,
such as text and multimedia messaging. With falling prices we expect mobile
telephony to become the dominating medium for voice telephony.
Many operators o¤er calling plans in which calls within the network (on-

net calls) are cheaper than calls terminated in a competitor�s network (o¤-net
calls). We show in a companion paper (Stennek and Tangerås, 2008) that the
network externalities arising from such price discrimination are strong enough
to allow monopolization, even when networks are highly substitutable. A
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prerequisite for a competitive market with substitutable networks, therefore,
is that price discrimination between o¤-net and on-net calls is banned. Such
a ban is in place, for instance, in Estonia where the incumbent is prohibited
from discriminating between �xed on-net and o¤-net calls. The present paper
takes o¤ from there.
In an extension of our analysis, we consider two-part tari¤s. Access price

collusion is still a problem, provided the networks are close substitutes and
the �xed fee is constrained to be non-negative, e.g., due to arbitrage condi-
tions. Then, the �xed fee is zero in equilibrium and the networks compete
only in call prices. It is not uncommon for a network to be competing en-
tirely in call prices despite not being compelled to do so. This is the case, for
example, with prepaid cards. Jeon and Hurkens (2008) contain additional
examples of networks competing in linear prices.
In our model all consumers have the same call demand and, therefore,

the networks o¤er only one contract each. In reality most networks o¤er a
menu of contracts, presumably to price discriminate between consumers with
di¤erent call patterns. Dessein (2003) analyzes non-linear pricing in duopoly.
We expect entry to both increase competition and to raise the perceived cost
of calls even when consumers are heterogenous. Access price competition
with heterogenous consumers is left for future research.
Many of our propositions are valid if call demand is su¢ ciently inelastic.

We simulate the model to gauge the signi�cance of the price elasticity of
demand. Fortunately, the simulation shows that the elasticities can be set
quite generously without jeopardizing the results.
Telecom operators have large �xed costs. Ramsey pricing is the appropri-

ate welfare benchmark, not marginal cost pricing. One consequence is that
it is not socially optimal to strive for "perfect competition", for example by
removing all network di¤erentiation. We leave the issue of optimal network
di¤erentiation for future research.
A main contribution of the paper is to show that market concentration has

two opposing e¤ects on prices. The reason is that �rms in this type of market
have both a horizontal and a vertical relation. A double-margins e¤ect tends
to increase prices, a competitive e¤ect pulls in the other direction. We have
shown that the double margins e¤ect could be substantial; the two e¤ects
exactly cancel out in our model. In a more general, asymmetric model with
vertical di¤erentiation, imbalanced call pattern, price discrimination and so
on, the two opposing e¤ects would still be there. It is unclear which of the
two would dominate. It is entirely possible that the cost e¤ect would be most
important; entry would then lead to higher prices.
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Related Literature There is a small literature on two-way access with
more than two networks. Calzada and Valletti (2008) focus on how access
prices can be used to deter entry. Our focus is on post-entry access pric-
ing. Their model is one of multilateral negotiations, whereas our emphasis is
on competitive access prices and bilateral negotiations. Finally, Calzada and
Valletti restrict their attention to the case when networks are highly di¤eren-
tiated. Our results hold for any degree of network substitutability (provided
call demand is not too elastic). Gilo and Spiegel (2004) analyze the im-
plications of transit when a third party seeks access to two interconnected
networks, but they abstract from competition.
Doganoglu and Tauman (2002) contain results on network substitutabil-

ity related to our results. They prove the existence of a unique symmetric
call price equilibrium in a model with two networks for any degree of net-
work substitutability, but under two restrictive assumptions: (i) the access
price is above the termination cost but below the demand intercept, or (ii) a
network�s access price is a linear function of the competitor�s call price. We
extend their analysis by eliminating the restrictions on the access price and
by allowing for general n-network oligopoly. Our analysis also brings out the
crucial role played by the price elasticity of call demand. Jeon and Hurkens
(2008) extend the analysis of call price contingent access price regulation to
allow for general n-�rm oligopoly.3

2 Access Price Competition and its Limits

There are two potential problems in an unregulated market. The �rst prob-
lem is that the networks may compete too much as a result of network exter-
nalities, especially when the networks are close substitutes. In our companion
paper (Stennek and Tangerås, 2008) we show that only one network may then
be viable in equilibrium absent regulation.4 We also show that this problem

3Related work emphasizing the role of inelastic call demand includes Armstrong (2004).
He studies competition between two networks for heterogeneous subscribers under the
assumption of perfectly inelastic call demand.
Additional results on two-part tari¤s are contained in Gans and King (2001), Dessein

(2003), Jeon et al. (2004), Valletti and Cambini (2005), Berger (2005) and Calzada and
Valletti (2008).
The basic duopoly framework of A-LRT has also been extended in other directions, such

as the gradual evolution of market shares following entry from monopoly to duopoloy (De
Bijl and Peitz, 2002), asymmetric networks (Carter and Wright, 2003) and investments
(Valletti and Cambini, 2005).

4Calzada and Valletti (2008) consider limit access pricing with low network substi-
tutability and a single access price governing all relations. Their conclusions depend
crucially on whether the networks are assumed to compete in utilities or prices for sub-
scribers.

9



can be avoided by simple regulations requiring that (i) all pairs of networks
must interconnect, that (ii) all pairs of networks must set reciprocal access
prices and that (iii) a network must charge the same price for o¤-net and
on-net calls.
The second problem is that the networks may compete too little as a

result of access price collusion. To focus the present paper on access price
collusion, we assume that the above three regulations are in place. The
question is whether access price collusion will occur in equilibrium and, if so,
what additional regulations are necessary to eliminate such collusion.
The model is a four-stage game. The n � 2 networks �rst set access prices

in pair-wise negotiations. The networks then set call prices simultaneously
and independently. In the basic model each network i; j; k 2 N sets a call
price, pi � 0. Our analysis of subscription fees is discussed in section 4.1.
The consumers observe the call prices and subscribe to a network. Finally,
the consumers decide how many calls to make.

Call Demand In the fourth stage, consumers make their calls. In addition
to their mobile phones, the consumers have access to an alternative, but
inferior means of communication such as a public phone which does not
require a subscription ("the outside option"). The price of alternative calls
is exogenously set at v, where v includes both the price and any additional
disutility from using the outside option. The outside option guarantees that
call prices are bounded above when demand is very inelastic.
Every consumer in network imakes qi mobile calls at (the non-discriminatory)

price pi or q0 calls with the outside option at price v to every other consumer.
It is thus assumed that the consumers value calls the same way and that they
are equally good friends with everybody else, giving rise to a so-called bal-
anced call pattern. Utility is quadratic in the number of calls, i.e.

U (qi; q0) =
�
qi + q0 � 1

2
(qi + q0)

2� 1
"
� piqi � vq0:

Consequently, the demand for mobile calls is linear and equal to D(pi) =
1 � "pi for pi � v and zero for pi > v. The price-elasticity of demand is
�(pi) = "pi= (1� "pi) � 0. Since the elasticity is increasing in ", we will refer
to a low " as a low elasticity of demand.

Subscription Demand In stage three, consumers subscribe to one of the
mobile networks. The outside option does not require a subscription. But
consumers base their choice of mobile network on the net bene�ts of the
networks over the outside option. The indirect utility of the outside option
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is U (0; D (v)) = (1� "v)2 =2", and the net bene�t of network i is

V (pi) = U (D(pi); 0)� U (0; D (v)) = (v � pi)
�
1� "v+pi

2

�
; (1)

for pi � v and zero for all prices above v. The price elasticity of the net
bene�t function is �vp (pi) = � (@V (pi) =@pi) (pi=V (pi)) = D (pi) pi=V (pi).
To describe network choice, we employ a random utility model. The basic

assumption is that the networks are horizontally di¤erentiated, e.g. in terms
of customer management services, but that these di¤erences does not a¤ect
the quality of calls. Network i�s market share is equal to

Si =
V (pi)

1
Pn

j=1 V (pj)
1

; (2)

when at least one network charges a price strictly below v. To derive equation
(2), assume that a subscriber selects network i over j only if V (pi) exp f�ig �
V (pj) exp f�jg, where �i and �j are two double exponentially distributed
utility terms, independent across subscribers and networks.5

The price-elasticity of the demand for subscriptions is

� (p; ; n) = � @Si
@pi

pi
Si

���
pi=pj=p8pj2Nni

= 1

n�1
n
�vp (p) (3)

when all networks charge the same price p. If  is close to zero, subscription
demand is very elastic and the network with the lowest price captures most
of the subscribers. If  is very large, subscription demand is very inelastic
and the networks divide the market approximately equally, independent of
their prices. The network substitutability parameter  may capture many
di¤erent factors such as customer heterogeneity in combination with product
di¤erentiation, switching costs, and bounded rationality.
The advantage of the random utility model over the commonly used

Hotelling model is that the market is fully covered at all prices with pos-
itive demand, independently of the degree of network substitutability. The
advantage of using the net bene�t rather than the indirect utility function is
that a network failing to provide subscribers with any net bene�t over the
outside option (pi � v) will have a zero market share, if any competitor o¤ers
a positive net bene�t (pj < v). This implies that no network will raise its
price above v to rely solely on incoming calls for its pro�t.

Call prices In stage two, the networks set (non-negative) call prices. With
mandatory interconnection, reciprocal access prices and a ban on price dis-

5See, e.g., Doganoglu and Tauman (2002) and Anderson, de Palma and Thisse (1992).
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crimination, the pro�t of network i is given by

�i = Si

"
Si (pi � c)D (pi) +

P
k 6=i
Sk (pi � aik � co)D (pi) +

P
k 6=i
Sk (aik � ct)D (pk)

#
,

(4)
where ct is the marginal cost of call termination, co is the marginal cost of
call origination, c is the total marginal cost of a completed call ct + co, and
aik is the reciprocal access price between networks i and k. We assume that
the marginal cost is lower than the willingness to pay for the �rst unit, i.e.
c < v < "�1. The term in brackets is the pro�t per subscriber. The �rst term
is the pro�t from on-net calls and the second term the pro�t from outgoing
o¤-net calls. The third term is the pro�t on incoming o¤-net calls.
Consistent with actual practice, we assume that networks can only ob-

serve their own access prices when setting the call price. Since each network
cannot observe the access prices between other networks, the game is one of
imperfect information. Consequently, perfect Bayesian equilibrium is an ap-
propriate solution concept. We assume that the networks take all unobserved
access prices to be at their equilibrium levels (that is, they have passive be-
liefs, see Rubinstein and Wolinsky, 1990, and McAfee and Schwartz, 1994).
Of course, in a repeated game setting, call prices may be taken as signals of
access prices, but we leave this signalling issue for future research.

Access price In the �rst stage, the networks negotiate access prices. For
simplicity, we assume that each negotiation is e¢ cient from the point of
view of the two networks. Formally, every pair of networks has delegated
its choice of the access price to a separate agent. Thus, an agent called Aij
sets the reciprocal access price aij = aji for tra¢ c between networks i and
j. The objective of agent Aij is to maximize the sum of expected pro�ts of
networks i and j. There are n(n� 1)=2 agents and they set the access prices
simultaneously and independently of each other.6

To guarantee that a network will not have an incentive to make phony
calls to the other network, the marginal cost of o¤-net calls must be non-
negative, i.e. aij � �co for all pair of networks.

De�nition of Equilibrium A perfect Bayesian equilibrium consists of
n (n� 1) =2 access prices a�ij, n call price mappings p�i (ai) where ai is the
vector of access prices network i has agreed with other networks, and n

6This is essentially the Nash-equilibrium-in-Nash-bargaining-solutions approach, intro-
duced by Davidson (1988) and Horn and Wolinsky (1988). See Björnerstedt and Stennek
(2007) for a non-cooperative foundation for this approach.
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belief mappings ��i (a�ijai) where a�i are all the access prices not known by
network i. An equilibrium has three de�ning characteristics:
First, network i sets the call price p�i (ai), which maximizes the expected

pro�t

�ei (pi; ai) =

Z
�i
�
pi; p

�
�i (a) ; ai

�
��i (a�ijai) da�i

where p��i (a) = (p�1(a1); ::; p
�
i�1(ai�1); p

�
i+1(ai+1); ::; p

�
n(an)) are the equilib-

rium call price mappings of i�s competitors, and where the ex post pro�t of
network i is given by equation (4).
Second, agent Aij sets the reciprocal access price a�ij = a

�
ji, which maxi-

mizes the sum of the expected pro�ts of networks i and j,

�ei
�
p�i
�
aij; a

�
i�j
�
;
�
aij; a

�
i�j
��
+ �ej

�
p�j
�
aji; a

�
j�i
�
;
�
aji; a

�
j�i
��
,

taking all other access prices a�i�j = a
�
i na�ij and a�j�i = a�jna�ji as given.

It is easy to demonstrate that the access price only indirectly a¤ects the
sum of pro�ts via its e¤ect on equilibrium call prices. One might say that
the access price constitutes an instrument of collusion. If possible, the access
price will be set to implement the monopoly price, that is pi = pm. The
monopoly price pm is characterized by the Lerner formula (pm � c) =pm =
1=� (pm) if pm � v and pm = v otherwise.
Third, there is Bayesian updating. If a network observes all its ac-

cess prices to be at their equilibrium levels, the network will believe that
also the access prices it cannot observe are at their equilibrium levels, i.e.,
��i
�
a��ija�i

�
=1. We invoke passive beliefs o¤ the equilibrium path �i.e., a

network continues to believe all other access prices to be at their equilibrium
levels, also following a deviation; that is, ��i

�
a��ijai

�
=1 also if ai 6= a�i .

We also restrict the attention to semi-symmetric equilibria, i.e. equilibria
prescribing all access prices to be the same and equal to a� (which is now a
scalar).

2.1 Call Prices

This section derives the equilibrium in call prices, following universal agree-
ment on the same access price a � �co. It is instructive to study the deriv-
ative of network i�s pro�t with respect to its own call price, for simplicity

13



assuming all other networks to charge the same price pj, i.e.

@�i
@pi

= SiD (pi)

+
@Si
@pi

[(pi � c)D (pi) + (1� Si) (a� ct) (D (pj)�D (pi))]
+Si (pi � c� (1� Si) (a� ct))D0 (pi)

+Si
@Si
@pi

(a� ct) [D (pi)�D (pj)] :

(5)

The �rst three lines represent the standard trade-o¤ between price and sales;
an increased price leads to a higher mark-up on every call, but reduces the
customer base and reduces call demand. The fourth line represents two �com-
position e¤ects� resulting from the subscribers switching to the competing
network as a result of a price increase: access costs are increased, but so are
access revenues. The composition e¤ect may be positive or negative, and will
be discussed more below.

Lemma 1 Following universal agreement on the same access price a � �co,
there exists at most one equilibrium. If it exists, it is characterized by the
call price p� (; a; n) 2 [c; v), implicitly given by

p� � c
p�

=
1

� (p�) + � (p�; ; n)

�
1 +

n� 1
n

a� ct
p�

� (p�)

�
: (6)

The price p� is increasing in the access price and in the degree of network dif-
ferentiation. A larger number of networks leads to reduced call prices if, and
only if, the access price is su¢ ciently low relative to network substitutability
to ensure an equilibrium price below the monopoly level.

The proof is in Appendix A.1.
The interesting thing to note here is that market concentration has an

ambiguous e¤ect on call prices. Upon inspection of (6), we see that market
concentration a¤ects the call price through two channels. The elasticity
of subscriber demand � (p�; ; n) increases the more fragmented (i.e., less
concentrated) the market is, which tends to push down the call price. This
is the standard competition e¤ect of concentration, a¤ecting prices in most
industries. In telecom, the networks�e¤ective marginal cost also increases
with fragmentation. The e¤ective marginal cost is de�ned as C (a; n) =
c + n�1

n
(a� ct), taking into account that a share of calls are terminated

o¤-net and are therefore subject to an access price mark-up. This double-
margins e¤ect pulls the call price in the opposite direction. Either e¤ect may
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dominate, but if the access price is su¢ ciently low the competition e¤ect is
stronger.
Even if the number of �rms grows without any bound, the price will not

necessarily be pushed down to the marginal cost. This is true also when
networks are close substitutes and the access price is low. The reason is that
the access price markup will increase in importance, the more fragmented the
market becomes. (Another reason is that every single network has a fraction
of loyal customers since every network o¤ers its own variety to the market.
The second mechanism is a well-known e¤ect of the random utility model,
cf. Anderson, de Palma and Thisse, 1992.)

2.2 Access prices

In the �rst stage all network pairs bargain over access prices. It is instructive,
however, to think about networks i and j�s (formally, agent Aij) choice of
the access price aij as a choice of their call prices. The only e¤ect of a
deviation in the access price from a is to induce the two call prices pi and
pj to deviate from p�. In equilibrium all other network-pairs stick to the
recommended access price a and call price p� even if i and j would deviate,
since the deviation is unobservable to outsiders. Moreover, it is easy to see
that �ei+�

e
j only depends on their common access price aij indirectly, through

the e¤ect on pi and pj.
We do not need to de�ne threat points for the negotiations. Since the

access price is reciprocal and the two �rms are symmetric, there is no room
for con�icts over the acces price within any negotiation.
A marginal deviation in the access price to induce a marginal deviation

in i�s call price from p� has the following e¤ect on the expected joint pro�t

@(�ei+�
e
j)

@pi
= 1

n
D (p�)

+ 1
n

�
p� �

�
C (a; n)� 1

n
(a� ct)

��
D0 (p�)

+
�
@Si
@pi
+

@Sj
@pi

�
(p� � c)D (p�) ;

(7)

where C (a; n) � 1
n
(a� ct) is the joint marginal cost of the two networks.

Note that the maximization problem facing the agent is similar to that fac-
ing an individual network. The optimal price is a trade-o¤ between a higher
mark-up (�rst row) and lower call demand (second row) and smaller cus-
tomer bases (third row). The di¤erence is that the network pair internalizes
the e¤ects of a change in pi on the rival-cum-partner�s pro�t �ej . A higher pi
increases network j�s pro�t as its customer base increases by @Sj=@pi. This
is the standard cartel motive and tends to raise the agreed price above the
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individually optimal level p�. On the other hand, a higher pi reduces net-
work j�s access revenues by (a� ct)D0 (p�)n�2 as i�s customers make fewer
calls. Internalization of downstream e¤ects is the standard motive for vertical
integration and pulls in favor of lower call prices.
To determine the equilibrium access and call price, use full market cov-

erage (@Sj=@pi = �(n � 1)�1@Si=@pi) and the equilibrium relation (6) to
get

@(�ei + �
e
j)

@pi
= �

�
p� � c
p�

� 1

� (p�)

�
� (p�)D (p�)

n (n� 1) .

Clearly, only p� = pm could be a symmetric equilibrium. At any other call
price, any two networks would deviate by altering their joint access price.
But if the access price induces the monopoly call price, i.e.

am (n) = ct +
n

n� 1
pm� (pm; ; n)

� (pm)2
= ct +

1



pm�vp (p
m)

� (pm)2
= �m, (8)

no pair has any local incentive to deviate. To see that am (n) implements the
monopoly call price, substitute the Lerner rule into the equilibrium relation
(6), and use the expression for � (pm; ; n) in (3).7

Proposition 1 No single network can pro�t from a unilateral deviation from
the monopoly price pm, and no pair of networks can jointly pro�t from a
bilateral deviation from �m, to induce a deviation in their call prices from
the monopoly level, provided that the networks are su¢ ciently di¤erentiated.

The proof is in Appendix A.2.
The monopoly outcome prevails independent of market concentration.

The proposition extends A-LRT�s monopolization result to markets with
more than two networks. Why does not competition work, despite decen-
tralized negotiations? On the one hand, fragmentation strengthens access
price competition, since a smaller share of the (horizontal) competitive ex-
ternalities between networks can be internalized in any bilateral negotiation.
However, also the share of the (vertical) double-margins externality that can
be internalized in any bilateral negotiation is smaller. In general, either ef-
fect may dominate, but the two e¤ects will cancel in any symmetric and fully
covered market with a balanced call pattern.8

7Note that the collusive access price is independent of the market structure. This result
is particular to our speci�cation of subscription demand.

8A proof of the general claim is available on request.
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3 Regulation

In the present section we study the e¤ect of imposing a price cap a � �co, in
addition to the �rst three STR rules. The question is if competition will have
an e¤ect on call prices under STR-regulation. By increased competition we
mean lower market concentration or reduced network di¤erentiation. First,
we must discuss the existence of equilibrium, however.

3.1 A New Condition for the Existence of Equilibrium

A pure strategy equilibrium may fail to exist when networks are close substi-
tutes and when the access price cap is not necessarily close to the marginal
cost of call termination. When networks are close substitutes, they will have
to set a high access price so as to deter marginal price cuts. However, a
large price cut may still be pro�table as it allows the deviating network to
seize nearly all consumers, thereby avoiding the access costs. A price equal
to the marginal cost cannot be an equilibrium either, because a network can
change its price a little and earn a positive pro�t. Equation (5) shows that
a small increase in the price above the marginal cost would be pro�table if
call demand were inelastic (since a � �co).
The root of the existence problem is the tra¢ c �owing between networks,

represented by the �nal term in (5), i.e.

Si
@Si
@pi
(a� ct) [D (pi)�D (pj)] .

When network i increases the call price, its remaining consumers will make
more o¤-net calls than before since a larger fraction of subscribers now belong
to other networks, a cost e¤ect. On the other hand, the access revenues also
go up since more calls now �ow into i�s network from the outside. This
composition e¤ect can be positive or negative, depending on the call price
di¤erences across networks. If i charges a comparatively low (high) call price
the cost (access revenue) e¤ect dominates.
Existence is restored by minimizing the composition e¤ect. The two so-

lutions devised by A-LRT are not useful in our context. Their �rst solution
is to assume that the networks are poor substitutes, i.e. @Si=@pi � 0. Then,
the market shares are insensitive to price changes and the composition e¤ect
vanishes. The networks are essentially local monopolists, and set prices with
an e¤ective marginal cost equal to c + Sj (a� ct). Their second solution is
to assume that the access price is close to the termination cost, i.e. a � ct.
Then, the tra¢ c between the networks is of minor importance to pro�ts and
the composition e¤ect vanishes.
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Our solution to the existence problem is instead to require call demand
to be inelastic.

Lemma 2 Consider a market under STR, including a cap on access prices.
There exists a unique and symmetric pure strategy equilibrium in call prices if
demand is su¢ ciently inelastic (that is, if " su¢ ciently low). The equilibrium
call price is characterized in equation (6). The equilibrium access price is the
monopoly access price or, if lower, the access price ceiling, that is, a� =
min f�m; ag.

The proof is in Appendix A.3.
A low elasticity of demand has a similar e¤ect on the pro�t function as

an access price close to the termination cost. The idea is that the tra¢ c
between the networks is of minor importance to pro�ts when the di¤erence
in demand is small. The di¤erence in equilibrium demand is indeed small
when demand is inelastic since the equilibrium prices are contained in [c; v].
As jD (pi) � D (pj) j � " (v � c), the di¤erence drops towards zero and the
composition e¤ect vanishes as demand becomes more inelastic.

3.2 E¤ect of Competition under Regulation

The rest of this section describes the e¤ect of increased competition when
STR (including the price cap) is in place. First we discuss network di¤eren-
tiation, then market concentration.

Network Di¤erentiation The closer substitutes are the networks, the
higher is the monopoly access price �m, de�ned in equation (8). The neces-
sary access price even increases without any bound (i.e. �m ! 1), as the
networks become closer to being perfect substitutes ( ! 0). When networks
are close substitutes, any cap on access prices must consequently be binding.
In fact, by limiting the networks�ability to o¤set the competitive pressure by
charging high access prices, the networks are forced to marginal cost pricing
when networks are close substitutes, i.e. lim!0 p

� (; a; n)! c.

Proposition 2 STR induces the networks to charge call prices as close to the
marginal cost as is desired, independent of the access price ceiling, provided
that the networks are su¢ ciently close substitutes, and assuming that demand
is su¢ ciently inelastic.

The proof is in Appendix A.4.
Note that it is the combination of STR and competition (i.e. having

more than one network and high network substitutability) that drives down

18



call prices. Network substitutability is crucial for e¢ ciency. If the networks
are poor substitutes ( !1) and the access price ceiling is above marginal
cost (a > ct), then STR induces the networks to set the access price close to
the marginal cost of termination (a ! ct) and charge the monopoly price.
The crucial role of having a second network is evident from inspecting the
construction of the STR-rules. STR is a complement to but cannot replace
competition. Reversely, increased network substitutability and a second net-
work will not have any e¤ect on call prices, unless the access price ceiling a
is binding. That is, competition cannot replace regulation.
As the access price ceiling can be set arbitrarily high, the informational

requirement is minimal. The only restriction is that a � �co. In particular,
STR combined with a Bill-and-Keep regime (a = 0) is a possible solution.
The level of the access price should have no direct bearing on investment
incentives because equilibrium access revenues are always zero under a bal-
anced call pattern. Investment costs must necessarily be covered in the retail
market.

Market Concentration Market concentration has an e¤ect on call prices
if, and only if, the access price ceiling is binding, �m > a. There are two
ways of ensuring a binding access price ceiling. The �rst is to set the ceiling
su¢ ciently low, the second is to reduce network di¤erentiation to increase
�m. In sum:

Proposition 3 Market fragmentation leads to (weakly) lower call prices un-
der STR. If the access price ceiling is too generous and the networks too
di¤erentiated, the monopoly price prevails independently of the number of
networks. If the access price ceiling is su¢ ciently low or networks are suf-
�ciently close substitutes, call prices go down when the number of networks
goes up.

This result demonstrates that competition is a complement to regulation
and not a substitute, since market concentration has an e¤ect only when the
access price ceiling is binding.
It is possible that our model underestimates the e¤ect of market con-

centration on call price competition, however. A new network is like a new
variety in this model, and the product space is never overcrowded. The pres-
ence of loyal subscribers tends to limit the intensity of call price competition
as new networks enter the market. The e¤ect of a crowded product space
can be incorporated into the model by considering a more general network
di¤erentiation parameter  (n; �), where � now signi�es switching costs etc.,
and where @=@n < 0. In this case, competition dominates double margins
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even at the monopoly price. Hence, unilateral deviations from the monopoly
price become increasingly pro�table as the market becomes less concentrated,
which tends to drive the equilibrium access price am (n) up to the ceiling.
If limn!1  (n) = 0, additional reductions in market concentration would
eventually drive call prices down to the marginal cost.
However, the substantial costs of building new networks, the technical

limitations to unbounded entry and the anti-competitive e¤ects of access
pricing, lead us to question whether reduced network di¤erentiation is not a
more fruitful approach than entry in achieving a competitive environment in
telecommunications.
Taken together, Propositions 1 - 3 show that the observed increase in

competition, both in terms of entry and easier switching, may be part of the
explanation for the observed fall in call prices in western Europe, but it may
be mistake to remove regulation altogether.

3.3 Structural versus Cost-Based Regulation

A possible cost-based regulation (henceforth "CBR") is to peg access prices
down to the marginal cost of call termination, i.e. aCBR = ct. When the
networks have the same costs, CBR leads to reciprocal access prices. The
networks will also face the same marginal costs for on-net and o¤-net calls,
and Ramsey pricing prescribes the same prices for o¤- and on-net calls. There
is no price discrimination and no tari¤-mediated network externalities. In
equilibrium, all networks would set the same call price, characterized by

pCBR � c
pCBR

=
1

� (pCBR) + � (pCBR; ; n)
:

Since p� is increasing in the access price, it is clear that STR induces a higher
price than CBR, whenever a > aCBR = ct.
One way of viewing STR is as a slight weakening of CBR, preserving

the reciprocity of access prices and the absence of call price discrimination,
but disconnecting the access price ceiling from the production cost. The
advantage of STR is that it does not require any cost information, and the
advantage of CBR appears to be a lower call price. Note, however, that
STR provides stronger incentives for cost containment than CBR by making
the networks residual claimants on any e¤orts to reduce the termination
costs. Taking these incentives into account, it may well be the case that
pCBR > pSTR.9

9A more detailed comparison of STR and CBR in terms of dynamic e¢ ciency is left to
future research.
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The relative e¢ ciency of CBR is small in situations of high and low net-
work substitutability. If networks are very poor substitutes, both policies per-
form equally poorly, thereby inducing the monopoly price (lim!1 p

CBR =
lim!1 p

� = pm). If networks are very close substitutes, both policies per-
form equally well, inducing marginal cost pricing. To conclude, STR is a
substitute for cost-based regulation, and STR is likely to perform better
whenever information is sparse or investment incentives important.

4 Extensions

4.1 Two-Part Tari¤s

Telecom networks typically use two-part tari¤s, with a call price pi and a
subscription fee Fi. It has been argued that access price collusion may then
not be a problem. This conclusion is based on La¤ont, Rey and Tirole�s
(1998a-b) result that networks using two-part tari¤s do not have any incentive
to raise their access prices above the cost of termination. Assuming the
networks to be poor substitutes, the networks set the call price equal to the
e¤ective marginal cost and use the subscription fee to extract the resulting
consumer surplus. They set the access price equal to the marginal cost, so as
to avoid distortions in the call price, since the maximization of the industry
pro�ts is the same as the maximization of the social surplus (when n = 2).
We show that the e¤ect of two-part tari¤s to a large extent depends on

network di¤erentiation. (The formal analysis is relegated to Appendix A.5.)
For instance, if the networks are nearly perfect substitutes, the subscription
fee is competed down to zero and the networks barely break even. If arbitrage
possibilities prevent the networks from setting negative subscription fees,
they can pro�t from setting an access price above the termination cost, since
they would then have a positive margin on calls.
In fact, the possibility of two-part tari¤s does not a¤ect the equilibrium,

provided that the subscription fees must be non-negative and the networks
are su¢ ciently close substitutes. In any symmetric equilibrium, with two
networks, for example, the access price then is equal to max fa; amg, the
call price is equal to p�, and the subscription fee is set to zero.
In reality, the true arbitrage condition may be somewhat below zero in

case the networks can frame a negative fee as a partial subsidy of handsets,
but this is of no consequence for our results as long as the subscription subsidy
cannot be too large.
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4.2 Anti-competitive Arbitrage

At the turn of the millennium, the main Swedish mobile carrier Telia launched
a campaign o¤ering late night calls at SEK .75 per minute. As termination
charges were well above that level, an arbitrage opportunity on o¤-net calls
arose. For example, the access price charged by the main competitor Comviq
at the time was SEK 1.60, which opened a per minute arbitrage window of
SEK .85=1.60-.75 less the marginal cost of termination. A small company
called Faxback identi�ed the arbitrage opportunity and struck a deal with
Comviq. Comviq agreed to pay Faxback SEK 1.20 per minute for all calls
made by Faxback�s Telia subscriptions to a certain phone number in Comviq�s
network. Soon thereafter, Faxback connected a large set of Telia mobile
phones to its computers and started making eight-hour nightly nonsense
calls.10 After a while, Telia�s computerized intelligence system discovered the
plot. The campaign was eventually withdrawn, and Faxback was sued for
fraudulent behavior. In a recent verdict, Faxback was freed by the Stockholm
City court which deemed the arbitrage legal.
The interesting point is that arbitrage of the Faxback type is anti-competi

tive. Arbitrage e¤ectively eliminates the incentive to undercut the competi-
tor by establishing a call price �oor. In the notation of the present paper,
arbitrage arises whenever a�p > ct. The no-arbitrage condition is p � a�ct.
Assume that the access price ceiling is generous and call demand not too in-
elastic, i.e. pm � a � ct, but subscription demand is very elastic so that
�m > a. If arbitrage were infeasible, the equilibrium access price would be
a� = a and the call price p� (; a; n) < pm. However, with arbitrage, the
access price a = pm + ct � a is su¢ cient to sustain pm as the equilibrium.
These results suggest that policy makers should take steps to prevent

arbitrage. Arbitrage would be eliminated under a Bill-and-Keep regime, since
arbitrage would then imply a negative call price, p < �ct. Second, Faxback-
arbitrage is only feasible if agreements of the Comviq-type are legal. Third,
direct arbitrage is feasible only if networks are allowed to operate a¢ liates
with a signi�cant amount of subscriptions in a competitor�s network.

4.3 More on Call Demand Elasticity

The practical relevance of our proposed policy hinges on the sensitivity of our
results to the price elasticity of demand. If it were the case that equilibrium
could only be guaranteed for unrealistically low demand elasticities, STR
would not produce call prices close to the marginal cost, but most likely a

10The only sound heard during the calls was the whistling rooster from the Robin Hood
movies.
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situation with �uctuating prices. Our proof of existence suggests that the
upper bound on " is reduced as  is pushed towards zero.
To gauge the signi�cance of the price elasticity of demand, we use a nu-

merical simulation. Fortunately, the simulation indicates that the elasticities
can be set quite generously. To calibrate the model, we look at the situation
in the Swedish market prior to the imposition of access price caps in the
late 1990�s. At the time, the call price was approximately p = 5 SEK per
minute (divide by 10 to translate into Euro). Estimates of the short-term
marginal cost per minute were not too far from c = 0:1, and it may be as-
sumed that call termination and call origination were equally expensive, i.e.
co = ct = 0:05. Absent regulation, the observed price was probably close to
its monopoly level, and the negotiated access price, which was around a = 3
per minute at the time, was su¢ cient to sustain collusion.
Using the Lerner rule, (5� 0:1) =5 = �(5)�1, we get an equilibrium elas-

ticity of call demand around �m = 1. This elasticity was elevated by the
lack of competition, and the deep elasticity parameter can be calibrated to
be around " = 0:1. Substituting the prices, estimated costs and �m = 1 into
the pricing equation (6), i.e.

5� 0:1
5

=
1

1 + �m

�
1 +

1

2

3� 0:05
5

1

�
,

we may infer the approximate subscriber elasticity to be �m = 0:3. Assuming
the price of a pay-phone call (including the disutility of using such a device)
to be v = 9, the deep network substitutability parameter can be calibrated
to be around  = 3:5, recalling �m = D (pm) =2V (pm).
The question is now whether this situation can be construed as an equilib-

rium of the model. The answer is yes: substituting the observed and inferred
numerical values into the pro�t function, the pro�t function is nicely concave
whenever the competitor charges the monopoly price.
The next issue is to study the e¤ect of a policy shift in line with STR.

Consider �rst a reduction in , but without any access price ceiling. For
instance, increasing network substitutability to �0 = 1 (approximately cor-
responding to 0 = 1) would imply that the networks have to set an access
price of more than a0 = 10 to induce the monopoly price.
Consider a further increase of the network substitutability, say to 00 = 0:5

(which would correspond to � = 2 at a symmetric monopoly price), but
now assume that the regulator imposes a price ceiling of a = 15. At the
maximal access price, the monopoly price can no longer be sustained as
an equilibrium and the call price falls to p00 = 4:4. Successive increases in
network substitutability, �rst to 000 = 0:1 and then to 0000 = 0:05, lead
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to successive falls in the equilibrium price, �rst to p000 = 1:5 and then to
p0000 = 0:9. All cases are summarized in the following table.

Case a a  p � (p) � (p)
Original situation - 3 3.5 5 0.3 1
Experiment 1 - 10 1 5 1 1
Experiment 2 15 15 0.5 4.4 1.6 0.8
Experiment 3 15 15 0.1 1.5 1.8 0.2
Experiment 4 15 15 0.05 0.9 2 0.1

Note that the equilibrium prevails under the successive reductions of ,
despite keeping " = 0:1 �xed. The reduction of the price elasticity of call
demand, �, is due to the reduced price. These demand elasticities are quite
low, but broadly consistent with econometric evidence (approximately 0.5 on
US data, see e.g. Hausman, 2002).
As is evident from Figure 2, the pro�t function becomes increasingly

peaked around the equilibrium price as  decreases. We anticipate further
reductions in  to have no e¤ect on the existence of equilibrium. Hence,
for plausible initial values of  and ", and with a very generous access price
ceiling a = 15, changes in the degree of network substitutability have no
e¤ect on the existence of equilibrium.

876543210

Price

Profit

Price

Profit

Figure 2: Experiments 2-4
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The source of the existence problem is that a network may �nd it prof-
itable to signi�cantly cut its price to corner the market. However, at high
degrees of network substitutability, the price charged by the competitor will
be close to the marginal cost; thus, the possibility of undercutting the rival di-
minishes as networks become highly substitutable. Our simulations indicate
that at realistic values, the strategic e¤ect working through the competi-
tor�s price is su¢ cient to render price cuts unpro�table, even with highly
substitutable networks.

5 Concluding Remarks

The analysis brings out a complementarity between regulation and competi-
tion. Without regulation, access price collusion leads to monopolization, in-
dependent of the number of networks. While most people seem to agree that
a sector-speci�c regulation is necessary during the transition from monopoly
to competition, our work shows that regulation may be required also in the
long run, when there are several competing networks in the market, they
have all built up sizable customer bases, and when access price collusion may
be a more acute problem than price squeezes.11 This stands in contrast to
the commonly held view (cf. Armstrong and Sappington, 2006; Vogelsang,
2006) that competition and regulation are substitutes in the long run.12

Since competitive problems are ubiquitous in the mobile market, indepen-
dent of market concentration and network di¤erentiation, it appears reason-
able to base the regulation on the legal presumption that competition does
not work. The regulatory obligations may be universal. We also show that
the required obligations may be limited to de�ning structural rules (STR-
regulation) for the networks�pricing rather than to setting access price ceil-
ings close to some measure of cost. The necessary information may therefore
be minimal and the problems of cost-containment avoided. Most importantly,
STR-regulation is transparent to the industry.
Finally, we show that the call price competition and access price competi-

tion induced by entry are partly o¤set by an increase in the networks�e¤ective
cost, as a larger share of calls are terminated in the rivals�networks and there-
fore subject to the access price markup. Considering the substantial costs of

11For more on price squeezes, see Bouckaert and Verboven (2004) and Valletti (2003).
12There is also some anecdotal evidence that sector-speci�c regulation may contribute

to lower prices. In 2001, mobile call charges were much higher (more than twice as high)
in New Zealand which had until then almost exclusively relied on antitrust rules, than
in the UK and in the US which relied on sector-speci�c rules. Australia and Chile with
models somewhere between the two extremes also had an intermediate price level (Kerf et
al., 2005).
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building new networks, our results suggest that other methods for reducing
call prices may be preferred. We have demonstrated that e¤orts to reduce
network di¤erentiation may be one such alternative. Number-portability has
been one remedy; reducing the duration of subscriptions and reducing inertia
in switching between networks have been suggested as additional remedies.13
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A Appendix

We maintain the following assumptions throughout: (i) all pairs of networks
are interconnected, (ii) networks do not price discriminate between o¤-net
and on-net calls and (iii) all access prices are reciprocal, but not necessarily
the same for all pairs of networks.

A.1 Proof of Lemma 1

Assume that all access prices faced by network i are identical and equal to a,
and that i expects all other networks to charge the same call price p� 2 [c; v).
Then, network i�s expected pro�t is

�i (p) = Si(p) ((p� c)D (p) + (1� Si(p)) (a� ct) (D (p�)�D (p))) ,

as a function of its call price p. The �rst-order condition for a symmetric
equilibrium (p = p�) is given by the �rst-order condition

@�i(p)
@p

= @Si
@pi
(p� � c)D (p�) + 1

n

�
D (p�) +

�
p� � c� (1� 1

n
) (a� ct)

�
D0 (p�)

�
= 0:

Using @Si
@p
= � (n� 1)D (p�) =V (p�) n2 and D (p�) = 1 � "p�, we �nd that

any symmetric equilibrium p�(; a; n) must be a solution to g(p�; ; a; n) = 0,
where

g(p; ; a; n) = 1� "
�
2p� c� 1� n�1

n
(a� ct)

�
� 1


n�1
n
(p� c) D

2(p)
V (p)

(9)

is a third-degree polynomial. As we will show that g(p; ; a; n) is strictly
decreasing in p for all prices in the interval [c; v), there is at most one solution
to g(p�; ; a; n) = 0 in this interval. It is easy to rewrite g(p�; ; a; n) = 0 as
(6). To prove the claimed monotonicity of g, note that the derivative

@g
@p
= �2"� 1


n�1
n

�
D2(p)
V (p)

+ (p� c) d
dp

h
D2(p)
V (p)

i�
;

is negative for all p 2 [c; v) since

d
dp

h
D2(p)
V (p)

i
= D(p)

V 2(p)

�
2D0 (p)V (p) +D2 (p)

�
= D(p)D2(v)

V 2(p)
> 0.

Comparative statics To demonstrate how the equilibrium price varies
with the access price, market concentration and the substitutability of the
networks, note that dp�=d = � (@g=@) = (@g=@p), dp�=da = � (@g=@a) = (@g=@p)
and dp�=dn = � (@g=@n) = (@g=@p). Since @g=@p < 0, @g=@a = (n� 1) "=n >
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0 and @g=@ = (n� 1) (p� � c)D2 (p�) = (V (p�)n2) � 0, the �rst two re-
sults follow. Using eq. (6), it can easily be veri�ed that

@g
@n
=
�
p��c
p� � 1

�(p�)

�
�(p�)D(p�)
n(n�1) ;

which completes the comparative statics exercise of the proof.

A.2 Proof of Proposition 1

In a sense, Proposition 1 is stronger than a usual existence result. If the
networks i and j (formally, agent Aij) set the access price aij = am there
exists an equilibrium of the continuation game with all networks charging
the monopoly price. If a pair of networks would set a very high access price,
an equilibrium in call prices may possibly fail to exist, however, as one �rm
might pro�t from cornering the market. But we show that any pair of prices
pi and pj would lead to a lower joint pro�t than both networks charging the
monopoly price pm.
In the proofs that follow we shall make repeated use of the following

result, which is an extension of a Lemma in Armstrong (1998):

Lemma 3 Let f : P ! R and z : P ! R be twice continuously di¤erentiable
functions de�ned on a compact set P 2 Rm, m 2 f1; 2g. Assume that (i) f
has a unique maximand p�; (ii) the matrix of second partial derivatives of f
is negative de�nite at p�; (iii) z (p�) = 0 and (iv) @z (p) =@pijp=p� = 0 for all
i. Then, p� is the unique maximand of f (p)+ �z (p) for all su¢ ciently small
(but positive) � .

Proof. The �rst leading principal minor @2f=@p21 + �@
2z=@p21 of the ma-

trix of second partial derivatives of f + �z is negative at p� for all su¢ ciently
small (but positive) � since @2f=@p1jp=p� < 0. The determinant�

@2f
@p21
+ � @

2z
@p21

��
@2f
@p22
+ � @

2z
@p22

�
�
�

@2f
@p1@p2

+ � @2z
@p1@p2

��
@2f

@p2@p1
+ � @2z

@p2@p1

�
= @2f

@p21

@2f
@p22
� @2f

@p1@p2

@2f
@p2@p1

+ � @
2f
@p21

@2z
@p22
+ � @

2z
@p21

�
@2f
@p22
+ � @

2z
@p22

�
�� @2f

@p1@p2
@2z

@p2@p1
� � @2z

@p1@p2

�
@2f

@p2@p1
+ � @2z

@p2@p1

�
of that same matrix (for the case with n = 2) is positive at p� for all su¢ -
ciently small (but positive) � since @

2f
@p21

@2f
@p22
jp=p� > @2f

@p1@p2
jp=p�. As @f=@pijp=p�+

�@z=@pijp=p� = 0 for all i, there exists a � 1 > 0 such that p� is a strict
local maximum of f + �z for all � < � 1. Hence, there exists a neigh-
borhood B around p� with the property f (p) + �z (p) < f (p�) + �z (p�)
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for all p 2 B � p� and for all � < � 1. Since B is open, its complement
P � B is closed. Being a closed subset of the compact set P , P � B
is itself compact. Compactness of P � B along with continuity of f and
z imply the existence of a pf (pz) which maximizes f (z) over P � B.
f (p) + �z (p) � f

�
pf
�
+ �z (pz) < f (p�) = f (p�) + �z (p�) for all p 2 P �B

and � < � 2 = (f (p�)� f
�
pf
�
)=z (pz) > 0. � 2 > 0 because p� is the unique

maximand of f and p� =2 P � B. Setting � = minf� 1; � 2g > 0, we conclude
that p� is the unique maximand of f + �z in P for all � < � .

No individual �rm has an incentive to deviate Assume that all access
prices are identical and equal to �m, and that network i expects all other
networks to charge the monopoly call price pm. In this case, i�s expected
pro�t is

�i (p) = Si(p)[(p� c)D (p) + (1� Si(p)) (�m � ct) (D (pm)�D (p))],

when its call price is p 2 [0; v]. There is no point in considering prices above
v since the pro�t is zero for all p � v. To rewrite network i�s pro�t on the
form �i (p) = x(p) +

"

y(p), we �rst add and subtract�

1� 1
n

�
(�m � ct) (Si(p) (D (p�)�D (p)))

to �i, then substitute in �m de�ned in (8), and �nally de�ne

x(p) = Si(p)[(pi � c)D (p) +
�
1� 1

n

�
(�m � ct) (D (pm)�D (p))]

and
y(p) = pm�vp(pm)

�(pm)2
Si(p)(

1
n
� Si(p)) (p� pm) .

The decomposition of the pro�t into the two x (p) and y (p) is done to separate
out the "composition e¤ect" from the more regular e¤ects of a change in
price on pro�t. We will refer to x (p) as the normalized pro�t. The �rst
claim demonstrates that the monopoly price maximizes the normalized pro�t
function.

Claim 1 pm is the unique maximand of x. Moreover, @2x=@p2jp=pm < 0.

Proof. We �rst show that x has a unique maximand. The set 
 � [0; v]
of p�s for which x � 0 is non-empty due to the fact that x(pm) > 0. Obviously,
every maximand of x must be contained in 
. We now demonstrate that x
has a unique maximand in 
. By continuity of x, the set of p�s for which
x < 0 is open. Hence, 
 is closed. Being a closed subset of the compact
set [0; v], 
 is itself compact, and thus admits a maximum. The normalized
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pro�t per subscriber, i.e. x(p)=Si(p), is strictly concave in p, which renders

 convex since Si � 0. Di¤erentiate:

@x
@p
=

S0i(p)
Si(p)

x (p) + Si (p)
�
1 + "c+ " (n�1)

n
(�m � ct)� 2"p

�
and

@2x
@p2

= 2
S0i(p)
Si(p)

@x
@p
+

�
d
dp

h
S0i(p)
Si(p)

i
�
�
S0i(p)
Si(p)

�2�
x (p)� 2"Si (p) .

Note that

d
dp

h
S0i(p)
Si(p)

i
= 1


S 0i (p)

D(p)
V (p)

� 1

(1� Si (p)) d

dp

h
D(p)
V (p)

i
< 0;

since S 0i (p) =Si (p) = � 1

(1� Si (p))D(p)V (p)

< 0 and

d
dp

h
D(p)
V (p)

i
= D2(p)�"V (p)

V 2(p)
= (1�"p)2+(1�"v)2

2V 2(p)
> 0.

Hence, @2x=@p2 < 0 for all p 2 
 satisfying @x=@p � 0. In particular every
interior solution @x=@p = 0 is a strict local optimum. Hence, x is strictly
quasi-concave on 
 and therefore has a unique maximand on [0; v].
By strict quasi-concavity, any solution @x=@p = 0 in 
 is an optimum.

Using �m = ct+ pm�vp (pm) =� (pm)
2, it is easy to verify that @x=@pjp=pm =

0, hence pm is the unique maximand of x. pm 2 
 and @x=@pjp=pm = 0 imply
@2x=@p2jp=pm < 0, which completes the proof.
Finally note that the normalized pro�t x satis�es assumptions (i) and (ii)

of Lemma 3. Even assumptions (iii) and (iv) of the Lemma are ful�lled, since
y (pm) = 0 and @y=@pjp=pm = 0. Consequently, pm is the unique maximand
of �i (p) = x(p) + "


y(p) for "


su¢ ciently low, but positive.

No pair of �rms can increase their joint pro�t by deviating To
prove that no pair of �rms can increase their joint pro�t by deviating from
�m we will follow a very similar procedure. If there are only two �rms in
the industry, they cannot pro�t from a joint deviation from monopoly prices
since their joint pro�t is just the industry pro�t, which is maximized precisely
at monopoly prices. Assume therefore that n � 3. The joint expected pro�t
of �rms i and j is

�ij (p) = Si (pi � c)D (pi) + Sj (pj � c)D (pj)
+ (1� Si � Sj) (�m � ct) (Si (D (pm)�D (pi)) + Sj (D (pm)�D (pj))) .

(10)
when they charge call prices p = (pi; pj), all other �rms charge the monopoly
call price pm, and all access prices except possibly aij are equal to �m.
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Again, we need to decompose the joint pro�t into a normalized pro�t and
a part catching the composition e¤ect,

�ij (p) = X(p) +
"

Y (p) where X(p) = Xi(p) +Xj(p):

To do this, add and subtract�
1� 2

n

�
(�m � ct) (Si (D (pm)�D (pi)) + Sj (D (pm)�D (pj)))

from �ij and de�ne

Xi(p) = Si(p)

�
(pi � c)D (pi) +

�
1� 2

n

�
(�m � ct) (D (pm)�D (pi))

�
,

and

Y (p) = pm�vp(pm)

�(pm)2

�
2

n
� Si(p)� Sj(p)

�
(Si(p) (pi � pm) + Sj(p) (pj � pm)) .

Let bpm be the monopoly price at marginal cost bc = c+ n�2
n
(�m � ct) > c,

which is the perceived marginal cost of any pair of �rms maximizing their
joint pro�t, i.e. bp = minfv; 1+"bc

2"
g. Consider �rst the problem of maximizing

the normalized pro�t X. Let ep = (epi; epj) be a pair of prices that maximize
X, and let the optimal normalized pro�t be denoted by eX = X(ep) and the
optimal market share by eSi = Si(ep). We �rst show that X is maximized
only if both �rms charge the same call price:

Claim 2 The policy ep = (epi; epj) maximizes X only if epi = epj 2 (0; bpm).
Proof. We establish the result via four intermediary steps.
Step 1 demonstrates that both prices must be set below the price of calls

from public phones, i.e. epi < v and epj < v. It would clearly not be optimal
to set epj � v and epi � v since that would result in a zero normalized pro�t,eX = 0, while setting one price equal to the monopoly price would result in
a larger pro�t X(pm; v) = 1

n�1(p
m � c) > 0. Note that this also implies that

the optimal normalized pro�t must be strictly positive, eX > 0. It could also
not be optimal to set only one price below, e.g. epi < v and epj � v. The
alternative pricing policy pi = pj = epi would lead to a higher pro�t, i.e.

X(epi; epi)� eX =
�
2Si(epi; epi)� eSi� eXieSi > 0

since

2Si � eSi = V (epi) 1 V (p�) 1 (n�2)�
2V (epi) 1 +(n�2)V (p�) 1 ��V (epi) 1 +(n�2)V (p�) 1 � > 0.
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Thus we conclude that both prices must be (strictly) below v.
Step 2 demonstrates that both prices must be set above marginal cost,

i.e. epi > c and epj > c. Maximization of the normalized pro�t X implieseXi > 0 or eXj > 0 or both since eX > 0. Assume wlog that eXj > 0. First,
note that eXj > 0 implies epj > c. Second, note that @X=@pi > 0 for all epi � c.
This can be inferred from

V (pi)
SiD(pi)

@X
@pi
= � 1


Xi
Si
+ (D (pi) + (pi � bc)D0 (pi))

V (pi)
D(pi)

+ 1

X; (11)

since eX > 0, eXi � 0 and pi � c � bc. Hence, both prices must be above
marginal cost.
Step 3 demonstrates that both prices must be set below the optimal price

of a high cost monopolist, in particular epi < bpm and epj < bpm. If bpm = v,
the result is a direct implication of Step 1. Consider the other possibility,bpm < v. Note that
V (pi)
D(pi)

@X
@pi
+

V (pj)

SjD(pj)
@X
@pj
= (D (pi) + (pi � bc)D0 (pi))

SiV (pi)
D(pi)

+ (D (pj) + (pj � bc)D0 (pj))
SjV (pj)

D(pj)

� 1

(1� Si � Sj)X < 0

if epi 2 [bpm; v) and epj 2 [bpm; v) both hold. In this case, the two �rst-order
conditions @X

@pi
= @X

@pj
= 0 cannot simultaneously be met. Therefore, epi < bpm

or epj < bpm, or both.
Assume wlog that epi < bpm � epj. There are two possibilities to consider.

In the �rst case the low price �rm has a higher normalized pro�t per sub-
scriber, i.e. eXi=eSi > eXj=eSj. Lower the high price pj until normalized pro�ts
per subscribers are the same, i.e. Xj=Sj = eXi=eSi. By a comparison of pro�ts,
X � eX = Xi +Xj � eX =

�
SieSi + SjeSi

� eXi � eXi � eXj =
Si+Sj�eSi�eSjeSi eXi + eSj( eXieSi � eXjeSj )

Now, the total market share of the two networks is increased by the price
reduction, i.e. eSi + eSj < Si + Sj, since @(Si + Sj)=@pj = � 1


Sj(1 � Si �

Sj)D(pj)=V (pj) < 0. As eXi=eSi > eXj=eSj by assumption, it follows that
X > eX, which contradicts optimality of eX. Consider now the possibility that
the high price �rm earns the higher pro�t per subscriber, i.e. eXi=eSi � eXj=eSj.
Subtract the two �rst-order conditions

V (pi)
SiD(pi)

@X
@pi
� V (pj)

SjD(pj)
@X
@pj
= 1


(
eXjeSj � eXieSi ) + (D (epi) + (epi � bc)D0 (epi)) V (epi)D(epi)

� (D (epj) + (epj � bc)D0 (epj)) V (epj)D(epj) .
The �rst term on the RHS is non-negative by assumption. The second term
is positive since epi < bpm, and the third term is non-negative since epj � bpm.
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The RHS is positive, and so the two �rst-order conditions @X
@pi

= @X
@pj

= 0

cannot be satis�ed simultaneously even in this remaining case. By necessity,
therefore, epi < bpm and epj < bpm.
Step 4 demonstrates that epi = epj 2 (c; bpm). Steps 1 - 3 hold the joint

implication that epi 2 (c; bpm) and epj 2 (c; bpm). Using (11), note that
@X
@pi
= @X

@pj
)  (D (epi) + (epi � bc)D0 (epi)) V (epi)D(epi) � eXieSi
= (D(epj) + (epj � bc)D0(epj))V (epj)D(epj) � eXjeSj .

De�ne

h(p) =  (D (p) + (p� bc)D0 (p)) V (p)
D(p)

� (p� c)D (p)�
�
1� 2

n

�
(�m � ct) (D (pm)�D (p))| {z }

Xi=Si

With this de�nition, @X
@pi
= @X

@pj
implies h(epi) = h(epj).

h0(p) = 2"
�
1+"bc
2"
� p
� h
 d
dp

h
V (p)
D(p)

i
� 1
i
� 2" V (p)

D(p)
< 0

for all p 2 (c; bpm), where the inequality follows from d
dp

h
V (p)
D(p)

i
< 0, see the

proof of Claim 1, and p < bpm = minfv; 1+"bc
2"
g. Since h(epi) 6= h(epj) for allepi 6= epj meeting epi 2 (c; bpm) and epj 2 (c; bpm), by necessity epi = epj 2 (c; bpm).

Next, let us �nd the symmetric price pi = pj = p that maximizes X.
With symmetric prices, X simpli�es to

X(p; p) = S(p)
�
(p� c)D (p) +

�
1� 2

n

�
(�m � ct) (D (pm)�D (p))

�
,

where S (p) = 2V (p)
1
 =(2V (p)

1
 +(n� 2)V (pm)

1
 ) is the total market share

of networks i and j.

Claim 3 pm is the unique maximand of X(p; p). The matrix of second partial
derivatives of X(p) is negative de�nite at (pm; pm).

Proof. We omit the proof that X(p; p) has a unique maximand on [0; v],
since this is analogous to the proof in Claim 1 that x(p) has a unique maxi-
mand on [0; v]. It is easy to verify that @X(p; p)=@pjp=pm = 0, hence pm is the
unique maximand ofX(p; p). Using (11), the cross-partial derivatives ofX(p)
are @2X

@p2i
= h0(pm)nD(p

m)
V (pm)

< 0 and @2X
@pi@pj

= 0 evaluated at pi = pj = pm. The

35



matrix of cross-partial derivatives therefore is negative de�nite at monopoly
prices.
By virtue of Claim 2 and Claim 3 above, we conclude that (i)X(pm; pm) >

X(p) for all p 2 [0; v]2 � (pm; pm); (ii) the matrix of second partial deriv-
atives of X(p) is negative de�nite at (pm; pm). Even assumptions (iii) and
(iv) of Lemma 3 are ful�lled, since Y (pm; pm) = 0 and @Y=@pijp=(pm;pm) =
@Y=@pjjp=(pm;pm) = 0. Consequently, pi = pj = pm is the unique maximand
of �ij (p) = X(p)+ "


Y (p) for "


su¢ ciently low, but positive. This completes

the proof of Proposition A.2.

A.3 Proof of Lemma 2

In the proof to follow we shall make use of the following general lemma:

Lemma 4 Consider a market with n networks under STR, with an access
price ceiling a. Assume that all access prices are common knowledge, but not
necessarily the same. There exists a pure strategy equilibrium in call prices if
demand is su¢ ciently inelastic (that is, if " su¢ ciently low). If, in addition,
all access prices are identical and equal to a 2 [�co; a], the equilibrium is
unique and symmetric and equal to p� (; a; n) 2 [c; v) implicitly de�ned in
eq. (6) in Section 2.

Proof. We will show that there exists a unique and symmetric pure
strategy equilibrium for all " < " (; a) and some " (; a) > 0. The equilib-
rium price is above the marginal cost, c, but below a certain highest price
P (; "; a) 2 (c; v).
First, some preliminary observations. Let p�i = (p1; ::; pi�1; pi+1; pn), so

that p = (pi;p�i), and let aik be the reciprocal access price between networks
i and k. With n networks, the pro�t of network i 2 N = f1; 2; ::; ng is

�i (p) = Si

�
(pi � c)D (pi) +

P
k 6=i Sk (aik � ct) (D (pk)�D (pi))

�
,

The marginal pro�t is equal to
@�i
@pi
= @Si

@pi
(pi � c)D (pi) + Si (D (pi) + (pi � c)D0 (pi))

+
P

k 6=i (aik � ct)Sk
��

@Si
@pi
+ Si

Sk

@Sk
@pi

�
(D (pk)�D (pi))� SiD0 (pi)

�
.

(12)
Substitute @Si

@pi
= ��1Si (1� Si) D(pi)V (pi)

and @Sk
@pi

= �1SiSk
D(pi)
V (pi)

into the mar-
ginal pro�t and rewrite to obtain

Ri(p) =
@�i
@pi

V (pi)
SiD(pi)

= � (1� Si) (pi � c)D (pi) + 
�
1 + (pi � c) D

0(pi)
D(pi)

�
V (pi)

�
P

k 6=i (aik � ct)Sk
�
(1� 2Si) (D (pk)�D (pi)) + D

0(pi)
D(pi)

V (pi)
�

(13)
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Since V (pi) =SiD (pi) > 0 for all pi < v, sgnf@�i=@pig = sgnfRi(p)g for
all pi < v.

Existence The existence proof proceeds in four claims. The �rst two claims
establish that a network will never set a price above P (; "; a) 2 (c; v) nor
below c, given that everybody else charges a call price at or above c, at least
one competitor sets a price in [c; v) and " is su¢ ciently small.

Claim 4 There exists an "1 (; a) > 0 such that for all " < "1 (; a), pi < c
is a strictly dominated strategy.

Proof. Note that Ri(p) can be rewritten as

Ri(p) = � (1� Si) (pi � c)D (pi)� 
�
Sic+

P
k 6=i (aik + co)Sk

�
D0(pi)
D(pi)

V (pi)

+
�
1� "p

1�"p

�
V (pi)� "

P
k 6=i Sk (1� 2Si) (aik � ct) (pi � pk) ;

where we have used D (p) = 1� "p in the last line. The sum of the terms on
the �rst line is strictly positive for pi � c. The expression on the second line
is strictly positive for " su¢ ciently small. Hence, �i (p) < �i (c;p�i) for all
pi < c and for all p�i, provided that " is su¢ ciently small.
Let M�i be the set of networks not including i that charge a call price

strictly below v. Let p (p�i) be the maximal of these prices for the case that
M�i 6= ;.

Claim 5 Assume that " < (v + c)�1. If pk � c for all k 6= i and pj < v for
some j 6= i, then there exists a P (; "; a) 2 (c; v) such that @�i=@pi < 0 for
all pi 2 [maxfP ; p (p�i)g; v). P is increasing in , " and a.

Proof. By manipulating terms and using linearity of demand, we get

Ri(p) = �
�
1
2
(1� " (v + c)) (pi � c)� V (pi)� "maxf0; agV (pi)D(pi)

�
�"

�
pi � c+maxf0; ag �

P
k 6=i Skaik + (1� Si) ct

�
V (pi)
D(pi)

�
��

1
2
� Si

�
(1� " (v + c)) + " (1� Si) (v � pi + 2cSi)

�
(pi � c)

�"
P

k 6=i Sk (1� 2Si) (c (pk � c) + (aik + co) (pi � pk)) .

De�ne the term in parenthesis in the �rst line asH (pi) = H (pi; ; "; a). Note
that H is strictly increasing in pi since " < (v + c)

�1, �V 0 (pi) = D (pi) and
� d
dpi

h
V (pi)
D(pi)

i
= (1�"pi)2+(1�"v)2

2(1�"pi)2
> 0. Moreover, H (c) < 0 and H (v) > 0 since

V (v) = 0. Hence, there exists a unique P (; "; a) 2 (c; v) implicitly de�ned
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by H (P) = 0, with the property that H (pi) > 0 for all pi > P. Note also
that the second line is strictly negative for all pi 2 [P ; v), whereas the two
�nal lines are non-positive for all v > pi � p (M�i) and pk � c for all k 6= i.
Hence, Ri(p) < 0 for all pi 2 [maxfP (; "; a) ; p (M�i)g; v). The properties
of P (; "; a) follow from implicit di¤erentiation of H (P ; ; "; a) = 0.

Claim 6 There exists a pure strategy Nash equilibrium, ep 2 [c;P (; "; a)]n,
for every " < "2 (; a), and for some "2 (; a) > 0.

Proof. First, note that claims 4 and 5 guarantee that every network will set
a price in [c;P ] given that all other networks set a price in [c;P ], provided
that " is su¢ ciently small. Second, note that �i is continuous in p on the
domain p 2 [c;P ]n. The existence proof amounts to verifying quasi-concavity
of �i in pi on [c;P ] for all " < "2 (; a) and some "2 (; a) > 0. Claim 4 implies
Ri(c;p�i) > 0, and Claim 5 implies Ri(P ;p�i) < 0 for all p�i 2 [c;P ]n�1.
Hence, there exists a bpi (p�i) 2 (c;P) which satis�es Ri(bpi;p�i) = 0. If bpi is
uniquely de�ned, �i is single-peaked and therefore strictly quasi-concave in
pi on [c;P ]. We now demonstrate that Ri(p) is strictly decreasing in pi in
the interval [c;P ], provided that " is su¢ ciently small. Note that

@Ri(p)

@pi
= �

�
 + (1� Si)

�
1 + 1


Si
D(pi)
V (pi)

(pi � c)
��
D (pi)

�"
 
 V (pi)
D(pi)

�
P
k 6=i
SiSk (aik � ct)

!

�"
 
pi � c�

P
k 6=i
Sk (aik � ct)

!
d
dpi

h
V (pi)
D(pi)

i
� "


P
k 6=i
(aik � ct)SiSk (3� 4Si) D(pi)V (pi)

(pi � pk)

�"
 P
k 6=i
(aik � ct)Sk (1� 2Si)� (1� Si) (pi � c)

!
;

where we have used Roy�s identity V 0 (pi) = �D (pi), the explicit expressions
for @Si=@pi and @Sj=@pi as well as linear demand D (p) = 1�"p and D0 (p) =
�". Since lim"!0 V (p) =D (p) = v � p,

lim
"!0

@Ri(p)

@pi
= �

�
 + (1� Si)

�
1 + 1


Si
pi � c
v � pi

��
< 0 8pi � P (; "; a) < v.

(14)
Hence, Ri(p) is strictly decreasing in pi in the interval [c;P ] provided that "
is su¢ ciently small.
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Existence is ensured for all " smaller than the minimum of "1 (; a) used
in Claim 4, (v + c)�1 used in Claim 5 and "2 (; a), used in Claim 6.

Uniqueness Claim 4 establishes that all equilibrium prices must be at or
above the marginal cost provided that " is su¢ ciently small. The unique-
ness proof proceeds in two claims. Claim 7 establishes that all equilibrium
prices are contained in [c;P) provided that " is su¢ ciently small. Claim 8
establishes that any equilibrium in which two networks charge symmetric
access prices forces them to charge identical call prices, provided that " is
su¢ ciently small. This holds the implication that all networks charge the
same call price if all access prices are the same. In the proof of Lemma 1,
we showed that there can be at most one symmetric equilibrium when all
�rms charge the same access price a. This symmetric equilibrium call price
p� is implicitly de�ned in (6) in Section 2. Let ep�i be the equilibrium call
prices of all networks except i, epi the equilibrium call price of network i andepi = (epi; ep�i).
Claim 7 Assume that " < (v + c)�1 and " < "1 (; a) de�ned in Claim 4 are
both satis�ed. In any equilibrium ep, epi 2 [c;P) for all i 2 N with P (; "; a)
de�ned in Claim 5.

Proof. We �rst demonstrate that at least one network charges a call price
strictly below v in equilibrium. Suppose, on the contrary, that epi � v 8i 2 N .
The industry pro�t is

P
k2M Sk (v � c)D (v) � (v � c)D (v) in this case,

where M is the (possibly empty) set of networks which charge a call price
exactly equal to v. It follows that at least one network, say network j, earns
a pro�t strictly below (v � c)D (v). Any deviation by j to pj = v � �,
� > 0, would render j the monopoly status and pro�t (v � � � c)D (v � �).
By setting � arbitrarily close to but below v, j could strictly increase its
pro�t. Having established that at least one network charges a call price
below v in equilibrium, we now show that all networks set a price strictly
below v in equilibrium. Suppose wlog that epi � v in equilibrium. Since, in
this case, M�i 6= ; and epk � c for all k 6= i, we know from Claim 5 that
�i (maxfP ; p (ep�i)g; ep�i) > �i (ep) = 0 for all epi � v, and so epi � v cannot
be an equilibrium. Having established that all networks charge a call price
strictly below v in equilibrium, we now show that all networks set a price
strictly below P in equilibrium. Assume wlog that network i charges the
maximal price, i.e. epi � p (ep�i). For any epi 2 [P ; v), i will strictly pro�t
by lowering its call price, see Claim 5; hence, the maximal equilibrium price
must necessarily be strictly below P.
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Claim 8 Assume that networks i and j set symmetric access prices, aik =
ajk 8k 6= i; j. There exists an "3 (; a) > 0 such that for all " < "3 (; a) any
call price equilibrium ep 2 [c;P ], satis�es epi = epj.
Proof. Any interior equilibrium epk 2 [c; v) 8k 2 N must satisfy the two
�rst-order conditions Ri(ep) = 0 and Rj(ep) = 0, where Ri(p) was de�ned in
equation (13) and Rj(p) can be equivalently de�ned. It follows that every
interior equilibrium must satisfy Ri(ep) � Rj(ep) = 0. Ri(p) is strictly de-
creasing in pi in the interval [c;P ] provided that " is su¢ ciently small; see
(14). Note that

@Rj(p)

@pi
= 1


SiSj

D(pi)
V (pi)

(pj � c)D (pj) + " (aij � ct)Si (1� 2Sj)

+"
P

k 6=j SiSk (ajk � ct)
�
1� 1


D(pi)
V (pi)

(1� 4Sj) (pj � pk)
�

�" (aij � ct)Si (1� Si)
�
1� 1


(1� 2Sj) D(pi)V (pi)

(pj � pi)
�
;

where we have used the explicit expressions for @Si=@pi and @Sj=@pi and
@Sk=@pi as well as linear demand D (p) = 1 � "p and D0 (p) = �". Since
lim"!0 V (p) =D (p) = v � p,

lim
"!0

@Rj(p)

@pi
= 1


SiSj

pj�c
v�pi � 0 8pi < v, pj � c. (15)

To summarize, Ri(p)�Rj(p) is strictly decreasing in pi in the interval [c;P ],
provided that " is su¢ ciently small. For every epj 2 [c;P ], therefore, there
can be at most one solution epi 2 [c;P ] to Ri(ep) � Rj(ep) = 0, provided
that " is su¢ ciently small. Since i and j charge symmetric access prices,
Ri(ep) = Rj(ep) is satis�ed for epi = epj. Thus, Ri(ep) 6= Rj(ep) for all epi 6= epj,
which excludes the possibility of an asymmetric equilibrium.
De�ning " (; a) as the minimum of "1 (), (v + c)

�1, "2 (; a) and "3 (; a)
completes the existence and uniqueness proof.

Existence and uniqueness of the continuation game Consider now
the continuation game following universal agreement on a. Assume that all
access prices except possibly aij = aji = ba are equal to a. Assume that
" < " (; a) de�ned in Lemma 4. Applying passive beliefs, network k 6= i; j�s
expected pro�t in the continuation game is

�k (pk; ep�k) = Sk (pk; ep�k) ((pk � c)D (pk)+P
l 6=k
Sl (pk; ep�k) (a� ct) (D (epl)�D (pk)))
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Note that the maximization problem facing network k is the same as in
Lemma 4, with the exception that here, all access prices are equal to a. All
networks except i and j face the same maximization problem. By virtue
of Lemma 4, they all charge the same call price epk = p� (; a; n) implicitly
de�ned in eq. (6) in Section 2. Network i�s expected pro�t is

�i (pi; ep�i) = Si (pi; ep�i) [(pi � c)D (pi) + Sj (pi; ep�i) (ba� ct) (D(epj)�D (pi))
+ (1� Si (pi; ep�i)� Sj (pi; ep�i)) (a� ct) (D (p� (; a; n))�D (pi))] ,

where we have applied passive beliefs on i�s expectations about the actions
of the networks other than j. Note that even the maximization problem
facing network i and j are identical and the same as in Lemma 4, with the
exception that here aij = aji = ba and all other access prices are equal to
a. Since i and j face symmetric access prices, they charge the same unique
equilibrium call price epi = epj = ep (;ba; a; n) implicitly de�ned by the solution
to @�i (pi; ep�i) =@pijpi=epi = 0:

ep�cep = 1
�(ep)+�i(ep)

h
1 +

�
Si (ep) (ba�ct)ep + (1� 2Si (ep)) (a�ct)ep

�
� (ep)

� [�ji (ep)Si (ep) + (1� 3Si (ep))�i (ep)] (a�ct)ep (D(p�)�D(ep))
D(ep)

i ; (16)

where �ji = (@Sj=@pi) (pj=Sj) is the cross-price subscriber elasticity. As is
easily veri�ed, ep (; a; a; n) = p� (; a; n).
Comparative statics of the continuation game We show that ep is non-
decreasing in ba. In equilibrium, Ri(ep) = Rj(ep) = 0, where Ri was de�ned in
(13). The numerator of

@epi
@ba =

@Ri
@pj

@Rj
@ba � @Rj

@pj

@Ri
@ba

@Ri
@pi

@Rj
@pj

� @Rj
@pi

@Ri
@pj

is positive for " su¢ ciently low, since in that case, @Rj=@pj < 0 and @Ri=@pj �
0, whereas @Ri=@ba = @Rj=@ba = �Sj D0(ep)

D(ep) V (ep) > 0 always holds. Using (14)
and (15),

lim
"!0

�
@Ri
@pi

@Rj
@pj

� @Rj
@pi

@Ri
@pj

�
= ( + 1� Sj)

�
 + (1� Si)

�
1 + 1


Si

pi�c
v�pi

��
+Sj (1� Sj)

�
1 + 1


(1� Si)

�
pj�c
v�pj

+ 1
2
SiSj (1� Sj � Si) pi�cv�pi

pj�c
v�pj ;

which is strictly positive for all pi 2 [c;P ] and pj 2 [c;P ]. Consequently, ep is
non-decreasing in ba for " su¢ ciently low, but positive.
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Existence of an access price equilibrium To summarize so far, for "
su¢ ciently low, but positive, there exists a unique equilibrium in the contin-
uation game following universal agreement on a, but where i and j possible
deviate to an alternative access price aij = aji = ba. All networks except
i and j charge the same call price p� (; a; n) implicitly de�ned in eq. (6).
Networks i and j charge the same call price ep (;ba; a; n) implicitly de�ned in
eq. (16). ep (;ba; a; n) is non-decreasing in ba, with ep (; a; a; n) = p� (; a; n).
Consider the incentives of agent Aij who maximizes joint pro�t of i and

j. Substitute pm for p�, �m for a and set pi = pj = p in (10) to get joint
pro�t

�ij (p) = S(p)((p� c)D (p) + (1� S(p)) (a� ct) (D (p� (; a; n))�D (p)))

where S (p) = 2V (p)
1
 =(2V (p)

1
 + (n� 2)V (p�(; a; n))

1
 ) is the total mar-

ket share of networks i and j. Since ep is non-decreasing in ba, the set of prices
call prices thatAij can implement is restricted by P (a) = [ep (;�co; a; n) ; ep (; a; a; n)].
Aij thus maximizes �ij (p) over P (a). Recall that a is the proposed equilib-
rium access price.
As in the proof of Proposition 1, joint pro�t can be decomposed in two

parts �ij (p) = ex (p) + "(a� ct)ey (p) whereex (p) = S (p) �(p� c)D (p) + n�2
n
(a� ct) (D (p� (; a; n))�D (p))

�
,

and ey (p) = S (p) � 2
n
� S (p)

�
(p� p� (; a; n)) .

Claim 9 ex (p) has a unique maximand for every P (a). The maximand is
equal to pm and @2ex=@p2jp=pm < 0 when �m � a and the price range is
P (�m). The maximand is equal to p� (; a; n) and @2ex=@p2jp=p�(;a;n) < 0
when the price range is P (a) and a < �m.

Proof. We omit the proof that ex (p) has a unique maximand on P (a),
since it is analogous to the proof in Claim 1 that x(p) has a unique maximand
on [0; v]. It is easy to verify that @ex=@pjp=pm = 0, hence pm is the unique
maximand of ex(p) on P (�m). Also, @2ex=@p2jp=pm < 0 is straightforward in
view of the algebra in the proof of Claim 1. Consider next the case when the
price range is P (a). After a few straightforward manipulations:

@ex(p)
@p
jp=p�(;a;n) = � 2

n(n�1)

h
p��c
p� � 1

�(p�)

i
� (p�)D (p�) .

For a < �m, p� (; a; n) < p� (; �m; n) = pm, since p� is increasing in a, see
Proposition 1. In this case @ex(p)

@p
jp=p�(;a;n) > 0 and i and j would bene�t
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from a higher call price. However, this is impossible to implement because it
would involve setting an access price above a, which is disallowed. Finally,
@2ex=@p2jp=p�(;a;n) < 0 is obvious in light of Claim 1.ex satis�es assumptions (i) and (ii) of Lemma 3 both for P (�m) and
P (a). Even assumptions (iii) and (iv) of the Lemma are ful�lled, sinceey (p� (; a; n)) = 0 and @ey=@pjp=p�(;a;n) = 0 for all a. Consequently, pm

is the unique maximand of �ij (p) = ex (p) + "(�m � ct)ey (p) when �m � a
and "


is su¢ ciently low, but positive. Second, p� (; a; n) is the unique max-

imand of �ij (p) = ex (p)+"(a�ct)ey (p) when �m > a and " is su¢ ciently low,
but positive. By construction p� (; �m; n) = pm. Therefore, �m is an access
price equilibrium when �m � a, whereas a is an access price equilibrium
when �m > a, provided " is su¢ ciently low.

Uniqueness of the access price equilibrium It cannot be the case that
a < �m < a in symmetric equilibrium. For in this case, p� (; a; n) < pm,
@ex=@pjp=p� > 0 and Aij would bene�t from setting ba > a to induce a call
price ep > p�. It cannot be the case that a 2 (�m; a] in symmetric equilibrium,
either. For in this case, p� (; a; n) > pm, @x=@pjp=p� < 0 and Aij would
bene�t from setting ba < a to induce a call price ep < p�. Finally, it cannot
be the case that a < a � �m in symmetric equilibrium. For in this case,
p� (; a; n) < pm and Aij would bene�t from setting ba > a to induce a call
price ep > p�.
A.4 Proof of Proposition 2

When the price elasticity of call demand is su¢ ciently low, the unique equi-
librium price p� 2 [c; v) is given by (6). Using D (p�) = 1 � "p�, �(p�) =
"p�= (1� "p�), and �(p�) = (n � 1)D (p�) p�=nV (p�), we get the following
bounds on p� (; a; n):

0 � p� � c =

�
D (p�) + n�1

n
(a� ct) "

�
"+ n�1

n
D2(p�)
V (p�)

<
 (D (v) + (a� ct) ")

"+ D2(c)
2V (c)

(17)

where the second inequality follows from the fact that p� is increasing in a,
D (p�) < D (v), n � 2 and d

dp

h
D2(p)
V (p)

i
= D(p)D2(v)

V 2(p)
> 0. Since " is bounded

from above, the last term in the above equation goes to zero as  goes to
zero. Clearly, lim#0 p

� (; a; n) = c.
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A.5 Two-part Tari¤s

This appendix derives the access prices that maximise industry pro�ts under
two-part tari¤s. The purpose is to show that introducing two-part tari¤s
does not add much to the analysis if the �xed fee must be non-negative
and the networks are su¢ ciently close substitutes. Consider the case where
n � 2 networks each charge a subscription fee Fi � 0 in addition to the non-
discriminatory call price pi � 0. The subscriber�s indirect utility is V (pi)�Fi
and i�s customer base Si =

�
(V (pi)� Fi)

1


�
(
P
j2N

(V (pj)� Fj)
1
 )�1. Each

network maximizes the Lagrangian Li = �i + �iFi, where

�i = Si

"
(pi � c)D (pi) +

P
j 6=i
Sj (a� ct) (D (pj)�D (pi)) + Fi

#
is the network�s pro�t. Any symmetric equilibrium pi = p for all i 2 N ,
Fi = F for all i 2 N , is given by the solutions to
@Li
@pi
= @Si

@pi
[(p� c)D (p) + F ] + 1

n

�
D (p) +

�
p� c� n�1

n
(a� ct)

�
D0 (p)

�
= 0,

@Li
@Fi

= @Si
@Fi
[(p� c)D (p) + F ] + 1

n
+ � = 0

and �F = 0, � � 0. Subtract @Li=@Fi from @Li=@pi and use D (pi) @Si@Fi
= @Si

@pi
to get

�F = � 1
n

�
p� c� n�1

n
(a� ct)

� �(p)
p
F = 0. (18)

There are two types of equilibria, First, there is the standard solution p (a) =
c+ n�1

n
(a� ct), with �xed fee

F (; a; n) = n�1
n�1+n

�
n
n�1V

�
c+ n�1

n
(a� ct)

�
� n�1

n
(a� ct)D

�
c+ n�1

n
(a� ct)

��
,

(19)
where F was obtained by substituting p = c+ n�1

n
(a� ct) into @Li=@pi and

using the symmetric relation @Si
@pi

= �n�1
n2

D(p)
V (p)�F . Second, there is a corner

solution F = 0 and p given by @�i=@pi = 0, i.e. p = p� (; a; n). By using
(19), we see that F (; a) � 0 if and only if

 >  (a; n) = (n�1)2
n2

(a� ct)
D
�
c+
n�1
n
(a�ct)

�
V
�
c+
n�1
n
(a�ct)

� .
The inequality is violated for all  su¢ ciently low (but positive) provided

a > ct. Note also that @=@a > 0 for all a > ct by the fact that d
dp

h
D(p)
V (p)

i
> 0,

see the proof of Claim 5. Hence, there exists an A (; n) = �1 (), such that
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the standard solution applies if and only if a � A (; n), and the corner
solution applies if and only if a � A ().
Consider next the pro�t maximizing choice of a. Since we are interested

in the case with high network substitutability and a generous access price
ceiling a > ct, assume  to be su¢ ciently low to ensure �m > A (; n) and
a > A (; n) (recall that �m is decreasing in , whereas @A=@ > 0 and
A (0; n) = ct). For all a 2 [�co; A], the symmetric equilibrium pro�t is

� (a) = 
n�1+n

�
n�1
n
(a� ct)D

�
c+ n�1

n
(a� ct)

�
+ V

�
c+ n�1

n
(a� ct)

��
.

If the access charge is set collectively, i.e. if, for instance n = 2, the marginal
pro�t is

�0 (a) = 
n�1+n

(n�1)2
n2

(a� ct)D0 �c+ n�1
n
(a� ct)

�
which implies that ct is the collectively optimal choice of a in [�co; A]. For
all a 2 [A; a], the symmetric equilibrium pro�t is

� (a) = 1
n
(p� (; a; n)� c)D (p� (; a; n)) ,

which we know reaches its maximum at minf�m; ag. The pro�t function is
non-monotonic in a with two local maximands ct and minf�m; ag. Which of
these is the global maximand depends on . Note that � (�m) = 1

n
(pm � c)D (pm)

is independent of  and � (ct) =


n�1+nV (c) vanishes in the limit as  ! 0.
Hence, � (�m) > � (ct) for  su¢ ciently low. Comparing � (ct) and � (a) is
more di¢ cult since also lim!0 � (a) = 0. Note, however, that

�(a)
�(ct)

=
1
n
(p��c)D(p�)


n�1+nV (c)

= n�1+n
n

D(p�)
V (c)

(p��c)


= n�1+n
n

D(p�(;a;n))
V (c)

D(p�)+n�1
n
(a�ct)"

"+n�1
n

D2(p�)
V (p�)

where the second equality follows from substituting in (17).

lim
!0

� (a)

� (ct)
= 1 +

(n� 1) (a� ct) "
nD (c)

> 1

implies that even � (a) > � (ct) for  su¢ ciently low. It follows that the access
charge that maximises industry pro�t is a� = minf�m; ag, the subscription
fee is 0 and the call price p� (; a�; n) in symmetric equilibrium, provided that
a > ct and networks are su¢ ciently close substitutes.
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