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Abstract 
 

Recommender systems are becoming integral to how consumers discover media. The value that 
recommenders offer is personalization: in environments with many product choices, recommenders 
personalize the browsing and consumption experience to each user’s taste. Popular applications include 
product recommendations at e-commerce sites and online newspapers’ automated selection of articles to 
display based on the current reader’s interests. This ability to focus more closely on one's taste and filter 
all else out has spawned criticism that recommenders will fragment consumers. Critics say recommenders 
cause consumers to have less in common with one another and that the media should do more to increase 
exposure to a variety of content. Others, however, contend that recommenders do the opposite: they may 
homogenize users because they share information among those who would otherwise not communicate. 
These are opposing views, discussed in the literature for over ten years for which there is not yet 
empirical evidence. We present an empirical study of recommender systems in the music industry. In 
contrast to concerns that users are becoming more fragmented, we find that in our setting users become 
more similar to one another in their purchases. This increase in similarity occurs for two reasons, which 
we term volume and taste effects. The volume effect is that consumers simply purchase more after 
recommendations, increasing the chance of having more purchases in common. The taste effect is that, 
conditional on volume, consumers buy a more similar mix of products after recommendations. When we 
view consumers as a similarity network before versus after recommendations, we find that the network 
becomes denser and smaller, or characterized by shorter inter-user distances. These findings suggest that 
for this setting, recommender systems are associated with an increase in commonality among users and 
that concerns of fragmentation may be misplaced. 
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1. INTRODUCTION 

Recommender systems are becoming integral to how consumers discover media. They are used for all 

major types of media, such as books, movies, music, news, and television. They are commonplace at 

major online firms, such as Amazon, Netflix, and Apple’s iTunes store. And they have a strong influence 

on what consumers buy and view. With music, Gartner and Harvard’s Berkman Center predict that by 

2010, over 25% of music sales will come from taste-sharing applications such as recommenders. With 

movies, Netflix reports that over 60% of their rentals originate from recommendations (Thompson 2008). 

With online news, Google News reports that recommendations increase articles viewed by 38% (Das et 

al. 2007). At Amazon, which sells music, books, and movies, 35% of sales are reported to originate from 

recommendations (Lamere & Green 2008). 

The value that recommenders offer is personalization: the consumption experience is 

personalized to each user’s taste. A personalized radio station plays music not for the general public but 

for each particular user. A personalized newspaper does not show the same front page to everyone but 

customizes it for each reader. A retailer arranges its online shelves and displays based on who is browsing 

at that moment. Such personalization is valuable in modern media markets, which can have millions of 

products to choose from (Dellarocas 2003; Murthi and Sarkar 2003; Brynjolfsson et al. 2006; Clemons et 

al. 2006). 

The following excerpts provide examples of recommenders systems that create this personalized 

experience:  

The newspaper … is undergoing the most momentous transformation.... Online versions 
are proliferating, ... yet so far, few newspaper sites look different from the pulp-and-ink 
papers that spawned them.... Often, the front page changes only once a day, just like the 
print version, and it shows the same news to all readers. There's no need for that 
uniformity. Every time a Web server generates a news page, ... it can generate different 
front pages, ... producing millions of distinct editions, each one targeting just one 
person – you. 
–Greg Linden, creator of Findory news and Amazon recommendations (2008) 

Last.fm connects you with your favorite music and uses your unique taste to find new 
music, people, and concerts you'll like. 
–Last.fm website 
 
TiVo, a television recording system, will automatically [create] your personal TV line-
up. It will also learn your tastes, so that it can suggest other shows you may want to … 
watch. 
–TiVo website, quoted in Sunstein (2007) 

 
Along with the benefits of personalization, however, a debate has emerged as to whether it has 

drawbacks. Personalizing websites means that we may no longer see the same newspaper articles, 

television shows, or books as our peers. Critics thus argue that such recommenders systems will create 
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fragmentation, causing users to have less and less in common with one another. An alternative view 

contends that recommenders may do the opposite: recommenders may have homogenizing effects 

because they share information among users who otherwise would not communicate. This paper presents 

empirical evidence for the debate on whether recommenders fragment versus homogenize users.  

The motivation is two-fold. First, from a technology-policy perspective, the literature has 

expressed concern that fragmentation is a negative consequence. These critics suggest the media and 

government should do more to increase exposure to a variety of content. In contrast, finding evidence of 

homogenization would suggest that such policies are not warranted. Second, the fragmentation question 

has marketing implications. Recommenders lower search costs. As a result, one interpretation of 

observing recommendations-influenced purchases is that it better reveals preferences. Observing that 

preferences are more versus less fragmented than previously thought could inform firms' marketing 

policies. To the extent more fragmentation occurs, narrow, targeted marketing policies appear more 

justified. To the extent less fragmentation occurs, consumers may prefer a range of experiences that 

narrow targeting does not deliver. 

We find, in an empirical study of a music industry recommendation service, that 

recommendations are associated with an increase in commonality among consumers, as defined by 

similarity in their purchases. This increase in similarity occurs for two reasons, which we term volume 

and taste effects. The volume effect is that consumers simply purchase more after recommendations, 

increasing the chance of having purchases in common with others. The taste effect is that consumers buy 

a more similar mix of products after recommendations, conditional on volume. When we view consumers 

as a similarity network before versus after recommendations, we find that the network becomes denser 

and smaller, or characterized by shorter inter-user distances. These findings suggest that for this setting 

concerns of fragmentation may be misplaced. 

 

2. PRIOR WORK 

A simplified taxonomy of recommender systems divides them into content-based versus collaborative 

filtering-based systems. Content-based systems use product information (e.g., genre, mood, author) to 

recommend items similar to those a user rated highly. Collaborative filters, in contrast, are unaware of a 

product’s content and instead use correlations in sales or ratings to identify what similar customers bought 

or liked. Perhaps the best-known collaborative filter is Amazon.com’s, with its tagline, “Customers who 

bought this also bought…” The design of these systems has been an active research area for at least 

fifteen years. An extensive review is provided in Adomavicius & Tuzhilin (2005).  

Although a large body of work exists on designing recommenders systems, we know much less 

about how they affect the market and society. This is despite the thousands of papers that present new 
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recommender algorithms and millions of transactions occurring through them. This paper continues a 

stream of work in that direction. Recent work (Fleder and Hosanagar 2007, 2009; Hervas-Drane 2007; 

Oestreicher-Singer and Sundararajan 2009) ask how recommenders affect products: which products gain 

versus lose sales due to recommenders and whether recommenders increase the market for niche goods, 

or “long tail”. This paper asks the complementary question of how recommenders affect consumers: 

whether they cause consumers to have more or less in common with one another. 

 A range of views exist as to whether recommenders will fragment versus homogenize users. The 

strongest proponent of the fragmentation view is perhaps Cass Sunstein from the law community. 

Sunstein argues that recommenders create fragmentation by limiting users’ media exposures to their 

predefined, narrow interests. These fragmentation effects, he argues, are undesirable. "In a democracy 

people do not live in echo chambers or information cocoons. They see and hear a wide range of topics and 

ideas, … even if they did not … choose to … in advance" (2007). While Sunstein is clear in explaining 

why fragmentation may be undesirable, the antecedent, that recommenders create fragmentation to begin 

with is ultimately an assumption.  

A second supporter of the fragmentation view is Pattie Maes, creator of one of the first 

recommender systems. Maes says that recommenders can have a “narrow-minded” and 

“hyperpersonalized” aspect. “You don’t want to see a movie just because you think it’s going to be good. 

It’s also because everyone [else is] … talking about it, and you want to be able to talk about it too” 

(Thompson 2008). Consuming the same media and products “is a way of participating in society,” and 

this could be lost on account of recommender systems (paraphrased in Thompson 2008). 

Sunstein and Maes both appear to view recommenders as causing fragmentation, but they differ 

in their views as to why this is undesirable. Sunstein argues that a democracy requires citizens to have a 

range of experiences and viewpoints. For example, in news programming, users should be exposed to 

multiple views on a topic, not just the one that reinforces their existing beliefs – which he believes will be 

the case as recommenders become more prevalent. Maes’ has a different criticism: a product’s popularity 

has a positive externality, and recommenders may cause us to forfeit this. If there is a benefit to reading 

the same books as others or seeing popular movies (e.g., by being able to discuss the experience with 

others) we should be wary of recommenders because these benefits could disappear. 

A more moderate view is suggested by Nicholas Negroponte, co-founder of the MIT Media Lab. 

Negroponte coined the term "The Daily Me" (1995), referring to the ability of recommenders to create 

newspapers customized to each person’s interests. The Daily Me might create fragmentation by showing 

users only the content that matches their viewpoints. However, Negroponte also discusses the "The Daily 

Us," suggesting that consumers may also turn to recommenders when they need help exploring areas 
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outside their interests, “learning about things [they] never knew [they] were interested in.” Using 

recommenders this way would create commonality in knowledge among users, not fragmentation.  

Van Alstyne and Brynjolfsson (2005) formalize this mixed view in an economic model. They ask 

whether internet technologies like recommender systems will lead to fragmentation versus 

homogenization – in their terms, a cyber-Balkans versus a global village. Fragmentation is measured both 

by physical interaction and consumers' knowledge overlap. They show that as technology lowers search 

costs and communication costs, either outcome can occur. Which outcome occurs in their model depends 

on a parameter representing consumers' taste for specialization. This parameter is difficult to specify, and 

so complementary empirical work is needed. 

Similar mixed views were shared by the creators of early collaborative filters. At the Berkeley 

Collaborative Filtering Workshop in 1996, a time at which research on recommender systems was just 

beginning, Paul Resnick, then of AT&T Research, asked if the "global village [would] fracture into 

tribes" (Arnheim 1996). John Riedl, co-inventor of one of the first recommenders, asked if collaborative 

filtering would "democratize ... information ... or result in social fragmentation." 

Last, Fleder and Hosanagar (2009) model how collaborative filters affect consumer choice and 

find that users become more similar to one another after recommendations. Collaborative filters, they 

show, are biased toward recommending products that others bought before. Thus when consumers accept 

recommendations, co-purchases are created with many other users and commonality increases. An 

alternative interpretation of their findings is that recommenders facilitate information sharing. Even if two 

users do not know each other, the recommender can alert one to the products the other bought, creating 

commonality between them. 

     The discussion of this question reveals three themes. First, there are mixed views as to whether 

recommenders will fragment users, and empirical work is needed. Second, this question has been posed in 

the literature for at least 13 years, but there is not yet empirical evidence. Third, the debate about 

fragmentation is a question of interest in both academic research and the public sphere. 

 

3. PROBLEM FORMULATION 

This section defines the problem formally. While many authors have discussed the fragmentation question 

qualitatively, the empirical question has not been posed in concrete terms. We view the formulation as 

one contribution of this work. 

 

3.1. Research Questions 

Our goal is to study whether recommenders make users more or less similar to one another. We divide the 

question in two components: 
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1. Aggregate level: overall, are consumers farther or closer to one another? 

2. Individual level: are there differential effects at the individual level, by which some users become 

closer and others farther? 

 

The first question measures the overall effect of whether users become farther or closer to one 

another. The second question explains why. For example, effect (1) may show that users are less similar 

on average. Effect (2) explains why: perhaps, for example, showing that even though the closest users 

became closer, the farthest became much farther, leading to a net reduction in similarity. The meaning of 

“far” and “close” will be made precise in the next section. 

 

3.2. Two Group Design 

The analysis design throughout is analogous to a two-group experiment. One group is “treated” 

with recommendations and their behavior compared before versus after. A control group is not treated 

with recommendations, and their behavior is compared over the same period. The data are in fact 

observational, as we will discuss, but the terminology of experiments simplifies the writing.  

Let Oit denote an observation on group i during time period t. Oit is a list of tuples (user, artist, # 

songs purchased) for all users in group i during period t. Group i = 1 is the treated group, which is 

unexposed to the recommender during t = 1 but exposed to the recommender during t = 2. Group i = 2 is 

the control, which is unexposed to the recommender during both time periods. The time periods are the 

same for both groups. Figure 1 represents this setup, where X denotes exposure to recommendations. 

 

Treated: O11 X O12 

Control: O21  O22 
    

Figure 1. Schematic of the Two Group Design 

 

Using this design, we can compare the treated group before and after recommendations. We can 

also compare the treated group to the control over the same period. The control accounts for factors such 

as time trends and maturation that might be confounded with recommender usage in a one group pre-post 

design (Campbell & Stanley 1963).  
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3.3. Hypotheses to Test 

We wish to compare how the treated and control groups change over time. Let T(Oit) be some statistic of 

interest on Oit measuring fragmentation. As shorthand, we will write Tit. We define the following 

quantities of interest: 

 

Difference in treated: D1  T12 – T11 
Difference in control: D2  T22 – T21 
Difference-in-differences: D  D1 – D2 

 

D1 describes changes in the treated group. D2 describes changes in the control. D describes how much 

changes in the treated group exceed those in the control. For this reason, D is termed the difference-in-

differences estimator. For example, suppose that independent of recommendations, a time trend is 

occurring in the music industry that affects both groups. Thus observing D1 ≠ 0 does not mean 

recommendations have an effect on consumers because the same trend will affect D2.  However, the 

difference-in-differences estimator D can identify changes in the treated group beyond the time trend by 

subtracting the change in the control.  

  Let μ  E[D], where D’s distribution is not known to us. The central questions of this paper take 

the form 

 

H0: μ  E[D] = 0 
 

Ha: μ  E[D]  0 
 

  The above formulation is general for any underlying T, and many questions about similarity can 

be posed in this framework. Several statistics of interest T( ) are defined in the next section. Each gives 

rise to a separate D and hence a separate hypothesis of the form above.  

  The hypotheses are always stated as two-sided. This makes our tests more conservative, but it is 

necessary because the literature offers mixed views as to whether fragmentation versus homogenization 

will occur.  

 

4. FORMULATION SPECIFICS 

This section defines the quantities of interest T(Oit). To facilitate this, we take the intermediate step of 

defining a network G(Oit) among the firm’s consumers and making T(G(Oit)) a function of that network. 

At first glance, introducing networks appears to complicate the analysis by adding an extra step. In 

contrast, we will see this provides a great service for interpreting the data. 
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4.1. Motivation for Network Analysis 

 We define a network in which consumers are the nodes and edges represent similarity between 

consumers. This paper’s goal of asking whether users become more or less similar after recommendations 

will become equivalent to asking how the consumer network changes pre-post recommendations. 

 For each Oit we will create a user network G(Oit). Then, we will define quantities of interest (e.g., 

density, path length) on the network T(G(Oit)) and study how these quantities change before versus after 

recommendations. The benefit of introducing networks is interpretation. Networks are a useful object for 

describing changes in user similarity. It is easy to conceive of a network expanding, shrinking, or 

becoming more dense. In contrast, such interpretations would be difficult if we instead studied a large 

correlation matrix of users’ purchases.  

The consumer network is not a true social network because its edges do not represent physical 

relationships (e.g., Jank et al. 2008). Its edges instead represent similarity in purchases. Still, we find it 

useful to formulate the problem as a network one. First, as mentioned, networks are useful for 

interpretation. Second, network analysis is recently being applied to settings like ours in which edges 

represent similarity of interests. Smith et al. (2007) use co-occurrence data (e.g., hobbies, research 

interests) to build an “implicit” network of individuals for use in a recommendation system. Huang et al. 

(2007) use co-purchase data to build a network of how individuals’ preferences are related. In these 

examples, the network is not strictly necessary for measuring similarity, but it aids in interpretation. 

Third, while our network does not represent physical links, neighbors in this network may very well form 

social ties based on online interactions. This last point is becoming common online (e.g., Singh et al. 

2008), although we do not focus on it. 

 

4.2. Defining the Network  

 Mathematically, our network is a graph made of nodes and edges. Users are the nodes, and edge 

weights describe the similarity between user pairs, as defined by commonality in purchases.  

For notation, we can interpret Oit as a users  artists matrix of purchase counts. An element (Oit)xy 

is the number of songs user x purchased of artist y. A row of this matrix is denoted (Oit)x. For each Oit, the 

corresponding network is G(Oit) which is denoted as simply Git.1 The network Git is a users  users matrix 

of edge weights. An element (Git)xy is the edge weight between user x and user y. Defining the network is 

thus equivalent to defining a distance measure between any two users.  

Our main network has a simple construction. Within a given group and time period, users x and y 

have an edge between them if they purchase at least one artist in common.  
   

                                                 
1 G( ) is a function that converts the purchase matrix into a network, or G(Oit)  Git. 
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Unweighted 

 (Git)xy     1, if users x and y have  1 artist in common ((Oit)x • (Oit)y  1) 

 



 

Unconnected, otherwise 
   

This is an unweighted network in which any edge, if it exists, has weight 1. The • symbol indicates the 

vector dot product, showing how this definition might be generalized to other similarity functions. 

There are many other ways to construct the network. In unweighted networks like the one above, 

there can be other definitions for when an edge should be present. Weighted networks are also possible, 

and there are many ways to define the edge weights. In the main sections of this paper, we focus our base 

case on the network above because its definition is simple and intuitive. Later, in the appendix, we present 

results for other network definitions. We simplify the exposition in this way, since all of the networks 

tested yield nearly the same conclusions.  

 

4.3. Defining T: Measures of the Network’s Properties 

With the network G(Oit) defined, we next define summary statistics of the network’s properties, T(G(Oit)). 

T summarizes in one number a particular network property and thus facilitates comparisons of the 

network over time. We define three such measures below. As notation, let  


n

xyy xyxd
,1

G  be the 

degree of user x where n is the number of users in the network. Further, let nC2 denote the number of user 

pairs that can be formed from a set of n users (nC2  = n(n–1)/2). 

 

Measure T(G(Oit)) =  

Density  

 

  


n

x xy xy
n

I
C 1

2

)1G(
1

 

 

Median Degree 
 

n
xxd 1}{Median   

 

Path Length   

n

x xy
n

Shortest
C 1

2

1
Distance(x,y) 

 

Density. The density is the fraction of edges that exist out of the total number of edges possible. Higher 

density means users have more connections among them. 

  

Median Degree. The median degree is the number of connections to other users that the typical (median) 

user has. The higher the median degree, the more similar users are to one another. This represents the 

median of the degree distribution, whereas the density is the degree distribution’s average.  
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Path Length. The path length is the shortest distance between any two users, averaged over all users in the 

network. If users x and y are connected, the shortest distance is 1, the edge between them. Otherwise, the 

path is through other users. The shorter this distance, the “smaller” the network is said to be, using the 

terminology of Watts & Strogatz (1998), who popularized the study of “small world” networks. 

Mathematically, the shortest distance between users does not have a closed form expression, but it can be 

computed using Dijkstra’s algorithm or, more efficiently, with the Floyd-Warshall algorithm 

(Papadimitriou & Steiglitz 1998). 

To summarize the analysis setup, the data are in the form of a two group experiment (Oit). Each 

data set is converted to a network G(Oit). Summary statistics are computed on each network T(G(Oit)). 

Finally, these statistics are compared across the groups and time. 

 

5. DATA  

5.1.  Data Source 

We study the fragmentation question using data from an online music recommendation service, 

referred to here as Service.2 Service is a free software add-on to Apple’s iTunes. iTunes, in turn, is the 

music player that allows users to buy music from Apple’s iTunes store, the largest music retailer in the 

U.S. (Apple 2008). When users listen to music in iTunes, Service recommends other songs that the user 

may like. The recommendations appear in a window appended to iTunes, where the user can sample the 

recommended songs and opt to purchase them. If a purchase results, Service earns a commission. Service 

also provides a website where users can view the play histories of other Service users with similar taste. 

These play histories are uploaded automatically by the plugin to Service’s website on a continual basis. 

The recommendations are based on the artist currently playing (i.e., the query to obtain 

recommendations is the current artist). Based on the current artist, Service identifies the 6 most similar 

artists and populates the window with this list. Artist-to-artist similarity is defined by a hybrid of content 

and collaborative data, although, at the time of data collection, the results are heavily weighted toward the 

content portion (90% versus 10%). Thus in the taxonomy of recommender systems by Adomavicius & 

Tuzhilin (2005), Service is effectively a content-based, item-to-item recommender system. 

Figure 2 shows a screenshot of the recommendations plugin. Apple’s iTunes appears at left. The 

recommendation service, as appended to iTunes, is at right. The list of recommended songs at right 

updates depending on what artist is currently being played.  

                                                 
2 Service Inc. will be replaced with the firm’s name upon publication. We have in writing legal permission to disclose this. 
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Figure 2. Screen shot of the recommendation service.  

 
 

5.2. Novelty of the Data 

To study the effects of recommenders, a contrast is needed between users exposed and unexposed 

to recommendations. The data collected by most retailers (e.g., Amazon, Netflix) is inadequate because 

retailers only observe consumers after they arrive at their website and hence after exposure to 

recommendations. This may be the reason, we speculate, that others have not been able to study the 

fragmentation question. Our data are novel in this regard. When a user registers for Service, a history file 

is extracted from the user's iTunes player. This history file contains the names and timestamps of all 

songs ever added to that user's music library, and thus it provides a record of the user's behavior prior to 

joining Service. The user’s post-registration purchases are also observed by Service because the plugin 

notifies Service via the internet of all songs added to the user’s iTunes library, whether bought at the 

iTunes store or not. This combination of the history file and continued communication via the plugin thus 

gives us a before and after view of the user’s behavior. 

Besides comparing users’ purchase histories before and after registering, we can also compare 

these users with a control group. The control data are obtained by again exploiting the history files of 

Service users. For users who register after our study, their history files allow us to look backward at their 

Service-uninfluenced behavior during the same time period. More detail is given in the next section. This 

use of eventual Service users for the control affords a measure of similarity between the groups. Thus the 

new data source enables a before-after recommendations contrast as well as data on a control group for 

the same period. 

 

5.3. Data Inclusion Criteria 

This section describes the process for setting up the data in the two-group design introduced 

earlier. Figure 3 summarizes the details of this process.  
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The data are collected via Service’s plugin that is installed on each user’s machine. The plugin 

relays to Service in near real-time the timestamp and product information of any song added to that user’s 

iTunes library. For ease of writing, we refer to songs as purchases, but our data in fact capture all songs 

added to a user’s library, whether purchased from Apple’s iTunes store, purchased from another firm, or 

downloaded elsewhere online.  

The original data comprise users who registered for Service between January – July 2007. We 

define the treated group as those users who registered sometime during March 2007. March is chosen 

because it was Service’s month with the highest number of registrations during this period and thus 

affords the largest sample size. The time periods for the before-after comparison are the two month 

windows January-February and March-April.3 The control group is defined by users who registered for 

Service sometime from May on. We observe this group’s Service-unaffected behavior over January-April 

because upon their eventual registration, sometime from May on, we extract their iTunes history files and 

look backward at the January-April period. 

A criterion for inclusion in the study is that each user began using iTunes in August 2006 or 

earlier. Upon installing iTunes or buying an iPod, users often load their CD collections onto their 

computers. We do not want to treat loading of old music as new purchases. Thus the criterion of installing 

iTunes in August 2006 or earlier creates a buffer of at least four months (September-December 2006) 

between installing iTunes and our analysis. This is conservative because the loading of old CDs typically 

occurs within the first month of iTunes/iPod use.4 

 

Installed 
iTunes in
2006 Aug 
or earlier

2006 Aug

Treated

2007 Mar 2007 July

Control

Register in 
2007 Mar

Register after 
2007 May

O12O11

2007 Jan-Feb 2007 Mar-Apr

Still active

O22O21

Installed 
iTunes in
2006 Aug 
or earlier

2006 Aug

Treated

2007 Mar 2007 July

Control

Register in 
2007 Mar

Register after 
2007 May

O12O11

2007 Jan-Feb 2007 Mar-Apr

Still active

O22O21
 

 

Figure 3. Data Setup and Analysis Design 

 
                                                 
3 That some users registered in late March could dampen the results’ magnitude because it allows some Service-unaffected data 

to enter the post-recommendations period. One cannot circumvent this by centering each user’s before-after data exactly on his  
registration date, since each user differs in this date, there would be no well-defined period for constructing the control. We are 
conservative and accept this tradeoff of a possible dampening of results in order to have a well defined control group. 

4 The iPod/iTunes installation date is not recorded in the history file. We proxy it using the day the first song is added to each 
user’s library. 
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The second criterion for inclusion is active user status. Some users uninstall the plugin before the 

study’s end, which amounts to dropping out of the study. So that our panel includes the same users before 

and after, which is required for our user-to-user before-versus-after comparisons, we adopt the criterion 

that users have the plugin installed for the study’s entire duration.5 The implications of these data-

inclusion criteria are discussed below. 

The data collection has two limitations. First, assignment to the treated versus control group is not 

randomized. Since registration is the user's choice, the analysis cannot account for selection on 

unobservables. For example, it is possible that registration is a response to increased demand for music 

rather than a cause of it. We will not be able to rule this out, but the section later on sensitivity analysis 

shows it is unlikely.  

The second limitation of the data collection is attrition, or users who uninstall the plugin. About 

half of the users in the treated group uninstall the plugin before the data collection ends (before the end of 

period t = 2). If the uninstallation decision is independent of music preference – for example, uninstalling 

the plugin to free up disk space or not liking the extra screen space occupied by the plugin – then the 

conclusions are unaffected because the selection is equivalent to our taking a random sample. If they are 

not independent, then the analysis of the non-attriting population may overstate the magnitude of the 

results. This possibility is also discussed in the section on sensitivity analysis. Even under this possibility, 

the results still increase our understanding of the fragmentation debate, as our goal is to identify the 

results’ direction, which is unaffected, rather than use the magnitude as input to a decision-support tool.  

The resulting data set is summarized in Table 1. In terms of number of users, the treated group is 

larger than the control. This occurs because we chose March as the time of registration, which determined 

the number of treated users. The number of control users is determined by how many people register from 

May–July on (when data collection ends) such that we can look backward at their history files. The table 

next shows that purchases increase after recommendations. This increase was anticipated, although the 

size of roughly 50 percent is larger than expected. This increase in songs added is not seen in the control, 

where in fact the number of songs added decreases. The percent increase for the treated group would be 

lower if we could account for uninstallation, since those users no longer see recommendations and thus 

cannot buy more as a result. Last, the table shows the number of artists for whom at least one song was 

purchased. This figure also increases considerably for the treated group, indicating that users explore a 

wider range of artists under recommendations. Again, no such increase is seen in the control, and in fact 

the number of unique artists purchased decreases. We note that prior to recommendations, the number of 

artists is higher in the treated group. This likely occurs because the treated group has more users and thus 

                                                 
5 Un-installation is not observed, so we proxy this by including those users’ whose plugin communicates with the Service at least 

once after the post-recommendations period. 
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more purchases and thus a greater chance of covering more artists. In the experiments below, we will 

compare treated and control groups with an equal number of users to control for such differences. 

Table 1. Summary statistics for the two-groups 

 Treated Control 
 Before After Before After 
Users 1,794 1,794 858 858 
Songs purchased 215,749 326,640 106,431 97,553 
Artists with at least one purchase 24,368 34,411 14,785 13,768 

 

6. RESULTS ON THE OBSERVED DATA 

This section shows how the consumer network changes when recommendations are introduced. Overall, 

we find consumers become more similar to one another: the consumer network becomes denser, more 

connected, and smaller.  

 

6.1. Aggregate Analysis on the Observed Data 

Using the two group design, we construct the four networks – before and after recommendations 

for the treated and control – and calculate the summary measures T( ) on each. Then, for each summary 

statistic T, we calculate the changes over time D1 = T12 – T11, D2 = T22 – T21, and the difference-in-

differences estimator D = D2 – D1.  

Table 2 shows the results. Across the columns are the three T statistics: density, median degree, 

and path length. Across the vertical dimension is the treated group (row “T”) and control group (row 

“C”). The table’s elements show the values of T before and after recommendations. The column Di lists 

the difference for each group. Last, the column D/p lists the difference-in-differences estimate D with the 

p-value below it from a test that D = 0. (The “/” symbol indicates separate rows.) To test the hypothesis 

that D = 0, we use the non-parametric method of permutation tests. The testing procedure is described in 

the appendix. 

 
Table 2. Summary Measures for the Unweighted Network – Observed Data 

 
         Density   Median Degree     Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 23% 46% 23% 22% 167 402 235 234 1.80 1.54 -0.26 -0.26 
C 19% 19% 0% <0.01 134 135 1 <0.01 1.86 1.86 0.00 <0.01 

 

 The results show that on all three measures, users become more similar to one another after 

recommendations. First, the treated network becomes denser, showing that users have more connections 

among themselves. Before recommendations, 23% of the edges are filled in, and after 46% are present, 
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yielding D1 = 23%. This is a large increase in density. Over the same period, the control has no noticeable 

change and D2  0. The difference-in-differences estimate is D = 23% > 0, indicating that the treated 

network does become more similar relative to the control. This difference is significant, as the hypothesis 

D = 0 is rejected (p < 0.01). On the other two metrics, we also observe greater similarity after 

recommendations. The median degree increases, D > 0, indicating that the typical user has more 

connections to others. Similarly, the path length decreases, D < 0, indicating that on average users are 

fewer hops away from one another. All of the results are significant (p < 0.01).  

 

6.2.  Individual-Level Analysis on the Observed Data 

 The above analysis showed that in aggregate users are more similar after recommendations. This 

section asks if there are differential effects at the individual level. For example, could close users become 

closer but far ones become farther – in such a way that the aggregate result masks this? If true, even 

though the network is more similar in aggregate, far users becoming farther would be evidence of 

fragmentation. To assess this, we compare the distance of all user pairs before versus after 

recommendations and examine whether there are sub-populations that become farther. 

Table 3 presents these results. The table plots the path length between all nC2 user pairs. The 

horizontal axis is the number of hops before recommendations, and the vertical axis is the number of hops 

after recommendations. The values in the table are the percent of user-pairs falling in each cell. User-pairs 

becoming farther lie above the diagonal, while user-pairs becoming closer lie below it. A distance of 

infinity () means there is no path between the given two users.6 

The control group appears stable (right side), as it has roughly equal weight above and below the 

diagonal. In contrast, the treated group (left side) shows a different pattern. First, the aggregate effect 

toward similarity is evident: there are more user-pairs becoming closer (36.9% weight below the 

diagonal) than there are becoming farther (9.2% weight above the diagonal). This is consistent with the 

aggregate findings above. Second, the increase in similarity appears uniform: all types of users become 

closer to one another. Users who were close became closer, and users who were initially far became 

closer too. There does not appear to be evidence of a differential effect.  

Note that some users do grow farther, but this is not a differential effect. We expect some chance 

fluctuation: users who were by chance closer revert to being farther, and users who were by chance 

farther revert to being closer. This is seen in the control group, where 11.3% went from 1 to 2 hops while 

11.1% went from 2 to 1 hops. This level of mixing is roughly equal. In the treated group, some pairs do 

become farther – 7.3% go from 1 to 2 hops – but many more become closer – as 27.7%, went from 2 to 1 

                                                 
6 In Table 3, a very small number of pairs are four or five hops away. This number is so small ( 0.04%) that for clarity we omit 

them from the presentation (but not the analysis) to avoid rows and columns of nearly all zeros.. 
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hops. This difference of 20.4% is large as well, since it is a fraction of nC2 ≈ 300,000 user pairs. To 

summarize, the trend toward greater similarity exists at all initial path lengths, and so we do not see 

evidence of a differential effect. 

Table 3. Path Lengths between all user pairs – Observed data.  
Entries represent the percentage of all nC2 user-pairs. 

 
  Treated    Control  
                      

 0.2 1.2 0.2 0.3   0.3 4.0 0.6 1.9  

3 0.0 0.3 0.1 0.1  3 0.2 3.8 1.2 0.8  

2 7.3 37.8 3.0 3.8  2 11.3 48.9 4.0 3.6  

# 
H

op
s 

A
fte

r 

1 15.5 27.7 1.0 1.3  

# 
H

op
s 

A
fte

r 

1 7.4 11.0 0.4 0.3  

  1 2 3     1 2 3   
  # Hops Before    # Hops Before  
              

Becoming closer (below diagonal) 36.9 Becoming closer (below diagonal) 20.1 
Becoming farther (above diagonal) 9.2 Becoming farther (above diagonal) 20.2 

No change (on diagonal) 53.7 No change (on diagonal) 59.4 
 

7. VOLUME EQUALIZATION  

The results thus far show that similarity increases after recommendations. We also know that 

purchase volume increased after recommendations (from Table 1). This fact raises the question of 

whether the volume alone is responsible for creating more edges and hence more similarity. After all, the 

more consumers purchase, the more likely they are to share some artist in common, We thus want to 

decompose the recommender’s effects into taste and volume components. The taste component is the 

portion of D due to changes in the assortment of artists users buy, with volume held equal. The volume 

component is the portion of D due to a change in purchase volume, irrespective of a change in taste. 

Figure 4 illustrates this, showing that recommenders can change user similarity in one or two ways. Both 

are valid ways for recommenders to affect similarity, but we wish to distinguish them. 

 

 

 

Figure 4. Changes in observed user similarity may have taste and/or volume components 

   

Taste effect:  
Purchase different artists 

Volume effect: 
Purchase more/less 

Recommendations 
 

Change in observed  
user similarity 
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  We next decompose these effects. Until now, D was calculated on the observed data, for which 

volume increased after recommendations. This represented the combined taste and volume effects. Now, 

we equalize purchase volume before versus after but in a way that maintains the differences in the types 

of music users buy before versus after. Recalculating D on the volume-equalized data then identifies the 

standalone taste effect, if it is present. 

  To equalize the volume before versus after, we use the bootstrap (Efron & Tibshirani 1986). 

Instead of comparing O11 and O12, we compare O11 and O*
12, where O*

12 is sampled randomly with 

replacement from O12 and has sample size |O11|. In other words, we are sampling for the empirical 

distribution of O12 and limiting the sample size. This procedure assumes the observations are i.i.d. over 

time, which is a common assumption in many statistical models of purchase data (e.g., latent-class 

multinomial models). For consistency, we also equalize the volume in the control group before versus 

after. (This is for consistency but likely unnecessary because in the control |O21|  |O22| anyway.) Last, for 

consistency, we equalize the volume across O11 and O21: before recommendations, we will see, the control 

has slightly more purchases per user than the treated group. To prevent this difference from affecting the 

results, we reduce |O21| to |O11| in the same manner. Thus in the volume-equalized case, we have four data 

sets O11, O
*
12, O

*
21, and O*

22, all with the number of purchases equal to |O11|. This sampling introduces a 

source of variation in the results, and thus all results are averaged over repeated trials (1000 simulations).  

 

7.1. Aggregate Analysis on the Volume Equalized Data 

  The aggregate analysis is repeated on the volume equalized data, and Table 4 shows the results. 

The same conclusion of greater similarity after recommendations emerges. However, the magnitudes are 

smaller, as expected because of volume equalization. For example, the treated network’s density increases 

from 23% to 27%. This magnitude is smaller than on the observed (unequalized) data, where it increased 

from 23% to 46%. Though the magnitude is smaller, it is still a significant increase compared with the 

control group (p = 0.03). The other measures show the same conclusions: the median degree increases, 

showing users have more connections to one another, and the average path length decreases, showing that 

users are closer to one another and the network is “smaller.” In every case we reject D = 0 (p  .05), 

providing evidence of a standalone taste effect.  

  To summarize, when volume is held equal, similarity increases after recommendations, revealing 

evidence of a standalone taste effect. When volume is allowed to reach its true, observed level, similarity 

increases even more, revealing that both taste and volume effects are present. 
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Table 4. Summary measures for the unweighted network – Volume-equalized data 
 

 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 23% 27% 0.04 4% 167 213 46 43.35 1.80 1.74 -0.07 -0.06 
C 12% 13% 0.00 0.03 79 82 3 <0.01 1.98 1.97 -0.01 0.05 

 

7.2.  Individual-Level Analysis on the Volume-Equalized Data 

In the individual-level analysis under volume-equalization, there is again no evidence of a 

differential effect. Table 5 shows these results. First, the aggregate effect toward similarity in the treated 

group is evident: there are more users becoming closer than there are becoming farther (24.6% weight 

below the diagonal versus 17.3% weight above it). This is consistent with the aggregate findings of 

greater similarity. The magnitude is again smaller, as expected, because volume equalization dampens the 

effect. Again, the control shows almost no change, with roughly equal weight below and above the 

diagonal. Second, the increase in similarity appears uniform: all types of users become closer to one 

another. Users who were close became closer, and users who were initially far became closer too. There 

does not appear to be evidence of a differential effect – which could have been masked by the aggregate 

result. This lack of differential effects exists for both the volume-equalized analysis here and the observed 

data analysis shown previously. 

This section presented results for the unweighted network, and we focused on it because its 

definition is simple and intuitive. In the appendix, we present results for other network definitions, 

weighted and unweighted. This simplifies the exposition, since all of the networks tested yield nearly the 

same conclusions. 

 

Table 5. Path lengths between all user pairs – Volume-equalized data.  
Entries represent the percentage of all nC2 user-pairs. 

 
  Treated    Control  
                      

 0.3  2.6  0.4  0.6   0.4 5.6 1.8  3.6   

3 0.1  1.3  0.3  0.3  3 0.4 5.6 1.9  2.1   

2 12.5  47.0  3.1  4.1  2 8.1 45.7 5.9  5.4   

# 
H

op
s 

A
fte

r 

1 10.1  16.0  0.5  0.7  

# 
H

op
s 

A
fte

r 

1 3.6 8.3 0.5  0.5   

  1 2 3     1 2 3   
  # Hops Before    # Hops Before  
              

Becoming closer (below diagonal) 24.6 Becoming closer (below diagonal) 22.8 
Becoming farther (above diagonal) 17.3 Becoming farther (above diagonal) 21.9 

No change (on diagonal) 58.0 No change (on diagonal) 54.8 
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8. SIMULTANEOUS TWO-GROUP ANALYSIS 

The previous analyses mirrored an experimental design: recommendations were introduced, and changes 

were examined in the treated versus control groups. We found that treated users became more similar to 

one another, whereas the control showed almost no change. 

We expand the analysis now in two ways, examining changes between the groups and changes in 

the population as a whole.7 Figure 5 shows this graphically. The previous analysis considered the Treated 

and Control regions of Figure 5. We enlarge the analysis to include the between group similarity 

(Between), which describes how close the entire treated group is to the entire control, and the overall 

similarity (Overall), which treats all users as a single population and describes the change in similarity 

within it. 

 

Figure 5. Edges in Overall can be partitioned into Treated, Control, and Between 
 

Mathematically, consider a network built on the combined data {O1t , O2t},which combines the 

treated and control groups.  The set of all edges in the network, termed Overall, can be partitioned into 

three groups: Treated, Control, and Between. Treated is the set for which both nodes are in the treated 

group. Control is the set for which both nodes are in the control group. Between is the set for which one 

node is in the treated group and the other is in the control. This section extends the analysis to Overall 

and Between.  

The motivation is two-fold. First, although recommender systems are becoming increasingly 

common, it is possible that not everyone will be exposed to them at all times. In this case, the state of the 

world under recommendations may reflect Overall more than Treated. This situation is unlike many 

experiments, in which if a new method is effective we envision treating everyone. Second, the Between 

analysis tests for another type of fragmentation in which treated users become self-similar but distant 

from control users. For example, suppose half the population uses recommenders; if Treated users 

                                                 
7 Population here means the treated and control groups combined, not the statistical sense of population versus sample. 
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became more similar to each other but Treated and Control moved apart, this would be another form of 

fragmentation. The Between analysis tests for this.  

Using the same network definition and same statistics T( ), we repeat the analysis on Overall and 

Between. Table 6 presents the results. For ease of comparison, the Treated and Control results are 

reproduced from earlier. Examining Between, one sees that the treated and control groups do become 

closer to each other. There are more edges between the groups after recommendations than before, and 

the path length between users in different groups decreases. Thus the treated group has not moved away 

from the control; rather, they are becoming closer. Examining Overall shows a similar result: the 

population as a whole is becoming more similar after recommendations. The density increases after 

recommendations and the path length decreases. This could be expected for Overall, since if Treated and 

Between exhibit more similarity and Control shows little change, then Overall will show a weighted 

average of this trend. 

As before, we examine whether this result is due solely to volume or has a standalone taste 

component. Table 7 presents the results after equalizing the volume post-recommendations. As before, the 

magnitudes are dampened, but the results are the same: the treated and control groups move closer to one 

another and the overall population of users becomes more similar, as seen by the higher density, higher 

degree, and lower path length. 

To summarize, in previous sections we found that treated users became more similar to one 

another, whereas the control showed almost no change. This section showed that the treated and control 

groups as a whole become closer too. This additional finding rules out another form of fragmentation in 

which the treated group, despite its becoming more self-similar, could have moved in entirety away from 

the control. Thus at several levels we observe a trend toward more similarity: within the treated group, 

between treated and control groups, and in the population as a whole. 

 

Table 6. Overall analysis for the unweighted network – Observed data 
 

 Density  Median Degree Path Length  
 Before After Di Before After Di Before After Di 
Treated 0.23 0.46 0.23 167 401 235 1.80 1.54 -0.26 
Control 0.19 0.19 0.00 134 135 1 1.85 1.83 -0.02 
Between 0.21 0.30 0.09 147 235 88 1.83 1.71 -0.12 
Overall 0.21 0.31 0.1 295 503 207 1.83 1.69 -0.13 

 All values of D1 and D2 are significantly different from zero (p < 0.05) 
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Table 7. Overall analysis for the unweighted network – Volume-equalized data 
 

 Density  Median Degree Path Length  

 Before After Di Before After Di Before After Di 
Treated 0.23 0.27 0.04 167 214 47 1.80 1.73 -0.07 
Control 0.13 0.13 0.00 80 82 3 1.94 1.93 -0.01 
Between 0.17 0.19 0.02 112 131 19 1.88 1.84 -0.04 
Overall 0.17 0.19 0.02 230 275 45 1.87 1.83 -0.04 

 All values of D1 and D2 are significantly different from zero (p < 0.05) 

 

 

9. SENSITIVITY TO THE LIMITATIONS OF DATA COLLECTION 

In describing the data collection, we pointed out two limitations: non-randomized group assignment and 

uninstallation of the plugin. This section examines these limitations and why, in light of them, the above 

inferences can be drawn. 

 

9.1.  User Registration Decision 

One limitation of the data collection is that assignment to the treated versus control group is not 

randomized. Registration is the user's choice, so the analysis cannot account for selection on 

unobservables. For example, it is possible that registering for Service is a response to increased demand 

for music rather than a cause of it. In such a case, rather than Service causing users to buy more music, 

users might desire more music and therefore register for Service. This cannot be ruled out, but sensitivity 

analysis shows it is unlikely.  

Service was a new technology at the time of data collection and the first iTunes plugin of its kind. 

Registration may thus be reasonably seen as a response to a change in supply rather than a change in 

consumers’ own demand. This line of reasoning is the same as Waldfogel and Chen’s study (2006) of 

how sales at unbranded retailers are affected by the introduction of information intermediaries on the web 

(comparison shopping engines), at the time a new technology and change in information supply.  

To test this idea, Figure 6 shows the median number of songs users add to their libraries in the 

months before and after registration. All users registered in March, as shown by the dashed vertical line. 

A large increase occurs upon registration. If registration were a response to users’ increasing demand for 

music, we would expect a gradually increasing trend in the preceding periods. In contrast, this is not 

observed. In fact, volume decreases slightly the month before for the treated group. The control group 

shows the same trend. Figure 7 expands on this by showing daily level data that is centered around each 

user’s registration date. The daily granularity shows again that the change in behavior is sharp near 

registration and not part of a growing trend starting weeks before.  
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Figure 6. Songs added per user (median) by calendar month before and after registration. All users 
registered in calendar month March (dashed vertical line) 
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Figure 7. Daily songs added per user (average) centered on each user’s  

registration date. Day 0 represents the time immediately after registration. 
 

9.2.  Attrition 

The second data limitation is attrition. About half of the users in the treated group uninstall the plugin 

before the data collection ends. The above analysis, as discussed, only considers those users who have 

Service installed for the study’s duration.  

The implication of this requirement is that we may overstate the magnitude of the results although 

not their direction. However, as our goal is to resolve the fragmentation debate, rather than use the 

magnitude as an input to a larger calculation, knowing the direction achieves this goal. This conclusion 

requires the assumption that uninstallers return to pre-treatment behavior and resemble the control group. 
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Thus to illustrate how attrition affects the magnitude, we can “average” the treated users who complete 

the study with control users as proxies for the drop-outs. From the previous results, we saw that the 

treated group’s similarity increases and the control’s shows almost no change, so “averaging” the results 

dampens the magnitude but not sign. This averaging must be done carefully and is illustrated next. 

To estimate the effect of attrition, suppose the treated group originally has n users and λn 

uninstall the service (0 < λ < 1). We observe the (1 – λ)n users who remain with Service. Under the 

assumption that the drop-outs resemble the control, we can approximate the original treated group using 

all (1 – λ)n treated users and λn control users. We refer to this group as Composite.  

To estimate the change in similarity for Composite, three types of edges must be considered: 

edges among treated users, edges among control users (the surrogate dropouts), and edges between treated 

and control users (again, the surrogate dropouts). The maximum possible edges of each type is given in 

Table 8. 

 
Table 8. Attrition sensitivity analysis: edge types and density for the Composite group.  

(The density data is reproduced from Section 8 for the observed data network) 
 

Edge Type 
Maximum  

possible edges 
Density 
Before 

Density 
After 

Within Treated (1 – λ)nC2 0.23 0.45 
Within Control λnC2 0.19 0.19 

Between Treated and Control (1 – λ)n  λn 0.21 0.30 
 

The table also reproduces the density from the observed network in Section 8. We can thus estimate 

Composite’s change in similarity for a “typical” (average) user by taking a weighted average of the three 

densities using column 2 as the weights. For example, if half the users uninstall Service (λ = 0.5), then 

Composite’s density is estimated as 

 

Composite’s Density before = ( (1 – λ)nC2  0.23 + λnC2  0.19 + (1 – λ)n  λn  0.21) / nC2   = 0.21 

Composite’s Density after    = ( (1 – λ)nC2  0.45 + λnC2  0.19 + (1 – λ)n  λn  0.30) / nC2   = 0.31 

 

Composite’s density increases from 0.21 to 0.31, which is positive but less than Treated’s change 

from 0.23 to 0.45 (the magnitude is dampened). This holds for any λ and metric. The density metric was 

used for illustration, and results on the other metrics (e.g., path length) or other networks (e.g., volume-

equalized) are similar. 

 The reason attrition does not affect the sign is that the groups are not separating but coming 

together (recall the Between analysis of Section 8). Had they separated (e.g., if the between groups density 

decreased from .21 to .05), then despite the non-dropouts showing more self-similarity, they would be 
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moving away from the dropouts and thus the true, initial treated group would have bifurcated and created 

fragmentation. This was not case, but it illustrates why one must account for the between-group edges 

instead of taking a simple average between the treated and control results.  

 

10. VISUALIZATION 

Thus far we have reported the results using numerical summaries. This section is complementary 

and shows the results graphically. Plotting the data is not straightforward because they are high 

dimensional. Recall that Oit is a users  artists matrix of purchase counts. Viewing consumers as data 

points (observations) in the space of artists (variables), a typical interpretation for purchase data, there are 

roughly 34,000 variables. Some form of dimensionality reduction is needed. 

We use principal components analysis for this purpose (Mardia et al. 1979). Principal 

components analysis (PCA) is a form of linear dimensionality reduction that projects P dimensional data 

to the “best” p < P dimensional subspace. This projection is “best” in the sense that it maximizes the 

data’s variance in the subspace. Equivalently, this projection minimizes the squared error between the 

projected points and original data.  

Figure 8 and Figure 9 show the results after calculating the top five principal components for the 

Normalized-Weighted network.8 The 55 grid shows users pairwise in the top 5 principal directions. A 

clear difference is apparent before versus after recommendations (Figure 8A versus Figure 8B). The 

beforehand plots have clear “spikes” – users appear to separate into distinct types. Afterward, the spikes 

are less pronounced, and there no longer appear to be such distinct types. The spikes’ becoming blurred is 

consistent with our finding of greater similarity. We can also argue counterfactually that if users had 

become more fragmented, this should be apparent afterward visually. If so, the spikes should have 

become more pronounced or clusters should appear, but they do not. 

The plots serve two purposes. First, it is useful to visualize the data when otherwise only 

summary measures are available. Second, while the plots are not proof that users become more similar, 

they are not inconsistent with the findings of greater similarity (the counterfactual argument above).  

PCA is just one approach to viewing high dimensional data. There are other ways to visualize 

these data (e.g., nonlinear embeddings, cluster dendrograms), and we hope to explore these in future, 

standalone work.  

                                                 
8 This network shows the most contrast visually before versus after recommendations.  
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Figure 8. PCA plots of treated consumers before recommendations. Consumers are plotted in the top five 
principal directions, yielding 55 pairwise plots. 
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Figure 9. PCA plots of treated consumers after recommendations. Consumers are plotted in the top five 

principal directions, yielding 55 pairwise plots. 
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11. RELATIONSHIP TO SERVICE’S RECOMMENDER SYSTEM 

The results show that users appear more similar after recommendations. This section relates these 

findings to the recommendation system in use at Service. 

As discussed, Service makes two components available to its users. The primary component is the 

iTunes plugin, which recommends songs based on the artist currently being played. The recommendation 

algorithm behind the plugin is a hybrid content and collaborative based system whose components have 

roughly 90% and 10% weight respectively. The second component of Service is a website in which users 

can browse other Service users’ music purchase and play histories. With both the plugin and website, 

users can sample songs and purchase them if desired.  

We believe similarity increases post-recommendations because Service makes users’ choice sets 

more similar than if users were not members of the recommendation service. This appears true for both 

components of Service, the plugin and the website.  

With the plugin, recommendations are based on the artist a user is currently listening to. When 

two people listen to the same artist, they receive the same list of recommendations. Because of this, users 

who are 1 hop away in the treated group should be more likely to remain 1 hop away than control users: 

having the same artist means they are more likely to see the same recommendations and thus more likely 

to purchase another common item. Table 9 support this. Treated users 1 hop away are 67% likely to 

remain 1 hop away afterward, whereas 1 hop away control users are only 38% likely to remain at 1 hop.9  

Seeing the same recommendations maintains the 1-hop position among treated users, whereas there is no 

such force maintaining the 1-hop position for control users. 

Why do users not connected beforehand (k  2) become closer? Such users do not own a common 

artist from which identical recommendations can be generated. Recall that Service provides a list of 

recommended artists in its plugin. When a k  2 pair of users listens to related but different artists, their 

recommended lists can still include the same recommended artist. If both buy songs by this artist, the 

users now have a purchase in common. In this manner, treated k  2 users should be more likely to 

connect than control users. As such, if this is the mechanism by which Service affects k  2 users, we 

would expect this effect to be greater for k = 2 users than k = 3 and in turn k =  users. To test this idea, 

one observes again in Table 9 that Prob(1 hop away after | k hops away before) does show a primarily 

decreasing trend. 

 

 

                                                 
9 The probabilities are approximated as the fraction of user pairs transitioning from k to 1 hops, and the data come from Table 3 

and Table 5. 
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Table 9. Probability(User pair is 1 hop away after | k hops away before). 
 

 Treated  Control 
Initial hops k =  1 2 3   1 2 3  
Observed data 0.67 0.41 0.23 0.24  0.38 0.16 0.06 0.05 
Volume equalized 0.44 0.24 0.13 0.12  0.29 0.13 0.05 0.04 

 

At Service’s website, a similar phenomenon creates co-purchases among users. When one 

examines another user’s play history, those are songs the other user already owns. Thus any purchase of 

those songs creates a co-purchase. In turn, more co-purchases results in an increase in similarity on our 

summary measures T( ). 

Ideally, one would vary the design of Service’s components, such as the type of content-based 

recommender used, the type of collaborative filter used, and website layout to test how other design 

choices affect the results. This was unfortunately not possible. Two comments are in order. First, without 

variation in the components’ design, one might argue that Service could design a perverse recommender 

to achieve any end it wanted, similarity or fragmentation. We do not believe we are observing this 

perverse case. Service’s algorithm was designed to satisfy users and not for an explicit goal of creating or 

reducing fragmentation. Second, we believe Service’s design is somewhat typical for the industry: a 

content based algorithm where songs in the same sub-genre are recommended; a collaborative algorithm 

where songs co-purchased are recommended; and a website where one can browse other users’ profiles, 

as is common at many social networking sites. A large factorial design testing alternative designs for each 

component would certainly be desirable, and we hope future work will contribute to this.  

 

12. CONCLUSIONS 

This paper asked whether recommender systems fragment versus homogenize users. Using data 

from the music industry, we found that a network of users becomes more similar to one another after 

recommendations. The trend toward similarity appeared in three ways: at the aggregate level in the treated 

group, at the individual level in treated group, and at the population level, which combined the treated and 

control groups. 

At the aggregate level, we found that users exposed to recommendations appear more similar 

afterward in their purchases. This finding occurred for two reasons. Users shifted their purchases toward 

more similar items, the taste effect; and, users simply bought more under recommendations, the volume 

effect, which increased the likelihood of co-purchases with others.  

At the individual level, we looked for fragmentation in terms of a differential effect – namely, 

close users becoming closer and far ones becoming farther – but did not find evidence of this. This helped 
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rule out the possibility that users were fragmenting into groups. If users were splitting into groups, a form 

of fragmentation, we should have seen far users become farther, which we did not.  

Last, at the population level, the combined network of treated and control users exhibited greater 

similarity. Treated users became more similar to one another and more similar to the control. This ruled 

out the possibility that treated users might be becoming self-similar yet simultaneously separating from 

the control, a third way in which fragmentation could have but did not manifest itself. 

These findings were observed for a variety of similarity measures and network definitions. For 

the setting of the music industry and our firm, it thus appears that recommender systems are associated 

with an increase in commonality rather than fragmentation.  

The findings have policy and business implications. Each, in turn, introduces directions for future 

work. Regarding policy, we began with the question of whether recommender systems create 

fragmentation. The fragmentation outcome, should it exist, would be undesirable in our view and the view 

of many others'. Sunstein argued that the effects of recommender systems and online filters have 

connections to democracy itself: "it is highly desirable for a democracy to contain a kind of 'social 

architecture' that offers both shared experiences and unanticipated exposures," (p. 206) and there is 

concern that recommenders could weaken this if they show people only what they already like and know. 

On balance, the internet allows people to access more sources of information than ever. However, to the 

extent technology design choices undermine the above goal, we might ask how we can build better 

recommender systems that offset such fragmentation effects. We did not, however, find evidence of 

fragmentation, despite multiple ways of trying to identify it. In the absence of such effects, there is not 

cause, based on this study, to modify the architecture of e-commerce or the web. That said, we believe 

research on this question should continue and cannot be concluded until more firms and product 

categories have been studied, in particular the market for online news and books. 

Regarding business, the study provides a window onto the ongoing trend of targeted marketing. 

Recommender systems lower search costs, so one interpretation of the post-recommendations data is that 

it better reveals preferences. Why then did we not observe consumers clustering into the hyper-

specialized groups that some targeted marketers and advertisers might expect? It is possible consumers 

are not yearning for more of the same from their same segment but looking for variety and commonality. 

If so, consumers may prefer a range of experiences that narrow targeting does not deliver. A difficulty in 

making this inference is separating the effects of reduced search costs from the influence of the 

recommender itself. The recommender lowers search costs, but it also influences users in choosing what 

items to show them. This influence is unavoidable and will exist for any recommender system. An 

interesting empirical question is thus to separate these effects: when we observe greater commonality post 

recommendations, how much is due to consumers’ preference for variety and commonality (revealed to 
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us by reduced search costs) versus the bias of what the recommender selects for the user. It is an 

important business question because evidence that consumers are seeking variety and commonality 

appears to be under-emphasized in targeted marketing strategies. 

In his book The Big Sort, Bill Bishop (2008) documents how over the last thirty years Americans 

sorted themselves into politically like-minded neighborhoods. This paper asks a similar question about 

the web. While many predict the web will further this trend of fragmentation, the evidence for the 

industry and firm studied here is to the contrary. As this is the first empirical study on the topic, we look 

forward to the perspective thirty years provides to see if the findings here are the exception or the rule. 
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13. APPENDIX I. SIGNIFICANCE TESTING 

 

The hypotheses tested in the aggregate analysis had the form 

  

H0: μ  E[D] = 0 
 

Ha: μ  E[D]  0 
 

where D  (T12 – T11) –  (T22 – T21) and μ  E[D]. This is a statistical test of the null hypothesis that 

purchase records are distributed the same in the treated group and in the control group. The test statistics 

we use are differences-in-differences estimators D  (T12 – T11) –  (T22 – T21) where Tij is a statistic of the 

network Gij.  That is, D measures the difference 'Treated – Control' of the differences 'after – before' in 

this network characteristic. The network Gij in turn is computed from the purchase records of the 

customers in treatment group i (1=Treated, 2=Control) and before-after data j (1=before, 2=after).  

  The use of such complex test statistics is facilitated by permutation tests which allow us to 

calculate a null distribution for any test statistic. Statistical theory says that under the null hypothesis of 

equal distributions of purchase records (and conditional on the observed purchase records), all relabelings 

of the records as 'Treated' and 'Control' are equally likely.  We obtain a null distribution and hence a p-

value for D by repeatedly relabeling the purchase records, reconstructing the networks, recalculating D, 

and tallying the fraction of times these 'relabeled' values of D exceed the observed value of D.  

Enumerating all relabelings is not usually possible computationally, which is why one resorts to sampling 

a feasible number of relabelings that yields an approximate permutation p-value for D. Further details on 

the theory of permutation tests can be found in the appendix to Good (1994). 
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14. SENSITIVITY TO ALTERNATIVE NETWORK TYPES 

The network examined in the base case is one type of network. In this section, we explore other 

network definitions, both unweighted and weighted. We find the conclusions of increased similarity 

generally hold across these other network definitions. 

 

14.1.  Alternative Network Definitions 

  This section defines several additional networks to test. Recall that defining the consumer 

network is equivalent to defining the distance, or edge weight, between all user pairs. We continue the 

notation from before in which (Git)xy is the edge weight between consumers x and y. As before, (Oit)x is 

user x’s vector of purchase counts, where the vector length is the number of  artists.  

  The unweighted network used throughout the base case was defined 
   

Unweighted  

 (Git)xy     1, if users x and y have  1 artist in common ((Oit)x • (Oit)y  1) 

 



 

Unconnected, otherwise 
   

We generalize this definition to an arbitrary threshold of k artists in common: 
   

Unweighted-k 

 (Git)xy     1, if users x and y have  k artist in common ((Oit)x • (Oit)y  k) 

 



 

Unconnected, otherwise 
   

This definition allows us to test whether the findings are robust to the original choice of k = 1. 

  Weighted networks can also be defined. Perhaps the simplest starting point is to define the edge 

weight as the Euclidean distance between each user’s vector of purchase counts.  
   

Weighted 

 (Git)xy     
 

|| (Oit)x – (Oit)y || 
   

  We also define a weighted network in which the user vectors are first normalized to length 1. Let 

xit )O
~

(   (Oit)x / ||(Oit)x||. Each user is thus a point on the hyper-sphere of radius 1. The Normalized-

Weighted network is defined by the Euclidean distance between normalized user vectors  
   

Normalized-Weighted 

 (Git)xy     
 

|| xit )O
~

(  –  yit )O
~

(  || 
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In words, normalization forces distance to depend on the proportion of artists a user buys and not how 

much he buys. Geometrically, it amounts to comparing the angle between user vectors, regardless of the 

vectors’ lengths. This measure is proportional to the “cosine similarity” in the field of Information 

Retrieval.10  

  These networks span two characteristics that we wish to consider: sensitivity to purchases in 

common and sensitivity to purchase volume. Sensitivity to purchases in common, the first characteristic, 

captures how much users must overlap in their purchases to have a low edge weight between them. The 

Unweighted-1 network is not sensitive. Of the thousands of artists, users need overlap on only one to 

create an edge. In contrast, the Normalized-Weighted network, which amounts to measuring angles, is 

very sensitive. To have a low distance, it is generally not enough to have one or two purchases in 

common. Unless users have many artists in common, as we will see shortly, users are nearly orthogonal 

and hence far apart. 

  Sensitivity to purchase volume, the second characteristic, describes how much the total quantity a 

user purchases affects his distance to others, conditional on buying the same proportions of artists. An 

example makes this clear. Consider three users with the following purchases 

 
   User 1 buys  1 song of artist a  3 songs of artist b 
   User 2 buys  1 song of artist a  3 songs of artist b 
   User 3 buys  100 songs of artist a  300 songs of artist b 
 

  The Normalized-Weighted network says all three users are equidistant: volume is irrelevant, and 

distance is defined by the angle between user vectors (0 in this case). Users need only buy the same 

proportions of artists to be considered similar. In contrast, in the Weighted network purchase quantities 

are relevant, so these three users would not be equidistant. Users 1 and 2 would have distance 0 while 

user pairs 1-3 and 2-3 would be farther apart.11 

 

14.2.  Results for the Alternative Network Definitions 

The results under the alternative network definitions generally yield the same conclusion of 

increased similarity. Because the results are so similar, we focus primarily on the points of departure. 

 For the Unweighted-k networks, we test three variants k = 1, 2, and 10 both with and without 

volume equalization. The results are shown in Table 10. In every case, users appear more similar after 

recommendations: density increases, the median degree increases, and path length decreases. We find 

                                                 
10 If x and y are vectors of length 1, ||x – y||2 = ||x||2 + ||y||2 – 2x•y = 2 – 2 x•y = 2 – 2cos(x,y).  
11 Note, normalizing vectors to length one is not the same as volume equalization. Volume equalization controls for the overall 

change that occurs pre-post recommendations. Normalization controls for the within-period volume differences in volume 
across users, whether or not volume is equalized. 



 36

evidence of both taste and volume effects for all of the unweighted networks. Table 11 shows that the 

results are in the same direction on the volume-equalized data. All results are significant (p  .05) except 

one: in the Unweighted-10 network with volume equalization, the change in path length is not significant 

at conventional levels (p = 0.32), although the sign is consistent with previous results. 

 For the weighted networks, similar conclusions emerge, but there are nuances across the network 

definitions. These results are shown in Table 12 and Table 13 for the observed and volume-equalized data 

respectively. Note, for the weighted networks density is not reported: all users are connected in the 

weighted network, albeit at varying distances, so the density is always one. Similarly, because all users 

are connected, the shortest path is no longer meaningful; the direct path is always the shortest one (by the 

triangle inequality). Thus instead of path length, we report the average distance between users 

Average Distance  =   

n

x xy xyit
n C 1

2

)(G
1

 

The Weighted network (Table 13), which is based on Euclidean distance, exhibits greater 

similarity after recommendations: the median degree and average distance both decrease, indicating users 

are closer to one another (Note, in the weighted network, lower degree means greater similarity, in 

contrast to the unweighted networks.) So far, this is consistent with the previous findings. However, when 

volume is not equalized, users in Weighted are farther apart (Table 12). The reason can be seen by 

expanding the definition of Euclidean distance, on which Weighted is based 

 

||(Oit)x – (Oit)y||
2 = ||(Oit)x||

2 + ||(Oit)y||
2 – 2(Oit)x• (Oit)y  

 

If purchase volume increases sufficiently (the first two terms), this can offset a trend toward commonality 

(the third term). Even if users purchase a more similar mix of artists, that higher quantity of purchases 

alone can cause the Euclidean distance to increase.12  

The next weighted network is Normalized-Weighted, which normalizes each user’s vector to 

length one and then applies Euclidean distance.  On the observed data, users appear more similar: the 

median degree and average distance decrease (p < .01). On the volume-equalized data, there is little 

change and the differences are not significant. As before, the magnitudes fall under volume equalization, 

but here attenuation occurs twice: once due to volume equalization and once due to normalization.  

                                                 
12 A simple example shows this. Before, user x’s vector is (1,4) and y’s vector is (1,1). After, x’s vector is (2,8) and y’s is (2,2). 

The mix of artists they buy is unchanged, but using Euclidean distance the users are farther. As a more extreme case, if y’s 
vector after were (2,4), the users are buying a more similar mix of artists after, but the Euclidean distance still increases. 
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The Normalized-Weighted network amounts to comparing angles between users, and now almost 

all user pairs are orthogonal. Figure 10 illustrates this, showing that the distribution of average distances 

piles up at 2  ≈ 1.41. A user-to-user distance of 2 is equivalent to being orthogonal because 

 

Normalization makes each vector’s element a small fraction; thus when users only overlap on a few 

artists, the product of these fractions is small and the dot-product is near zero.13 (The figure shows the 

distribution for O11, but the graph looks similar for the other groups and periods.) 

 We thus see that Unweighted-1 and Normalized-Weighted impose very different requirements for 

how much users must overlap in their purchases to be considered close. Unweighted-1 is a forgiving 

network: uses need only one artist in common to create an edge between them. Normalized-Weighted is 

the opposite: users must have many purchases in common to be considered close or else they will be near 

orthogonal, or 2  apart. 
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Figure 10. In the Normalized-Weighted network, almost every user pair is orthogonal ( 2  apart). 

 

  The goal of the Normalized-Weighted network was to compare taste without taking into account 

differences in heavy versus light users. This network, though, is so strict in its definition – almost all users 

are orthogonal – that we introduce a more balanced measure. We test the additional network 
  

                                                 
13 This can also be seen by the argument, not proved here, that in high dimensions random vectors are nearly always orthogonal. 

(Git)xy   || xit )O
~

(  –  yit )O
~

(  || 

           =  yitxit )O
~

(,)O
~

(cos22    

           =  yitxit )O
~

()O
~

(12   

           ≈ yitxit )O
~

()O
~

(2   
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Normalized-Weighted-Rank Transform 

 (Git)xy      ||)O
~

()O
~

(||ˆ
yitxitF   

  

The Normalized-Weighted-Rank Transform network applies a rank transformation to the edge weights of 

the Normalized-Weighted network. The transformation F̂  is the empirical CDF of the distribution of 

||)O
~

()O
~

(|| yitxit  . This replaces ||)O
~

()O
~

(|| yitxit  with its percentile rank among all user pairs. Whereas 

the distribution of ||)O
~

()O
~

(|| yitxit  piles up at 2 , the rank transform spreads this out. The rank 

transformation has many applications in statistics (Conover & Iman, 1981). Here, we use it as a device to 

magnify differences among the user pairs that crowd at 2 .To apply this transformation, two CDFs are 

needed: one from the treated group and another from the control. In addition, for each group we use its 

period t = 1 CDF to transform both the t = 1 and t = 2 data. Comparisons would not be meaningful if we 

rescaled the data in period 2.  

  The results from the rank transformation yield the same conclusion that users appear more similar 

after recommendations (bottom row of Table 12 and Table 13). The median degree and average distance 

both decrease, and this holds for both the observed and volume-equalized data (p < .01).  

These results show that the findings of greater similarity do not appear specific to our choice of  

network for the base case. The results hold for a variety of networks. We have analyzed these additional 

networks at the individual level too. The results show a similar pattern as before: a trend toward 

similarity, regardless of whether a user-pair’s initial distance was close or far. For space reasons we omit 

the 24 additional tables ({treated versus control}  {before versus after}  6 networks), but they are 

available on request. 
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Table 10. Summary measures for the unweighted networks – Observed data 

 

Unweighted-1 
 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 0.23 0.46 0.22 0.23 167 402 235 234 1.80 1.54 -0.26 -0.26
C 0.19 0.19 0.00 <0.01 134 135 1 <0.01 1.86 1.86 0.00 <0.01

 
Unweighted-2 

 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di  D/p Before After Di D/p 
T 0.17 0.38 0.20 0.21 113 317 204 209.34 1.89 1.62 -0.26 -0.27
C 0.15 0.15 0.00 <0.01 97 92 -5 <0.01 1.94 1.95 0.00 <0.01

 
Unweighted-10 

 Density   Median Degree  Path Length   
 Before After Di  D/p Before After Di D/p Before After Di D/p 
T 0.08 0.18 0.11 0.11 40 123 82 84 2.12 1.86 -0.26 -0.29
C 0.08 0.07 -0.01 <0.01 42 40 -2 <0.01 2.14 2.17 0.03 <0.01

 

 

 

Table 11. Summary measures for the unweighted networks – Volume-equalized data 

 
Unweighted-1 

 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 0.23 0.27 0.04 0.04 167 213 46 43.35 1.80 1.74 -0.07 -0.06
C 0.12 0.13 0.00 0.03 79 82 3 <0.01 1.98 1.97 -0.01 0.05

 
Unweighted-2 

 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 0.17 0.23 0.06 0.06 112 176 64 61.20 1.89 1.79 -0.10 -0.09
C 0.11 0.12 0.00 <0.01 70 73 3 <0.01 2.02 2.00 -0.01 0.03

 
Unweighted-10 

 Density   Median Degree  Path Length   
 Before After Di D/p Before After Di D/p Before After Di D/p 
T 0.08 0.09 0.02 0.02 40 53 13 11 2.12 2.06 -0.05 -0.05
C 0.06 0.06 0.00 0.02 31 33 2 0.04 2.23 2.22 -0.01 0.32
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Table 12. Summary Measures for the Weighted Networks – Observed Data 

 
Weighted 

 Median Degree   Average Distance  
 Before After Di D/p Before After Di D/p 
T 21,472 28,250 6,778 8,854 32.42 41.65 9.23 12.20 
C 26,417 24,341 -2,076 <0.01 38.90 35.93 -2.96 <0.01 

 
Normalized-Weighted 

 Median Degree   Average Distance  
 Before After Di D/p Before After Di D/p 
T 1,135 1,132 -3.32 -2.79 1.41 1.40 0.00 -0.004 
C 1,136 1,136 -0.53 <0.01 1.41 1.41 0.00 <0.01 

 
Normalized-Weighted-Rank Transform 

 Median Degree   Average Distance  
 Before After Di D/p Before After Di D/p 
T 723 626 -97 -97.06 0.88 0.78 -0.10 -0.10 
C 740 740 0 <0.01 0.90 0.90 0.00 <0.01 

 
 

 

Table 13. Summary Measures for the Weighted Networks – Volume-Equalized Data 

 
Weighted 

 Median Degree   Average Distance  
 Before After Di D/p Before After Di D/p 
T 21,460 20,209 -1,251 -1,695 32.46 29.16 -3.30 -3.82 
C 24,536 24,980 444 0.05 36.11 36.63 0.52 <0.01 

 
Normalized-Weighted 

 Median Degree   Average Distance  

 Before After Di D/p Before After Di D/p 

T 1,135 1,134 -0.99 -0.68 1.41 1.41 0.00 0.00 

C 1,137 1,137 -0.31 0.16 1.41 1.41 0.00 0.91 
 

Normalized-Weighted-Rank Transform 
 Median Degree   Average Distance  
 Before After Di D/p Before After Di D/p 
T 723 695 -28 -26 0.88 0.85 -0.03 -0.03 
C 766 764 -2 <0.01 0.94 0.93 0.00 <0.01 

 
 


