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Abstract

Competition among multi-store chains is common in retail industries. This paper proposes a
method for estimating a model of strategic store-network choices by two chains. In contrast to
previous studies, I allow chains to not only choose which markets to enter but also how many
stores to open in each of those markets. I use lattice-theoretical results to deal with the huge
number of possible network choices. I show that a chain�s net trade-o¤between costs and bene�ts
from clustering their stores in a market can be either positive or negative while still ensuring
the existence of an equilibrium. By doing so, the model provides a way to freely estimate this
within-market e¤ect from the data. Incorporating revenue data allows us to interpret parameters
in monetary units and to decompose the within-market e¤ect into cost savings from clustering
stores (economies of density) and lost revenues from competition with one�s own stores (own-
chain business-stealing e¤ect). I apply the technique to a new data set from the convenience-store
industry in Okinawa, Japan. Parameter estimates con�rm that own chain business-stealing is
an important consideration for a chain. I then use the estimated structural model to perform
two counterfactual analyses. First, I consider a hypothetical merger of two chains and �nd that
the merger would decrease the number of stores and total sales, and raise the acquirer�s pro�ts,
thereby reallocating surplus from consumers to the acquirer. Second, I examine how eliminating
the zoning regulation introduced in Japan in 1968, which has been at the forefront of urban
policy debates, a¤ects store-network choices.
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1 Introduction

Retail markets are a large fraction of total output in developed countries. Multi-store retail chains

engage in �erce competition with rival chains by designing their store networks to attract local

customers. Having store-location networks enables chains to internalize the bene�ts and losses from

having their own stores nearby. For example, a multi-store chain, such as Wal-Mart or 7-Eleven,

may want to cluster its stores in a given market to minimize its distribution costs. Unfortunately,

coordinated store-location choice has received less attention, mostly due to practical consideration:

modeling a game of entry decisions over many markets poses a formidable methodological challenge

for the computation of equilibrium store-network decisions. For instance, consider a game with two

players, twenty markets, and �ve available choices for each player. The number of possible strategy

pro�les is 520 = 9:5 � 1013; and the number of feasible outcomes of the game is 520 � 520 = 9:1 � 1027.

In this paper, I propose an empirical model of spatial competition between two chains choosing

their store networks. This paper is the �rst after Jia (2008) to compute a Nash equilibrium of a

chain-entry game in which chains compete by choosing their store networks. I extend the novel

results of Jia (2008) to a general class of chain-entry models that allows chains to not only choose

which markets to enter but also how many stores to open in each of those markets. Unlike standard

models of entry, I incorporate not only data on the number of stores but also post-entry outcome

data, such as revenue. My approach has three advantages. First, my method is free from limitations

arising from binary choice of entering or not entering a market. One limitation of binary choice is

endogeneity bias. Endogeneity bias can arise if store locations are treated as exogenous since store

openings are, in fact, endogenous variables of the error terms in each market. Another limitation

of binary choice models is the low coverage of data. Dropping large markets from observations

will overlook most of the observations from urban markets, forcing us to focus only local markets.

The second advantage is that my method introduces a crucial consideration for a chain: the trade-

o¤ multiple-store retailers face between the positive bene�ts of density and lost revenues from

competition with its own stores. Traditional entry models with binary choice miss this consideration.

For instance, chains can save distribution costs by having shorter routes, but the chains may also

su¤er a revenue reduction from the presence of their other stores. By using lattice-theoretical

results, I show my chain-entry model accommodates either a positive or negative within-market

e¤ect, allowing us to freely estimate the within-market parameter from the data. More broadly,

my model allows for the richness of real world data sets and should be useful for a broad range

of industries in which measuring the relative importance of the economies of density and business
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stealing is important. Finally, integrating the model with revenue data allows us to interpret

the bene�ts and costs due to merger or policy changes in monetary units, which are, in general,

di¢ cult to obtain in standard entry models, which use information on �rm entry and demographic

characteristics. With revenue data, I also show that we can decompose the within-market e¤ect into

cost savings from economies of density, and lost revenues from competition with one�s own stores.

I apply the method proposed in this paper to a new data set I collected from the convenience-

store industry in Okinawa, Japan. I specify a static game of complete information with two players

simultaneously and strategically choosing their store networks over all markets in Okinawa. The

technique allows us to conduct "what if" experiments: solving for a pure-strategy Nash equilibrium

in the new competitive environment allows us to learn what the equilibrium e¤ects would be in

store networks when there are changes in the competitive environment, such as a merger of the two

chains or change in a regulation. The convenience-store industry on the island of Okinawa suits the

method due to geographic reason: Okinawa has two convenience-store chains, each of which having

a distribution center and a store network to serve 1.2 million people in the island.

Turning to the empirical results, I present three �ndings. First, the estimates con�rm that the

consideration of the costs and bene�ts of clustering within a market is, indeed, important for retail

chains. I �nd that lost revenues from competition with one�s own stores (own-chain business-stealing

e¤ect) is large: having a store of the same chain in the same market reduces the total sales per store

by 20 percent, which is approximately the same magnitude as the business-stealing e¤ect from a

rival chain store. Second, in a hypothetical merger, I �nd the acquirer would obtain higher pro�ts

than the sum of pre-merger pro�ts of both chains, mainly due to increased cost savings and better

store locations by redesigning the locations and the number of stores. For instance, more stores

would locate in the city-center in Okinawa after the merger because the acquirer can therefore enjoy

higher population density and higher positive spillovers from own stores in adjacent markets. In

contrast, in suburban markets, the merged chain would decrease the number of stores, reducing

its total sales in those markets. In total, we would expect increased total pro�ts and decreased

total sales, resulting in reallocation of surplus from consumers to the merged chain. Finally, due

to unattractive demographics in originally zoned markets, I �nd that eliminating the regulation

would increase the total number of stores only by 4 to 5 percent, of which magnitudes are similar

across chains. The markets the deregulation would a¤ect are geographically di¤erent: chains tend

to increase their stores in markets adjacent to their existing store networks. The forgone pro�ts due

to the regulation are modest: US$1:2 million, which is 2 percent of total pro�ts of both chains in

Okinawa.
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The paper proceeds as follows. The remainder of this section discusses the relationship to the

existing literature. Section 2 contains information about the dataset I have constructed. Section

3 introduces the entry model and provides analytical results. I particularly emphasize my compu-

tational algorithm for solving the game. Section 4 discusses the empirical implementation of the

project. Section 5 reports the parameter estimation results. Section 6 performs two counterfactuals:

a hypothetical merger and a change in zoning regulation. Section 7 explores the robustness of the

results by varying the de�nition of markets and the equilibrium selection rule. Finally, section 8

provides concluding remarks. Appendix contains a description of the convenience-store industry in

Japan, details of the zoning regulation, proofs of proposition 1 and 2, Monte Carlo experiments,

and estimation details.

1.1 Relationship to Literature

The paper complements the growing spatial competition literature by highlighting the importance

of choosing retail-store networks strategically. The geographic aspect of retail competition has

been studied for industries such as fast food (Thomadsen 2005), movie theaters (Davis 2006), and

retail gasoline (Manuszak 2000 and Houde 2007), to name a few. Examples of retail competition

in the context of retail location choice include video rental (Seim 2006) and eyeglasses (Watson

2005). For instance, Seim (2006) proposes an empirical model of location choice and shows that

strategic interactions and geographic di¤erentiation are important when retail outlets are choosing

one market from the available markets.1 However, Seim (2006) has to abstract from the coordinated

entry decisions made by national video-rental chains operating multiple outlets.2 This paper is

related to recent progress in quantifying the importance of network e¤ects or positive spillovers

between the stores in the same retail-chain industries (Holmes 2008; Jia 2008; Ellickson, Houghton,

and Timmins 2008).

This paper builds on a vast literature of game-theoretic models of entry, initiated by Bresnahan

and Reiss (1990, 1991). In the last two decades, researchers have been using game theory to

investigate the determinants of oligopolistic market structure, which previously had been treated

as given. In the game-theoretical framework, agents act strategically and their observed choices are

a Nash equilibrium of a game that has been played by these agents. The econometrician then uses

1Seim (2006) relaxes the assumption of cross-sectionally independent markets by allowing �rms to freely locate
within geographically adjacent markets and making entry decisions of a �rm dependent on other �rms�decisions in
surrounding markets.

2Progress has been made in this direction: Thomadsen (2007) and Zhu and Singh (2007) explicitly model location
choices that can di¤er across chain brands
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the revealed preferences argument: he backs out what was the game that generated the outcomes

by observing �rms�entry decisions. Since then, static entry games have seen empirical applications

in a wide range of industries. Researchers have also devoted much e¤ort to adding complexities to

Bresnahan and Reiss (1990,1991), such as introducing heterogeneity in �xed costs across players

(Berry 1992), endogenizing product-di¤erentiation choice (Mazzeo 2002), or endogenizing identities

of entrants (Ciliberto and Tamer 2007), all under the speci�cation of a game being played in a

single market with exogenous sunk costs of entry: an entry decision in a market is independent of

entry decisions in other markets. As a consequence, the empirical study has been limited to isolated

markets in which one can safely assume a �rm�s behavior to be independent across markets. In

contrast, this paper models a chain as a �rm operating many stores and, in a Nash equilibrium,

designing an optimal store network given a competitor chain�s store network.

Methodologically, the chain-entry model in this paper is closely related to the one in Jia (2008),

who provides a novel approach for dealing with the computational burden of solving for a Nash

equilibrium in store networks. Only her work and this paper (1) model chains as playing a game

and (2) solve for a Nash equilibrium in their store-network choice. One feature of Jia�s model

is that a chain has a binary choice of entering or not entering a given market, and therefore the

model implicitly assumes spillovers between stores of the same chain may only be nonnegative.

Unfortunately, assuming only nonnegative spillover is unrealistic in the Japanese convenience-store

context due to the dense con�gurations of stores and the likely trade-o¤ between the positive

bene�ts of density and the negative impact of business-stealing.3 Unlike Jia, this paper develops

the typical binary-choice decision to the more realistic case of multiple store openings in a given

market. Although we have to maintain the assumption of nonnegative spillover across markets for

the iteration algorithms to work, I �nd that we can allow for net business stealing or net positive-cost

savings within a market. Within-market e¤ect may be harder to assume to be positive or negative

ex-ante than the spillovers across markets.

More broadly, the framework this paper proposes can be generalized to the context of product-

line design if we interpret the location as a distance between product characteristics instead of the

physical location of stores. The model in this paper can be viewed as a static game in which two

�rms compete against each other by introducing several di¤erentiated products (or brands) in the

product space. In the context of this literature, a major feature of my model is that a �rm maximizes

its pro�ts by choosing the optimal product line, considering not just competition across �rms but

3Relaxing the sign restriction in a given market is related to Vitorino (2008), who allows for spillovers between
rival chain stores in a shopping-mall industry.
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also competition within the �rm�s product line (intra-�rm competition or cannibalization), which

Moorthy (1984) explores in the setting of a monopolist.

2 Data and Descriptive Analysis

2.1 Data

The data set I use in the study is from Okinawa in 2001, which I have compiled from a variety of

sources.

I rely on convenience-store-location data taken from the Convenience Store Almanac in 2002

for chain stores. The almanac contains the store addresses, zip codes, phone numbers, and chain

a¢ liations of outlets. I convert each store�s address into a latitude and longitude by using a ge-

ographic reference information system from the Ministry of Land, Infrastructure and Transport.

Two-hundred-and-seventy-�ve convenience stores, which are about 80 percent of the total number

of 24-hour convenience stores in Okinawa, match at the level of lot addresses. For the remaining 20

percent of stores, I manually acquire individual stores�longitude and latitude information by using

mapping software, various online mapping services such as Google Maps or Yahoo!, and corpora-

tions�online store locators. I assign each store to the corresponding 1km square grid in which it

falls. Figure 1 shows the location of stores for Family Mart and LAWSON in Okinawa Main Island.

I use revenue data as a source of identi�cation for the competitive e¤ects and the across-market

e¤ects. The convenience-store-revenue data set is available from the 2002 Census of Commerce from

the Ministry of Economy, Trade and Industry. The information on annual revenues is available at

the aggregated level of a 1 km2 uniform grid. Sales are broken into two categories: 24-hour operation

stores and non-24-hour stores. Because all chain-stores are 24-hour operation, I treat non-24-hour

stores as non-chain stores. The revenue data has an exogenous sample selection rule for each

category of stores that, in order to protect privacy, total revenues with less than three stores in a

given market will not be disclosed. The data report the total number of stores and total sales at

the 1km square level and do not disclose the number of store or sales by chain brands.4

Population is an important predictor of store-location choice. The population data come in two

ways: �rst, the Census of Population at the 1km square grid level from 2000 is available from the

Census Bureau that contains the number of people living in the 1km2 grids. I call this variable

"nighttime population." The second source is the 2001 Establishment and Enterprise Census from

4For this reason, I compute the number of stores for each chain in a market by matching the store-location data
for each chain from the Convenience Store Almanac in 2002 with 1km square grids.
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the Bureau of Census. It contains information on the number of business establishments and the

number of workers. The number of workers will capture the daytime demand for convenience stores.

NOTE. ­  In the left panel, the stars show Family Mart stores and the circles show LAWSON stores.

FIGURE 1
CONVENIENCE STORES IN OKINAWA

The sample contains 834 markets. In this study, I de�ne a market as a uniform grid of 1km

square following the 2000 Census of Population and the 2001 Establishment and Enterprise Census

data, and I use the grids as a unit of analysis. Delineating the geographic market for retail markets

is a problem when a natural boundary on the trade area is not available. Bresnahan and Reiss

(1991) focus on industries in which markets are small and isolated to avoid the issue of contiguous

markets. However, in most industries, �nding perfectly isolated markets both in terms of demand

and costs, as is the case in this industry, is di¢ cult. I choose a 1 kilometer square as the relevant

geographic market for the convenience-store industry because people in Okinawa generally do not

travel far to access convenience stores: the average travel time is around 10 minutes by walking. 1

kilometer would be approximately the diameter of the trade area for these people. Convenience-store

demand is more localized in Japan than are other types of service industries, such as supermarkets

or gas stations: 70 percent of customers visit on foot and 30 percent by cars. To avoid including

inhabitable or undevelopable areas such as mountain regions as potential markets for convenience

stores, I exclude grids that have no population either during the day or night. This leaves me with

a sample of 834 markets that cover 834 km2 or 322 mile2, which is 69 percent of the total land area

of Okinawa. I de�ne adjacent markets (or neighboring markets) of a market as those 1km square
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grids that share borders or grid points with the market. So a market has up to eight adjacent

markets. Of course, the market de�nition depends on strong assumptions on how grids and borders

are chosen. In the robustness check section, I conduct a sensitivity analysis and examine whether

the parameter estimates are robust to reasonable alternative choices of grids. Figure 2 presents the

actual 1km square grids and the con�gurations of stores.

NOTE. ­   The stars show Family Mart stores and the circles show LAWSON stores.

STORE CONFIGURATIONS AND 1 KILOMETER SQUARE GRIDS

FIGURE 2

As Figure 2 shows, we are more likely to see many markets with more than one store for each

chain. Table 3 shows that, for Family Mart, only 81 stores out of 142 total stores are single stores

within a given market. For LAWSON, 67 stores out of 102 stores in total are single stores within

a given market. This observation provides a practical motivation for why we would like to depart

from a model that accommodates only one store at maximum for each chain in a given market.

Descriptive Analysis. Here, I provide some descriptive statistics and simple regression re-

sults. Table 1 provides a brief summary of all the market level variables. A census 1km grid

contains between 0 and 18; 977 people in residence, with 2; 588 people on average. For the number

of workers, a grid has between 0 and 1; 612 workers, with 580 people on average. Across zoned

and unzoned areas, little di¤erence exists in two of the population variables. Zoned areas, in which

one needs to obtain a development permission from the government in order to open a convenience

store, represent 15 percent of the total nighttime population and 13 percent of the total daytime

population for Okinawa.
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The number of stores for the two chains, Family Mart and LAWSON, ranges from 0 to 7 and

from 0 to 6, respectively. The aggregate numbers of stores are at 142 and 102 in Okinawa. There

are 225 non-chain stores.5 The combined number of stores of Family Mart and LAWSON comprises

54 percent of the total number of convenience stores in Okinawa. Table 3 displays a matrix of

observed market con�gurations of stores for the two chains. The bottom rows of Table 1 show

that the average sales per store are 1:43 million US dollars for Family Mart and $1:45 million for

LAWSON. No noticeable di¤erence exists in sales per store among these chains. The average sales

per store for non-chain stores are $1:1 million, about 25 percent less than sales per store of the two

chains. The combined sales of the two chains, Family Mart and LAWSON, are 60 percent of the

total sales of Okinawa�s combined convenience-store industry.

I now present a reduced-form analysis, which examines how demographics a¤ect store-opening

decisions and measures whether the zoning regulation has a large in�uence on market structure

in the retail industry. Table 2 gives the results from the ordinary least-square regressions of the

total number of chain stores in a market, both Family Mart and LAWSON brands, on the market�s

nighttime population and a zoning index that is 1 if the market is zoned and 0 otherwise. In column

2 and 4, I also control for daytime population both in level and in logs. Although di¤erences

in statistical signi�cance exist, the results from all four speci�cations show that the number of

convenience-store outlets is negatively associated with the zoning index variable. Turning to the

role of local population on entry, population either during the day or night in a market is positively

associated with the number of outlets in the market. For example, in log speci�cations, doubling

the nighttime population increases the prediction of the number of stores by 0:3. As columns 2

and 4 suggest, the �nding on the role of the zoning regulation is robust to the introduction of

daytime population, although the nighttime population coe¢ cient becomes insigni�cant in the log

speci�cation of population in column 4.

3 Game of Choosing Store Networks

This study uses a static model of a simultaneous-move game with complete information. Compared

to private information, complete information better describes the outcome of decisions such as

entry for two reasons. First, in games of private information, players may possibly have ex-post

5 In 2001 in Okininawa, there were 88 stores of another chain, Hot Spar. In this study, however, I treat Hot Spar
stores as non-chain stores, together with other non-chain stores that are independently operated. I do so because Hot
Spar originally started as a voluntary chain in Okinawa and assuming coordinated store-location decision by Hot Spar
headquarters is di¢ cult.
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regret about their store-network choice in the one-shot game. Treating entry data as the equilibrium

outcomes of the game of private information is therefore because in reality players are able to change

their actions after information is revealed. Second, we must consider what the econometrician

observes versus what the players observe. Games of complete information allow the chains to have

more information than the econometrician. Games of private information assume the econometrician

has the same uncertainty as each player, which is a strong assumption given that the only market

characteristic I observe in the data is population and zoning regulation status.

In the following subsections, I describe how to model the choice of store networks by chains.

The model is based on Jia (2008). The main di¤erence is that I generalize the chain-entry model

by Jia (2008) from a binary choice to K choices in a market.

3.1 Firm Behavior: Non-revenue Model

In this study, I develop an equilibrium model of entry in which two players strategically compete

against each other by choosing a store network. We frequently observe intense rivalry between

chain brands with similar characteristics in many retail industries, such as BestBuy vs. Circuit

City and Wal-Mart vs. Kmart. In many cases, the market structure is concentrated, and retail

stores compete against their rivals in many dimensions, including prices, advertising, and store

locations. In the convenience-store industry in Japan, the chains strive to o¤er similar shopping

experiences: the variety of merchandise and other services are as uniform as possible across outlets.

A notable feature of the industry is that retailers adopt nationwide pricing across outlets, which

allows me to focus on their main avenue of horizontal product di¤erentiation: spatial di¤erentiation.

The convenience-store industry in Okinawa has two national players, Family Mart and LAWSON,

who, in the model, design optimal store networks, each taking into account its competitor�s store-

network con�gurations.6 Therefore, I model the market structure as being determined by the

strategic actions of two players choosing a store-network that maximizes each chain�s aggregated

pro�ts in equilibrium.7

6The industry has a developed distribution system and well-planned store networks. As Lee (2004) argues, building
an e¢ cient logistic network is the key competitive feature of the convenience-store industry. For example, delivery
trucks need to visit the same outlet every eight hours to avoid lack of stock of fresh foods and lunch boxes. So chains
need to have an e¢ cient network system that will minimize the costs of delivery.

7Ample evidence exists to support the argument that convenience-store chains devote many resources to conduct-
ing extensive research on determining the best location before installing new outlets. Conversations with industry
participants revealed that a typical chain carefully chooses an outlet location aligned with its own existing store
network and the locations of competitors� stores. This �nding contrasts with an individual store owner choosing a
best location, regardless of chain brands, and a monopoly chain optimally locating outlets over a large choice-set,
regardless of rivals�locations. Also, annual company brochures intended for investors spend several pages explaining
that chains invest in sophisticated distribution systems to preserve the freshness of foods (e.g., lunchboxes, rice balls,
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Formally, I consider a game in which two players, denoted by player i and player j, choose

their store networks. The game is a one-shot simultaneous move with strategic interactions by two

players. I denote a strategy vector for player i and player j by Ni and Nj . A strategy vector for

chain i is anM �1 vector: Ni = (Ni;1; :::; Ni;M ), whereM denotes the total number of markets. A set

of mutually exclusive discrete markets exists within a prefecture, and the set of markets is indexed

by m = 1; :::;M: So Ni;m denotes the number of stores chain i opens in market m. In the empirical

implementation, each chain can open up to four stores in any market m: Ni;m 2 f0; 1; ::; 4g. The

choice (K = 4) covers 832 out of 834 markets in Okinawa. I de�ne chain i�s multi-dimensional

strategy space by Ni, which is a subset of a �nite-dimensional Euclidean space RM . The number

of possible strategy pro�les for each player is 5M when K = 4. In the case of two players, (5M )2

possibilities exist for the equilibrium of the game. Each player maximizes its aggregate pro�ts by

choosing its store-network, Ni = (Ni;1; ::; Ni;M ). I denote the payo¤ function for chain i and chain

j by �i(Ni; Nj) : N! R and �j(Nj ; Ni) : N! R , respectively, for given strategy vectors of chain

i and chain j, Ni 2 Ni and Nj 2 Nj .

Throughout the paper, I focus on a pure-strategy Nash equilibrium, which is de�ned as a

strategy vector for each chain that maximizes its pro�t, given a competitor chain�s strategy. I do

not look at mixed-strategy equilibria in this study. I assume the pro�t shocks to �rm i are public

information. In other words, each chain has perfect information on its rival�s payo¤ from entering

multiple markets.

Player i maximizes its total pro�t �i by choosing the strategy vector Ni 2 Ni given the com-

petitor�s action Nj 2 Nj

�i(Ni; Nj) = �
M
m=1�i;m(Ni; Nj;m);

where �i;m is chain i�s pro�ts in market m. I parameterize the payo¤ function in market m for

chain i 2 fFM;LSg as the number of stores times the pro�ts per store:

�i;m(Ni; Nj;m) = Ni;m[Xm� + �comp lnNj;m + �across
P
l 6=m

Ni;l
Zm;l

+ �within ln(maxfNi;m; 1g)

+
p
1� �2"m + ��i;m + 
1(m is zoned)]

= Ni;m � [Yi;m + �across
P
l 6=m

Ni;l
Zm;l

+ (�comp;own + �within) lnNi;m];

where Yi;m � Xm� + �comp;rival ln(Nj;m + 1) +
p
1� �2"m + ��i;m + 
1(m is zoned).

Xm are observable demographic characteristics of the market m that a¤ect the demand for conve-

and sandwiches).
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nience stores. Nj;m is the number of competitor stores of chain j 2 fFM;LSg in the market. Note

that in this model, �rm pro�tability at the market level does not only depend on chain i�s decision

in market m; rather, the pro�tability is a function of chain i�s entire network Ni and the network

of its competitor Nj . I assume the revenue declines linearly in the number of competitor stores.

Ni;l represents the number of stores in market l; which is adjacent to market m: Zm;l measures the

distance from market m to the adjacent market l: �i;m is a chain-market-speci�c pro�t shock, in-

dependently and identically distributed (i.i.d.) across chains and markets.8 "m is a market-speci�c

pro�t shock that a¤ects all the stores of both chains in market m and i.i.d. across markets. I assume

both �i;m and "m are drawn from a standard normal distribution and enter linearly in the pro�t

function. I impose the traditional scale normalization that the variance of a linear combination

of unobservables, "m and �i;m; is one. � is the correlation parameter: the correlation of combined

unobservables across chains in a given market will be �2. I assume both shocks are observed by two

chains but are unobserved by the econometrician and are independent of the exogenous variables.

Turning to the notation of parameters, the term �across measures the net e¤ect of cost savings

from having outlets of the same chain in adjacent markets minus the business stealing from those

stores. �comp;rival measures the impact of the number of competitor stores in the same market on

store-level pro�ts. The parameter �within captures the net e¤ect of two forces that stem from having

a store of the same chain in the same market: if the business-stealing e¤ect from the same chain

store in the same market (�comp;own) exceeds the bene�ts from clustering (�saving), the parameter

is negative: namely, �within = �comp;own + �saving.

The �xed costs of zoning, parameterized by 
, capture the e¤ect that the store may have to

incur additional costs for opening a store in a zoned area. I treat the pro�t function of Family

Mart and LAWSON symmetrically except for the �xed e¤ect for LAWSON: the chains have the

same values for the parameters in the pro�t function because the model speci�cation needs to be

parsimonious due to the number of observations.

3.2 Firm Behavior: Revenue Model

Unlike Jia (2008), I use revenue data, which allows me to decompose pro�ts into revenues and

costs. The estimation strategy is similar to the strategy in Reiss and Spiller (1989) and Berry and

Waldfogel (1999), who integrate the data on �rms�entry decisions with post-entry information such

as revenues. Without revenue data, one can only estimate a so-called threshold-crossing condition

that is invariant to a positive monotonic transformations. In contrast, by using sales at the 1km grid

8 I assume stores of same chains in a given grid receive a common shock.
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level as a source of identi�cation of revenue related parameters, I am able to evaluate the estimated

model parameters in monetary units.9 Furthermore, with revenue data, we can decompose the net

within-market e¤ect �within+ �comp_own and separately identify the gross bene�ts by clustering

�saving and the gross business stealing by own chain store in the same market �comp;own.

I assume �rm i�s pro�t function in market m is a linear combination of revenue and cost:

�i;m(Ni; Nj;m) = ri;m(Ni;m; Nj;m)� ci;m(Ni); (1)

where i; j 2 fFamily Mart; LAWSONg. In the following functional speci�cations, I place a strong

assumption on revenue and costs: (1) the demographics Xm a¤ect revenue but not costs, (2) the

within-market e¤ect enters in revenues but not costs, (3) the across-market e¤ect enters in costs

but not revenue, and (4) zoning a¤ects costs but not revenue.

I use a parametric reduced form for the �rm�s revenue function at market m:

ri;m(Ni;m; Nj;m) = Ni;m[�revenue +Xm� + �comp;rival ln(Nj;m + 1) + �comp;own ln(maxfNi;m; 1g)

+�comp;local ln(Nlocal;m + 1) + �(
p
1� �2"rm + ��ri;m)]: (2)

Here, "rm is a shock to revenues at the store level that I assume is common to any stores in market

m; both local and chain stores and i.i.d. across markets. �ri;m is a chain-market-speci�c-shock to

revenues i.i.d. across chains and markets. I assume both shocks are drawn from a standard normal

distribution and are observed by two chains but unobserved by the econometrician. I also assume

that the shocks are independent of the exogenous variables. � measures the correlation of combined

unobservables across chains in a given market. � is a parameter that captures the magnitude of the

sum of the shocks.

Because I do not observe �xed costs, I parameterize the �xed costs using observed and unob-

served variables. I parameterize the �rm�s cost function at market m as

ci;m(Ni) = Ni;m[�cost + �across(
P
l 6=m

Ni;l
Zm;l

) + �saving ln(maxfNi;m; 1g)

+�dist �Disti;m + 
 � 1(m is zoned) +
p
1� �2"cm + ��ci;m];

where �cost are �xed costs of entry. Disti;m measures the (log) distance to chain i�s distribution

center from market m. This distance variable does not enter the other chain�s pro�t function and

9Monetary evaluations of potential bene�ts and costs due to merger or policy changes will be useful for regulators
who assess costs and bene�ts of potential merger or land-use regulations.
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can therefore serve as an exclusion restriction for identi�cation.10 
 measures the additional �xed

costs due to zoning, and "cm is a shock to costs at the store level that I assume is i.i.d. across

markets and common to any stores in market m. �ri;m is a chain-market-speci�c shock to costs

i.i.d. across chains and markets. Again, I assume both shocks are drawn from a standard normal

distribution and are observed by the two chains but unobserved by the econometrician. I assume

that the shocks are independent of the exogenous variables. Notice that �saving measures the gross

cost savings from clustering. Combining with the revenue equation, we have the interpretation

�within = �comp;own + �saving: In other words, the revenue model permits me to decompose the

within-market e¤ect into a business-stealing e¤ect and a costs-saving e¤ect and to estimate these

parameters separately.

Because my revenue data comes as the aggregate of the two chains and local stores at the 1km2

level, I specify a revenue function for local convenience stores. I use a parametric reduced form for

the aggregated revenue equation of local stores in market m:

rlocal;m =
Nlocal;mP
k=1

[Xm� + �comp ln(Ni;m +Nj;m + 1)

+�local + �comp;local ln(maxfNlocal;m; 1g) + �(
p
1� �2"rm + ��rlocal;k;m)]

= Nlocal;m[Xm� + �comp ln(Ni;m +Nj;m + 1) + �local

+�comp;local ln(maxfNlocal;m; 1g)] +
Nlocal;mP
k=1

�(
p
1� �2"rm + ��rlocal;k;m):

Here, Nlocal;m is the number of local stores in market m. �local captures the di¤erence in revenues

between local stores and chain stores. 1(store k is 24hrs) is an index variable that takes 1 if the

local store is open 24 hours a day and 0 if not. The e¤ect from competing stores is proportional to

the log of the number of stores, which is a common treatment in the literature. The speci�cation

has the property that the business stealing from other stores declines in the number of competing

stores. �comp;local captures the revenue reduction by having local stores as competitors. I am adding

1 to Ni;m +Nj;m and taking maxfNlocal;m; 1g to avoid log 0.11

10To understand the intuition behind identi�cation of parameters by using an exclusion restriction, consider a set of
markets that are equally distant from chain i�s distribution center. Suppose the locations of distribution centers are
di¤erent across chains. Therefore, the set of markets has a variation in the distance to chain j�s distribution center.
The variable that measures the distance to chain j�s distribution center shifts the pro�t function of chain j and thus
entry decisions of chain j. The change in chain j�s entry decision is independent of the correlated error terms across
chain i and j. The shift in chain j�s entry behavior would create an exogenous variation in chain i�s pro�t function
because the e¤ect of the variation in chain j�s distance to the distribution center is excluded from chain i�s pro�t
function (exclusion restriction). We should then be able to identify the competitive e¤ect of chain j on chain i by
observing how much change in chain j�s entry behavior, due to a variation in the distance variable of chain j, causes
change in chain i�s entry behavior.
11 In contrast, I am not adding 1 to Nlocal;m because the number of competing local stores is Nlocal;m � 1 for the
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3.3 Algorithm to Compute a Nash Equilibrium

The underlying di¢ culties in solving for an equilibrium of a game of store-network choice are two-

fold. First, in some models, a pure strategy Nash equilibrium might not exist always. Even if we

ensured the existence of an equilibrium, �nding all equilibria would be computationally di¢ cult.

Second, computation of the best response of a chain, which is an M � 1 vector that maximizes the

chain�s aggregate pro�t, involves a high-dimensional choice problem because the number of possible

network choices becomes enormous quickly as the number of markets increases.

To deal with the �rst issue, I formulate the game as supermodular, thereby ensuring the existence

of an equilibrium and providing an algorithm to �nd a Nash equilibrium. To deal with the second

issue, I derive conditions that are su¢ cient to use Tarski�s �xed-point theorem to obtain a lower

bound and an upper bound for the pro�t maximizing vector. Jia (2008) provides analytical results

for the two issues stated above for her model of binary choice in a market, which is entering or not

entering. I provide below the generalization of her arguments to the case of K choices in which

chains can open up to K stores in a market.12

3.3.1 Supermodularity of Chain-Entry Game

Topkis (1979, 1998) shows that supermodular games have several convenient features, such as (1)

pure strategy Nash Equilibria exist, and (2) a so-called Round-Robin algorithm is available to

compute a Nash equilibrium. In this subsection, I derive the conditions that the chain-entry game

I develop in the previous subsections is supermodular.

First, I introduce some terminology on lattice theory. A game is speci�ed by a strategy space

for each player, Ni and Nj , and a payo¤ function for each player, �i(Ni; Nj) and �j(Ni; Nj). Let

Ni and N 0
i be two outcomes in chain i�s strategy space Ni. To compare the M � 1 vectors, Ni and

N 0
i , I denote a binary relation on a nonempty set Ni by � , such that Ni � N 0

i if Ni;m � N 0
i;m

8m = 1; :::;M .13 Ni is a sublattice if the meet and join of any two strategy vectors in Ni is also in

Ni.14 A strategy space Ni has a greatest element �Ni if Ni � �N for all Ni 2 Ni. Similarly, Ni has

a least element N̂i if N̂ � Ni for all Ni 2 Ni.

local store.
12Topkis initiated the theoretical literature of supermodular games, and Vives (1990) and Milgrom and Roberts

(1990) applied the theory to economic problems. For examples of supermodular games and their application to
economic problems, and for a more complete discussion of supermodularity, readers should consult the cited works in
this section and the references cited therein.
13So if a vector Ni dominates N 0

i in one component but is dominated in another component, the vectors cannot be
compared by the binary relation "�".
14 I de�ne the "meet" Ni^N 0

i and the "join" Ni_N 0
i of Ni and N 0

i as Ni^N � (min(Ni;1; N
0
i;1); :::;min(Ni;M ; N

0
i;M ))

and Ni _N 0
i � (max(Ni;1; N

0
i;1); :::;max(Ni;M ; N

0
i;M )).
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Here, I introduce the de�nition of supermodularity of a game.

De�nition 1 (Supermodularity of a Game) A supermodular game is such that, for each i 2

fFamily Mart; LAWSONg, (1) A strategy space Ni is a compact sublattice, (2) �i(Ni; Nj) has

an increasing di¤erences in (Ni; Nj); and (3) �i(Ni; Nj) is supermodular in Ni.15

Increasing di¤erences of a payo¤ function in (Ni; Nj) (condition 2) imply that chain i�s marginal

pro�ts of increasing his strategy Ni are increasing in his rival�s strategies Nj .16 Supermodularity of

pro�t function in chain i�s strategy (condition 3) implies the following. First, take chain j�s strategy

as given and consider chain i�s aggregate pro�ts from choosing two strategies, N 0
i and N

00
i 2 Ni,

and chain i�s aggregate pro�ts from choosing the meet N 0
i ^ N 00

i and the join N
0
i _ N 00

i , which

are the two component-wise extremal vectors of N 0
i and N

00
i . Supermodularity of pro�t function

in chain i�means that having the sum of pro�ts by choosing meet and join of N 0
i and N

00
i is more

pro�table than having the sum of pro�ts by choosing N 0
i and N

00
i ; that is, �i(N

0
i ; Nj)+�i(N

00
i ; Nj) �

�i(N
0
i ^N 00

i ; Nj) + �i(N
0
i _N 00

i ; Nj) for any N
0
i ; N

00
i 2 Ni:

Given the payo¤ speci�cation in the previous subsections, the following proposition states the

restriction on parameters required to formulate the problem as a supermodular game when each

chain can open up to K(> 1) stores in a market.

Proposition 2 (Supermodularity of the Chain-Entry Game) The chain-entry game the pre-

vious subsections present is supermodular if �across � 0:

Proof. See Appendix B.17 The proposition applies to both a non-revenue model and a model

with revenue. It asserts that the spillover e¤ect across markets �across must be nonnegative. Al-

though this assumption is strong, I �nd that imposing restrictions on other parameters, such as

�within or �savings, is unnecessary for the supermodularity of the game. This �nding implies that

we can freely estimate the parameters �within or �savings from the data, unlike �across.18

15A sublattice Ni � RM , where RM is a �nite-dimensional Euclidean space, is said to be a compact sublattice in
RM if Ni is a compact set.
16Formally, a payo¤ function of player i, �i(Ni; Nj), has an increasing di¤erences in (Ni; Nj) if, for all

(Ni; ~Ni) 2Ni�Ni and (Nj ; ~Nj) 2Nj�Nj such that Ni � ~Ni and Nj � ~Nj ;

�i(Ni; Nj)��i( ~Ni; Nj) � �i(Ni; ~Nj)��i( ~Ni; ~Nj):

17Jia (2008) gives a proof for the binary choice case.
18One way to motivate the parameter restriction in my analysis is the following: the intuition behind the theoretical

result is that the nonnegativity of �across will be more reasonably defended in a situation in which cost savings from
clustering dominates the business-stealing e¤ect across markets. Normally, we would expect two e¤ects in opposite
directions from the stores in a given market on the pro�ts of the store of the same chain in the same market. On the

16



Topkis (1979) shows that the set of equilibrium points for a supermodular game is a nonempty

complete lattice and a greatest and a least equilibrium point exist.

Theorem 3 (Existence of Equilibria in Supermodular Game (Topkis 1979)) In a super-

modular game the equilibrium set E is nonempty and has a greatest, supfNi 2 Ni : BRi(Ni) � Nig

, and a least, inf E = inffNi 2 Ni : BRi(Ni) � Nig, element, where BRi is the best-response

function of player i.

Because the chain-entry game I consider is supermodular when �across � 0, the game has Nash

equilibria.

3.3.2 Round-Robin Optimization to Compute A Nash Equilibrium

In this subsection, I specify an iteration algorithm to compute a pure-strategy Nash Equilibrium

for the supermodular game. The second bene�t of using supermodular games is that a so-called

Round-Robin algorithm is available to solve for a Nash equilibrium. In this algorithm, each player

proceeds sequentially to update his own strategy by choosing a best response, whereas the strategy

of the other player is held �xed. Topkis (1998) provides a proof that in supermodular games, the

iteration algorithm converges to a pure-strategy Nash equilibrium point. The iteration steps are as

follows:

1. Start from the smallest strategy vector in LAWSON�s strategy space, N0
LS = inf(NLS) =

(0; 0; : : : :0).

2. Compute the best response of Family Mart N1
FM given parameter �, simulation draw �s,

and LAWSON�s strategy N0
LS : N

1
FM = BRFM (N

0
LS) � argmax

NFM

PM
m=1 �FM;m(NFM ; N

0
LS),

where BRFM (�) is a best response function of Family Mart given the store-network choice by

LAWSON, NLS .

3. Compute the best response of LAWSON given Family Mart�s best response N1
FM : N

1
LS =

argmax
NLS

PM
m=1 �LS;m(NLS ; N

1
FM ):

one hand, having many stores of the same chain in the market will save on delivery costs. On the other hand, stores
are more likely to compete against each other as the number of stores increases. The bene�ts from clustering can be
cost savings in delivery. The implication of the result is that my model would be particularly useful for retail industries
with dense con�gurations of stores because consumer demand is more localized than the cost of delivery. The localized
demand and the importance of distribution network are typical features in the convenience-store industry in Japan.
Whereas, on average, consumers rarely walk more than 1km to access stores, delivery trucks for stores generally travel
about 40 kilometers for each store per day.
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4. Iterate the above steps (b)-(c) T times until we obtain convergence: NT
FM = NT+1

FM and NT
LS =

NT+1
LS . Converged vectors of strategy pro�les for Family Mart and LAWSON, (NT

FM ; N
T
LS);

are a Nash equilibrium. The number of iterations, T; is bounded by the number of markets,

M : T � 4M .

In Appendix B.4, I provide a proof that the Round-Robin iteration algorithm, starting from

zero stores in every market for LAWSON (N0
LS = inf(NLS)), leads to the equilibrium that delivers

the highest pro�ts for Family Mart among all equilibria of the game.

3.3.3 Deriving Lower and Upper Bound of Best Response

This subsection deals with the second issue of computing the best response given the competitor

chain�s entry con�guration, which is step 2 and step 3 in the above iteration algorithm. Finding the

best response is computationally demanding because solving for the pro�t maximizing vector by

simply searching all possible strategy pro�les is practically infeasible. To circumvent the daunting

task of searching over every possible strategy pro�le in a strategy space, I derive the upper and

lower bounds of the best response for each chain, avoiding evaluating the strategy vectors that are

below the lower bound or above the upper bound when searching for the pro�t maximizing vector.

The idea is to consider the chain i�s best response regarding the number of stores in every

market, N�
i , a �xed point to a function that maps from chain i�s strategy space choice to itself.

In particular, I introduce a coordinate-wise necessary condition for pro�t maximization Vi;m that

updates the current number of stores in market m, holding the competitor�s decision in all markets

and the player�s decisions in other markets l 6= m �xed. Namely,

Vi;m(Ni; Nj) = argmax
Ni;m2f0;1;::;Kg

�i(Ni; Nj):

Let N�
i be the best response strategy vector for chain i. Because N

�
i is the pro�t maximizing vector

for chain i given rival�s decision Nj , it follows that N�
i;m = Vi;m(N

�
i ; Nj). Stacking up Vi;m for every

market m = 1; ::;M yields

N�
i = Vi(N

�
i ; Nj);

where Vi : Ni ! Ni is an M � 1 vector of optimality condition in all markets from market 1 to M :

Vi = (Vi;1; :::; Vi;M )
0. Here, N�

i is a �xed point of the function Vi.

The following proposition states that the optimality condition Vi in the speci�cation of the

chain-entry model presented in previous subsections is nondecreasing in its argument as long as the
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across-market e¤ect is nonnegative.

Proposition 4 (Nondecreasing Coordinatewise Optimality Condition) Vi(Ni) is nondecreas-

ing in Ni if �across � 0:

Proof. See Appendix B. So for any Ni; ~Ni 2 Ni with Ni � ~Ni, it follows that V (Ni) � V ( ~Ni).

By using the property of Vi(Ni) being nondecreasing in Ni, I am able to employ the following

lattice theoretical �xed point theorem by Tarski (1955), which shows the existence of a �xed point

for a nondecreasing function de�ned on lattices.

Theorem 5 (Fixed Point Theorem (Tarski 1955)) Let Ni be a complete lattice, Vi : Ni ! Ni

a nondecreasing function, and E the set of the �xed points of Vi. Then, E is nonempty and is a

complete lattice. In particular, because E is a complete lattice, a greatest and least �xed point exist

in E, that is; supE = supfNi 2 Ni : V (Ni) � Nig and inf E = inffNi 2 Ni : V (Ni) � Nig.

The bene�t of applying Tarski�s �xed point theorem to the optimality condition is two-fold

when �nding the best response of chain i over chain i�s strategy space: First, by Tarski�s �xed point

theorem, the set of the �xed points of Vi is complete lattice and a greatest and least �xed point

exist. Therefore, if I obtain the least and greatest �xed points, the number of strategy vectors need

to evaluate in order to �nd the best response strategy vector substantially decreases. This decrease

is because the set of �xed points is ordered and the pro�t maximizing vector locates between the

greatest and least �xed points. Second, I am, in fact, able to compute for the greatest and least

�xed points by applying the optimality condition to the two extreme points in the strategy space.

To obtain the least �xed points of Vi : Ni ! Ni, I de�ne a sequence fNig that is derived by

applying the optimality condition Vi multiple times. i.e., fN t
i g such that N1

i = Vi(N
0
i ); N

2
i =

Vi(N
1
i ); :::; N

t+1
i = Vi(N

t
i ), where N

0
i 2 Ni is the starting vector for the sequence. Suppose I set

N0
i = inf(Ni) = (0; ::; 0). Because Vi(Ni) is nondecreasing in Ni, we have N1

i = Vi(N
0
i ) � N0

i and

N2
i = Vi(N

1
i ) � N1

i . By iterating this T times over the optimality condition, I will have a convergent

vector NT
i = N

LB
i such that NLB

i = Vi(N
LB
i ). This NLB

i is the least �xed point. In order to show

this result by contradiction, suppose NLB
i is not the least point. Then the least �xed point exists

N least
i such that N least

i � NLB
i . Applying the optimality condition to both sides of inequality T

times yields V T (N least
i ) � V T (NLB

i ) = (0; ::; 0), which contradicts Ni = f0; 1; 2; ::; 4gM . Similarly,

if I start from N0
i = sup(Ni) = (4; ::; 4); I obtain the greatest �xed point NUB

i .

After obtainingNLB
i andNUB

i ; I �nd the best response vectorN�
i = argmax

Ni2f0;1;::;KgM

PM
m=1 �i;m(Ni; Nj)

by evaluating every vector Ni, such that NLB
i � Ni � NUB

i .
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3.3.4 Dealing with Multiple Equilibria

The possibility of multiple equilibria complicates estimating static discrete games. The pure strategy

Nash equilibria may not be unique in the model of the paper. In fact, multiple equilibria may occur

more frequently than in Jia (2008)�s model because the number of possible outcomes of the game

has increased greatly (from (2M )2 to (5M )2) as we increase the maximum number of stores in a

given market from 1 to 4.

In this paper, I introduce an equilibrium selection mechanism, which is to pick the most pro�table

equilibrium for Family Mart. The reason I am using the extremal points of the lattice as the

equilibrium outcome of the game is that I can compute the equilibrium by using the round-robin

algorithm and the optimality condition that satis�es nonnegativity in its argument. I select the

equilibrium that favors Family Mart because the data tell us that the number of stores for Family

Mart is 40 percent higher than the total stores of LAWSON. Note that the aggregate pro�ts increase

with the number of stores. For instance, the aggregate pro�ts will be approximately 40 percent

higher if the pro�ts per store are the same across chains on average, which is not unrealistic given

the fact that the sales per store are similar across chains, as the bottom rows in Table 1 in the

original paper show.

The bene�t of this approach is that one can obtain equilibrium predictions of the chain entry

game even with a high dimension of strategy pro�les. Since the applied questions of the paper

involve counterfactuals, the ability to simulate the model to obtain the likely equilibrium e¤ect of

a merger or a change in an entry regulation on store-network choice is crucial to researchers. Of

course, the arbitrariness of picking an equilibrium remains a limitation of the study. The concern

is that this selection rule is too strong to assume, and we would like to see the outcomes when we

change the equilibrium selection rule. Although an informal solution, I tried another external point

of the lattice and to determine whether the parameters are robust. From the parameter results I

obtain in Table 5, the parameter estimates appear robust to the selection rule.

4 Estimation via Method of Simulated Moments

I estimate the model by choosing model parameters so that the objective function, which depends on

the di¤erence between observed data and outcomes the model predicts, such as entry con�gurations

and revenues, is minimized. Unfortunately, the supermodular game does not yield a closed-form

solution for the equilibrium number of stores and revenues, making exactly computing moment

conditions regarding the outcomes variables di¢ cult. Instead, the mapping from the parameters to
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moments, which include model predictions of equilibrium entry patterns and sales, is approximated

by simulation methods.

4.1 Constructing Moment Conditions: A set-up

Remember that for the revenue data at the 1km square grid level, we have an exogenous sample

selection rule that in order to protect privacy, revenues with less than three stores in a given market

will not be disclosed. To simply denote this rule, I de�ne a selection indicator Im for each market

m:

Im �

8<: 1 if Nm � 3

0 if Nm < 3
;

where Nm is the total number of two chains� stores in a given market m: Nm = Ni;m + Nj;m;

i; j 2 fFamilyMart; LAWSONg; i 6= j. Similarly, I construct a simulation counterpart of the

selection indicator for the total number in market m in s th simulation

Ism �

8<: 1 if N s
m � 3

0 if N s
m < 3

;

where N s
m = N s

i;m + N
s
j;m is the number of total stores in market m predicted by the model

parameters and s th simulation draws.

I denote aggregate revenue at market m by R�m = ri;m + rj;m; where ri;m is the total revenue of

chain i in market m that is classi�ed to the econometrician. Let us de�ne aggregate revenue that

the econometrician observes by

Rm �

8<: ri;m + rj;m if Nm � 3

0 if Nm < 3
= ImR

�
m:

Similarly, I denote aggregate revenue at marketm in sth simulation by R�;sm = rsi;m+r
s
j;m; where ri;m

is the total revenue of chain i in market m in s th simulation. I construct a simulation counterpart

of the total revenue

Rsm �

8<: rsi;m + r
s
j;m if N

s
m � 3

0 if N s
m < 3

= IsmR
�;s
m :

4.2 Construction of Population Moment Conditions

I de�ne a function Rm(X; �; �); a revenue-data generating process for market m, where X and �

are M � 1 vectors of predetermined variables, observed and unobserved to the econometrician. X
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contains exogenous market characteristics, such as population and the zoning regulation status.

Note that the revenue data Rm are generated at the true �0 and predetermined variables (Xi; �i):

Rm = Rm(X; �; �0).

I construct a moment condition that measures the gap between the observed total revenue and

the conditional expectation of the revenue function Rm(X; �; �):

Rm � E[Rm(X; �; �)jX] = ImR
�
m � E[ImR�m(X; �; �)jX] (3)

where � = (�; �across; �within; �comp;own; �comp;rival; �local; �revenue; �cost; �local; �dist; �; 
)

�i = ("r; "c; �ri ; �
c
i ):

This moment condition in Eq.(3) will be zero when � = �0 because

E[ImR
�
m � E[ImR�m(X; �; �0jX)]jX]

= E[Rm � E[Rm]jX] = 0: (4)

Now consider interacting the original moment condition in Eq.(3) with a m th element in a function

of observed predetermined variableX; fm(X), obtaining a population moment condition for revenue:

grev(�) � E[(ImR�m � E[ImR�m(X; �; �jX)]) � fm(X)jX] = 0 at � = �0:19 (5)

Similarly, I de�ne Ni;m(X; �; �); which speci�es the data-generating process for the number of stores

of chain i in market m. Note that the data on the number of stores Ni;m are generated at the true

�0 and predetermined variables (X; �): Ni;m = Ni;m(X; �; �0). I obtain a population condition for

the number of stores:

gstore(�) � E[(Ni;m � E[Ni;m(X; �; �jX)]) � fm(X)jX] = 0 at � = �0: (6)

19Taking a conditional expectation with respect to X of Eq. (3) multiplied by a function of conditioning variable
X yields zero; that is, E[(ImR�m � E[ImR�m(X; �; �0jX)]) � f(Xi)jXi] = E[(ImR

�
m � E[ImR�m]) � f(Xi)jXi] = 0:
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4.3 Construction of Sample Moment Conditions

The sample analogues of the population moment conditions in (5) and (6) are

grev;M (�) � 1

M

MP
m=1

(ImR
�
m � E[ImR�m(X; �; �)jX]) � fm(X)

gstore;M (�) � 1

M

MP
m=1

(Ni;m � E[Ni;m(X; �; �)jX]) � fm(X);

where E[gM;rev(�)] = 0 and E[gM;store(�)] = 0 at � = �0 by using the same reasoning described in

the footnote.

Now the issue is that no closed-form expression exists for E[ImR�m(X; �; �)jX] or E[Ni;m(X; �; �)jX],

making implementing the usual GMM or Method of Moments infeasible. Instead, we consider

simulating the conditional expectation by averaging ImR�m(X; �; �) over a set of simulation draws

�S;all = (�1; �2; ::; �S) from the distribution of �:

ĝrev;M (�) �
1

M

MP
m=1

(ImR
�
m �

1

S

SP
s=1

IsmR
�;s
m (X; �

s; �)) � fm(X):

Similarly, I construct sample moment conditions regarding the number of stores for each chain

ĝstore;M (�) =

24 1
M

PM
m=1(Ni;m � 1

S

PS
s=1N

s
i;m(X; �

s; �)) � fm(X)
1
M

PM
m=1(Nj;m � 1

S

PS
s=1N

s
j;m(X; �

s; �)) � fm(X)

35 :
I stack up all moment conditions to create a vector of the full sample moment conditions:

ĝM (�) =

24 ĝrev;M (�)
ĝstore;M (�)

35 :
Appendix D provides details on how I construct 22 sample moment conditions in the study.

4.4 Method of Simulated Moments

The method of moments (hereafter MSM) estimator is

�̂MSM = argmin
�
[ĝM (�)]W[ĝM (�)]

0; (7)

where W is a weighting matrix. Following McFadden (1989), the limit distribution of the MSM

estimator is
p
M(�̂MSM � �0)

d�! N(0; (1 + S�1)(G0
0�

�1
0 G0)

�1);
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whereG0 � E[r�g(Xm; �0)] and �0 = E[g(Xm; �0)g(Xm; �0)0]: The S�1 in the asymptotic variance

corresponds to an e¢ ciency loss due to simulations. We can estimate the derivative matrix Ĝ by

taking a sample mean of Jacobian of the simulated moments.20 To account for the geographic inter-

dependence of close-by markets, I use Conley (1999)�s nonparametric covariance matrix estimator.

So the covariance matrix � is estimated by

�̂ =
1

M

MP
m=1

P
l2Bm

[ĝ(Xm; �)ĝ(Xl; �)
0];

where Bm is the set of markets adjacent to market m:

I use a two-step e¢ cient approach. In the �rst step, I use an identity matrix for the weighting

matrixW to consistently estimate the parameter, �̂
first

MSM , and plug this estimate into the covariance

matrix �̂. In the second step, I choose the weighting matrixW = �̂
�1
and minimize the objective

function again to obtain the �nal e¢ cient parameter estimates, �̂MSM .

�si = ("
s;r; "s;c; �s;ri ; �

s;c
i ); i 2 fFamilyMart; LAWSONg, s = 1; :::; S are drawn from a standard

normal distribution. I set S = 200 for the study.

Appendix D provides further details on (1) the implementation of the estimation procedure, (2)

the construction of moment conditions, (3) the minimization of the criterion function in Eq.(7), and

(4) the generation of the simulation draws.

5 Empirical Results

5.1 Parameter Estimates from the Non-Revenue Model

Before examining the model with revenue, I provide parameter estimates from a simpler static

entry model that only uses the number of stores and demographics. The goal of estimating the

non-revenue model is to provide a basis for comparison to the model that integrates revenue data

because the non-revenue model is commonly used in the literature. As is the case with the usual

discrete-choice model, I estimate parameters up to a constant because the parameter estimates are

normalized so that the aggregate variance of pro�ts shock will be one. To understand the economic

implication of the parameters, the relative magnitudes of the e¤ects on entry need to be gauged by

running counterfactual simulations, which I discuss in section 6.

20Newey and McFadden (1994) discuss a set of conditions to obtain the asymptotic normality for simulated moment
estimators, allowing the sample moment to be discontinuous (Theorem 7.2). Condition 2 states that the population
moment condition is di¤erentiable at the true theta with derivative matrix G. I estimate the G by taking a �nite-
di¤erence of sample moments for a given simulation draw and take average of G over simulations. The derived estimate
Ĝ will be consistent under the conditions of Theorem 7.2.
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Column 1 in Table 5 presents the MSM estimates of the parameters in the non-revenue baseline

speci�cation. Each parameter has the anticipated sign. First, the nighttime and daytime population

coe¢ cients, �pop and �bus in Table 5, are positive and statistically signi�cant at the 1 percent level.

Whereas the across-market e¤ect �across is not statistically signi�cant, the net within-market e¤ect

�within and the competitive e¤ects from a rival chain store �comp_rival are estimated precisely. The

magnitude of the former is �0:701 and the latter is �0:945. As one might expect, revenue decreases

when a competitor is in the same grid, and the e¤ect of the competitor is large: the e¤ect amounts to

a decrease of about 6; 000 people in the nighttime population in terms of contribution to reduction

in sales. The parameter for the zoning regulation 
 is estimated to be �0:103 and statistically

signi�cant at the 5 percent level. Consistent with the reduced-form regression results, the zoning

regulation has a negative impact on store-level pro�ts, implying that one must incur positive costs

when applying for permission to open a store. The magnitude of the coe¢ cient tells us that to make

up the reduction in pro�ts due to zoning, the market has to have nearly 600 additional people in the

nighttime population, holding other factors constant. Policy experiments in the subsequent section

illustrate the relative magnitude of zoning-index coe¢ cients in terms of how many store openings

zoning policy would a¤ect.

The last two rows in columns 1 and 2 in Table 5 compare the data and the prediction of the

estimated model for the number of markets with one or more stores from a chain. The model

predicts the number of Family Mart stores to be 131:3 on average across 200 simulations with a

standard deviation of 98:9 stores. The model predicts the number of LAWSON stores to be 96:2

stores on average across 200 simulations with a standard deviation of 138:7 stores. The actual

numbers of stores are 127 and 95, respectively.

5.2 Parameter Estimates from the Revenue Model

Turning to the full revenue model, Table 6 presents the estimated parameters of the revenue and

cost equations at the market level.

All of these estimates have highly intuitive signs and most of them are signi�cantly di¤erent

from zero at the 5 percent level. The signs of the estimated parameters closely resemble the ones

of the non-revenue model in the previous subsection. Unlike the non-revenue model, however, I

measure the parameters in monetary units (thousands of US dollars) except for �, which measures

the magnitudes of the variance of pro�t shocks. For example, the coe¢ cient on the nighttime

population implies that sales in a market having one thousand more people than other markets will

be higher by $71; 000 annually (or about 7:1 million yen). As expected, the daytime population has
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a positive and statistically signi�cant e¤ect on store pro�tability. The magnitude is 66 percent of

the one of the nighttime population.

The estimates in rows 3 - 5 of column 1 in Table 6 measure the business-stealing e¤ect due to the

presence of three types of stores. The parameters that measure the business-stealing e¤ect by own

chain stores (�competitive;own) and the business-stealing e¤ect by rival chain stores (�competitive;rival)

are precisely estimated and all three parameters are estimated to be negative, showing that the

competition among stores pushes down the revenue. For example, having another store from the

same chain decreases the revenue of a store by $377; 765 (= ln 2 � $545; 000) annually, which is 26

percent of total annual sales for an average chain store. Similarly, the presence of a rival chain store

dampens the sales by 18 percent of total annual sales. The presence of a non-chain store reduces the

revenue less than an own or rival chain store does, but the magnitude is not statistically signi�cant:

a $75; 483 decrease from the �rst entrant. The di¤erence in magnitude is consistent with the fact

that local stores are open fewer hours than chain stores and therefore have less chance of stealing

business from other stores at night.21

Next, I turn to the interactions among own chain stores. Row 9 of Table 6 displays the estimate

of �across, the coe¢ cient on the net cost savings from the presence stores from the same chain in

adjacent markets. The parameter is estimated at $59; 500 per year and is insigni�cant at the 5

percent level. The magnitude of the parameter is higher than an annual salary of an average truck

driver in Japan, which is around $41; 200. Recalling that �across measures positive-spillover e¤ect

minus business-stealing e¤ect, the gross business-stealing e¤ect by stores from the same chain in

across markets likely cancels out the gross positive cost savings.

Row 10 contains the estimate of �within, the coe¢ cient on the gross cost savings from the

presence of stores from the same chain in the same market. The estimated magnitude of the

parameter is $125; 800 and the fraction of the cost savings to the total costs is 11 percent. Although

the parameter is not statistically signi�cant, the sign is negative as expected: unlike �across, the

parameter measures the gross bene�ts by clustering stores in a given market. Clear evidence of

economies of density or the positive spillovers among own stores on the costs side does not exist in

either case.

Of interest is the coe¢ cient on the zoning status index in row 11, which is negative and not

precisely estimated. This �nding implies that being at the zoned area increases the store�s �xed

costs of operation, including the combined costs of going through all the application and screenings,

21More than 30 percent of local stores are not 24-hour operations in Okinawa, whereas all the stores from Family
Mart and LAWSON are open 24 hours a day.
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and the monetary value of the annual costs translates into $50; 300 per year.

Although insigni�cant, the parameter estimate �local suggests being a local store decreases the

store�s sales by $31; 200 annually. I estimate the constant in the revenue equation to be $820; 700 or

85 million Japanese yen. The estimated constant on the cost equation implies that the average costs

of installing and operating a convenience store is about $1; 129; 000 annually. I �nd no evidence that

stores bene�t from locating close to the distribution center: the parameter estimate �dist enters the

costs equation neither statistically nor economically signi�cantly. The parameter coe¢ cient predicts

that the most distant store from the distribution center incurs $53; 000 as distribution costs, which

is less than 5 percent of the annual �xed costs of the store (�cost).

The correlation parameter � is equal to 0:93, which means the correlation of the combined pro�t

shocks across chains in a given market is 0:86. The last row shows that the � parameter, the

standard deviation of pro�ts, is estimated at $121; 000, which is about 8 percent of mean sales per

store.

We can measure the overall �t of the model in many ways. One is to compare the model

predictions of how many stores each chain opens in total with the actual store counts. Rows 15 and

16 of column 1 in Table 7 present the implied aggregate number of stores for each chain. The mean

of the simulated number of stores from the model with estimated parameters matches closely the

actual number of stores: the model predicts the total number of Family Mart stores, which is 139 in

the data, to be 140:3 on average across 200 simulations with a standard deviation of 7:7 stores. The

model predicts the total number of LAWSON stores, which is 100 in the data, to be 98:7 stores on

average across 200 simulations with a standard deviation of 8:2 stores. The actual numbers of stores

are 127 and 95, respectively. Tables 3 and 4 provide actual and simulated market con�gurations.

These tables show that the model replicates well the distribution of stores for Family Mart and

LAWSON.

6 Policy Simulations

Making an assumption that the observed choices are a Nash equilibrium allow me to predict the

equilibrium market structure under alternative policy environments. In this section, I use the

parameter estimates of the non-revenue model and model with revenue to perform "what-if" exper-

iments. First, I evaluate the impact of hypothetical changes in the zoning regulation on the market

structure, the total sales, and the pro�ts of the two chains. Next, I provide merger simulation

analysis. The model with revenue data also allows me to evaluate the changes in consumer and
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producer surplus.

6.1 The 1968 Urban Planning Law

The current Urban Planning Law, enacted in 1968 to prevent urban sprawl, de�nes zoned areas

and, in principle, prohibits �rms and residents from locating freely. In zoned areas, the act permits

developing stores in zoned areas, provided stores comply with strict requirements for constructions.22

As Figure 3 shows, the zoned area is more likely to be suburban in highly populated area and

surrounds the city center of Okinawa.

FIGURE 3

ZONED AREAS (RED)

Measuring the impact of zoning regulation on entry is important for two reasons. First, the

deregulation of zoning restrictions in urban areas in Japan has been at the forefront of urban policy

debates in recent years. Although the zoning regulation has provided neighborhood amenities such

as open space and promoted city planning, mounting public opinion has been calling for deregulating

the current zoning laws on the basis that the requirements are restrictive for retail outlets to be

opened in zoned areas. The land-use restrictions are a big concern, especially for potential local

grocery stores or convenience stores, because the choice of a good location is a key to success in

a retail business. In responding to these concerns, some local governments have recently relaxed

the regulation for commercial outlets in zoned areas by constructing ordinances that specify the

22This exception is detailed in Article 34-1. Potential store developers have to �le and show that the store serves
the need of local residents. Local ordinances give other detailed conditions.
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conditions entering stores must meet.23 The exceptions, however, are limited still to speci�c types

of store formats, such as stores attached to gas stations, local highways, or rest areas. Second, the

regulation directly a¤ects �rm�s decisions regarding where to open their stores. In contrast to the

increasing attention zoning restrictions are receiving in the press, we know surprisingly little about

the e¤ect zoning regulation has on entry. Existing empirical analyses on entry have not dealt with

zoning directly, treating it as an unobserved pro�t shock to the econometrician. Such analysis will

miss the contribution from the e¤ect of zoning on entry, and may lead to omitted variable bias.

This paper aims to �ll that gap in the literature by incorporating the zoning information into the

structural model of entry as in Ridley, Sloan, and Song (2008) and Suzuki (2007).

Why Do We Need a Structural Model to Examine the Impact of Zoning on En-

try? In the simple OLS regressions in Table 2, we con�rm that zoning is decreasing the number

of stores. Although reduced-form regressions are suggestive about the likely direction and strength

of the e¤ect of zoning on entry, I employ structural modeling for the purpose of the project for

several reasons.24 First, suppose a regulator would like to obtain precise estimates of costs due to

zoning because he wants to evaluate whether the costs are of an economically meaningful magni-

tude. However, we are not sure if we are obtaining reliable estimates of costs due to zoning from

a reduced form because, in reality, "Nature" does not randomly give the number of outlets in the

right-hand side of the regressions; rather, �rms maximizing their pro�ts determine the number of

stores. Moreover, reduced-form regressions are inadequate approaches for modeling many character-

istics of the industry. Examples include strategic interactions between Family Mart and LAWSON,

headquarters�decision of the store networks, and markets that are contiguous to one another. All

of these are important features that characterize the �rms and the market, and failure to properly

account for these crucial features of industry can lead to biased estimates.

Second, an advantage of structural modeling is that it allows us to conduct realistic out-of-sample

predictions about changes in market structure due to zoning policy changes once we uncover basic

model parameters. By predicting the change in geographic patterns of market con�gurations by two

chains due to change in regulations, we can look at distribution consequences of policy interventions,

such as who bene�ts from a change in zoning and who does not. Or we can ask practical questions

a regulator may �nd relevant, such as in which markets we would �nd the impact of deregulation

to be most e¤ective on entry behavior. These are questions I cannot answer with reduced-form

23According to the survey I conducted in 2007, 28 out of 97 cities deregulated the zoning law under Article 34-8.
Okinawa is not included in those 28 cities.
24Reiss and Wolak (2007) provide useful discussions on structural modeling in industrial organization.
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analysis.

Finally, a structural model allows us to recover unobserved economic parameters that could not

otherwise be inferred from reduced-form analysis. Examples in this paper include positive spillovers

across markets, strategic e¤ect across chain brands, and sunk costs of entry.

Design. In the sample, 140 markets are categorized as zoned areas. I consider two di¤erent

zoning policy scenarios. The �rst eliminates the zoning regulation completely from the 140 currently

zoned markets. The possible deregulation of zoning restrictions has been at the heart of urban

policy debates. However, little research has been conducted regarding the economic consequences

of such deregulation. The second policy experiment of interest places the current regulation in

all 834 markets.25 In both scenarios, the same model parameters and the same demographics,

including population, are held �xed when solving for the new equilibrium number of stores for each

chain. The only thing I change is that in the �rst (second) scenario, the zoning regulation status

variable is exogenously set to zero (one) in every market. For each scenario, chains re-optimize their

store-network choices given the new policy environment. The new equilibrium prediction about

the number of stores for each chain is computed by running the best response iteration algorithm

described in the previous section for the estimated model.

Calculating the economic welfare requires measurement of both consumer surplus and producer

surplus. Given the lack of data on price and quantity, I use the change in store sales as an approx-

imation of the change in consumer surplus instead of focusing on the equivalent variation (EV).26

To calculate producer surplus, I measure the aggregate pro�ts of the two chains. I de�ne the total

surplus as the sum of consumer surplus and producer�s pro�ts. I measure the welfare numbers in

units of thousands of US dollars.

Several limitations exist in the welfare analysis and one should interpret the numbers with some

caution. First, zoning regulation serves a variety of purposes, and the paper does not take into

account bene�ts consumers may receive from the regulation, such as neighborhood quality or open

space. Second, in the model, I abstract from the substitution of consumers between convenience

25Here, I implicitly assume the shape of reduced-form revenue function is invariant to the change in regulations.
26Deaton and Muellbauer (1980) provide a justi�cation of this approach. From the �rst-order conditions for utility

maximization, we have #v(q)
#qi

= �pi;where v is an indirect utility function, qi is the quantity of good i, � is the marginal
utility of income, and pi is the price of good i: By taking the total di¤erential of utility, I obtain the change in utility
due to change in quantity:

du =
P
�pidqi;

which turns out to be the area under the Marshallian (uncompensated) demand curve. This way of measuring
consumer surplus will be particularly relevant for this industry as it maintains uniform pricing across every market
in Okinawa.
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stores and other types of businesses such as grocery stores. Third, the analysis has held the number

of local stores �xed before and after the policy change. Although assuming the exogenously of local

stores�entry behavior will make the analysis simpler, it may not be ideal when calculating the new

equilibrium in chains�store networks. Due to these reasons, I take into account only the welfare

of the two chains and their customers. Nonetheless, the results, when interpreted carefully, are

suggestive of likely impacts of the change in policy regimes on economy.

Results. Table 7 summarizes the key �ndings of these counterfactual experiments. Column

2 displays the predictions about current equilibrium in the number of stores. I compute sales and

pro�ts given the estimated parameters of the model with revenue in Table 6, observed demographics,

and the existing regulation regime. The predictions serve as a baseline for a comparison of the

outcomes of two hypothetical policy regimes.

Column 3 in Table 7 presents the results under the no-zoning-permission-system regime. As

would be expected from the negative sign and the magnitude of parameter 
, I �nd that eliminating

the current zoning regulation would moderately increase the number of stores: rows 1 and 3 of

column 3 show that for Family Mart and LAWSON, we would expect a 4:6 and 3:6 percent increase

in the total store counts, respectively. Rows 2 and 4 focus on the change in the originally zoned 140

markets, and I �nd that most of these increases in store counts are largely due to an increase in the

number of stores in these 140 markets in which there has been a deregulation in the zoning policy.

In fact, in those 140 markets, the percentage increase in the total number of stores is large: around

40 percent for both chains. The model also predicts aggregate sales and pro�ts will increase by 4

percent and 2:6 percent for Family Mart and 3 percent and 2 percent for LAWSON, respectively.

Regarding the aggregate costs due to the regulation, I calculate the magnitude by multiplying the

zoning costs parameter 
 by the number of stores in zoned markets. I �nd the reduction of costs

associated with the regulation for Family Mart and LAWSON is small: $1; 100; 000, which is 0:3

percent of total sales of Family Mart and LAWSON. Two reasons exist for the small costs that the

zoning regulation introduces. First, the e¤ect of eliminating the zoning regulation is small because

the number of markets the change in the zoning policy a¤ects is small. For instance, in 694 markets,

which is 86 percent of all markets in Okinawa, obtaining development permission is unnecessary and

we should see no costs due to the zoning regulation. Second, as the �rst six rows in Table 1 show,

zoned markets tend to have less daytime and nighttime population than unzoned markets, making

zoned markets unattractive places to enter regardless of their zoning status. The bottom row of

column 3 in Table 7 presents the sum of aggregate sales and aggregate pro�ts for Family Mart and

31



LAWSON. The increase in the sum from the baseline is 3:4 percent. So the percentage gain from

the deregulation is almost the same as the percentage increase in the number of stores. The gain

in total surplus is not coming directly from the reduction in costs of the zoning regulation; rather,

the gain is largely due to the increase in the number of stores (therefore, the increase in sales) that

the reduction in costs associated with the zoning regulation induces.

Figures 5 and 6 present the con�gurations of stores before and after eliminating the current

zoning policy. As the �gures show, we can con�rm from the map that in no zoning-regimes, the

increase in the number of stores is subtle compared to the baseline case, and this �nding is true for

both chains. However, markets that are predicted to have stores after the deregulation are di¤erent

across Family Mart and LAWSON because their market-chain speci�c pro�t shocks and their store

networks are di¤erent. In particular, two �gures show that the previously zoned markets in which

the number of stores increases due to removing the regulation are adjacent to the markets in which

each chain has its existing stores.

Also of note is how much the opposite policy regime a¤ects the results. Column 5 in Table 7

provides the market outcomes under the policy regime in which the zoning regulation is in place in

all 834 markets in Okinawa. I �nd the installation of the zoning regulation in all markets would

substantially decrease the number of stores, sales, and pro�ts: the magnitude of these decreases is

16 to 17 percent. Not too surprisingly, the sum of total sales and total pro�ts is predicted to decline

by about $40 million, which is about 12 percent of the sum in the baseline case. The decrease in

total surplus is largely due to a decrease in the aggregate sales, which is caused by a decrease in

the number of stores. In this second policy regime that places zoning restriction in all markets, the

magnitude of the changes in sales, pro�ts, and total surplus is almost �ve times the magnitude of

the changes in the �rst policy regime.

Although the simple non-revenue model does not predict sales or pro�ts, we can see how the

conclusions from the full-revenue model regarding the number of stores hold up in the non-revenue

model. Columns 1 and 2 in Table 5 provide the results of these counterfactual simulations. First,

from rows 13 and 14 of column 1 in which I predict the �rst scenario of eliminating the zoning

regulations, we would expect roughly a 1:4 to 1:5 percent increase in the number of entering markets

for both chains. The direction of change in the number of stores is reasonable if zoning is interpreted

as an increase in sunk entry costs. On the other hand, the last two rows in column 1 show the

number of outlets in the second scenario, in which the zoning restrictions are placed all over in

Okinawa. The model predicts that the number of markets in which convenience stores are present

decreases by roughly 7 percent. Note that the full and non-revenue models are consistent in the

32



directions of the predictions of the policy experiments, but qualitatively the non-revenue models

predict more modest changes in magnitude.

6.2 E¤ects of a Merger on Store Networks

In this section, I evaluate the impacts of a horizontal merger among two chains on product variety

measured by the number of stores and economic welfare. A classic question in antitrust policy is

whether a merger that leads to a decrease in the number of players is welfare reducing. The answer

typically hinges on the trade-o¤between changes in costs e¢ ciency and changes in consumer surplus

due to changes in the store network. Although the horizontal merger can increase costs e¢ ciency,

the merger can results in underprovision of stores, which will harm the consumers. The purpose of

the exercise is therefore to simulate and examine the likely welfare e¤ects of a merger among two

chains, which will be of interest for a regulator who decides whether to approve the merger that

will yield a monopolist chain.27

Given the estimated model and pre-merger empirical data, one can use the iteration algorithm to

obtain the pro�t maximizing, post-merger con�gurations of stores for the monopolist. Because there

are two chains, a proposed merger would create a monopoly of one chain. I assume the hypothetical

"one-time" merger happens exogenously and unexpectedly. I set the maximum number of stores the

merged chain can open to 8 within a market, which is doubled from the duopoly in the pre-merger

regime. For the merger simulation, I consider the following two scenarios.

1. "De Novo" Entry, No Costs of Closing and Remodeling a Store. In the �rst

scenario, I assume no costs of closing existing stores or remodeling the target chain�s stores into

those of one�s own chain. So the post-merger situation is more like a "de novo" entry, in which a

monopolist chain enters into Okinawa, given the con�gurations of local stores and demographics.

The second (fourth) column of Table 8 presents the results of the �rst scenario in which Family

Mart (LAWSON) takes over as a monopolist. Given the small magnitude of the LAWSON �xed

e¤ect in Table 6, it is not surprising that columns 2 and 4 provide similar quantitative conclusions.

In both cases, the monopolist chain increases its stores from its duopoly store counts, but the total

number of the stores in Okinawa decreases by 5 percent from 239 stores, which is the combined

number of stores of Family Mart and LAWSON before the merger. The total sales also decline

by 7 to 8 percent, a proportion similar to the reduction in the total number of stores. However,

27One limitation of this merger analysis is that this exercise abstracts from changes in price due to merger, in
particular the likely post-merger price increase.
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the combined pro�ts increase by 37 to 38 percent. The third and fourth rows from the bottom in

columns 2 and 4 show that pro�ts per store have increased signi�cantly: a 51 percent increase for

Family Mart and a 36 percent increase for LAWSON, respectively. Rows 14 and 15 in columns 2

and 4 show that there is a decrease in sales per store after the merger, which is 6 to 7 percent.

The third panel from the top in Table 8 provides a breakdown of the changes in total pro�ts.

Columns 1 and 2 of this panel suggest that the increase in total pro�ts comes from a variety

of sources. First, pro�ts contribution from demographics increases by $18:3 million because the

monopolist chain can pick better markets in which to open stores than the pre-merger markets by

re-designing its store networks. The pro�ts for the merged chain also increase by $36:5 million

due to an increase in cost savings, both across-market and within-market. (On the other hand,

the loss from business-stealing among the two chain stores increases by around $45 million (from

�$36:1�$37:0 to �$118 million), which leads to a decrease in per-store sales. The results support a

story in which the monopolist chain clusters its stores in pro�table markets. Although the loss from

business-stealing among its stores outweighs the cost-saving bene�ts from clustering, the pro�ts

increase from improved demographics, such as higher population, will compensate for the loss from

the competition net of the cost savings.

Because the reduction in sales dominates the increase in pro�ts, the sum of total pro�ts and

total sales decreases by 4 percent, implying that there is a transfer of surplus from consumer to the

merged chain.

2. Fixed Costs of Closing and Remodeling a Target�s Store. To be more realistic

about merger simulation, the second scenario considers the e¤ect of pre-merger store networks on

the post-merger choice of a store network. In particular, I introduce two new parameters. First,

closing a store incurs exit costs. If a chain decides to close a store that existed in the pre-merger

state, whether the store of its own chain or a rival chain, the chain has to pay a positive cost

of closing a store. Such costs could include cleaning up the site so that other types of tenant

can move in. The second parameter is a cost of converting a store from a target chain into the

monopolist chain store. An acquirer has to pay costs of remodeling, such as changing name boards

or the interior design to make the store look like the acquiring chain�s brand. I allow the acquiring

chain to choose whether to convert an existing rival store (if any) when increasing the number

of stores in the market, depending on the relative magnitude of exit and remodeling costs. As

approximations of these costs, I use average numbers obtained from chains��nancial statements

in 2001 and 2002. From the documents, these two costs appear non-negligible in the magnitudes:
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approximately $100; 000 for closing a store and $50; 000 for remodeling a store of the rival chain.

Because the costs of remodeling a store are less than the costs of closing a store, an acquiring chain

that considers expanding its network in a given market would prefer to remodel a store of a target�s

chain over opening a new one. To see the robustness of the results, I estimate two alternative costs

speci�cations.

The sixth and eighth columns of Table 8 present the results of the second scenario. Although

there is no signi�cant di¤erence in the number of total stores between the pre-merger and the post-

merger store con�gurations, total sales decrease by 7 to 8 percent. This decrease is mainly due to

an increased business-stealing e¤ect among chain stores as is the case with the �rst scenario: the

third panel in Table 8 shows that the reduction in total sales due to increased competition among

chain stores is $80 million. The decrease in the number of stores is more modest than in the �rst

"de novo" scenario: an 8 percent decrease if Family Mart is the acquirer and a 7 percent decrease

if LAWSON takes over. Rows 4 through 8 in the sixth and eighth columns present the breakdown

of how the merged chain uses the existing store networks of both chains. Although no di¤erence

exists in the number of closing rival stores (row 7), asymmetry in the number of remodeled stores

arises between two chains due to the di¤erence in the number of stores in pre-merger regime: 138:5

for Family Mart and 102:8 for LAWSON.28 As a consequence of this asymmetry in the number of

stores to be remodeled, the total cost of remodeling is larger for LAWSON than Family Mart by

$2:2 million. The reduction in sales is also smaller than the one of the "de novo" entry case. Due to

the burden of closing and remodeling stores, which is $7:0 million for Family Mart and $9:2 million

for LAWSON, the pro�ts for both chains are smaller than the corresponding pro�ts in the �rst

scenario in Table 8, and the pro�ts are less by $7:3 million for Family Mart (from $67:7 million to

$60:4 million, a 11 percent decrease) and by $9:5 million dollars for LAWSON (from $68:3 million

to $58:8 million, a 14 percent decrease). The di¤erence across chains exists largely because of the

asymmetry in the number of remodeled stores. Overall, the decrease in the sum of total pro�ts and

total sales is 3 percent, and no noticeable di¤erence exists between the second scenario and the "de

novo" entry scenario.

Figures 7 and 8 present the predictions of geographic store-network patterns as a result of the

merger and the increase in the total number of stores in a given market before and after the merger.

We can con�rm that the acquirer, either Family Mart or LAWSON, tends to cluster more at the city

center and less at suburbs than the sum of the two chains�stores in pre-merger status. We know that

28The number of total stores for Family Mart and LAWSON is an average of the model predictions over 200
simulations.
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although opening an additional store will steal business from stores of the same market, opening

a store bene�ts not only the stores of the same market but also the stores of adjacent markets.

The degree of clustering in the centers increases because in city centers, the number of stores in

adjacent markets is higher than markets in non-city centers. Thus, cost savings are greater in city

centers than in non-city centers. Although the number of stores a merged chain has is more than

the combined number of Family Mart and LAWSON in the most-populated markets, the acquirer

has less number of stores in less-populated markets. The reason why fewer stores are in suburbs

for the acquirer than for Family Mart and LAWSON is the reduction in random entry events: the

chain-market speci�c pro�t shocks occurs only for Family Mart and not for LAWSON after merger.

To check the sensitivity of results to the costs assumption, Table 9 presents some robustness

checks. I use two alternative assumptions for the magnitudes of the costs of closing a store and the

costs of remodeling a store. The �rst and third column of Table 9 give the results in which the

costs of closing a store has been increased by $50; 000, holding the costs of remodeling a store �xed

at $50; 000; as in the second speci�cation in Table 8.

Both speci�cations deliver similar quantitative results on the total pro�ts. For instance, rows 7

and 8 of column 2 show that an increase in the costs of closing a store makes remodeling a store

cheaper than closing a store relative to the second scenario in Table 8, leading to an increase in the

number of stores through a decrease in the stores to be closed (from 41:9 to 33:8) and an increase

in the stores to be remodeled (from 56:8 to 64:9). Because the number of stores to be remodeled

increases and the number of stores to be closed decreases, the total number of stores increase relative

to the second scenario. The sixth and eighth columns of Table 9 provide the results in which the

costs of remodeling a store have been increased by $50; 000, holding the costs of remodeling a store

at $100; 000 as in the second speci�cation in Table 8. The opposite force is at work: the magnitude

of a decrease in combined number of stores from the pre-merger case is less than the second cost

speci�cation in Table 8 because remodeling a rival chain�s store is more costly than the previous

cost speci�cation. This change in relative costs of remodeling and closing a store leads to a decrease

in the number of stores to be remodeled and an increase in the number of rival chain stores to be

closed. Regardless of the cost speci�cations, the merger between Family Mart and LAWSON would

decrease the sum of total sales and chain pro�ts mainly due to a decrease in total sales, and the

magnitude ranges from 1 to 8 percent depending on the size of the costs of closing and remodeling

a store.
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7 Robustness Checks

This section provides a set of alternative speci�cations on the empirical model to explore the ro-

bustness of the results. Two major concerns are the robustness of the parameter estimates to the

choices of grids and the imposed equilibrium selection rule.

Choices of Grids. This robustness check examines whether the original market de�nition is

driving the results Table 5 reports, which we can investigate in a number of ways. One way to

verify this result is to construct a second sample of markets with store counts and demographics

by using the original grid-level data. In particular, as Figure 4 shows, I consider a di¤erent set of 1

km square grids of which borders are located at the midpoint of the original borders.

FIGURE 4

SHIFTED 1 KILOMETER SQUARE GRIDS

NOTE. ­ Dashed and bold lines show original and newly defined borders for
markets, respectively.

1 KM

Each cell of these newly de�ned grids contains the same set of information as the original grids:

store counts of convenience stores of three types (Family Mart, LAWSON, local), demographics

such as population, and zoning index variable. The original data at the 1km square grid level are

resampled into the newly 1km square mesh level data. To create the store counts variable, I use

location data of the convenience stores. To generate demographic variables for a given market, I

focus on the four markets with original borders overlapping with the market with new borders: I

add up one-fourth of the population and the number of workers of the four markets, assuming the

population density and number of workers density are uniform within the four original grids. I call
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this procedure resampling. As in the original sample, I exclude from our sample markets that have

no population either in daytime or nighttime, leaving a sample of 1; 138 markets.

I use the non-revenue model for comparison because revenue information is available only when

a market has more than two stores, and resampling substantially reduces the number of observations

for the revenue variable. We will not have well-de�ned revenue data for a newly de�ned market

unless there are four adjacent markets with more than two stores, which is rare in the sample.

Columns 1 and 2 in Table 5 present the estimates for the original market de�nition and column 3

and 4 in Table 5 provide the results for the newly created sample. Results from both speci�cations

exhibit the same signs and statistical signi�cance for all parameter estimates. Also, the relative

magnitudes among the coe¢ cients on all variables appear similar across both speci�cations. Overall,

the shifted grid speci�cation yields similar results to the baseline speci�cation, providing evidence

that the assumption about the location of the grid has not played a big role in driving the results.

Equilibrium Selection Rule. In this robustness check, I examine whether the results are

sensitive to the choice of the equilibrium selection rule. I re-estimate the model with the assumption

that the equilibrium market participants choose is the one that favors LAWSON the most. The mo-

tivation is the following: the baseline speci�cation assumes the observed outcome is the equilibrium

that is most pro�table to Family Mart. This assumption is intuitive because the aggregate pro�ts

increase with the number of stores. For instance, given that the number of Family Mart stores is 40

percent higher than the number of LAWSON stores, the aggregate pro�ts will also be 40 percent

higher if the pro�ts per store are the same across chains on average. Although the assumption

makes sense in this industry, the concern is that this selection rule is too strong to assume, and we

would like to see the outcomes when we change the equilibrium selection rule.

Column 5 in Table 5 displays the estimation results with the alternative equilibrium selec-

tion rule. Although the parameter estimate regarding competitive e¤ects across chains loses its

signi�cance, no signi�cant di¤erence exists in the demographics and zoning parameter across spec-

i�cations. Furthermore, the model with the alternative selection rule predicts a similar number of

stores for each chain as the one by the baseline model does. The largest di¤erence is that now

we have a negative and signi�cant coe¢ cient on the LAWSON dummy variable, implying that we

need to have a large and negative �xed e¤ect for LAWSON in order to justify the current market

con�gurations.
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8 Concluding Remarks

This paper proposes and estimates an empirical model of strategic store-network choices by two

chains. By formulating the model as a supermodular game of two players, I implement the seemingly

infeasible task of �nding equilibria out of a vast number of possible combinations of outcomes. In

contrast to previous studies, the model allows chains to choose which markets to enter as well as how

many stores to open in each of those markets. Generalizing the model to a larger number of stores

is bene�cial to the convenience-store industry in Okinawa due to dense con�gurations of stores.

The speci�cation of the industry as a game by two chains formulating store networks enables me

to investigate policy questions. In particular, I consider two counterfactual simulations: whether a

merger or regulations have economically signi�cant impacts on entry behavior of retail chains and

pro�ts and total sales.

I report three �ndings. First, I show that, by introducing multiple-store choice in chain-entry

model, the model accommodates both positive and negative e¤ects among own stores in the same

market ("within-market e¤ect"). This framework would be particularly useful in studying retail

industries with dense con�gurations of stores. The within-market e¤ect is estimated to be negative

and as large as the business-stealing e¤ect, the reduction in revenues due to the presence of a

rival chain store. Second, merger simulations con�rm that a hypothetical merger between Family

Mart and LAWSON would likely result in a smaller number of total stores, although the post-

merger density of stores in the city center would be greater than the pre-merger density. Total sales

decrease due to a decline in the total number of stores, suggesting that the merger would not bene�t

consumers. Finally, an experiment of eliminating the current zoning regulation shows that, in the

new equilibrium, chains would increase their number of stores and sales, but the magnitude of the

increase is modest.
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Appendix

A.1 Japanese Convenience-Store Industry: Background

Convenience stores are one of the fastest growing retail formats in the last twenty years.29 The

industry is concentrated in that a handful of nationwide large players with many outlets dominate

the industry: the six national chains account for 71 percent of the total number of convenience-store

outlets in Japan in 2002 and 82 percent of the total sales. Among franchise chains, 7-Eleven is the

largest convenience chain in the world, operating in more than 20 countries.30

As its name suggests, the industry focuses on consumer convenience in order to increase customer

satisfaction in terms of store accessibility and the variety of items available relative to �oor space.

Convenience-store chains pursue this goal by (1) access: minimizing the travel costs by opening

many stores that are on average 110 square meters or 1; 184 square feet, which is smaller on average

than local supermarkets, groceries, and other food retail stores; (2) variety: increasing the number

of items per store �oor area so consumers can �nd what they are looking for without having to travel

to grocery stores or general stores. Convenience-store chains aim for one-stop service as much as

possible. As for price, the industry adopts low-volume and high-margin strategy rather than high-

volume low-margin, as is typical in the supermarket industry. The core merchandise of convenience

stores is food: about 70 percent of the sales are food, soft drinks, and alcoholic drinks. According

to the 2004 Census of Commerce, average annual sales per store are 1:6 million US dollars or 161

million yen, and 1:8 million dollars for 24-hour outlets.

Two features of the industry are suitable for the analysis of zoning and entry. First, convenience

stores are one of the major types of commercial store formats that may apply for an exception of

the zoning regulation under Article 34�1. Second, zoning may be more relevant for retail industries

because the competition is local due to travel costs on the consumer side. Furthermore, we would

expect zoning to be a more relevant consideration for industries that exhibit network externalities,

such as ATMs or retailers. This feature of industry makes �rms�store-network choices particularly

interesting because zoned areas are usually geographically contiguous rather than discrete, which

would shape the strategy of spatial entry across markets.

In retail markets, the success of outlets greatly depends on price and location due to localized

demand. In choosing among similar stores, consumers�major considerations are based on prices

and store locations. This �nding is especially true when outlets o¤er similar quality of services and

29The overall industry sales in 2004 were 6.7 trillion yen, which is approximately 5 percent of total retail sales.
307-Eleven Japan, which is the biggest company of all national 7-Elevens, owns companies in the United States and

China that yielded 23 billion dollars annually in 2005.
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a variety of products through franchising, which is the case in Japan�s convenience-store industry.

Several features of the convenience-store industry in Japan promote focusing solely on location

decisions of retail outlets. First, the industry for nationwide chain companies commonly adopts

uniform pricing, allowing me to abstract pricing decisions from each store. This ability to abstract

means we do not need price data in order to model pricing behavior. Emphasis on geographic

di¤erentiation in the industry is a natural consequence of lack of a di¤erentiation in product or

price. Relative to other retail industries, such as gasoline retailing or supermarkets, convenience

stores are densely located because most of the customers visit on foot.

Second, for the large nationwide chains, convenience stores o¤er similar merchandise, services,

and shopping experiences across outlets and chains. Of course, the quality of shopping experiences

matters as well. In fact, we see noticeable di¤erences across chains in brand images and quality of

goods and services provided, two fronts in which chains invest to improve. These quality di¤erences

consumers perceive will eventually show up in the di¤erences in sales across chain companies.

Two ownership types exist: franchised stores and corporate stores. For example, more than

80 percent of the total number of 7-Eleven stores in Japan are franchises. As is common in many

industries, obtaining the franchise status of stores is di¢ cult because chains treat this information

as proprietary. In the analysis, I do not distinguish between franchised stores and corporate stores.

I believe this decision is not problematic for this study because chain headquarters, not individual

franchise owners, decide how many outlets to install each year and where to put those new outlets.

A.2 The 1968 Urban Planning Law

Description of Zoning Regulations. In 1968, the government of Japan introduced the

Urban Planning Law (UPL), which is a comprehensive zoning regulation at the national level. This

law is designed to prioritize infrastructure investment and prevent urban sprawl and disorganized

urbanization in accordance with the government�s urban planning, such as preservation of farm

land, scenery, or natural environment. To this end, the law creates three types of zones in an

urban area and places di¤erent restrictions on land-use for each type, depending on whether the

government wants to promote urbanization in that area. The three types are: (1) Urbanization

area, (2) Urbanization control area, and (3) Undelineated area. I de�ne the Urbanization area

as the urbanized area or the area the government established as high priority for urbanization

by constructing public facilities such as water, gas, and electricity. In this area, no restriction

prevents the development or construction of facilities whose areas are less than 1; 000m2, such as

a convenience-store outlet. On the other hand, the aim of an Urbanization control area, in which
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most development actions are suppressed, is opposite that of the Urbanization area. Therefore, this

area provides less adequate public infrastructure than an Urbanization area does. The law requires

one to apply for permission from the governor of the prefecture or the city to build a new residential

home or a commercial facility such as a convenience store, demanding that the applicant must prove

the establishment will not go against the urban planning in that area. For the Undelineated area,

permission is not required to install an outlet under 3; 000m2; which is easily met for convenience

stores, as the average �oor size is 110m2.

The Urban Planning Law establishes a rule that prohibits the development of commercial stores

or residential houses without government permission. Although in principle you cannot build

convenience-store outlets in any Urbanization control area under the regulation above, a build-

ing permit system allows exceptions: under Article 34-1 of UPL, to acquire a permit for building

and operating an outlet in an Urbanization control area, the owner of the outlet needs to document

two things: (1) the outlet serves local people, and (2) the outlet provides daily necessities for the

people living in that Urbanization control area.31 Another requirement of complying with the law

is the need to show that the establishment one wants to build meets restrictions the cities set, such

as proximity to residential areas or maximum �oor space.

Urbanization areas, Urbanization control areas, and Undelineated areas account for 15 percent,

37 percent, and 48 percent of urban areas in Japan, respectively. The extent of coverage of popu-

lation by the urban planning area is substantial: these areas account for roughly 90 percent of the

population in Japan. In Okinawa, 7 percent of the total population lives in Urbanization control

areas, and 85 percent lives in other city areas. The remaining 8 percent live in rural areas.

Endogeneity Concern. An ideal empirical model for measuring the impacts of zoning on

entry would involve randomly assigning zoning restrictions to markets and comparing the outcomes

across zoned and unzoned markets. In reality, however, such social experiments are usually di¢ cult

to conduct. Instead, I treat the zoning regulation as exogenous in this study. The exogeneity of

zoning assumption would be especially problematic if zoning decisions were made based on some

unobserved (to the econometrician) market-speci�c factors, arising either from the demand or the

cost sides, which a¤ect pro�tability of convenience-store outlets. Then one may be mistakenly

attributing observed outcomes, such as variations in the number of outlets across markets, to costs

of zoning and not to systematic di¤erences in pro�tability across markets. As a result, the parameter

31 In practice, there can be another exception for some cities under Article 34-8 of UPL: if the store serves tra¢ c
drivers on major roads at roadside rest facilities, then under some conditions the development is permitted. However,
in Okinawa, this type of convenience store is not allowed; therefore, I am not going to attend to this exception.

45



estimates can su¤er from an omitted variable bias.

To alleviate the omitted variable bias, I include in the empirical model demographics at the

market level, such as population and the number of workers, to what otherwise would be a key

omitted variable. One suggestive feature of the industry favors this argument: consumers in city

areas travel smaller distances to visit convenience-store outlets, compared to other types of retail

formats such as large discount retailers or department stores. Furthermore, one piece of anecdotal

evidence mitigates the concern. A conversation with a local regulator�s sta¤ has revealed that,

in practice, the decisions on where to assign zoned/unzoned area are made solely on conditions

regarding population, and the degree of commercial activity is not considered because it involves

the hard task of predicting the size of commercial sales in the near future.

B.1 Proof of Proposition 1: Supermodularity for Multiple Stores within a Market

A game is (strict) supermodular if (1) Ni is nonempty compact sublattice Ni into Ni, (2) the payo¤

�i(Ni; Nj) is supermodular in its own strategy Ni for each Nj ; and (3) the player i�s payo¤ �i has

increasing di¤erences in (Ni; Nj) for all Ni 2 Ni and Nj 2 Nj . In the �rst subsection, I provide a

proof of supermodularity of the game when the across-market e¤ect occurs at the store level: the

positive spillovers across markets depends on not only the mere presence of outlets in neighborhood

markets but also on the number of outlets in these markets. In the next subsection, I provide

a proof of a case in which an across-market e¤ect occurs at the market level: the magnitude of

positive spillover across markets depends on the presence of chain i in the neighborhood markets.

So I assume the e¤ect does not depend on the number of outlets but rather the number of markets

in which chain i�s outlets are present.

Case (1): Across-Market E¤ect at the Outlet Level

I de�ne chain i�s strategy space as Ni = fNi;1; ::; Ni;Mg; where Ni;m is the number of outlets in

market m for chain i 2 fFM;LSg. In our analysis, I allow that chains have up to four stores in

a market. So Ni;m = f0; 1; ::; 4gM . The following proof is made in general, in the sense that it

will also contain the binary-choice case or more-than-�ve-choices case: if I allow only one store in

each market; we will replace Ni;m by Di;m, and the pro�t function will look like Jia (2008)�s model.
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Assuming symmetry across outlets within a given grid, the pro�t function for chain i is given by

�i(Ni; Nj) = �Mm=1[Ni;m � (Xm� + �across�l 6=m
Ni;l
Zm;l

+ �compNj;m

+hi;m(Ni;m) +
p
1� �2"m + ��i;m + 
1(m is zoned)]

= �Mm=1[Ni;m � (Xi;m + �across�l 6=m
Ni;l
Zm;l

+ �compNj;m + hi;m(Ni;m)]

= �Mm=1[Ni;m � (Yi;m + �across�l 6=m
Ni;l
Zm;l

+ hi;m(Ni;m)];

where j : chain i�s competitor

Xi;m � Xm� +
p
1� �2"m + ��i;m + 
1(m is zoned)

Yi;m � Xm� + �compNj;m +
p
1� �2"m + ��i;m + 
1(m is zoned).

I introduce a new term above, hi;m(Ni;m); that measures how much net of spillovers (cost savings

minus business stealing) you would obtain from having more than one store of the same chain i in

market m. The reason for having this term is that we may not observe a simple linear relationship

between the number of outlets and revenue in a given market. For example, if chain i has two outlets

in market m; the revenue from market m may not be just two times the revenue of having a store

in market m, holding other conditions equal. I introduce this term because positive spillovers from

having the same chain�s store(s) in the same market may dominate the business stealing among

those own stores or the other way around. Notice that I place no restrictions on the functional form

of hi;m(Ni;m): the function can be di¤erent across chains and markets, can take negative or positive

values, and can be linear or nonlinear in the number of outlets in the market m.

First, I verify the second condition of supermodularity of the game. The pro�t function for chain

i is supermodular in its own strategy if and only if �i(N 0
i)+ �i(N

00
i ) � �i(N 0

i ^N 00
i ) +�i(N

0
i _N 00

i )

for any N 0
i ,N

00
i 2 Ni: For convenience, I de�ne N1

i;m � N 0
i;m � min(N 0

i;m; N
00
i;m); N

2
i;m � N 00

i;m �

min(N 0
i;m; N

00
i;m); and N

3
i;m � min(N 0

i;m; N
00
i;m): The combined pro�ts from choosing N 0

i and N
00
i are

given by

�i(N
0
i) + �i(N

00
i ) = �Mm=1[N

0
i;m � (Yi;m + �across�l 6=m

N 0
i;l

Zm;l
+ hi;m(N

0
i;m)]

+�Mm=1[N
00
i;m � (Yi;m + �across�l 6=m

N 00
i;l

Zm;l
+ hi;m(N

00
i;m)]

= A+�Mm=1[N
0
i;mhi;m(N

0
i;m) +N

00
i;mhi;m(N

00
i;m)]; (A-1)

where A � �Mm=1(N
1
i;m +N

3
i;m) � (Yi;m + �across�l 6=m

1

Zm;l
(N1

i;l +N
3
i;l))

+�Mm=1(N
2
i;m +N

3
i;m) � (Yi;m + �across�l 6=m

1

Zm;l
(N2

i;l +N
3
i;l)):
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Likewise, the combined pro�ts from choosing N 0
i ^N 00

i and N
0
i _N 00

i will be

�i(N
0
i ^N 00

i ) + �i(N
0
i _N 00

i )

= �Mm=1[(N
0
i;m ^N 00

i;m) � (Yi;m + �across�l 6=m
(N 0

i;l ^N 00
i;l)

Zm;l
+ hi;m(N

0
i;m ^N 00

i;m)]

+�Mm=1[(N
0
i;m _N 00

i;m) � (Yi;m + �across�l 6=m
(N 0

i;l _N 00
i;l)

Zm;l
+ hi;m(N

0
i;m _N 00

i;m)]

= �Mm=1(N
1
i;m +N

2
i;m +N

3
i;m)(Yi;m + �across�l 6=m

1

Zm;l
(N1

i;l +N
2
i;l +N

3
i;l)

+�Mm=1N
3
i;m(Yi;m + �across�l 6=m

1

Zm;l
N3
i;l)

+�Mm=1[(N
0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) + (N
0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)]

= B +�Mm=1[(N
0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) (A-2)

+(N 0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)]; (A-3)

where B � �Mm=1[(N
1
i;m +N

2
i;m +N

3
i;m)(Yi;m + �across�l 6=m

1

Zm;l
(N1

i;l +N
2
i;l +N

3
i;l)

+N3
i;m(Yi;m + �across�l 6=m

1

Zm;l
N3
i;l)]:

Now, subtracting Eq.(A-1) from Eq.(A-2) provides

�i(N
0
i ^N 00

i ) + �i(N
0
i _N 00

i )� (�i(N 0
i) + �i(N

00
i ))

= B +�Mm=1[(N
0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) + (N
0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)]

�[A+�Mm=1[N 0
i;mhi;m(N

0
i;m) +N

00
i;mhi;m(N

00
i;m)]

= B �A+�Mm=1[(N 0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) + (N
0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)

�(N 0
i;mhi;m(N

0
i;m) +N

00
i;mhi;m(N

00
i;m))]

= �across�
M
m=1�l 6=m

N2
mN

1
l +N

1
mN

2
l

Zm;l

+�Mm=1[(N
0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) + (N
0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)

�(N 0
i;mhi;m(N

0
i;m) +N

00
i;mhi;m(N

00
i;m))]: (A-4)

The �rst term is the same as the binary-choice case (entry or exit) if we replace numer-

ator N2
mN

1
l + N

1
mN

2
l by corresponding index functions, D

2
mD

1
l + D

1
mD

2
l ; where D

1
m � D0i;m �

min(D0i;m; D
00
i;m) and D

2
m � D00i;m �min(D0i;m; D00i;m):

Now I examine the value of the second term market by market. Among a given set of the number

of outlets {N 0
i;m; N

00
i;m}, I can set N

0
i;m = max(N

0
i;m; N

00
i;m) without loss of generality. Then it follows

from above that N 00
i;m = min(N

0
i;m; N

00
i;m): Also, from the de�nition of meet and join, for each market
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m, N 0
i;m ^N 00

i;m = min(N
0
i;m; N

00
i;m) = N

00
i;m, and N

0
i;m _N 00

i;m = max(N
0
i;m; N

00
i;m) = N

0
i;m: The inside

of summation in the second term in Eq.(A-4) becomes

(N 0
i;m ^N 00

i;m)hi;m(N
0
i;m ^N 00

i;m) + (N
0
i;m _N 00

i;m)hi;m(N
0
i;m _N 00

i;m)

�(N 0
i;mhi;m(N

0
i;m) +N

00
i;mhi;m(N

00
i;m))

= N 00
i;mhi;m(N

00
i;m) +N

0
i;mhi;m(N

0
i;m)� (N 0

i;mhi;m(N
0
i;m) +N

00
i;mhi;m(N

00
i;m))

= 0: (A-5)

Combining Eq.(A-4) and Eq. (A-5) yields

�i(N
0
i ^N 00

i ) + �i(N
0
i _N 00

i )� (�i(N 0
i) + �i(N

00
i ))

= �across�
M
m=1�l 6=m

N2
i;mN

1
i;l +N

1
i;mN

2
i;l

Zm;l
: (A-6)

Noting that the numerator of the �rst term, N2
i;mN

1
i;l +N

1
i;mN

2
i;l; is always nonnegative because

each component is nonnegative by construction, and the denominator, distance variable Zm;l; is

always positive, I can conclude that the necessary and su¢ cient condition for supermodularity in

its own strategy to hold is �across � 0, regardless of the speci�cation of hi;m(Ni;m).

Eq.(A-6) implies that, within a given market, whether the positive spillover across outlets of

the same chain i dominates revenue reduction due to the presence of own store in the same market

(cannibalization or business stealing) does not a¤ect whether the game is supermodular in its own

strategy.

Now I verify the third condition of supermodularity of the game. The third condition holds if,

for all (Ni; ~Ni) 2Ni�Ni and (Nj ; ~Nj) 2Nj�Nj such that Ni � ~Ni and Nj � ~Nj ;

�i(Ni; Nj)��i( ~Ni; Nj) � �i(Ni; ~Nj)��i( ~Ni; ~Nj)

or, equivalently, �i(Ni; Nj)��i(Ni; ~Nj) � �i( ~Ni; Nj)��i( ~Ni; ~Nj):

In other words, "increasing di¤erence says that an increase in the strategies of player i�s rivals raise

the desirability of playing a high strategy for player i"(Fudenberg and Tirole 1991, p.492). So it

49



reduces to show that �i(Ni; Nj)��i(Ni; ~Nj) is increasing in Ni:

�i(Ni; Nj)��i(Ni; ~Nj)

= �Mm=1[Ni;m � (Xi;m + �across�l 6=m
Ni;l
Zm;l

+ �compNj;m + hi;m(Ni;m)]

��Mm=1[Ni;m � (Xi;m + �across�l 6=m
Ni;l
Zm;l

+ �comp ~Nj;m + hi;m(Ni;m)]

= �comp � �Mm=1Ni;m(Nj;m � ~Nj;m):

If �comp is positive, meaning that the pro�ts increase when you have a competitor chain in the same

grid, the pro�t function �i has increasing di¤erences in Ni;m: If �comp is negative, the pro�t function

�i has decreasing di¤erences in Ni;m because Nj � ~Nj : However, by using a simple transformation

trick in Vives (1990) in order to de�ne a new strategy for competitor, N̂j = �Nj ; the pro�t function

�i will have increasing di¤erences.

Case (2): Across-Market E¤ect at the Market Level

For the variables Ni; N1
i;m; N

2
i;m; N

3
i;m;Xi;m;Yi;m; and hi;m(Ni;m); I use the same de�nition as in the

previous subsection. I also de�ne an indicator function for chain i�s presence in market m; Di;m;

which equals 1 if chain i enters in market m; 0 otherwise. So Di;m = 1 if and only if Ni;m � 1;

Di;m = 0 otherwise.

First, I verify the second condition of supermodularity of the game. The pro�t function will be

this form:

�i(Ni; Nj) = �
M
m=1[Ni;m � (Yi;m + �across�l 6=m

Di;l
Zm;l

+ hi;m(Ni;m)]:

The only di¤erence from the previous subsection is the second term: we now have �across�l 6=m
Di;l
Zm;l

instead of �across�l 6=m
Ni;l
Zm;l

: I de�ne D1i;l � D0i;l � min(D0i;l; D00i;l); D2i;l � D00i;l � min(D0i;l; D00i;l) and

D3i;l � min(D0i;l; D00i;l): By following a similar algebra as before, I obtain the second condition as

�i(N
0
i ^N 00

i ) + �i(N
0
i _N 00

i )� (�i(N 0
i) + �i(N

00
i ))

= �across�
M
m=1�l 6=m

N2
i;mD

1
i;l +N

1
i;mD

2
i;l

Zm;l
: (A-7)

Noting that

N2
i;mD

1
i;l +N

1
i;mD

2
i;l = [N 00

i;m �min(N 0
i;m; N

00
i;m)][D

0
i;l �min(D0i;l; D00i;l)]

+[Ni;m �min(N 0
i;m; N

00
i;m)][D

00
i;l �min(D0i;l; D00i;l)]
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is nonnegative because either N2
i;m; D

1
i;l; N

1
i;m;or D

2
i;l is nonnegative, we can conclude that the nec-

essary and su¢ cient condition for supermodularity in its own strategy to hold is �across � 0.

Eq.(A-7) implies that, within a given market, whether there is positive spillover across outlets

of the same chain i or revenue reduction due to the presence of own store in the same market

(cannibalization) does not a¤ect whether the game is supermodular in its own strategy.

Now to verify the third condition of supermodularity of the game, I show that �i(Ni; Nj) �

�i(Ni; ~Nj) is increasing in Ni:

�i(Ni; Nj)��i(Ni; ~Nj)

= �Mm=1[Ni;m � (Xi;m + �across�l 6=m
Di;l
Zm;l

+ �compNj;m + hi;m(Ni;m)]

��Mm=1[Ni;m � (Xi;m + �across�l 6=m
Di;l
Zm;l

+ �comp ~Nj;m + hi;m(Ni;m)]

= �comp � �Mm=1Ni;m(Nj;m � ~Nj;m);

which is exactly the same as case 1. Therefore, by using the same argument as before, the pro�t

function �i will have increasing di¤erences.

B.2 Proof of Proposition 2: Derivation of Necessary Condition: V(N)

In this section, I derive a necessary condition V (N) and provide a proof of increasing in N in

general. Player i maximizes the pro�ts from every market:

�i(Ni; Nj) =
MP
m=1

�i;m =
MP
m=1

[Ni;m[Yi;m(Nj) + �across
P
l 6=m

Ni;l
Zm;l

+ h(Ni;m)]]:

Notice I represent the within-market e¤ect by a functional form h(Ni;m) instead of �within1(Ni;m =

2) in the empirical speci�cation of the paper. I assume h(1) = h(0) = 0 as no other store is in

market m:

De�ne a function V (Ni) = (V1(Ni); ::Vm(Ni); ::VM (Ni)), which maps from the current strategy

vector Ni 2 Ni to itself V (Ni) 2 Ni: The purpose of the function Vm(Ni) is to update the current

entry decision in market m; Ni;m 2 f0; 1; ::;Kg; so that the updated entry decision Nupdated
i;m =

Vm(Ni) maximizes the pro�t contribution from market m: By de�nition, the pro�t maximizing

vector N�
i = argmaxNi �i(Ni; Nj) is a �xed point of the function V (N

�
i ) = N

�
i :

Consider updating Ni;m; which maximizes the pro�ts from marketm to aggregated pro�ts, hold-

ing the choice of the number of stores in other markets �xed. To �nd a maximizer componentwise

N�
i;m = argmaxNi;m�i(Ni; Nj), I adopt the following algorithm, which sequentially compares and
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updates the choice in the number of stores in market m; Ni;m.

In the �rst step, I compare the pro�ts �i when choosing Ni;m = 0 and Ni;m = 1; holding the

choice of the number of stores in other markets �xed. Let us denote the decision rule in this step

by an index function D1m, de�ned as

D1m =

8<: 1 if �i(Ni;1:::; 1; ::; Ni;M ) � �i(Ni;1:::; 0; ::; Ni;M )

0 otherwise.

I de�ne N 00
i;m = argmaxNi;m=f0;1g �i(Ni;1:::; Ni;m; ::; Ni;M ). In the second step, I compare the pro�ts

�i when choosing Ni;m = N 00
i;m and Ni;m = 2; holding the choice of the number of stores in other

markets Ni;l 6=m �xed. I de�ne the decision rule D2m in the similar way as in the previous step:

D2m =

8<: 1 if �i(Ni;1:::; 2; ::; Ni;M ) � �i(Ni;1:::; N 00
i;m; ::; Ni;M )

0 otherwise.

In general, I iterate this K + 1 times by increasing Ni;m by one each time I go to the next step,

starting from Ni;m = 0. When I reach the �nal candidate Ni;m = K, the algorithm stops and I

should have the maximizer N 00
i;m = argmaxNi;m �i(Ni; Nj) = N�

i;m: The maximizer N
�
i;m can be

explicitly represented in the linear combination of the decision rules, (D1m; ::; D
K
m):

N�
i;m = V Km (Ni) = D

K
m �K + (1�DKm) � [DK�1m � (K � 1) + (1�DK�1m ) � [DK�2m � (K � 2) + (1�DK�2m )[::

:: � [D1m � 1 + (1�D1m) � 0]]::]]]:

This necessary condition V Km can be written in a recursive form as

V Km = DKm �K + (1�DKm) � V K�1m (A-8)

where V Km =

8<: K if DKm = 1

V K�1m otherwise
;

and DKm compares the pro�ts by choosing Ni;m = K and Ni;m = V K�1m and takes 1 if �i(Ni;m =

K) � �i(Ni;m = V K�1m ), 0 otherwise. In the nonrevenue model in the paper, K is set 2 and the

necessary condition will be

V 2m(Ni) = D2m � 2 + (1�D2m)[D1m � 1 + (1�D1m) � 0]

= D2m � 2 + (1�D2m)D1m;
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where the exact form of decision rule DKm is given in the next subsection.

B.3 Proof of Proposition 3: V (Ni) is Nondecreasing in Ni

Here, I derive the exact formula for DKm : In general, the index function describing the decision rule

regarding whether to choose N 0
i;m over N

00
i;m(6= N 0

i;m) is given as

Dm(N
0
i;m; N

00
i;m) =

8<: 1 if �i(Ni;1:::; N 0
i;m; ; ::; Ni;M ) � �i(Ni;1:::; N 00

i;m; ::; Ni;M )

0 otherwise.
(A-9)

Without loss of generality, I set N 0
i;m > N

00
i;m: The decision rule Dm will be

Dm = 1[(N 0
i;m �N 00

i;m)[Yi;m + 2(N
0
i;m �N 00

i;m)�across
P
l 6=m

Ni;l
Zm;l

] +N 0
i;mh(N

0
i;m)�N 00

i;mh(N
00
i;m) � 0]

= 1[Yi;m + 2�across
P
l 6=m

Ni;l
Zm;l

+
N 0
i;mh(N

0
i;m)�N 00

i;mh(N
00
i;m)

N 0
i;m �N 00

i;m

� 0]: (A-10)

So the DKm will be represented by

DKm(N
0
i;m= K;N

00
i;m= V

K�1
m ) = 1[Y i;m+2�across

P
l 6=m

Ni;l
Zm;l

+
K � h(K)� V K�1m � h(V K�1m )

K � V K�1m

� 0]:32

(A-10)

To show that V (Ni) is nondecreasing in Ni; I �rst show that V Km is nondecreasing in Ni;m: In

the case of K = 1; V 1m will be

V 1m = D1m � 1 + (1�D1m) � 0 = D1m;

where D1m = 1[Yi;m + 2�across
P
l 6=m

Ni;l
Zm;l

� 0]: (A-11)

V 1m is nondecreasing in Ni;m because V
1
m = D

1
m does not depend on the current choice in the market

32 If we assume the functional form for pro�t interactions among own stores in the same market is linear in the
number of stores,

h(Ni;m) =

�
�within(Ni;m � 1) if Nm � 2

0 if Nm < 2

= �within(maxfNi;m; 1g � 1)

then DK
m will be

DK
m(N

0
i;m = K;N 00

i;m = V K�1
m ) = 1[Yi;m + 2�across

P
l6=m

Ni;l

Zm;l
+ �within(K + V K�1

m � 1) � 0]:
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m; as is clear from Eq.(A-11). Next, in the case of K = 2; V 2m will be

V 2m(Ni) = D2m � 2 + (1�D2m)D1m; (A-12)

where D2m = 1[Yi;m + 2�across
P
l 6=m

Ni;l
Zm;l

+
2 � h(2)� V 1m � h(V 1m)

2� V 1m
� 0] (A-13)

=

8<: 1[Yi;m + 2�across
P
l 6=m

Ni;l
Zm;l

+ 2h(2)� h(1) � 0] if V 1m = 1

1[Yi;m + 2�across
P
l 6=m

Ni;l
Zm;l

+ h(2) � 0] if V 1m = 0:

Substituting Eq.(A-11) and Eq.(A-13) into Eq.(A-12) yields V 2m(Ni), which does not depend on

Ni;m because neither Eq.(A-11) nor Eq.(A-13) contains Ni;m. Therefore, V 2m is nondecreasing in

Ni;m: By using an induction argument starting from K = 1, V Km is nondecreasing in Ni;m.

Second, I show that V Km is nondecreasing in Ni;l for any market l 6= m: In the case of K = 1;

V 1m is nondecreasing in Ni;l as long as �across is nonnegative, as one can examine from Eq.(A-11).

In general, consider two vectors Ni and ~Ni with Ni;l � ~Ni;l and Ni;m = ~Ni;m for market m 6= l:

I prove by contradiction. Suppose there exist vectors Ni and ~Ni with Ni;l � ~Ni;l and Ni;m = ~Ni;m

for market m 6= l such that V Km (Ni) < V Km ( ~Ni): Let us de�ne

V Km (Ni) = N�
i;m

V Km (
~Ni) = N��

i;m

and we have N�
i;m < N

��
i;m. By using Eq.(A-10), the above equations implies that

Dm(N
�
i;m; N

��
i;m; Ni;l) = 1

Dm(N
�
i;m; N

��
i;m;

~Ni;l) = 0;

or

Dm(N
�
i;m; N

��
i;m; N i;l) = 1[Y i;m+2�across

P
l 6=m

Ni;l
Zm;l

+
N�
i;mh(N

�
i;m)�N��

i;mh(N
��
i;m)

N�
i;m �N��

i;m

� 0] = 1(A-14)

Dm(N
�
i;m; N

��
i;m;

~N i;l) = 1[Y i;m+2�across
P
l 6=m

~Ni;l
Zm;l

+
N�
i;mh(N

�
i;m)�N��

i;mh(N
��
i;m)

N�
i;m �N��

i;m

� 0] = 0:(A-15)

However, both Eq.(A-14) and Eq.(A-15) cannot hold at the same time as long as �across is nonneg-

ative and Ni;l � ~Ni;l because Dm(N�
i;m; N

��
i;m; Ni;l) is a nondecreasing function in Ni;l.
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B.4

In this section, I provide a proof that the Round-Robin iteration algorithm, starting from zero stores

in every market for LAWSON, leads to the equilibrium that delivers the highest pro�ts among all

equilibria of the game. As in section 3, I denote the equilibrium by (NT
FM ; N

T
LS): By construction,

(NT
FM ; N

T
LS) = (N

T+1
FM ; NT+1

LS ).

First, I show that NT
LS � N�

LS for any N
�
LS that belongs to the set of all Nash equilibria of the

game, N�. Because the iteration starts from zero entry in every market, N0
LS = inf(NLS), we have

N0
LS � N�

LS and N
0
LS � N1

LS . Topkis (1979) shows that in a supermodular game, the best response

function of player i is nonincreasing in player �i�s strategy for each i.33 It follows that

NFM = BRFM (NLS) is nonincreasing in NLS and N0
LS � N1

LS

) N1
FM = BRFM (N

0
LS) � N2

FM = BRFM (N
1
LS): (A-16)

Similarly, for LAWSON,

NLS = BRLS(NFM ) is nonincreasing in NFM and N1
FM � N2

FM

) N1
LS = BRLS(N

1
FM ) � N2

LS = BRLS(N
2
FM ): (A-17)

By iterating the operations in Eq.(A-16) and (A-17) sequentially for Family Mart and LAWSON

until the best response algorithm converges, I have the following sequence:

N0
LS � N1

LS � ::: � NT
LS = N

T+1
LS

N1
FM � N1

FM � ::: � NT
FM :

It holds that NT
LS � N�

LS for any N
�
LS that belongs to the set of all Nash equilibria of the game

because if NT
LS > N

�
LS , the iteration process in Eq.(A-16) and (A-17) should have converged earlier

than at T th iterations. This conclusion contradicts the initial assumption that the iteration process

converges at T th iteration. Because the pro�t function for Family Mart, �FM (NFM ; NLS), is

nonincreasing in the rival chain�s strategy NLS , provided that the competitive e¤ect from rival

33 In the original statement of Topkis (1979, 1998 Lemma 4.2.2.), in a supermodular game, the best response function
of player i is nonincreasing in player �i�s strategy for each i. The transformation trick in Vives (1990) in order to
de�ne a new strategy for competitor, N̂j = �Nj , will recover the stated results above.
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chain is nonpositive (�comp;rival � 0) it follows that

�FM (N
�
FM ; N

T
LS) � �FM (N�

FM ; N
�
LS) (A-18)

for any (N�
FM ; N

�
LS) that belongs to the set of all Nash equilibria of the game. Also,

�FM (N
T
FM ; N

T
LS) � �FM (N�

FM ; N
T
LS) (A-19)

holds because NT
FM is the best response to NT

LS . Combining Eq.(A-18) and (A-19), we have

�FM (N
T
FM ; N

T
LS) � �FM (N�

FM ; N
�
LS) 8fN�

FM ; N
�
LSg 2 N�;

where N� is the set of all Nash equilibria of the game.

C Monte Carlo Experiments

I provide Monte Carlo evidence on the performance of the method of simulated moments estimator

for a simpli�ed version of the model of chain-store network decisions. The central purpose of this

exercise is to perform robustness checks: to examine the extent to which the MSM estimator recovers

the true parameter values from data I have arti�cially generated.

I construct fake data sets by choosing the "true" parameters of the model �0, the pro�t shocks

um = (�FM;m; �LS;m; "m) that are drawn from a standard normal distribution, and the exogenous

data on demographics Xm that are arti�cially created from a standard normal distribution. With

the true parameters �0, pro�t shocks um, and demographics Xm, I compute the data on the entry

con�gurations (NFM;m; NLS;m) for each data set by solving for the pure-strategy Nash equilibrium

most favorable to Family Mart. I repeat this data-generating process 50 times with the same

parameters �0 and the same demographics Xm but di¤erent pro�t shocks um across 50 repetitions

to obtain 50 independent data sets. Second, for each of the 50 di¤erent data sets, I estimate

the structural parameters �̂MSM by using the data on demographics Xm and entry con�gurations

(NFM;m; NLS;m), pretending I observe neither the true parameter �0 nor the particular realization

of pro�t shocks um. By doing so, I obtain 50 sets of parameter estimates �̂MSM . The simulation

draws I use for the estimation are di¤erent from the ones used for generating fake data sets. Finally,

to implement the experiments, I use four di¤erent numbers of total markets M = 16; 36; 144;and

1600. So I generate 50 data sets for these four di¤erent settings on the number of markets.
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Columns 2 through 4 in Table 10 summarize the results of Monte Carlo experiments for the

number of markets M = 16; 36; 144, and 1600 case. I �nd that in all four cases, the estimator

performs similarly. To show the precision of the estimator, I report the mean and the standard

deviation of the estimated parameters �̂MSM = (�; �across; �comp; �). The mean of the estimated

parameters is a simple average of 50 parameter estimates for 50 di¤erent data sets, and it falls within

a single standard error from the truth values. Parameters � and � are more precisely estimated

than the other parameters �across; �comp. The mean of our MSM estimator performs well on average

in terms of recovering the true values, and the estimates are robust across di¤erent settings on the

number of markets, ranging from 16 to 1; 600.

D Estimation Details

D.1 Implementations of Estimation

I take the following steps to estimate �.

1. Prepare a set of simulation draws �S;all = (�1; �2; ::; �S), where �s = ("s;r; "s;c; �s;rFM ; �
s;r
LS ; �

s;c
FM ; �

s;c
LS)

are pro�t shocks and S is the number of simulations.

2. For a given value of model parameter � and a given simulation draw �s, solve for equilibrium

predictions regarding the number of stores by the Round-Robin algorithm. It involves the

following four steps.

(a) Start from the smallest strategy vector in LAWSON�s strategy space, N0
LS = (0; 0; : : : :0).

(b) Compute the best response of Family Mart N1
FM , given parameter �, simulation draw

�s, and LAWSON�s strategy N0
LS . The computation process involves the following three

steps.

i. Starting fromNFM = (0; ::; 0), I update the choice ofNFM;m by applying a component-

wise optimality condition V until convergence, obtaining the lower bound vector of

Family Mart�s best response.

ii. Starting fromNFM = (4; ::; 4); I update the choice ofNFM;m by applying a component-

wise optimality condition V until convergence, obtaining the upper bound vector of

Family Mart�s best response.

iii. Evaluate all the vectors between the upper and the lower bound vector of my best

response to �nd the vector that maximizes the total pro�ts.
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(c) Compute the best response of LAWSON, given Family Mart�s best response N1
FM : :

(d) Iterate the above steps (b)-(c) T times until we obtain convergence: NT
FM = NT+1

FM and

NT
LS = N

T+1
LS . Converged vectors are a Nash equilibrium.

3. Repeat the previous step S times by using S di¤erent simulation draws.

4. Formulate a simulator by taking an average of the simulated outcomes over S times.

5. Construct and compute the value of the objective function.

6. Search for the value of � that minimizes the objective function by repeating the steps (2) �

(5), obtaining �̂MSM :

D.2 Moment Conditions

The current set of 22 moments that match the model prediction and the data is the following: (1)

Number of Family Mart stores, (2) Number of LAWSON stores, (3) Number of Family Mart stores

in adjacent markets, (4) Number of LAWSON stores in adjacent markets, (5) Total Sales, (6) Total

Sales, 24-hour stores, (7) - (12): Interaction between moments (1) - (6) and daytime population,

(13) - (18): Interaction between moments (1) - (6) and nighttime population, and (19) - (22):

Interaction between moments (1) - (4) and zoning status index.

In population representation, moments (1) - (6) have an expected mean of zero at the true

parameter as Eq.(4) in Section 4 shows. Moments (7) -(22) are based on Eq.(5) and (6) in Section

4; namely, multiplying the moment conditions (1) - (6) by any function of conditioning variables (i.e.,

market characteristics Xm, containing three variables: daytime population, nighttime population,

zoning status) should also have expected mean zero at the true parameter. This multiplication

creates 6 � 3 = 18 moments additionally. I didn�t include interaction between (5) - (6) and zoning

status index because, in the data, interactions are zero in virtually all markets, meaning that sales

data are not available in most of zoned markets. The zero interaction is because the number of

total stores in those zoned markets rarely exceeds two.

D.3 Minimization

Because the objective function in Eq.(7) is not di¤erentiable in the argument �, I use nonderivative

optimization methods. To ensure the reliability of the estimates, I employ a simulated annealing

algorithm in addition to the Nelder-Meade simplex search. The non-smoothness of the objective

function stems from the fact that the simulated outcomes are often not smooth. For instance,
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consider constructing a simple simulator for choice probability P (�) for �xed number of simulations

S. The simulated probabilities, ~P (�), will be in the set f0; 1=S; 2=S; :::; S=Sg. We can see that as �

varies, ~P (�) will jump between fraction of S. As a consequence, ~P (�) is discontinuous in � and so

is the sample moment and the criterion function for minimization. The non-smoothness of ~P (�) is

the reason gradient-based optimization routines will not work. I use simulated annealing or simplex

methods, which do not rely on di¤erentiability of the function in �. I tried several di¤erent starting

values for each parameter so as not to fall into a local minimum. For evidence that being careful

with the sources of numerical inaccuracy matters, see Dube, Fox, and Su (2008).

D.4 Simulation Draws

I use Halton draws from a standard distribution for each element in �s = ("s;r; "s;c; �s;rFM ; �
s;r
LS ; �

s;c
FM ; �

s;c
LS)

instead of drawing from pseudo-random numbers as a variance reduction technique. As Train (2000)

argues, many studies con�rm that two properties of Halton draws, negative correlation over obser-

vations and better coverage than random draws, make simulation errors much smaller than random

draws of the same size. Two steps exist to obtain simulation draws for each element in �s. First, I

generate a Halton sequence of numbers, such as 1=3; 2=3; 1=9; 4=9; 7=9; :::; all of which are between 0

and 1. Second, I obtain simulation draws from a standard normal distribution by plugging Halton

sequence numbers into the inverse of the standard normal cumulative distribution function. If we

are running 200 simulations, the number of simulation draws I generate for each element in �s is

834 (# of markets)�200 (# of simulations).
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FIGURE 5

FIGURE 6

NUMBER OF STORES

   NOTE. -  Green areas in the right panel shows zoned areas.

   NOTE. -  Green areas in the right panel shows zoned areas.

BASELINE (LEFT) AND INCREASE DUE TO ELIMINATION OF REGULATION (RIGHT), LAWSON

BASELINE (LEFT) AND INCREASE DUE TO ELIMINATION OF REGULATION (RIGHT), FAMILY MART

NUMBER OF STORES



61

FIGURE 7

FIGURE 8

   NOTE. -  Family Mart as the acquirer (left) and LAWSON as the acquirer (right). I construct the difference by subtracting the number of
Family Mart and LAWSON stores from the number of the acquirer's stores. I assume the costs of closing and remodeling a store are US
$100,000 and US $50,000, respectively.

DIFFERENCE IN NUMBER OF STORES BEFORE AND AFTER MERGER

NUMBER OF STORES, BOTH CHAINS (BEFORE MERGER, LEFT) AND FAMILY MART (ACQUIRER)



Variable Mean Std. Dev. Minimum Maximum Total

Population (Units: people)

   All Markets (834 Markets) 1,434 2,588 0 18,977 1,195,787
   Zoned Markets (140 Markets) 1,298 1,299 0 6,119 181,669
   Unzoned Markets (694 Markets) 1,461 2,777 0 18,977 1,014,118

Number of Workers (Units: people)

   All Markets (834 Markets) 580 1,612 0 32,776 484,097
   Zoned Markets (140 Markets) 457 634 0 4,008 64,014
   Unzoned Markets (694 Markets) 605 1,743 0 32,776 419,870

Number of Stores
   All Stores 0.542 1.295 0 13 452
   Family Mart 0.170 0.550 0 7 142
   LAWSON 0.122 0.434 0 6 102
   Local Store 0.255 0.694 0 7 213
   Local Store, 24 hours 0.160 0.499 0 5 133

Number of Own Chain Stores in Adjacent Markets
   Family Mart 1.248 2.675 0 19 1,041
   LAWSON 0.869 1.923 0 15 725

Geographical Distance to Its Distribution Center (kilometer)
   Family Mart 29.73 20.77 0.35 84.86 -
   LAWSON 30.80 20.98 0.55 86.18 -

Total Sales at the Market Level  (thousand US dollars)
   Markets with more than two stores (50 Markets) 5,340 3,250 1,946 17,867 266,988
   Markets with more than two 24-hour stores (31 Markets) 5,462 3,288 2,662 16,687 169,334

Sales  (thousand US dollars) Total Per Store (=Total Sales / # of Stores)

   All Stores 587,120 1,299
   Family Mart 203,040 1,430
   LAWSON 148,540 1,456
   Local Store 235,540 1,106

   NOTE. - A market is defined as a 1km square grid of which borders are defined by the Bureau of Census.
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TABLE 1

OKINAWA, 2002

834 Sample Markets

DESCRIPTIVE STATISTICS ACROSS MARKETS



Variable (1) (2) (3) (4)

Nighttime Population (thousand people) 0.240 0.109

(0.008)*** (0.008)***

Log Nighttime Population (thousand people) 0.339 0.017

(0.018)*** (0.03)

Daytime Population (thousand people) 0.320

(0.014)***

Log Daytime Population (thousand people) 0.491

(0.038)***

Zoned Area -0.098 -0.072 -0.332 -0.264

(0.057)* (0.044) (0.069)*** (0.063)***

R-squared 0.51 0.70 0.30 0.42
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TABLE 2
DESCRIPTIVE REGRESSIONS, OLS

   NOTE. - * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors in parentheses. Observations
are 834 markets. The dependent variable is the aggregate of Family Mart and LAWSON stores in a given market.



Number of Stores, Family Mart 0 1 2 3 6 Number of Markets

0 693 35 2 0 0 730

1 53 25 3 0 0 81

2 5 5 5 1 0 16

3 2 0 0 0 0 2

4 0 2 0 1 1 4

7 0 0 0 1 0 1

Number of Markets 753 67 10 3 1 834

Number of Stores, Family Mart 0 1 2 3 4 Number of Markets

0 669.1 47.8 0.5 0.1 0.1 718

1 77.6 23.4 1.5 0.5 0.6 104

2 2.7 2.1 0.5 0.2 0.4 6

3 0.6 1.1 0.3 0.1 0.3 2

4 0.3 1.4 0.8 0.3 1.6 4

Number of Markets 750 76 3 1 3 834
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    NOTE. -Each element in the matrix shows the simulated number of markets in the sample that corresponds to the market configuration of
the vertical (Family Mart) and the horizontal (LAWSON) axis. The reported number in each cell is averaged over 200 simulations. I treat the
market configurations (FM,LS) = (7,3) and (4,6) as (4,3) and (4,4), respectively.

Number of Stores, LAWSON

TABLE 4
PREDICTED MARKET CONFIGURATIONS FOR FAMILY MART AND LAWSON

OBSERVED MARKET CONFIGURATIONS FOR FAMILY MART AND LAWSON

TABLE 3

Number of Stores, LAWSON

   NOTE. - Each element in the matrix shows the number of markets in the sample that corresponds to the market configuration of the vertical
(Family Mart) and the horizontal (LAWSON) axis. Shaded market configurations are the ones endogenized by the model.



Variable Estimate Standard
Error Estimate Standard

Error Estimate Standard
Error

Nighttime Population (β_pop ) (Units: 1,000 people) 0.154 0.052 0.296 0.077 0.157 0.027

Daytime Population (β_bus ) (Units: 1,000 people) 0.646 0.096 0.286 0.080 0.578 0.266

Zoned Area (γ ) -0.103 0.052 -0.282 0.148 -0.110 0.113

Across-market Effect (δ_across ) 0.046 0.038 0.003 0.179 0.046 0.134

Within-market Effect (δ_within ) -0.701 0.336 -0.453 0.769 -0.895 0.947

Business-Stealing Effect by Rival Chain Store (δ_competitive_rival ) -0.945 0.184 -0.816 0.337 -0.472 0.691

Constant in Latent Profit Function (µ ) -1.927 0.098 -2.063 0.226 -1.819 0.153

LAWSON Store  (µ_LAWSON ) 0.026 0.135 -0.322 0.148

Number of Markets 834 1138 834

Value of the Objective Function 3.2 42.3 13.4

Model Prediction Level Std.Dev Level Std.Dev Level Std.Dev
    Number of Stores, Family Mart (Data:127) 131.3 98.9 130.1 30.9
    Number of Stores, LAWSON (Data: 95) 96.2 138.7 97.2 128.1

Policy 1: No Zoning Level %Δ Level %Δ Level %Δ

    Number of Stores, Family Mart 133.2 1.4% 137.9 6.0%
    Number of Stores, LAWSON 97.6 1.5% 92.9 -4.4%

Poilcy 2: Zoning Everywhere
    Number of Stores, Family Mart 122.0 -7.1% 125.1 -3.8%
    Number of Stores, LAWSON 89.5 -7.0% 83.9 -13.7%
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   NOTE. - The number of simulations used in the MSM estimation is 200.

PARAMETER ESTIMATES FROM NON-REVENUE MODEL

TABLE 5

Baseline Equilibrium favors
LAWSON50 % Shifted Grids



Variable Estimate Standard Error

Revenue Equation

   Nighttime Population (β_pop ) (Units: 1,000 people) 71.3 23.2

   Daytime Population (β_bus ) (Units: 1,000 people) 47.6 5.4

   Business-Stealing Effect by Own Chain Store (δ_competitive_own ) -545.0 84.8

   Business-Stealing Effect by Rival Chain Store (δ_competitive_rival ) -378.4 170.5

   Business-Stealing Effect by Local Store (δ_competitive,local ) -108.9 112.7

   LAWSON Store (µ_LAWSON ) 2.5 9.7

   Local Store (µ_local ) -31.2 590.7

   Constant in Revenue Equation (µ_revenue ) 820.7 168.6

Cost Equation

   Across-market Effect (δ_across ) -59.5 59.9

   Cost-Savings Effect by Own Chain Store (δ_saving ) -125.8 208.6

   Distance from the Distribution Center (µ_dist ) 8.0 19.7

   Zoned Area (γ ) 50.3 47.6

   Constant in Cost Equation (µ_cost ) 1,129.2 113.0

Correlation Parameter in Profit Shocks  (ρ ) 0.93 0.13

Standard Deviation of the Unobserved Profits (λ) 121.2 44.4

Model Prediction Data Level Std.Dev

  Number of Stores
    Family Mart 139 140.3 7.7
    LAWSON 100 98.7 8.2

  Number of Stores in Adjacent Markets
    Family Mart 1041 1038.2 57.6
    LAWSON 725 722.8 61.6

  Aggregate Sales
     All Stores (thousand US dollars) 266,988 225,882 11,621
     24-hour Stores (thousand US dollars) 169,334 157,884 9,311
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   NOTE. - Parameters below the second row are measured in thousand US dollars with the exception of ρ . Observations are 834
markets. The number of simulations used in the MSM estimation is 200.

PARAMETER ESTIMATES FROM MODEL WITH REVENUE

TABLE 6



Variable Data Prediction Prediction %Δ Prediction %Δ

Aggregate Number of Stores
Family Mart 139 140.3 146.8 4.6% 118.4 -15.6%
   (in originally zoned 140 markets) 14 13.6 19.8 45.8% 13.3 -1.6%
LAWSON 100 98.7 102.2 3.6% 81.9 -17.0%
   (in originally zoned 140 markets) 11 8.6 12.2 41.8% 8.5 -1.5%

Aggregate Number of Own Stores in Adjacent Markets
Family Mart 1041 1038.2 1087.0 4.7% 892.0 -14.1%
LAWSON 725 722.8 749.1 3.6% 613.4 -15.1%

Aggregate Sales (million US dollars)
All Stores $587.1 $514.3 $524.0 1.9% $481.0 -6.5%
Family Mart $203.0 $169.6 $176.4 4.0% $148.9 -12.2%
   (in originally zoned 140 markets) n/a $15.9 $22.4 41.1% $15.6 -1.5%
LAWSON $148.5 $121.4 $125.1 3.0% $104.9 -13.6%
   (in originally zoned 140 markets) n/a $10.0 $13.8 37.4% $9.9 -1.4%
Local Stores $235.5 $223.3 $222.6 -0.3% $227.2 1.7%

Aggregate Sales in Markets with More than 2 Stores  (million US dollars)
All Stores $267.0 $225.9 $228.3 1.1% $212.1 -6.1%
24-hour Stores $169.3 $157.9 $158.9 0.6% $144.8 -8.3%

Aggregate Profits  (million US dollars)
Family Mart n/a $27.7 $28.4 2.6% $23.6 -14.8%
LAWSON n/a $21.7 $22.1 1.9% $18.4 -15.2%

Aggregate Costs of Zoning Regulation  (million US dollars)
All Stores n/a -$2.6 $0.0 -100.0% -$20.8 692.9%
Family Mart and LAWSON n/a -$1.1 $0.0 -100.0% -$10.1 805.4%

Total Sales plus Total Profits  (million US dollars)
All Stores n/a $544.9 $556.6 2.1% $499.0 -8.4%
Family Mart and LAWSON n/a $340.3 $352.0 3.4% $295.8 -13.1%
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TABLE 7
IMPACT OF THE ZONING REGULATION ON ENTRY, SALES AND COSTS

OKINAWA, 2002
PREDICTIONS FROM MODEL WITH REVENUE

Zoning Regulation Policy Regime

   NOTE. - Variables are aggregated to the level of Okinawa unless otherwise stated. For each simulation, I solve for an equilibrium number of stores for each chain,
using the parameters from Table 6. The number of local stores and demographics for each market is held fixed throughout this counterfactual analysis.

Case 1: No Market Case 2: All 834 MarketsCurrent: 140 Zoned Markets



Current

Family
Mart and

LAWSON

Variable Prediction Prediction %Δ Prediction %Δ Prediction %Δ Prediction %Δ

Aggregate Number of Stores
Family Mart and LAWSON 238.9 226.5 -5.2% 228.1 -4.6% 237.2 -0.7% 239.6 0.3%
Family Mart 140.3 226.5 61.5% 237.2 69.1%
LAWSON 98.7 228.1 131.1% 239.6 142.8%

Number of Stores: Pre-merger -> Post-Merger 
Maintain (Own Chain) 140.3 98.7
Open (Own Chain) 40.2 44.0
Close (Own Chain) 0.0 0.0
Close (Rival Chain) 41.9 43.4
Remodel (Rival -> Own) and Maintain 56.8 96.9

Aggregate Sales (million US dollars)
All Stores $514.3 $483.8 -5.9% $485.6 -5.6% $492.1 -4.3% $494.5 -3.8%
Family Mart and LAWSON $291.0 $258.3 -11.2% $260.2 -10.6% $268.3 -7.8% $270.8 -6.9%
Family Mart $169.6 $258.3 52.3% $268.3 58.2%
LAWSON $121.4 $260.2 114.3% $270.8 123.0%
Local Stores $223.3 $225.4 1.0% $225.4 0.9% $223.9 0.3% $223.7 0.2%

Sales per Store (million US dollars)
Family Mart $1.21 $1.14 -5.6% $1.13 -6.4%
LAWSON $1.23 $1.14 -7.3% $1.13 -8.1%

Aggregate Profits (million US dollars)
Family Mart and LAWSON $49.4 $67.7 37.1% $68.3 38.3% $60.4 22.4% $58.8 19.2%
Family Mart $27.7 $67.7 144.7% $60.4 118.5%
LAWSON $21.7 $68.3 214.6% $58.8 171.2%

Breakdown of Profits ∆profits ∆profits ∆profits ∆profits
   Profits from Demographics $116.4 $131.9 $15.5 $132.8 $16.4 $133.7 $17.3 $134.8 $18.4
   Costs Savings, Across-market $12.4 $37.5 $25.1 $38.1 $25.7 $38.9 $26.4 $39.7 $27.2
   Costs Savings, Within-market $8.3 $25.8 $17.5 $26.1 $17.8 $26.7 $18.3 $27.1 $18.7
   Business Stealing, Own Chain -$36.1 -$111.8 -$75.7 -$113.1 -$76.9 -$115.5 -$79.4 -$117.3 -$81.1
   Business Stealing, Rival Chain -$37.0 $0.0 $37.0 $0.0 $37.0 $0.0 $37.0 $0.0 $37.0
   Business Stealing, Local Stores -$26.6 -$15.7 $10.9 -$15.8 $10.9 -$16.2 $10.4 -$16.3 $10.3
   Costs of Closing & Remodeling $0.0 $0.0 $0.0 $0.0 $0.0 -$7.0 -$7.0 -$9.2 -$9.2

Profits per Store (million US dollars)
Family Mart $0.20 $0.30 51.5% $0.25 29.2%
LAWSON $0.22 $0.30 36.1% $0.25 11.7%

Total Sales plus Total Profits  (million US dollars)
All Stores $544.9 $534.9 -1.8% $537.2 -1.4% $534.4 -1.9% $535.0 -1.8%
Family Mart and LAWSON $340.3 $326.0 -4.2% $328.4 -3.5% $328.7 -3.4% $329.6 -3.1%
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TABLE 8
IMPACT OF MERGER ON ENTRY, SALES AND COSTS

PREDICTIONS FROM MODEL WITH REVENUE

Merger Scenario

   NOTE. - Variables are aggregated to the level of Okinawa unless otherwise stated. For each simulation, I solve for an equilibrium number of stores for each chain, using
the parameters from Table 6. The number of local stores and demographics for each market are held fixed throughout this counterfactual analysis.

Family Mart takes over LAWSON takes over

"De Novo" Entry: No Costs of Closing
No Costs of Remodeling

Costs of Closing: US $-100 thousand per store
Costs of Remodeling: US $ -50 thousand per

store

Family Mart takes over LAWSON takes over



Baseline

FM and
LAWSON

Variable Prediction Prediction %Δ Prediction %Δ Prediction %Δ Prediction %Δ

Aggregate Number of Stores
Family Mart and LAWSON 238.9 246.9 3.3% 250.0 4.6% 226.5 -5.2% 228.1 -4.6%
Family Mart 140.3 246.9 76.0% 226.5 61.5%
LAWSON 98.7 250.0 153.4% 228.1 131.1%

Number of Stores: Pre-merger -> Post-Merger 
Maintain (Own Chain) 140.3 98.7 140.3 98.7
Open (Own Chain) 41.7 45.5 38.4 42.1
Close (Own Chain) 0.0 0.0 0.0 0.0
Close (Rival Chain) 33.8 34.5 50.9 53.0
Remodel (Rival -> Own) and Maintain 64.9 105.8 47.8 87.3

Aggregate Sales (million US dollars)
All Stores $514.3 $499.6 -2.9% $502.6 -2.3% $483.8 -5.9% $485.6 -5.6%
Family Mart and LAWSON $291.0 $277.0 -4.8% $280.3 -3.7% $258.3 -11.2% $260.2 -10.6%
Family Mart $169.6 $277.0 63.4% $258.3 52.3%
LAWSON $121.4 $280.3 130.9% $260.2 114.3%
Local Stores $223.3 $222.6 -0.3% $222.3 -0.5% $225.4 1.0% $225.4 0.9%

Sales per Store (million US dollars)
Family Mart $1.21 $1.12 -7.2% $1.14 -5.6%
LAWSON $1.23 $1.12 -8.9% $1.14 -7.3%

Aggregate Profits (million US dollars)
Family Mart and LAWSON $49.4 $58.5 18.6% $56.9 15.3% $57.8 17.1% $54.2 9.9%
Family Mart $27.7 $58.5 111.6% $57.8 109.0%
LAWSON $21.7 $56.9 162.2% $54.2 150.0%

Breakdown of Profits ∆profits ∆profits ∆profits ∆profits
   Profits from Demographics $116.4 $134.7 $18.3 $136.0 $19.6 $131.9 $15.5 $132.8 $16.4
   Costs Savings, Across-market $12.4 $39.9 $27.5 $40.9 $28.4 $37.5 $25.1 $38.1 $25.7
   Costs Savings, Within-market $8.3 $27.4 $19.0 $27.9 $19.5 $25.8 $17.5 $26.1 $17.8
   Business Stealing, Own Chain -$36.1 -$118.6 -$82.4 -$120.6 -$84.5 -$111.8 -$75.7 -$113.1 -$76.9
   Business Stealing, Rival Chain -$37.0 $0.0 $37.0 $0.0 $37.0 $0.0 $37.0 $0.0 $37.0
   Business Stealing, Local Stores -$14.6 -$16.6 -$2.0 -$16.7 -$2.1 -$15.7 -$1.1 -$15.8 -$1.1
   Costs of Closing & Remodeling $0.0 -$8.3 -$8.3 -$10.5 -$10.5 -$9.9 -$9.9 -$14.0 -$14.0

Profits per Store (million US dollars)
Family Mart $0.20 $0.24 20.2% $0.26 29.4%
LAWSON $0.22 $0.23 3.5% $0.24 8.1%

Total Sales plus Total Profits  (million US dollars)
All Stores $544.9 $538.6 -1.1% $539.7 -1.0% $525.0 -3.7% $523.2 -4.0%
Family Mart and LAWSON $340.3 $335.6 -1.4% $337.2 -0.9% $316.1 -7.1% $314.4 -7.6%
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Costs of Closing: US $-100 thousand
Costs of Remodeling: US $ -100 thousand

   NOTE. - Variables are aggregated to the level of Okinawa unless otherwise stated. For each simulation, I solve for an equilibrium number of stores for each chain,
using the parameters from Table 6. The number of local stores and demographics for each market are held fixed throughout this counterfactual analysis.

Family Mart takes
over

LAWSON takes
over

Costs of Closing: US $-150 thousand
Costs of Remodeling: US $ -50 thousand

Family Mart takes
over LAWSON takes over

Robustness Check (1) Robustness Check (2)

TABLE 9
IMPACT OF MERGER ON ENTRY, SALES AND COSTS

CASE 2:  FIXED COSTS OF CLOSING AND REMODELING A STORE, ROBUSTNESS CHECK
PREDICTIONS FROM MODEL WITH REVENUE



Variable "truth"

Population (β ) 1.00 1.30 1.03 1.00 1.45
(0.65) (0.29) (0.40) (1.01)

Across-market Effect (δ_across ) 0.20 0.20 0.24 0.27 0.25
(0.18) (0.09) (0.09) (0.14)

Competitive Effect (δ_competitive ) -0.50 -0.27 -0.74 -0.73 -0.50
(0.84) (0.35) (0.46) (0.29)

Correlation Parameter (ρ ) 0.50 0.65 0.68 0.65 0.55
(0.34) (0.15) (0.16) (0.41)

Number of Markets 16 36 144 1,600
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MSM point estimates
(standard error)

   NOTE. - The number of simulations per replication is 20, except for the last column, where s is set to 7. I assume
symmetry of both players. To account for the spatial interdependence of markets, I follow Conley (1999)'s nonparametric
covariance matrix estimator. Standard errors are in parentheses.

TABLE 10

SIMULATION ESTIMATES FOR 50 REPLICATED DATASETS


