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Abstract

A collaborative filtering system recommends to users products that similar users like. Col-
laborative filtering systems influence purchase decisions, and hence have become targets of
manipulation by unscrupulous vendors. We provide theoretical and empirical results demon-
strating that while common nearest neighbor algorithms, which are widely used in commercial
systems, can be highly susceptible to manipulation, two classes of collaborative filtering algo-
rithms which we refer to as linear and asymptotically linear are relatively robust. These results
provide guidance for the design of future collaborative filtering systems.

1 Introduction

While the expanding universe of products available via Internet commerce provides consumers
with valuable options, sifting through the numerous alternatives to identify desirable choices can
be challenging. Collaborative filtering (CF) systems aid this process by recommending to users
products desired by similar individuals.

At the heart of a CF system is an algorithm that predicts whether a given user will like various
products based on his past behavior and that of other users. Nearest neighbor (NN) algorithms,
for example, have enjoyed wide use in commercial CF systems, including those of Amazon, Netflix,
and Youtube (Bennett, 2006; Linden et al., 2003; Ryan, 2008). A prototypical NN algorithm stores
each user’s history, which may include, for instance, his product ratings and purchase decisions. To
predict whether a particular user will like a particular product, the algorithm identifies a number
of other users with similar histories. A prediction is then generated based on how these so-called
neighbors have responded to the product. This prediction could be, for example, a weighted average
of past ratings supplied by neighbors.

Because purchase decisions are influenced by CF systems, they have become targets of ma-
nipulation by unscrupulous vendors. For instance, a vendor can create multiple online identities
and use each to rate his own product highly and competitors’ products poorly. As an example,
Amazon’s CF system was manipulated so that users who viewed a spiritual guide written by a
well-known Christian evangelist were subsequently recommended a sex manual for gay men (Olsen,
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2002). Although this incident may not have been driven by commercial motives, it highlights the
vulnerability of CF systems. The research literature offers further empirical evidence that NN
algorithms are susceptible to manipulation (Burke et al., 2005; Lam and Riedl, 2004; Mehta and
Nejdl, 2008; Mobasher et al., 2005, 2006; O’Mahony et al., 2004; Sandvig et al., 2007; Zhang et al.,
2006).

In order to curb manipulation, one might consider authenticating each user by asking for, say, a
credit card number to limit the number of fake identities. This may be effective in some situations.
However, in Internet services that do not facilitate financial transactions, such as Youtube, requiring
authentication would intrude privacy and drive users away. One might also consider using only
customer purchase data, when they are available, as a basis for recommendations because they are
likely generated by honest users. Recommendation quality may be improved, however, if higher-
volume data such as page views are also properly utilized.

In this paper, we seek to understand the extent to which manipulators can hurt the performance
of CF systems and how CF algorithms should be designed to abate their influence. We find
that, while NN algorithms can be quite sensitive to manipulation, CF algorithms that carry out
predictions based on a particular class of probabilistic models are surprisingly robust. For reasons
that we will explain in the paper, we will refer to algorithms of this kind as linear CF algorithms.

We find that as a user rates an increasing number of products, the average accuracy of predic-
tions made by a linear CF algorithm becomes insensitive to manipulated data. For instance, even if
half of all ratings are provided by manipulators who try to promote half of the products, predictions
for users with long histories will barely be distorted, on average. To provide some intuition for why
our results should hold, we now offer an informal argument. A robust CF algorithm should learn
from its mistakes. In particular, differences between its predictions and actual ratings should help
improve predictions on future ratings. A linear CF algorithm generates predictions based on a
probability distribution that is a convex combination of two distributions: one that it would learn
given only data generated by honest users and one that it would learn given only manipulated data.
As a user whose ratings we wish to predict provides more ratings, it becomes increasingly clear
which of these two distributions better represents his preferences. As a result, the weight placed
on manipulated data diminishes and distortion vanishes.

The main theoretical result of this paper formalizes the above argument. In particular, we will
define a notion of distortion induced by manipulators and establish an upper bound on distortion,
which takes a particularly simple form:

distortion ≤ 1
n

ln
1

1− r
.

Here r is the fraction of data that is generated by manipulators and n is the number of products
that have already been rated by a user whose future ratings we wish to predict. The bound is
very general. First, it applies to all linear CF algorithms. Second, it applies to all manipulation
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strategies even if manipulators coordinate their actions and produce data with knowledge of all data
generated by honest users. The bound demonstrates that as the number of prior ratings n increases,
distortion vanishes. It also identifies the number required to limit distortion to a certain level. This
offers guidance for the design of a recommendation system: the system may, for example, assess
and inform users about the confidence of each recommendation. The system may also require a
new user to rate a set number of products before making recommendations to him. To put this in
perspective, consider the following numerical example. Suppose a CF system that accepts binary
ratings predicts future ratings correctly 80% of the time in the absence of manipulation. If 10% of
all ratings are provided by manipulators, according to our bound, the system can maintain a 75%
rate of correct predictions by requiring each new user to rate at least 21 products before receiving
recommendations.

To broaden the scope of our analysis, we will also study CF algorithms that behave like linear
CF algorithms asymptotically as the size of the training set grows. This class of algorithms, which
we refer to as asymptotically linear, is more flexible in accommodating modeling assumptions that
may improve prediction accuracy. We will establish that a relaxed version of our distortion bound
for linear CF algorithms applies to asymptotically linear CF algorithms.

We will also show that our distortion bound does not generally hold for NN algorithms. In-
tuitively, this is because prediction errors do not always improve the selection of neighbors. In
particular, as a user provides more ratings, manipulated data that contribute to inaccurate predic-
tions of his future ratings may remain in the set of neighbors while data generated by honest users
may be eliminated from it. As a result, distortion of predictions may not decrease. We will later
provide an example to illustrate this.

In addition to theoretical results, this paper provides an empirical analysis using a publicly
available set of movie ratings generated by users of Netflix’s recommendation system. We produce
a distorted version of this data set by injecting manipulated ratings generated using a manipula-
tion technique studied in prior literature. We then compare results from application of three CF
algorithms: an NN algorithm, a linear CF algorithm called the kernel density estimation algorithm,
and an asymptotically linear CF algorithm called the naive Bayes algorithm. Results demonstrate
that while performance of the NN algorithm is highly susceptible to manipulation, those of kernel
density estimation and naive Bayes algorithms are relatively robust. In particular, the latter two
experience distortions lower than the theoretical bound we provide, whereas the distortion for the
former exceeds it by far.

One might also wonder whether manipulation robustness of a CF algorithm comes at the ex-
pense of its prediction accuracy. As an example, consider an algorithm that fixes predictions for
all ratings to be a constant, without regard to the training data. This algorithm is uninfluenced
by manipulation but is likely to yield poor predictions, and is therefore not useful. In our experi-
ments, the accuracy demonstrated by the three algorithms all seems reasonable. This suggests that
accuracy of a CF algorithm may be achieved alongside robustness.
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Our theoretical and empirical results together suggest that commercial recommendation systems
using NN algorithms can be made more robust by adopting approaches that we describe. Note that
we are not proposing that real-world systems should implement the specific algorithms we present
in this paper. Rather, our analysis highlights properties of CF algorithms that lead to robustness
and practitioners may benefit from taking these properties into consideration when designing CF
systems.

This paper is organized as follows. In the next section, we discuss some related work. In Section
3, we formulate a simplified model that serves as a context for studying alternative CF algorithms.
We then establish results concerning the manipulation robustness of NN, linear, and asymptotically
linear CF algorithms in Section 4. In Section 5, we present our empirical study. We make some
closing remarks in a final section.

2 Related Work

Early research on CF systems focused on their performance in the absence of manipulation (Breese
et al., 1998; Drineas et al., 2002; Herlocker et al., 1999; Kleinberg and Sandler, 2008; Motwani
and Vassilvitskii, 2007; Moon and Russell, 2008; Sarwar et al., 2001; Schafer et al., 2001). Almost
all work on manipulation robustness has been empirical. For example, Burke et al. (2005); Lam
and Riedl (2004); Mehta and Nejdl (2008); Mobasher et al. (2005, 2006); O’Mahony et al. (2004);
Sandvig et al. (2007); Zhang et al. (2006) present studies on product ratings made publicly available
by Internet commerce sites. In each case, manipulated ratings were injected, and CF algorithms
were tested on the altered data sets. The results point out that NN algorithms and their variants
are susceptible to manipulation. This line of work identifies an effective manipulation scheme,
which is to create multiple identities and with each identity, provide positive ratings on products
to be promoted while rating other products in a manner indistinguishable from that of honest
users. In Mehta and Nejdl (2008); Mobasher et al. (2006); Zhang et al. (2006), algorithms based
on probabilistic latent semantic analysis and principal component analysis were tested. It turns
out that these algorithms are asymptotically linear under certain assumptions about the data, and
indeed, empirical results in these papers suggest that they are relatively robust to manipulation.
These prior results support the conclusions of our work.

To the best of our knowledge, the only prior theoretical work on manipulation robustness of CF
algorithms is reported in O’Mahony et al. (2004). This work analyzed an NN algorithm that uses
the majority rating among a set of neighbors as the prediction of a user’s rating in an asymptotic
regime of many users, each of whom rates all products. Manipulators rate as honest users would
except on one fixed product. A bound is established on the algorithm’s prediction error for this
product’s rating as a function of the percentage of ratings provided by manipulators. In our work,
we do not require users to rate all products and do not constrain manipulators to any particular
strategies. Further, we study the performance distortion on average, rather than for a single
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product. Finally, a primary contribution of our work is in establishing manipulation robustness of
linear and asymptotically linear CF algorithms, which turn out to be superior to NN algorithms in
this dimension.

Several researchers have proposed alternative approaches to abating the influence of manipula-
tors. In Resnick and Sami (2007), a mechanism is proposed where users accumulate reputations
while providing ratings that are later validated by observed product quality, and a user’s influence
on ratings predictions is limited by his reputation. In this mechanism, a bound is established on the
distortion induced by any finite number of manipulators. In Massa and Avesani (2008); O’Donovan
and Smyth (2006), researchers propose leveraging trust relationships among users to weight rec-
ommendations and fend off manipulation. Mehta (2007); Mobasher et al. (2007); Sandvig et al.
(2007); Williams et al. (2007) suggest detecting manipulated ratings based on their patterns and
discounting their impact. Our work complements this growing literature. First, additional sources
of information can be integrated into the probabilistic framework that we introduce in this paper
to further enhance manipulation robustness. Second, the analytical methods that we develop may
be useful for studying the benefits of incorporating such information.

Distortion due to manipulation may also be viewed as a loss of utility in a sequential decision
problem induced by errors in initial beliefs. Our analysis is based on ideas similar to those that
have been used to study the latter topic, which is discussed in Gossner and Tomala (2008).

More broadly speaking, apart from collaborative filtering, there are other ways to aggregate
users’ response to products in order to provide recommendations. Research has been performed
on the manipulation robustness of these systems as well. To get a flavor of this line of work, see
Bhattacharjee and Goel (2007); Dellarocas (2006); Friedman et al. (2007); Miller et al. (2005).

3 Model

We now formulate a simplified model that will serve as a context for assessing performance of
alternative CF algorithms. We will first define the product ratings that we work with and then
introduce measures of distortion induced by manipulators. For the convenience of the reader, we
summarize our mathematical notation in tables in Appendix B.

3.1 Ratings Vectors

In our model, a user selects ratings from a set S. To simplify our discussion, we let S be a
finite subset of [0, 1]. For example, S could be {0, 1} with 0 representing a negative rating and 1
representing a positive rating. Note that all the results in this paper can be easily generalized to
accommodate any finite set S. There are N products, and a user’s type is identified by a vector
in SN . Each nth component of this vector reflects how the user would rate the nth product after
inspecting it.

The CF system has access to ratings provided by M identities who have rated products in
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the past. The data from each mth identity takes the form of a ratings vector wm ∈ SN , where
S = S ∪ {◦}. Here, an element of S represents a product rating whereas a circle indicates that a
product has not been rated. We refer to W = (w1, . . . , wM ) ∈ SN×M as the training data. This
data is used by a CF algorithm to predict future ratings.

Consider a user who is distinct from identities that generated the training data and for whom
we will generate recommendations. We will refer to such a user as an active user. We will think
of a CF algorithm as a function that provides a probability mass function (PMF) pn,x,W over S

for each triplet (n, x,W ) ∈ {1, . . . , N} × SN × SN×M . The PMF represents beliefs about how an
active user who has so far provided ratings x would rate product n after inspecting it.

Such an algorithm can be used to guide recommendations; for example, the CF system might
recommend to the active user the product he is most likely to rate highly among those that he has
not already rated.

3.2 Kullback-Leibler Distortion

To study the influence of manipulation, we consider a situation where a fraction r of the identities
are created by manipulators, while the remaining fraction 1−r correspond to distinct honest users.
We denote the honest ratings vectors by y1, . . . , y(1−r)M ∈ SN and the manipulated ratings vectors
by z1, . . . , zrM ∈ SN . Let Y = (y1, . . . , y(1−r)M ) and Z = (z1, . . . , zrM ) so that the training data is
W = (Y,Z).

To assess distortion of predictions made by a CF algorithm, we consider the following thought
experiment. A hypothetical active user begins with a ratings vector x0, with each nth component
set to x0

n = ◦, and inspects products in an order ν = (ν1, . . . , νN ) ∈ σN , where σN denotes the
set of permutations of {1, . . . , N}. After inspecting product νk, the user rates it by sampling from
the PMF pνk,xk−1,Y . An updated ratings vector xk is generated by incorporating this new rating
in xk−1. This stochastic process reflects how we would think honest users behave based on the CF
algorithm and uncorrupted data set Y . We introduce the following measure of distortion, which
we refer to as Kullback-Leibler (KL) distortion:

dKL
n (p, ν, Y, Z) =

1
n

n∑
k=1

E
[
D
(
pνk,xk−1,Y

∥∥∥ pνk,xk−1,(Y,Z)

)]
,

where D denotes Kullback-Leibler divergence with the natural log. That is, for any two PMFs p
and q over support U , D(p ‖ q ) =

∑
u∈U p(u) ln (p(u)/q(u)). This measure of the difference between

PMFs is commonly used in information theory.
For each k, the PMF pνk,xk−1,Y represents the prediction that would be made in the absence of

manipulators, whereas pνk,xk−1,(Y,Z) is what it becomes as a consequence of manipulation. Hence,

D
(
pνk,xk−1,Y

∥∥∥ pνk,xk−1,(Y,Z)

)
measures the extent to which the manipulated data Z influences the

prediction. We take the expectation of this quantity, with xk−1 distributed as the CF algorithm
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would have predicted if the data set were not corrupted by manipulated data. KL distortion
dKL
n (p, ν, Y, Z) averages these terms over the first n inspected products.

We can view the generation of each xk in the preceding thought experiment in the context of a
Markov chain. In particular, given p and an ordering ν, we define a Markov chain with state space
SN where the initial state is x0, and for each k ≥ 1, state xk evolves according to:

xkνk ∼ pνk,xk−1,W ,

xkj = xk−1
j , ∀ j 6= νk.

We denote by P (· | p,W, ν ) the PMF of xN implied by p, W , and ν, and drop p from the list of
conditioning variables when this does not cause confusion. Clearly, p is a conditional PMF with
respect to P . That is, for each n and s ∈ S,

pνn,xn−1,W (xνn = s) = P
(
xνn = s

∣∣xn−1,W, ν
)
.

As such, a CF algorithm p is completely characterized by a corresponding P and we will use P to
refer to a CF algorithm from here on. KL distortion can then be re-written as:

dKL
n (P, ν, Y, Z) =

1
n

n∑
k=1

E
[
D
(
P
(
·
∣∣∣xk−1, Y, ν

)∥∥∥P (· ∣∣∣xk−1, (Y, Z), ν
))]

.

3.3 Root-Mean-Squared Distortion

Some algorithms such as NN algorithms generate predictions not in the form of PMFs, but as
scalars that may be interpreted as the means of PMFs. For these algorithms, it may be more
suitable to measure manipulation impact in terms of root-mean-squared (RMS) distortion:

dRMS
n (P, ν, Y, Z) =

√√√√ 1
n

n∑
k=1

E
[(
x̂νk,xk−1,Y − x̂νk,xk−1,(Y,Z)

)2
]
,

where x̂νk,xk−1,Y and x̂νk,xk−1,(Y,Z) denote the scalar predictions of xνk by the algorithm based on
ratings history xk−1 and data sets Y and (Y, Z), respectively. Note that if the algorithm generates
PMFs as predictions, x̂νk,xk−1,Y and x̂νk,xk−1,(Y,Z) would be expectations of xνk taken with respect
to P

(
·
∣∣xk−1, Y, ν

)
and P

(
·
∣∣xk−1, (Y,Z), ν

)
, respectively. The expectation in the definition of

RMS distortion is taken with xk−1 distributed as the CF algorithm would have predicted based on
Y . RMS distortion may offer a more transparent assessment than KL distortion because the former
computes how much scalar predictions change in the same unit as the predictions themselves. RMS
distortion is bounded by a function of KL distortion:

dRMS
n (P, ν, Y, Z) ≤

√
1
2
dKL
n (P, ν, Y, Z).
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This is shown in Proposition 1 in Appendix A.1 by using Pinsker’s inequality and an additional
lemma.

3.4 Binary Prediction Distortion

To offer an intuitive interpretation for RMS distortion, we consider a setting where users provide
binary ratings and the CF system offers binary predictions based on the PMFs that it generates.
That is, we set S = {0, 1}. Given training data Y , for a user with ratings history xk−1, the
system generates a prediction of x̂νk,xk−1,Y = 1 for product νk if P

(
xνk = 1

∣∣xk−1, Y, ν
)
≥ 1/2 and

generates a prediction of x̂νk,xk−1,Y = 0 otherwise. Similarly, we denote x̂νk,xk−1,(Y,Z) as the binary
prediction based on (Y,Z). We define the following binary prediction distortion:

dB
n(P, ν, Y, Z) =

1
n

n∑
k=1

(
Pr
(
xνk = x̂νk,xk−1,Y

)
− Pr

(
xνk = x̂νk,xk−1,(Y,Z)

))
,

where each xνk is distributed according to pνk,xk−1,Y and xk−1 is distributed as the CF algorithm
would have predicted based on Y . This quantity captures the average decrease in the probability
of correct predictions, induced by manipulation. It turns out that binary prediction distortion is
bounded by RMS distortion:

dB
n(P, ν, Y, Z) ≤ dRMS

n (P, ν, Y, Z). (1)

Proved in Proposition 2 in Appendix A.1, this result offers an interpretation of RMS distortion as
an upper bound on the drop in the probability of correct predictions in a binary setting.

3.5 Discussion

One might wonder how we arrive at our distortion measures. For instance, regarding the motivating
throught experiment, one might question why we sample an active user’s ratings from the distribu-
tion P (· |Y, ν ) rather than from a posterior belief obtained by Bayesian update based on a prior
belief and observed ratings xk−1. We do so because posteriors are sometimes difficult to represent
and Bayesian updates may be computationally prohibitive. The way we sample effectively uses the
CF algorithm to encode the prior and approximate its posterior.

One might also wonder why we choose our particular distortion measures over other candidates.
For instance, one option is to consider the top n most desirable products based on predictions, and
define as distortion some measure of their quality change due to the manipulated samples. One
reason why we prefer KL and RMS distortions is that they are convex functions of predictions while
this measure is not. As such, this measure is difficult to analyze. Further, as will be discussed in
Section 5.6, in a recent competition of CF algorithms, Netflix uses RMS error to assess their pre-
diction accuracies (Netflix Prize, 2006). This suggests that commercial CF algorithms are typically
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designed to minimize convex measures of error. Our choice of distortion measures is in line with
this approach.

Another option one might consider is to measure the worst distortion over all products. While
it would be attractive to keep this measure small for all manipulation schemes, that may not be
achievable. Further, a large worst-case distortion does not necessarily imply that a CF algorithm
is not useful. Consider, for instance, a case where many manipulators aim to distort ratings of
many different products, and the output of the algorithm is such that the rating of one product is
significantly distorted while the rest are not. We might still say that the algorithm is reasonably
robust whereas a worst-case measure would indicate otherwise. That said, we note that since KL
and RMS distortions characterize average distortions, the robustness results of this paper do not
provide guarantees on the distortion of individual products’ ratings.

4 Collaborative Filtering Algorithms

In this section, we first introduce the notion of probabilistic CF algorithms. We then describe two
classes of such algorithms, namely linear and asymptotically linear CF algorithms, and analyze their
robustness to manipulation. Finally, we discuss nearest neighbor algorithms and their susceptibility
to manipulation.

4.1 Probabilistic Collaborative Filtering Algorithms

A probabilistic CF algorithm carries out predictions based on a probabilistic model of how the
training data is generated. We will model training data as being generated in the following way.
First, a user type wm ∈ SN is sampled i.i.d. from some PMF P ∗. Then, wm ∈ SN is sampled from
a conditional PMF Q∗, conditioned on wm, which for each n assigns either wmn = ◦ or wmn = wm

n .
Note that this model allows for dependence between the type of a user and the products he chooses
to rate. This accommodates, for example, systems in which users tend to inspect and rate only
products that they care for.

We will call a CF algorithm P probabilistic if for each W , the distribution P (· |W, ν ) is inde-
pendent of ν, in which case we drop ν from the list of conditioning variables. This implies that for
each W , the algorithm generates a distribution P (· |W ), and for each k, lets

pνk,xk−1,W = P
(
·
∣∣∣xk−1,W

)
.

4.2 Linear Collaborative Filtering Algorithms

We say that a probabilistic CF algorithm P is linear if for any W1 ∈ SN×M1 and W2 ∈ SN×M2 ,

P (· | (W1,W2)) =
M1

M1 +M2
P (· |W1 ) +

M2

M1 +M2
P (· |W2 ) .
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This definition states that the PMF P (· | (W1,W2)) that a linear CF algorithm P generates based
on training data (W1,W2) is a convex combination of two PMFs: namely, the PMF P (· |W1 ) that
it generates based on W1 and the PMF P (· |W2 ) that it generates based on W2.

We now examine the KL distortion that manipulators can induce on a linear CF algorithm.
Consider training data W = (Y, Z) consisting of ratings vectors Y from honest users and Z from
manipulators, with the latter making up a fraction r of the training data. The following theorem,
which is the main theoretical contribution of this paper, establishes a bound on the resulting KL
distortion.

Theorem 1. Fix the number of products N and let P be a linear CF algorithm. Then, for all M ,
r ∈ {0, 1/M, . . . , (M − 1)/M}, Y ∈ SN×(1−r)M , Z ∈ SN×rM , ν ∈ σN , and n ∈ {1, . . . , N},

dKL
n (P, ν, Y, Z) ≤ 1

n
ln

1
1− r

.

This result is proved in Appendix A.2.
Note that the bound only depends on the number of active user ratings n and the fraction

of data r generated by manipulators. Hence, it represents a worst case bound over all linear
CF algorithms P , the number of products N , the quantity M and values (Y, Z) of the training
data, and the order ν in which the active user rates products. This means, for example, that it
applies even if manipulators coordinate with each other and select ratings with knowledge of the
specific CF algorithm P , the honest ratings Y , and the ordering ν. This also makes the bound
relevant for realistic models of how a recommendation system might sequence products for a user;
for example, each νk could be the product that the CF algorithm predicts as being most desirable
among remaining ones after the user has inspected products ν1, . . . , νk−1.

Note that KL distortion vanishes as the number n of products rated by the active user increases.
To develop intuition for why this happens, we now offer an informal argument. Observe that
P (· | (Y,Z)) = (1− r)P (· |Y ) + rP (· |Z ). If P (· |Y ) is identical to P (· |Z ), then P (· | (Y,Z ))
is equal to P (· |Y ) and distortion will be zero. Otherwise, if P (· |Y ) and P (· |Z ) are different,
as an active user inspects and rates products in the manner that we define, his ratings will tend to
be distinguished as sampled from P (· |Y ) rather than from P (· |Z ). As such, the influence of Z
on predictions diminishes as n grows.

The bound depends on r through the term ln(1/(1− r)). This term captures the dependence of
KL distortion on the fraction of data produced by manipulators. As one would expect, this term
vanishes when r is set to zero.

To offer an additional interpretation of the bound, we refer to the quantity ndKL
n (P, ν, Y, Z) as

total distortion. It is bounded by ln(1/(1− r)), which is close to r if r is small. This implies that
the total distortion incurred by manipulated data is roughly equal to its size as a fraction of the
entire data set, when this fraction is small.

As a corollary of Theorem 1 and Proposition 1 we have the following bound on RMS distortion.
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Corollary 1. Fix the number of products N and let P be a linear CF algorithm. Then, for all M ,
r ∈ {0, 1/M, . . . , (M − 1)/M}, Y ∈ SN×(1−r)M , Z ∈ SN×rM , ν ∈ σN , and n ∈ {1, . . . , N},

dRMS
n (P, ν, Y, Z) ≤

√
1

2n
ln

1
1− r

.

Figure 1 illustrates how this bound depends on r and n. In particular, the four curves from
bottom to top correspond to cases where r = 0.01, 0.05, 0.1, 0.2, respectively. The bound can offer
useful guidance. For example, it ensures that if an active user has rated 22 products and no more
than 10% of the training data is manipulated, then the RMS distortion induced by manipulators
is less than 0.05. In a setting where users provide binary ratings and the system generates binary
predictions, according to our bound on binary prediction distortion in (1) in Section 3.4, the average
probability of correct predictions decreases by at most 0.05. Hence, if a binary CF system predicts
ratings correctly 80% of the time in the absence of manipulation, it can maintain this probability at
75% in the presence of manipulation if it requires active users to rate 21 products before receiving
recommendations.

0

0.1

0.2

0.3

0.4

√
1

2n ln 1
1−r

1 5 10 15 20 25 30 35 40 n

Figure 1: Bound on dRMS
n (P, ν, Y, Z) as a function of n. The four curves from bottom to top are for

cases where r = 0.01, 0.05, 0.1, and 0.2, respectively.

We will introduce examples of linear CF algorithms in Section 5.3.

4.3 Asymptotically Linear Collaborative Filtering Algorithms

We say that a probabilistic CF algorithm P is asymptotically linear if for all PMFs of ratings vectors
ψ, φ over SN , r ∈ [0, 1], and ε > 0,

lim
m→∞

Pr (D (((1− r)P (· |Um ) + rP (· |Vm )) ‖P (· | (Um, Vm))) ≥ ε) = 0,
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where for eachm, Um = (u1, . . . , um−l) ∈ SN×(m−l) and Vm = (v1, . . . , vl) ∈ SN×l, l ∼ Binomial(m, r),
and u1, . . . , um−l ∼ ψ and v1, . . . , vl ∼ φ are i.i.d. sequences.

To understand the preceding definition, we think of training data (Um, Vm) for each m as
generated in the following way: with probability 1 − r, a ratings vector is sampled from ψ, which
we denote as ui for an appropriate i, and with probability r, a ratings vector is sampled from φ,
which we denote as vj for an appropriate j. Um consists of all such ui and Vm consists of all such
vj . As m grows, an asymptotically linear CF algorithm behaves like a linear CF algorithm in that
the PMF P (· | (Um, Vm)) that it generates based on data (Um, Vm) converges in probability to a
convex combination of two PMFs: namely, the PMF P (· |Um ) that it would generate based on
Um and the PMF P (· |Vm ) that it would generate based on Vm. By an application of the weak
law of large numbers, it can be shown that all linear CF algorithms are asymptotically linear.

We can also show that asymptotically linear CF algorithms are asymptotically robust, in a
sense to be made precise later. It turns out that this result applies to a broader range of practical
algorithms that are asymptotically linear in a more restricted sense, which we now define. Consider
a set Ψ of PMFs over SN . We say that a probabilistic CF algorithm P is asymptotically linear with
respect to Ψ if for all PMFs ψ, φ ∈ Ψ, r ∈ [0, 1], and ε > 0,

lim
m→∞

Pr (D (((1− r)P (· |Um ) + rP (· |Vm )) ‖P (· | (Um, Vm))) ≥ ε) = 0,

where for eachm, Um = (u1, . . . , um−l) ∈ SN×(m−l) and Vm = (v1, . . . , vl) ∈ SN×l, l ∼ Binomial(m, r),
and u1, . . . , um−l ∼ ψ and v1, . . . , vl ∼ φ are i.i.d. sequences.

The following theorem and corollary characterize the robustness of asymptotically linear CF
algorithms.

Theorem 2. Fix the number of products N and a set Ψ of PMFs over SN . Let P be a CF algorithm
asymptotically linear with respect to Ψ. Then, for all ψ, φ ∈ Ψ, r ∈ [0, 1), ν ∈ σN , n ∈ {1, . . . , N},
and ε > 0,

lim
m→∞

Pr
(
dKL
n (P, ν, Ym, Zm) ≥ 1

n
ln

1
1− r

+ ε

)
= 0,

where, for each m, Ym = (y1, . . . , ym−l) ∈ SN×(m−l), Zm = (z1, . . . , zl) ∈ SN×l, l ∼ Binomial(m, r),
and y1, . . . , ym−l ∼ ψ and z1, . . . , zl ∼ φ are i.i.d. sequences.

Corollary 2. Fix the number of products N and a set Ψ of PMFs over SN . Let P be a CF
algorithm asymptotically linear with respect to Ψ. Then, for all ψ, φ ∈ Ψ, r ∈ [0, 1), ν ∈ σN ,
n ∈ {1, . . . , N}, and ε > 0,

lim
m→∞

Pr

(
dRMS
n (P, ν, Ym, Zm) ≥

√
1

2n
ln

1
1− r

+ ε

)
= 0,

where, for each m, Ym = (y1, . . . , ym−l) ∈ SN×(m−l), Zm = (z1, . . . , zl) ∈ SN×l, l ∼ Binomial(m, r),
and y1, . . . , ym−l ∼ ψ and z1, . . . , zl ∼ φ are i.i.d. sequences.
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Theorem 2 is proved in Appendix A.2 and Corollary 2 follows from Theorem 2 and Proposition 1.
These results state that for any CF algorithm P asymptotically linear with respect to Ψ and any
fixed PMFs ψ, φ ∈ Ψ, as honest users and manipulators sample more data from them, with high
probability, the distortion bounds for linear CF algorithms in Theorem 1 and Corollary 1 will also
apply to P and in particular, distortion will vanish as n grows.

The intuition behind these results is similar to that for Theorem 1. In particular, given sufficient
data, the learned PMF P (· | (Ym, Zm)) should closely approximate (1− r)P (· |Ym ) + rP (· |Zm ).
If P (· |Ym ) and P (· |Zm ) are similar, then P (· | (Ym, Zm)) should be close to P (· |Ym ) and
distortion should be close to zero. On the other hand, if P (· |Ym ) and P (· |Zm ) are significantly
different, as an active user provides more ratings, it will be increasingly clear that they are sampled
from P (· |Ym ) rather than P (· |Zm ), and distortion will diminish.

We now study a class of asymptotically linear CF algorithms, which converge to the true PMF
of user types under certain assumptions about the training data. Consider a set Φ of (P ,Q) pairs
where P is a distribution over user types and Q is a conditional distribution of ratings vectors
conditioned on types. We say that Φ is identifiable if each (P ,Q) leads to a distinct ratings vector
distribution PQ over SN . Given an identifiable set Φ, we say that a probabilistic CF algorithm P

is consistent with respect to Φ if for all (P ,Q) ∈ Φ and ε > 0,

lim
m→∞

Pr
(
D
(
P (· |Wm )

∥∥P ) ≥ ε) = 0,

where for each m, Wm = (w1, . . . , wm) ∈ SN×m is generated independently and w1, . . . , wm ∼ PQ is
an i.i.d. sequence. This definition is meant to capture algorithms that converge to type distribution
P ∗ as the training data grows. The following theorem states the setting in which a consistent CF
algorithm is asymptotically linear.

Theorem 3. Any probabilistic CF algorithm consistent with respect to an identifiable and convex
set Φ is asymptotically linear with respect to Φ.

The preceding result, proved in Appendix A.2, together with the definition of consistent algorithms
and Theorem 2 imply that if data are sampled i.i.d. from a PMF P ∗Q∗ induced by (P ∗, Q∗) in
an identifiable and convex set Φ, then a consistent algorithm with respect to Φ would provide
guarantees on both prediction accuracy and robustness to manipulation as training data grows. In
practice, even if it is unclear whether the identifiability and convexity conditions hold, as a starting
point, one might still apply a consistent CF algorithm, with the hope that it will deliver reasonable
accuracy and robustness. In Section 5, we will empirically evaluate a consistent CF algorithm called
the naive Bayes algorithm.

4.4 Nearest Neighbor Algorithms

Nearest neighbor algorithms, widely used in commercial CF systems (Bennett, 2006; Linden et al.,
2003; Ryan, 2008), generally come in two classes. The first class predicts a user’s ratings based on
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those provided by similar users, referred to as neighbors. The second class makes predictions on a
product based on ratings that the user has provided on similar products, which can also be viewed
as neighbors. In this section, we study a simple NN algorithm of the first class and the extent to
which its predictions can be distorted by manipulators. We show that the bounds of the previous
section do not apply to this NN algorithm, and unlike the case of linear CF algorithms, distortion
does not generally diminish as the active user inspects and rates products. Though our analysis
focuses on a particular NN algorithm, the resulting insights apply more broadly and in particular,
to NN algorithms of the second class as well.

We study the case of binary ratings. NN algorithms identify and weight neighbors using a
similarity measure. We will consider a similarity measure that increases by one for each pair of
consistent ratings and decreases by one for each pair of inconsistent ratings:

s(x, y) = |{1 ≤ n ≤ N : xn = yn 6= ◦}| − |{1 ≤ n ≤ N : ◦ 6= xn 6= yn 6= ◦}|,

for any pair of ratings vectors x, y ∈ SN .
We consider an NN algorithm that predicts the future rating of product n for a user with

ratings vector x by carrying out the following steps. First, the algorithm identifies the subset of the
training data samples that offer ratings for product n. If this subset is empty, the NN algorithm
optimistically predicts a rating of 1. Otherwise, from among these ratings vectors, the ones most
similar to x are identified. We denote the resulting set of neighbors, which should be a singleton
unless there is a tie, by N (n, x,W ). Finally, an average of their ratings for product n forms the
prediction:

x̂n,x,W =

∑
w∈N (n,x,W )wn

|N (n, x,W )|
.

Our observations extend to other more complicated similarity metrics and neighbors selection meth-
ods. However, we focus on this particular case in order to keep our analysis clean.

We now consider a simple setting that facilitates analysis of RMS distortion in our NN algorithm.
We are interested in how RMS distortion changes as the number of ratings n provided by an active
user grows. Since n cannot exceed the number of products N , we will define an ensemble of models
indexed by N . To facilitate our construction, we will only consider even N .

To keep things simple, we restrict attention to a situation where honest users agree on the
ratings of all products. In particular, there is a single user type xodd which rates odd-indexed
products 1 and even-indexed products 0. The user type PMF P ∗ assigns all probability to this
vector. Each honest ratings vector ym is generated by sampling a random set of odd numbers
between 1 and N − 1, then for each sample k, replacing components k and k + 1 of xodd with
circles. We assume that the honest ratings Y of training data is such that each set of odd numbers
between 1 and N−1 is sampled exactly once. That is, each element of Y corresponds to an element
of the set {(1, 0), (◦, ◦)}N/2. As such, there are 2N/2 honest ratings vectors.

Recalling the setting that we use for assessing distortion, we now consider an active user who
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inspects products in the ordering ν = (1, . . . , N), rating each based on the prediction of the NN
algorithm. It is easy to see that when there are no manipulators, the NN algorithm perfectly
predicts x̂k,xk−1,Y = xodd

k , and therefore, after the user inspects k products, his ratings history xk

has xkj = xodd
j for j ≤ k and xkj = ◦ for j > k.

We assume that manipulators produce one half of the training data. For each honest ratings
vector ym, manipulators produce a ratings vector zm which agrees with ym on all products rated
by ym. However, circles in ym are replaced by 1 for even indices and 0 for odd indices. That is,
each zm corresponds to an element of the set {(1, 0), (0, 1)}N/2.

Suppose k is even. Given xk, the NN algorithm predicts what the active user’s rating will be for
product k + 1. To do this, it identifies neighbors N (k + 1, xk, (Y, Z)), which includes the following
subsets of the training data:

• A set Y1 which consists of honest ratings vectors ym where ymj 6= ◦ for j ≤ k + 1.

• A set Z1 that, for each ym ∈ Y1, includes the corresponding manipulated vector zm ∈ Z.

• A set Z2 which consists of each manipulated ratings vector zm such that the corresponding
honest ratings vector ym has ymj 6= ◦ for j ≤ k and ymk+1 = ◦.

Note that each of these sets is of cardinality 2(N−k)/2−1. Vectors in Y1 and Z1 correctly rate
product k+ 1 as 1, whereas vectors in Z2 incorrectly rate it as 0. As a consequence, the prediction
for product k + 1 is x̂k+1,xk,(Y,Z) = 2/3 and the resulting squared error is

(
xodd
k+1 − x̂k+1,xk,(Y,Z)

)2
=

1
9
.

The preceding argument applies for all even k. For odd k, it is easy to show that the NN
algorithm correctly predicts xodd

k+1 = 0. It follows that the RMS distortion for even n is

dRMS
n (p, ν, Y, Z) =

√√√√ 1
n

n∑
k=1

E
[(

xodd
k − x̂k,xk−1,(Y,Z)

)2
]

=
1

3
√

2
.

The preceding example shows that the RMS distortion of an NN algorithm for r = 1/2 does
not decrease as n grows. This happens because manipulated data are strategically generated to
be sufficiently similar to honest data so that no matter how many ratings an active user provides,
manipulated ratings vectors will make up a fixed fraction of the neighbors and consequently induce
a significant amount of distortion.

In contrast, Corollary 1 establishes that linear CF algorithms exhibit a more graceful behavior,
with RMS distortion vanishing as n increases. This is not to say it is impossible to design an NN
algorithm that exhibits a more desirable behavior when applied to our example. However, it is
difficult to know for sure whether a given variation will behave gracefully in all relevant situations.
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4.5 Discussion

We now provide an intuitive explanation for why linear CF algorithms should be robust to ma-
nipulation relative to NN algorithms. First note that robustness depends on how a CF algorithm
learns from its mistakes. In particular, a robust algorithm should notice as it observes differences
between its predictions and an active user’s ratings that certain things learned from the data set
are hurting rather than improving its predictions.

Recall that a linear CF algorithm P generates based on the training set (Y,Z) a PMF P (· | (Y, Z))
that is a convex combination of P (· |Y ) and P (· |Z ), which are PMFs that the algorithm would
generate based on Y and Z, respectively. As an active user rates more products, it will be in-
creasingly clear by probabilistic inference that his ratings x are sampled from P (· |Y ). In effect,
inaccurate predictions induced by Z will increase the weight on P (· |Y ) in the conditional PMF of
ratings P (· |x, (Y,Z)) conditioned on observed ratings x. And this makes future predictions more
accurate.

In an NN algorithm, on the other hand, inaccurate predictions do not generally improve further
predictions. In particular, manipulated ratings vectors that contribute to inaccuracies may remain
in the set of neighbors while honest ratings vectors may be eliminated from it. In the example in
Section 4.4, for instance, manipulated data are generated so that no matter how long an active user’s
ratings history is, each honest ratings vector selected as a neighbor has a manipulated counterpart
that is as similar, and hence also selected as a neighbor. Consequently, as an active user provides
more ratings, the numbers of honest and manipulated neighbors both decrease and stay equal. As
a result, inaccurate predictions do not decrease future distortion.

5 Empirical Study

In this section, we present our empirical findings on the manipulation robustness of NN, linear,
and asymptotically linear CF algorithms. We first introduce the data set that we worked with and
then describe the methods we used to evaluate robustness.

5.1 Data Set

We obtained a set of movie ratings provided by users, made publicly available by Netflix’s rec-
ommendation system. Each rating is an integer between 1 and 5, which we normalized to be in
{0, 0.25, 0.5, 0.75, 1} so that the analysis and results in our paper apply directly. We randomly
sampled from the data set 5000 users and 500 movies. The number of ratings provided by these
users on these movies is around 200000. We then randomly chose 4000 of these users and for the
purpose of our experiments, treated them as honest users and their ratings as a training set Y . We
used the ratings of the other 1000 users as a test set, which we refer to as X. We then generated
three separate sets of 444, 1714, and 4000 manipulated ratings vectors, respectively. Each set,
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which we refer to as Z for simplicity of discussion, is generated to promote 50% of the movies by
using a technique reported to be effective in the literature (Burke et al., 2005; Lam and Riedl,
2004; Mehta and Nejdl, 2008; Mobasher et al., 2005, 2006; O’Mahony et al., 2004; Sandvig et al.,
2007; Zhang et al., 2006). Specifically, we randomly sampled 250 of the 500 movies in Y and let
each manipulated ratings vector in each Z assign the highest ratings to these movies, and assign a
random rating to each of the other movies, sampled from the movie’s empirical marginal PMF of
ratings in Y . We then replaced a random subset of ratings in Z with circles so that its fraction of
circles matches that in Y . Manipulated ratings vectors generated this way are meant to be similar
to honest ratings vectors except on movies to promote.

5.2 Evaluation Methods

To test the robustness of each CF algorithm P , we treated ratings in X as ratings that an active
user would provide and let P predict them. Specifically, we fixed n and for each ratings vector
x ∈ X, identified n random products that it has assigned ratings to and randomly permuted them
to form an ordering νx = (νx1 , . . . , ν

x
n). For each k ≤ n, let xk−1 be a ratings vector that agrees with

x on products νx1 , . . . , ν
x
k−1 and assigns circles to the other products. An algorithm P is then used

to generate a scalar prediction x̂νxk ,xk−1,Y for the rating of product νxk based on xk−1 and the honest
data set Y . Similarly, a prediction based on a training set (Y, Z) corrupted by manipulated ratings
is denoted by x̂νxk ,xk−1,(Y,Z). To assess influence due to manipulation, for each n, we computed the
following quantity, which we will refer to as empirical RMS distortion:

d̂RMS
n (P, νX , X, Y, Z) =

√√√√ 1
|X|

∑
x∈X

1
n

n∑
k=1

(
x̂νxk ,xk−1,Y − x̂νxk ,xk−1,(Y,Z)

)2
.

Here, νX = {(νx1 , . . . , νxn) : x ∈ X}. The empirical RMS distortion measures changes of predic-
tions for products rated by active users. It is similar to the RMS distortion dRMS

n (P, ν, Y, Z) that
we defined earlier, with one difference: whereas dRMS

n (P, ν, Y, Z) samples each xνk from the PMF
P
(
·
∣∣xk−1, Y, ν

)
that the algorithm generates based on Y , d̂RMS

n (P, νX , X, Y, Z) uses elements of X
as samples. We used empirical RMS distortion rather than RMS distortion to assess algorithms in
our empirical study because computing RMS distortion would take too long, requiring a running
time exponential in the number of products n rated by an active user. Further, if a CF algorithm
generates a nearly correct distribution in the absence of manipulation, its empirical RMS distortion
will be close to its RMS distortion.

One might also wonder whether high robustness of CF algorithms stems from high prediction
accuracy or comes at the expense of it. To better understand the relationship between these two
performance measures, we also computed the following RMS error for each CF algorithm, which
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we will refer to as empirical RMS prediction error:

ÊRMS
n (P, νX , X, Y ) =

√√√√ 1
|X|

∑
x∈X

1
n

n∑
k=1

(
xνxk − x̂νxk ,xk−1,Y

)2
.

This quantity computes the RMS error of predictions for ratings in X when the algorithm uses Y
as training data.

For algorithms that we tested, we tuned some of their parameters by cross validation. This is a
technique that selects parameter values based on the performance of the corresponding algorithm
on out-of-sample data in order to estimate their performance on future data. Specifically, we
randomly sampled 20% of the users in Y . We treated their ratings as a validation set V and
generated predictions based on the remaining ratings Y \V . Consider a parameter γ that we tuned
for an algorithm. For each value γ′ in a range Γ, we set γ = γ′, used the corresponding algorithm
to predict ratings in V based on ratings in Y \V , and computed the empirical RMS prediction
error ÊRMS

n (P, νV , V, Y \V ). Finally, we selected a parameter value γ∗ that results in a minimal
error. Similarly, when using (Y, Z) as the training set, we sampled the validation set V from (Y,Z)
and for each γ′ ∈ Γ, computed the empirical RMS prediction error ÊRMS

n (P, νV , V, (Y,Z)\V ) and
selected a γ∗. Note that we chose to optimize for prediction accuracy rather than robustness in
cross validation because we wanted the algorithms to maintain reasonable accuracy and wanted to
avoid tuning them to be robust for specific manipulation techniques.

Overall, for each algorithm P , we generated multiple samples of X, Y , Z, and νX , and av-
eraged their resultant d̂RMS

n (P, νX , X, Y, Z) and ÊRMS
n (P, νX , X, Y ) across samples to obtain reli-

able estimates. To summarize with our notation, S = {0, 0.25, 0.5, 0.75, 1}, N = 500, (M, r) ∈
{(4444, 0.1), (5714, 0.3), (8000, 0.5)}, and 1 ≤ n ≤ 40. We tested three CF algorithms: a linear
CF algorithm called kernel density estimation, an asymptotically linear CF algorithm called naive
Bayes, and an NN algorithm called k nearest neighbor. We now present them in detail.

5.3 Kernel Density Estimation Algorithms

Kernel density estimation (KDE) algorithms smooth the training data and use their resultant
distribution to predict future ratings. For an in-depth treatment of KDE algorithms, see Hastie
et al. (2001). In our context, we say that a probabilistic CF algorithm P is a KDE algorithm with
kernels {Kw : w ∈ SN} if for any W ∈ SN×M ,

P (· |W ) =
1
M

∑
w∈W

Kw(·),

where each Kw is a PMF over SN parameterized by a ratings vector w. It turns out that any
KDE algorithm is a linear CF algorithm and any linear CF algorithm is a KDE algorithm. We will
establish this in Proposition 3 in Appendix A.3.
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In our experiments, we considered a KDE algorithm with kernels {Kw} such that for each type
x ∈ SN ,

Kw(x) =
N∏
n=1

kwn(xn),

where for each s ∈ S, ks is a PMF over S defined as follows. For s 6= ◦, ks is the unique PMF that
satisfies ks(s)/ks(s) = exp(−|s − s|/β) for all s ∈ S. For s = ◦, ks(s) = 1/|S| for all s ∈ S. That
is, ks assigns the highest probability to s and exponentially lower probabilities to values different
from s if s 6= ◦, and assigns uniform probability to all values if s = ◦. It is easy to see that each Kw
thus defined is a PMF, and it assigns high probability to types similar to w and low probability to
others. The constant β > 0 tunes the shape of ks, which we set to be 0.15 in our experiments.

To predict the rating of product νn for a user with past ratings xn−1, our KDE algorithm
generates a PMF given by

P
(
xνn = s

∣∣xn−1,W
)

=

∑
w∈W

∏n−1
i=1 kwνi (x

n−1
νi )kwνn (s)∑

w∈W
∏n−1
i=1 kwνi (x

n−1
νi )

,

for each s ∈ S. The corresponding scalar prediction is the expectation taken with respect to
P (· |xn−1,W ):

x̂νn,xn−1,W =
∑
s∈S

sP
(
xνn = s

∣∣xn−1,W
)
.

5.4 Naive Bayes Algorithm

A naive Bayes (NB) algorithm assumes that the true distribution of data is a convex combination
of distinct distributions in each of which features of the data are conditionally independent. It
aims to learn from training data the weights of the combination and feature marginals within each
distribution. For a formal analysis of the algorithm and its applications to other problem settings,
see Cheeseman and Stutz (1996); Domingos and Pazzani (1997); John and Langley (1995). We
now describe a particular version of the algorithm that we used and discuss the context in which
it is consistent and asymptotically linear.

Our NB algorithm assumes that data are generated in the following way. First, user types are
sampled from a distribution P ∗ where

P ∗(w) =
L∑
l=1

ηl

N∏
n=1

θ
(wn)
l,n , (2)

and ratings vectors are sampled from the conditional distribution Q∗ where

Q∗(w |w ) = q‖w‖◦(1− q)N−‖w‖◦ , if w→ w, and (3)

Q∗(w |w ) = 0, otherwise.
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Here, q ∈ [0, 1) and L ∈ Z+. η ∈ ∆L and θl,n ∈ ∆|S| for all l, n, where ∆k = {(d1, . . . , dk) : ∀ i, di ≥
0,
∑

j dj = 1} denotes a simplex. We write w → w for (w, w) if for each n, either wn = wn or
wn = ◦. We let ‖w‖◦ denote |{n : wn = ◦}| and let θ = {θl,n, 1 ≤ l ≤ L, 1 ≤ n ≤ N}.

To understand P ∗ and Q∗, let us consider the following generative process of ratings vectors.
Let P = {P ∗1 , . . . , P ∗L} be L PMFs over SN where each P ∗l satisfies

P ∗l (w) =
N∏
n=1

θ
(wn)
l,n

for all w ∈ SN . That is, each wn is independently distributed and is equal to s ∈ S with probability
θ

(s)
l,n . A type w is generated by first selecting a PMF from P where each P ∗l is chosen with probability
ηl and then sampling from that PMF. A ratings vector w is then generated by randomly replacing
each rating wn by a circle with probability q, independent of the value wn and whether other
ratings are replaced by circles.

The algorithm also assumes a geometric prior for L and Dirichlet priors for η, θ, and q. Hence,
the posterior probability density function (PDF) of (L, η, θ, q) conditioned on training data W is
given by

f(L, η, θ, q|W ) = cf(L, η, θ, q) Pr(W |L, η, θ, q), (4)

where c is a normalizing constant and prior PDF

f(L, η, θ, q) = f τL(L)fη(η)
∏
l,n

fθ(θl,n)fq(q), with

f τL(L) = cLe
−τL,

fη(η) = cη

L∏
l=1

ηl,

fθ(θl,n) = cθ
∏
s∈S

θ
(s)
l,n , ∀ l, n, and

fq(q) = cqq(1− q),

and data likelihood

Pr(W |L, η, θ, q) =
∏
w∈W

(q‖w‖◦(1− q)N−‖w‖◦)
 L∑
l=1

ηl
∏

n:wn 6=◦
θ

(wn)
l,n

 .

Here, subscripts L, η, θ, and q of the functions f τL, fη, fθ, and fq denote the parameters that the
distributions are over. cL, cη, cθ, and cq are normalizing constants.

The algorithm maximizes the posterior PDF over parameters by using the expectation-maximization
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algorithm (Dempster et al., 1977) and obtains

(L̂, η̂, θ̂, q̂) ∈ argmax
(L,η,θ,q)

f(L, η, θ, q |W ).

We denote by P (· |W ) the PMF over SN implied by (L̂, η̂, θ̂), which the algorithm uses for pre-
dictions.

In particular, a prediction for the rating of product νn for a user with past ratings xn−1 is given
by the PMF

P
(
xνn = s

∣∣xn−1,W
)

=

∑L̂
l=1 η̂l

∏n−1
k=1 θ̂

(xn−1
νk

)

l,νk
θ̂

(s)
l,νn∑L̂

l=1 η̂l
∏n−1
k=1 θ̂

(xn−1
νk

)

l,νk

,

for each s ∈ S. The corresponding scalar prediction is

x̂νn,xn−1,W =
∑
s∈S

sP
(
xνn = s

∣∣xn−1,W
)
.

In our experiments, we tuned bandwidth τ by cross validation over the range Γ = {1, 10,
100, 1000, 10000, 100000} and settled at τ = 10000.

We now discuss the context in which the NB algorithm is consistent and asymptotically linear.
For any q ∈ [0, 1), we let Φq be the set of all (P ,Qq) pairs where P takes the form in (2) and Qq is
the one distribution given by (3), with q fixed. We establish in Proposition 4 in Appendix A.3 that
for any q, Φq is identifiable and convex, and the NB algorithm is consistent with respect to it. Then,
by Theorems 2 and 3, the algorithm is asymptotically linear with respect to Φq and our distortion
bounds apply. Note that the set P = {P : (P ,Qq) ∈ Φq} of type PMFs with corresponding pairs
in Pq is the set of all PMFs over SN . This implies that for any PMFs P 1 and P 2 over SN , if
honest and manipulated data are generated by first sampling types from these PMFs and then
independently replacing each rating by a circle with the same probability q, then the NB algorithm
will be asymptotically robust as the sample size grows. In our experiments, although the condition
regarding replacement by circles may not hold, we still apply the NB algorithm with the hope that
it will deliver reasonable robustness.

5.5 k Nearest Neighbor Algorithm

A class of NN algorithms called k nearest neighbor (kNN) algorithms is frequently used as a
performance benchmark in prior work (Burke et al., 2005; Lam and Riedl, 2004; Zhang et al.,
2006). The version that we tested works as follows.

To predict the rating of product νn by a user with past ratings xn−1 where n ≥ 3, the algorithm
identifies a set of neighbors N (νn, xn−1,W ) to be k ratings vectors w ∈ W such that wνn 6= ◦ and
score highest with xn−1 on the following similarity measure, which is sometimes referred to as the
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cosine similarity measure in the literature Sarwar et al. (2001):

s(w, xn−1) =

∑
1≤i≤n−1:wνi 6=◦

(wνi − ẇ)(xn−1
νi − ẋ

n−1)√∑
1≤i≤N :wi 6=◦(wi − ẇ)2

√∑
1≤i≤n−1(xn−1

νi − ẋn−1)2
,

where average ratings are given by

ẇ =

∑
1≤i≤N :wi 6=◦wi

|{1 ≤ i ≤ N : wi 6= ◦}|
,

ẋn−1 =

∑
1≤i≤n−1 x

n−1
νi

n− 1
.

Note that s here resembles the notion of a sample correlation coefficient. Its numerator is propor-
tional to the covariance between non-question-mark components of w and xn−1. The denominator
is proportional to the product of the standard deviation of non-question-mark components of w
and the same quantity for xn−1. The algorithm then generates the following scalar prediction:

x̂νn,xn−1,W = min

{
smax,max

{
smin, ẋ

n−1 +

∑
w∈N (νn,xn−1,W ) s(w, x

n−1)(wνn − ẇ)∑
w∈N (νn,xn−1,W ) |s(w, xn−1)|

}}
,

where smax = max{s : s ∈ S} and smin = min{s : s ∈ S}. To arrive at this quantity, for each neighbor,
the difference between its rating wνn for product νn and its average rating ẇ is first computed. A
weighted sum of these differences is then computed, where the weights are normalized similarity
measures. The user’s historical ratings average ẋn−1 is then added to the sum. The total is used as
the prediction, unless it falls outside [smin, smax], in which case either smin or smax is used, whichever
is closer.

For a user with ratings history xn−1 where n ≤ 2, s(·, xn−1) is not well-defined. In this case,
the algorithm uses the average rating of product νn in the training data to generate the prediction:

x̂νn,xn−1,W = min

{
smax,max

{
smin,

∑
{w:w∈W,wνn 6=◦}wνn

|{w : w ∈W,wνn 6= ◦}|

}}
.

In our experiments, we tuned the number of neighbors k by cross validation over the range
Γ = {1, 2, . . . , 40} and settled at k = 10.

Note that even though the kNN algorithm generates scalar predictions, it still fits our definition
of CF algorithms because it is possible to come up with PMFs whose corresponding expectations
equal the predictions x̂νn,xn−1,W . We do not explicitly define such a PMF, however, because it is
not necessary for computing the empirical RMS distortion in our experiments.
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5.6 Results

Figure 2 shows the empirical RMS distortions for the three algorithms that we tested, with different
fractions of manipulated data. Our results suggest that in practice, NB and KDE algorithms are
significantly more robust than kNN. In particular, when a user’s ratings history is short, kNN and
NB both incur higher empirical RMS distortions than KDE. This difference arises because while
kNN and NB ignore circles, KDE uses them and as a result, tempers its predictions. To gain some
intuition, let us consider the following problem instance where ratings are binary: the set of honest
ratings Y consists of K vectors whose entries are all 1s and as many vectors whose entries are all
circles. The set of manipulated ratings Z consists of K vectors whose entries are all 0s and as many
vectors whose entries are all circles. To predict the first rating xν1 of an active user, kNN would
yield a prediction of 1 and 1/2 based on Y and (Y, Z), respectively, incurring an RMS distortion of
1/2. KDE would yield a prediction close to 3/4 based on Y and a prediction of 1/2 based on (Y,Z),
incurring an RMS distortion of 1/4, significantly less than that of kNN. Clearly, the presence of
circles smooths KDE’s predictions and keeps its distortion low.

In Figure 2, as more ratings are provided, distortions incurred by all three algorithms decrease.
When a user’s ratings history is long, NB and KDE incur distortions significantly lower than that
of kNN. Note that distortions of NB and KDE always stay below the bound in Corollary 1. The
curves for kNN are flat for n ≤ 2 because the algorithm provides the same predictions for the first
two ratings xν1 and xν2 of an active user. Note that as fraction of manipulated data r increases,
distortions incurred by all three algorithms increase as well.

Figure 3 displays the empirical RMS prediction errors of the three algorithms. When n is large,
their errors all decrease and in particular, NB offers the lowest error and kNN, the highest. kNN
sees a spike around n = 3 because the algorithm switches its prediction method there: it generates
predictions by using average ratings of all users for n ≤ 2 and generates predictions by using average
ratings of neighbors for n ≥ 3.

To get a better sense of our results, we note that Netflix announced that its proprietary algorithm
achieves an empirical RMS prediction error, normalized to our scale, of 0.238 on a large test set,
and will award one million dollars to anyone that improves it to 0.214 (Netflix Prize, 2006). One
might wonder why a decrease of 0.024 may have such a large impact on recommendation quality.
We suspect that due to the large number of movies, many of them are given similar predicted
ratings. As a result, a small improvement in prediction accuracy may tease apart these movies and
identify the most desirable ones.

Compared to Netflix’s benchmark and target prediction errors, our results are reasonable but
not competitive. This is because we did not focus on optimizing the prediction accuracy of the
algorithms. If our objective was to achieve the highest possible accuracy while maintaining reason-
able robustness, one option we could try is to fine-tune our robust algorithms to be accurate. For
example, for KDE algorithms, we could work to identify more effective kernels. For NB algorithms,
we could choose different priors or use methods other than expectation-maximization to find the
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Figure 2: Empirical RMS distortion as a function of n, for different r.
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Figure 3: Empirical RMS prediction error as a function of n.

model parameters. We could probably also design other robust linear and asymptotically linear CF
algorithms that achieve higher accuracy as well. Overall, we are not suggesting that in practice, the
specific algorithms that we presented should be directly implemented. Instead, one should either
use them as starting points or take the insights that they yield into consideration when designing
accurate and robust CF systems.

6 Extensions

Our analytical and empirical work suggests that linear and asymptotically linear algorithms can be
more robust to manipulation than commonly used nearest neighbor algorithms. Our results also
suggest that it is possible to design algorithms that achieve accuracy alongside robustness. As such,
recommendation systems of Internet commerce sites may improve their robustness to manipulation
by adopting the approaches that we describe. They may also use the bounds on distortion that we
establish as a guide on how many ratings each user should provide to a recommendation system
before its predictions can be trusted.

The simple setting in our work serves as a context for the initial development of our idea, and
can be extended in multiple ways. One direction is to study the robustness of collaborative filtering
algorithms as measured by alternative metrics. One metric could be, for instance, a user’s utility
loss due to manipulation. Another extension is to design algorithms that provide non-asymptotic
guarantees on both prediction accuracy and robustness.

The framework that we establish also facilitates studying the effectiveness of alternative tech-
niques to abate influence by manipulators. For instance, given a scheme that incentivizes users to
inspect and rate products, one could analyze how honest users and manipulators would behave,
and then use our distortion metrics to assess the robustness of the scheme to manipulation.
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It is also worth mentioning that many commercial recommendation systems build on multiple
sources of information, not just collaborative filtering (Adomavicius and Tuzhilin, 2005). For
example, as discussed in Balabanovic and Shoham (1997), recommendations should also be guided
by features of the products being recommended. Our preliminary investigation suggests that the
robustness of collaborative filtering algorithms that make use of product features parallels that of
the algorithms that we discussed in this paper. For example, there exist “linear” feature-guided
collaborative filtering algorithms to which our distortion bounds apply.
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A Proofs

A.1 Relationships Among Distortion Measures

Propositions 1 and 2 state relationships between KL, RMS, and binary prediction distortions.
Lemmas 1 and 2 help prove them.

Lemma 1. Let u and v be random variables distributed according to PMFs p and q, both with
support on the same finite set U ⊂ [0, 1]. It holds that

|E[u]− E[v]| ≤ 1
2
‖p− q‖1.
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Proof. Let U = {u1, . . . , uN} and correspondingly, let pi = p(ui) and qi = q(ui), for 1 ≤ i ≤ N .
Without loss of generality, let p1 − q1 ≥ p2 − q2 ≥ · · · ≥ pN − qN . There exists n such that
pn − qn ≥ 0 ≥ pn+1 − qn+1. Hence,

∑n
i=1 |pi − qi| =

∑N
i=n+1 |pi − qi|. We then have

|E[u]− E[v]| =

∣∣∣∣∣
N∑
i=1

ui(pi − qi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ui(pi − qi) +
N∑

i=n+1

ui(pi − qi)

∣∣∣∣∣
≤ max

{∣∣∣∣∣
n∑
i=1

ui(pi − qi)

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
i=n+1

ui(pi − qi)

∣∣∣∣∣
}
≤ max

{
n∑
i=1

|pi − qi| ,
N∑

i=n+1

|pi − qi|

}

=
1
2

N∑
i=1

|pi − qi| .

Proposition 1. Fix the number of products N and let P be a CF algorithm. Then, for all M ,
r ∈ {0, 1/M, . . . , (M − 1)/M}, Y ∈ SN×(1−r)M , Z ∈ SN×rM , ν ∈ σN , and n ∈ {1, . . . , N},

dRMS
n (P, ν, Y, Z) ≤

√
1
2
dKL
n (P, ν, Y, Z).

Proof. Recall that x̂νk,xk−1,Y and x̂νk,xk−1,(Y,Z) denote the expected ratings of product νk with
respect to PMFs P

(
·
∣∣xk−1, Y, ν

)
and P

(
·
∣∣xk−1, (Y,Z), ν

)
, respectively. We have

dRMS
n (P, ν, Y, Z)

=

√√√√ 1
n

n∑
k=1

E
[(
x̂νk,xk−1,Y − x̂νk,xk−1,(Y,Z)

)2
]

≤

√√√√ 1
n

n∑
k=1

E

[(
1
2
‖P (· |xk−1, Y, ν )− P (· |xk−1, (Y,Z), ν )‖1

)2
]

≤

√√√√ 1
2n

n∑
k=1

E [D (P (· |xk−1, Y, ν ) ‖P (· |xk−1, (Y, Z), ν ))]

=

√
1
2
dKL
n (P, ν, Y, Z),

where the first inequality follows from Lemma 1 and the second inequality follows from Pinsker’s
inequality. We note that related results are also shown in Gossner and Tomala (2008).

Lemma 2. Consider a Bernoulli random variable X and discrete random variables W1 and W2.
Let X̂1 and X̂2 be the maximum a posteriori estimates of X upon observing W1 and W2, respectively.
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That is,
X̂1 = argmax

x∈{0,1}
Pr(X = x|W1),

X̂2 = argmax
x∈{0,1}

Pr(X = x|W2).

Then,

Pr
(
X̂1 = X

)
− Pr

(
X̂2 = X

)
≤
√

E[(E[X|W1]− E[X|W2])2].

Proof.

Pr
(
X̂1 = X

)
− Pr

(
X̂2 = X

)
=

∑
w1

Pr(W1 = w1) max
x∈{0,1}

Pr(X = x|W1 = w1)−
∑
w2

Pr(W2 = w2) max
x∈{0,1}

Pr(X = x|W2 = w2)

=
∑
w1,w2

Pr(W1 = w1,W2 = w2)
(

max
x

Pr(X = x|W1 = w1)−max
x

Pr(X = x|W2 = w2)
)

≤
∑
w1,w2

Pr(W1 = w1,W2 = w2) |Pr(X = 1|W1 = w1)− Pr(X = 1|W2 = w2)|

≤
√∑
w1,w2

Pr(W1 = w1,W2 = w2) (Pr(X = 1|W1 = w1)− Pr(X = 1|W2 = w2))2

=
√

E
[
(E[X|W1]− E[X|W2])2

]
.

The first inequality follows from a simple arithmetic argument, and the second inequality follows
from Jensen’s inequality.

Proposition 2. Fix the number of products N . Let P be a CF algorithm and S = {0, 1}. Then, for
all M , r ∈ {0, 1/M, . . . , (M − 1)/M}, Y ∈ SN×(1−r)M , Z ∈ SN×rM , ν ∈ σN , and n ∈ {1, . . . , N},

dB
n(P, ν, Y, Z) ≤ dRMS

n (P, ν, Y, Z).

Proof. Recall that x̂νk,xk−1,Y and x̂νk,xk−1,(Y,Z) denote the binary predictions on product νk with
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respect to PMFs P
(
·
∣∣xk−1, Y, ν

)
and P

(
·
∣∣xk−1, (Y,Z), ν

)
, respectively. We have

dB
n(P, ν, Y, Z)

=
1
n

n∑
k=1

(
Pr
(
xνk = x̂νk,xk−1,Y

)
− Pr

(
xνk = x̂νk,xk−1,(Y,Z)

))

≤

√√√√ 1
n

n∑
k=1

(
Pr
(
xνk = x̂νk,xk−1,Y

)
− Pr

(
xνk = x̂νk,xk−1,(Y,Z)

))2

≤

√√√√ 1
n

n∑
k=1

E
[(
x̂νk,xk−1,Y − x̂νk,xk−1,(Y,Z)

)2
]

= dRMS
n (P, ν, Y, Z).

The first inequality follows from Jensen’s inequality and the second inequality follows from Lemma
2.

A.2 Results for Linear and Asymptotically Linear Collaborative Filtering Al-

gorithms

Theorem 1 provides a distortion bound for linear CF algorithms. Theorem 2 provides a distortion
bound for asymptotically linear CF algorithms. Lemmas 3 and 4 help prove it. Theorem 3 states a
relationship between consistent and asymptotically CF algorithms. Lemmas 5, 6, and 7 help prove
it.

Theorem 1. Fix the number of products N and let P be a linear CF algorithm. Then, for all M ,
r ∈ {0, 1/M, . . . , (M − 1)/M}, Y ∈ SN×(1−r)M , Z ∈ SN×rM , ν ∈ σN , and n ∈ {1, . . . , N},

dKL
n (P, ν, Y, Z) ≤ 1

n
ln

1
1− r

.

Proof. We have

dKL
n (P, ν, Y, Z)

=
1
n

n∑
k=1

E
[
D
(
P
(
·
∣∣∣xk−1, Y, ν

)∥∥∥P (· ∣∣∣xk−1, (Y,Z), ν
))]

≤ 1
n

N∑
k=1

E
[
D
(
P
(
·
∣∣∣xk−1, Y, ν

)∥∥∥P (· ∣∣∣xk−1, (Y,Z), ν
))]

=
1
n
D (P (· |Y, ν ) ‖P (· | (Y, Z), ν )) .

The last equality follows from the chain rule of KL divergence: that is, given two joint distributions
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s and t over random variables z1, . . . , zn, it holds that

D(s ‖ t) =
n∑
k=1

E [D(s(zk|z1, . . . , zk−1) ‖ t(zk|z1, . . . , zk−1))] ,

where expectation is taken with z1, . . . , zn distributed according to s.
For any x ∈ SN , since P is linear, we have

P (x |Y )
P (x | (Y, Z))

=
P (x |Y )

(1− r)P (x |Y ) + rP (x |Z )
≤ 1

1− r
.

Then,

D (P (· |Y ) ‖P (· | (Y,Z))) =
∑

x∈SN
P (x |Y ) ln

P (x |Y )
P (x | (Y, Z))

≤
∑

x∈SN
P (x |Y ) ln

1
1− r

= ln
1

1− r
.

Hence,

dKL
n (P, ν, Y, Z) ≤ 1

n
D (P (· |Y ) ‖P (· |(Y,Z))) ≤ 1

n
ln

1
1− r

.

Lemma 3. Let {µm} and {νm} be two sequences of random PMFs over a fixed finite sample space
Ω. If for all ε > 0, Pr (D (µm ‖ νm ) ≥ ε)→ 0, then for all ε > 0,

Pr

(∑
ω∈Ω

µm(ω)
∣∣∣∣log

µm(ω)
νm(ω)

∣∣∣∣ ≥ ε
)
→ 0.

Proof. For ε > 0 and m, we denote by Am,ε the event that for all ω ∈ Ω, at least one of the
following holds: |log (µm(ω)/νm(ω))| ≤ ε and max {µm(ω), νm(ω)} ≤ ε. We now prove that for
all ε > 0, Pr (Am,ε) → 1. To see this, for any given ε > 0, we let δε be in (0, ε (1− e−ε)) and
denote by Bm,δε the event that for all ω ∈ Ω, |µm(ω)− νm(ω)| ≤ δε. We now show that Bm,δε ⊂
Am,ε. If |µm(ω)− νm(ω)| ≤ δε,∀ω, then for any ω′ such that max{µm(ω′), νw(ω′)} > ε, we have
min{µm(ω′), νm(ω′)} > ε− δε. This implies∣∣∣∣log

µm(ω′)
νm(ω′)

∣∣∣∣ = max
{

log
µm(ω′)
νm(ω′)

, log
νm(ω′)
µm(ω′)

}
≤ max

{
log
(
|µm(ω′)− νm(ω′)|

νm(ω′)
+ 1
)
, log

(
|νm(ω′)− µm(ω′)|

µm(ω′)
+ 1
)}

< log
(

δε
ε− δε

+ 1
)
≤ ε,

where the last inequality follows from our choice of δε. Hence, Bm,δε ⊂ Am,ε and for any ε and a
corresponding δε, we have Pr(Am,ε) ≥ Pr(Bm,δε) → 1, where convergence follows from Pinsker’s
inequality.
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For each m and each realization of µm and νm, we let Ωm = {ω ∈ Ω : µm(ω) ≤ νm(ω)}, let

τm =
∑
ω∈Ωm

µm(ω) log
µm(ω)
νm(ω)

,

and for ε > 0, denote by Cm,ε the event that |τm| ≤ ε. We now show that for any ε > 0, Am,γε ⊂ Cm,ε
where γε ∈ (0,min{ε/|Ω|, 1/e}] satisfies γε| log γε| ≤ ε/|Ω|. To see this, we first let Ω1

m,γε = {ω ∈
Ω : |log (µm(ω)/νm(ω))| ≤ γε} and Ω2

m,γε = {ω ∈ Ω : max {µm(ω), νm(ω)} ≤ γε}\Ω1
m,γε . Note that

Ω1
m,γε ∩ Ω2

m,γε = ∅. If for all ω ∈ Ω, |log (µm(ω)/νm(ω))| ≤ γε or max {µm(ω), νm(ω)} ≤ γε, then
Ω1
m,γε ∪ Ω2

m,γε = Ω. This implies

|τm| =
∑

ω∈Ωm∩Ω1
m,γε

µm(ω)
∣∣∣∣log

µm(ω)
νm(ω)

∣∣∣∣+
∑

ω∈Ωm∩Ω2
m,γε

µm(ω)
∣∣∣∣log

µm(ω)
νm(ω)

∣∣∣∣
≤ |Ω1

m,γε |γε +
∑

ω∈Ωm∩Ω2
m,γε

µm(ω) |logµm(ω)|

≤ |Ω1
m,γε |γε + |Ω2

m,γε |γε| log γε|

≤ |Ω1
m,γε |

ε

|Ω|
+ |Ω2

m,γε |
ε

|Ω|
= ε.

The first inequality follows from the definitions of Ω1
m,γε and Ωm. The second inequality follows from

the definition of Ω2
m,γε and that γε ≤ 1/e. The third inequality follows from other constraints on

γε. Hence, for any ε > 0 and a corresponding γε satisfying the aforesaid constraints, Am,γε ⊂ Cm,ε.
Note that for all m and all realizations of µm and νm,

∑
ω∈Ω

µm(ω)
∣∣∣∣log

µm(ω)
νm(ω)

∣∣∣∣ = D(µm ‖ νm )− 2τm.

Hence, for any ε > 0, a corresponding γε, and any m,

Pr

(∑
ω∈Ω

µm(ω)
∣∣∣∣log

µm(ω)
νm(ω)

∣∣∣∣ ≥ 3ε

)
= Pr

(
D(µm ‖ νm )− 2τm ≥ 3ε, Acm,γε

)
+ Pr (D(µm ‖ νm )− 2τm ≥ 3ε, Am,γε)

≤ Pr
(
Acm,γε

)
+ Pr (D(µm ‖ νm )− 2τm ≥ 3ε, Cm,ε)

≤ Pr
(
Acm,γε

)
+ Pr (D(µm ‖ νm ) ≥ ε)→ 0.

Here, Acm,γε denotes the complement of Am,γε . The last inequality follows from the definition of
Cm,ε. Convergence follows from our original assumption and that Pr(Am,γε)→ 1.

Lemma 4. Let {µm}, {νm}, and {χm} be three sequences of random PMFs over a fixed finite
sample space Ω. Suppose that for all ε > 0, Pr (D (µm ‖ νm ) ≥ ε) → 0. Further, suppose there
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exists b > 0 such that for all m, realizations of χm and µm, and ω ∈ Ω, χm(ω)/µm(ω) ≤ b. Then,
for all ε > 0, Pr (|D (χm ‖µm )−D (χm ‖ νm )| ≥ ε)→ 0.

Proof. For any ε > 0 and m,

Pr (|D (χm ‖µm )−D (χm ‖ νm )| ≥ ε)

= Pr

(∣∣∣∣∣∑
ω∈Ω

χm(ω) log
µm(ω)
νm(ω)

∣∣∣∣∣ ≥ ε
)

≤ Pr

(∑
ω∈Ω

χm(ω)
µm(ω)

∣∣∣∣µm(ω) log
µm(ω)
νm(ω)

∣∣∣∣ ≥ ε
)

≤ Pr

(
b
∑
ω∈Ω

∣∣∣∣µm(ω) log
µm(ω)
νm(ω)

∣∣∣∣ ≥ ε
)
→ 0,

where convergence follows from Lemma 3.

Theorem 2. Fix the number of products N and a set Ψ of PMFs over SN . Let P be a CF algorithm
asymptotically linear with respect to Ψ. Then, for all ψ, φ ∈ Ψ, r ∈ [0, 1), ν ∈ σN , n ∈ {1, . . . , N},
and ε > 0,

lim
m→∞

Pr
(
dKL
n (P, ν, Ym, Zm) ≥ 1

n
ln

1
1− r

+ ε

)
= 0,

where, for each m, Ym = (y1, . . . , ym−l) ∈ SN×(m−l), Zm = (z1, . . . , zl) ∈ SN×l, l ∼ Binomial(m, r),
and y1, . . . , ym−l ∼ ψ and z1, . . . , zl ∼ φ are i.i.d. sequences.

Proof. Let finite sample space Ω = SN . For each m, let random PMFs µm = (1 − r)P (· |Ym ) +
rP (· |Zm ), νm = P (· | (Ym, Zm)), and χm = P (· |Ym ). By the definition of asymptotically linear
CF algorithms, for all ε > 0, Pr (D (µm ‖ νm ) ≥ ε) → 0. Clearly, for all m, realizations of χm and
µm, and s ∈ SN , χm(s)/µm(s) ≤ 1/(1− r). Hence, for all ε > 0,

Pr
(
dKL
n (P, ν, Ym, Zm) ≥ 1

n
ln

1
1− r

+ ε

)
≤ Pr

(
D (P (· |Ym ) ‖P (· |(Ym, Zm))) ≥ ln

1
1− r

+ nε

)
≤ Pr (D (P (· |Ym ) ‖P (· |(Ym, Zm))) ≥ D (P (· |Ym ) ‖ (1− r)P (· |Ym ) + rP (· |Zm )) + nε)

≤ Pr (|D(χm ‖µm )−D(χm ‖ νm )| ≥ nε)→ 0.

The second inequality holds because D (P (· |Ym ) ‖ (1− r)P (· |Ym ) + rP (· |Zm )) ≤ ln(1/(1 − r))
and convergence follows from Lemma 4.

Lemma 5. Let U ⊂ <k be a compact set. Consider a fixed vector u ∈ U and a sequence of
random vectors {um} for which Pr (um ∈ U) → 1. For any continuous function f : U → <, if
Pr (‖um − u‖1 ≥ ε)→ 0 for all ε > 0, then Pr (|f(um)− f(u)| ≥ ε)→ 0 for all ε > 0.
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Proof. Because the continuous function f defined on compact set U is uniformly continuous, for
each ε > 0, there exists δ > 0 such that for any v, v′ ∈ U , ‖v−v′‖1 ≤ δ implies that |f(v)−f(v′)| ≤ ε.
Hence, for all ε > 0,

Pr (|f(um)− f(u)| ≤ ε)

≥ Pr (|f(um)− f(u)| ≤ ε, um ∈ U)

≥ Pr (‖um − u‖1 ≤ δ, um ∈ U)→ 1.

Lemma 6. Fix a finite sample space Ω. Let {µm} and {νm} be two sequences of random PMFs over
Ω and let µ be a fixed PMF over Ω. If for all ε > 0, Pr (D (µm ‖µ) ≥ ε)→ 0 and Pr (D (νm ‖µ) ≥ ε)→
0, then for all ε > 0, Pr (D (µm ‖ νm ) ≥ ε)→ 0.

Proof. We first identify the support of µ. Without loss of generality, we let µ(ωi) = 0,∀ 1 ≤ i ≤ l

and µ(ωi) > δ, ∀ l < i ≤ |Ω| for some l ≥ 0 and δ > 0. In the following, we represent PMFs as vectors
in <|Ω|. To this end, we define a set T = {

(
t1, . . . , t|Ω|

)
:
∑

i ti = 1, ∀ i ≤ l, ti = 0, ∀ j > l, tj ≥ δ}.
Let compact set U = T × T . We let u = (µ, µ) ∈ U and define a sequence of random vectors {um}
where each um = (µm, νm). Let continuous function f : U → < be the KL divergence D(· ‖ ·). By
examining the absolute continuity of µm and νm with respect to µ and applying Pinsker’s inequality,
we have Pr(um ∈ U)→ 1 and further, for all ε > 0, Pr(‖um−u‖1 ≥ ε)→ 0. Hence, for all ε > 0, by
Lemma 5, Pr (D (µm ‖ νm ) ≥ ε) = Pr (|D (µm ‖ νm )−D (µ ‖µ)| ≥ ε) = Pr (|f(um)− f(u)| ≥ ε) →
0.

Lemma 7. Fix a finite sample space Ω. Let {µm} and {νm} be two sequences of random PMFs
over Ω and let µ and ν be two fixed PMFs over Ω. If for all ε > 0, Pr (D (µm ‖µ) ≥ ε) → 0 and
Pr (D (νm ‖ ν ) ≥ ε)→ 0, then for all r ∈ [0, 1] and ε > 0,

Pr (D (((1− r)µm + rνm) ‖ ((1− r)µ+ rν)) ≥ ε)→ 0.

Proof. The proof here is similar to that for Lemma 6. For a fixed r, let PMF χ = (1 − r)µ + rν.
Without loss of generality, we let χ(ωi) = 0,∀ 1 ≤ i ≤ l and χ(ωi) > δ, ∀ l < i ≤ |Ω| for some
l ≥ 0 and δ > 0. In the following, we represent PMFs as vectors in <|Ω|. To this end, we define
a set T = {

(
t1, . . . , t|Ω|

)
:
∑

i ti = 1, ∀ i ≤ l, ti = 0, ∀ j > l, tj ≥ δ}. Let compact set U = T × T .
We let u = ((1− r)µ+ rν, (1− r)µ+ rν) ∈ U and define a sequence of random vectors {um}
where each um = ((1− r)µm + rνm, (1− r)µ+ rν). Let continuous function f : U → < be the KL
divergence D(· ‖ ·). By examining the absolute continuity of µm with respect to µ and that of νm
with respect to ν and applying Pinsker’s inequality, we have Pr(um ∈ U) → 1, and for all ε > 0,
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Pr(‖um − u‖1 ≥ ε)→ 0. Hence, for all ε > 0, by Lemma 5,

Pr (D (((1− r)µm + rνm) ‖ ((1− r)µ+ rν)) ≥ ε)

= Pr (|D (((1− r)µm + rνm) ‖ ((1− r)µ+ rν))−D (((1− r)µ+ rν) ‖ ((1− r)µ+ rν))| ≥ ε)

= Pr (|f(um)− f(u)| ≥ ε)→ 0.

Theorem 3. Any probabilistic CF algorithm consistent with respect to an identifiable and convex
set Φ is asymptotically linear with respect to Φ.

Proof. We use the notation in the definition of asymptotically linear CF algorithms in Section 4.3
and Lemmas 6 and 7. Fix an algorithm P consistent with respect to Φ. Let finite sample space
Ω = SN . For each m, let random PMFs µm = P (· |Um ), νm = P (· |Vm ), and χm = P (· |(Um, Vm)).
Let P 1 and P 2 be the type PMFs corresponding to ψ and φ, respectively. Let µ = P 1, ν = P 2. Fix
r ∈ [0, 1]. By the consistency and convexity of P, we have for all ε > 0, Pr (D (µm ‖µ) ≥ ε) → 0,
Pr (D (νm ‖ ν ) ≥ ε) → 0, and Pr (D (χm ‖ ((1− r)µ+ rν)) ≥ ε) → 0. By Lemma 7, for all ε > 0,
Pr (D (((1− r)µm + rνm) ‖ ((1− r)µ+ rν)) ≥ ε)→ 0. Then for all ε > 0,

Pr (D (((1− r)P (· |Um ) + rP (· |Vm )) ‖P (· |(Um, Vm))) ≥ ε)

= Pr (D (((1− r)µm + rνm) ‖χm ) ≥ ε)→ 0,

where convergence follows from Lemma 6.

A.3 Results for Kernel Density Estimation and Naive Bayes Algorithms

Propositions in this section pertain to KDE and NB algorithms.

Proposition 3. Any KDE algorithm is a linear CF algorithm. Any linear CF algorithm is a KDE
algorithm.

Proof. Consider a KDE algorithm P . Given W1 ∈ SN×M1 and W2 ∈ SN×M2 , for each x ∈ SN ,

P (x |(W1,W2))

=
1

M1 +M2

 ∑
w∈W1

Kw(x) +
∑
w∈W2

Kw(x)


=

M1

M1 +M2

 1
M1

∑
w∈W1

Kw(x)

+
M2

M1 +M2

 1
M2

∑
w∈W2

Kw(x)


=

M1

M1 +M2
P (x |W1 ) +

M2

M1 +M2
P (x |W2 ) .
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Hence, P is linear.
To show the converse, consider a linear CF algorithm P ′, which generates P ′ (· |W ) based on

W . A KDE algorithm where kernel Kw is set equal to P (· |{w}) for each w ∈ W is equivalent to
P ′.

Proposition 4. Fix q ∈ [0, 1). Let Φq be the set of all (P ,Qq) pairs where user type distribution
P over SN takes the form

P (w) =
L∑
l=1

ηl

N∏
n=1

θ
(wn)
l,n ,∀w ∈ SN , (5)

for L ∈ Z+, η ∈ ∆L, and θl,n ∈ ∆|S| for all 1 ≤ l ≤ L, 1 ≤ n ≤ N , where ∆k = {(d1, . . . , dk) :
∀ i, di ≥ 0,

∑
j dj = 1} denotes a simplex, and conditional distribution of ratings vectors Qq condi-

tioned on types is fixed as

Qq(w |w ) = q‖w‖◦(1− q)N−‖w‖◦ , if w→ w, and

Qq(w |w ) = 0, otherwise.

Then, Φq is identifiable and convex. Further, the naive Bayes algorithm is consistent with respect
to Φq.

Proof. To show that Φq is identifiable, we note that Qq is fixed and hence only need to establish
that distinct P 1 and P 2 lead to distinct ratings vector PMFs P 1Qq and P 2Qq. To see this, consider
w ∈ SN such that P 1(w) 6= P 2(w). We have

(
P 1Qq

)
(w) = P 1(w)Qq(w|w) 6= P 2(w)Qq(w|w) =

(
P 2Qq

)
(w).

To show that Φq is convex, consider arbitrary type PMFs P 1, P 2 whose corresponding pairs are
in Φq. For each λ ∈ [0, 1], their convex combination P λ satisfies

P λ(w) = λP 1(w) + (1− λ)P 2(w)

=
L1∑
l=1

λη1,l

N∏
n=1

θ
(wn)
1,l,n +

L2∑
l=1

(1− λ)η2,l

N∏
n=1

θ
(wn)
2,l,n

=

(
L1+L2∑
l=1

η̂l

N∏
n=1

θ̂
(wn)
l,n

)

for each w ∈ SN , where η̂l = λη1,l for l ≤ L, η̂l = (1−λ)η2,l−L for l > L, and for each n, θ̂l,n = θ1,l,n

for l ≤ L and θ̂l,n = θ2,l−L,n for l > L. Hence, P λ takes the form in (5). As such, (P λ, Qq) ∈ Φq

and Φq is convex.
We now show that the naive Bayes algorithm P is consistent with respect to Φq by using results

in Wald (1949). We will use notation in the definition of consistent CF algorithms in Section 4.3.
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We also denote by P ∗ the true type PMF over SN and let P = {P : (P ,Q) ∈ Φq} be the set of all
type PMFs with corresponding pairs in Φq. According to Theorem 2 in Wald (1949), if

1. SN , P, and P ∗ satisfy certain technical conditions specified in Wald (1949), and

2. There exists a constant b > 0 such that for all m and all realizations of {Wm},∏
w∈Wm

P (w |Wm )∏
w∈Wm

P ∗(w)
≥ b,

then
‖P (· |Wm )− P ∗‖1 → 0, a.s. (6)

We verify that condition 1 holds in our problem instance and desire to find a b that satisfies
condition 2. To do so, we denote by (L∗, η∗, θ∗) the parameters corresponding to P ∗ and by
(L̂Wm , η̂Wm , θ̂Wm) the parameters corresponding to P (· |Wm ). Recall that we tune the parameter
τ by cross validation over a range Γ. Let τ∗ be the value that we settle at. We let

b =
(

min
τ∈Γ

f τL(L∗)
)fη(η∗)∏

l,n

fθ(θ∗l,n)

 .

Because P (· |Wm ) maximizes the posterior PDF, for all m and all realizations of {Wm}, we have∏
w∈Wm

P (w |Wm )∏
w∈Wm

P ∗(w)
≥

f τ
∗

L (L∗)fη(η∗)
∏
l,n fθ(θ

∗
l,n)

f τ
∗

L (L̂Wm)fη(η̂Wm)
∏
l,n fθ(θ̂

Wm
l,n )

≥ b.

Hence, condition 2 holds, establishing (6). By the continuity of KL divergence and properties of
almost sure convergence, for all ε > 0, we have

Pr (D (P (· |Wm ) ‖P ∗ ) ≥ ε)→ 0,

which implies that P is consistent with respect to Φq.
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B Table of Notation

Notation Description
S Set of possible rating values.
S Union of S and the singleton set containing the circle ◦.

w or x A user type.
w or x A ratings vector.

xk Ratings vector in SN that contains k ratings provided by an active user.
pn,x,W PMF of the rating for product n, for a user with history x, based on training data W .

P (· |W, ν ) Joint distribution of ratings generated by a CF algorithm based on training data W and product

ordering ν.

σN Set of permutations of {1, . . . , N}.
dKL KL distortion.
dRMS RMS distortion.
dB Binary prediction distortion.

x̂n,x,W Scalar prediction of rating of product n for a user with history x, based on training data W .

d̂RMS Empirical RMS distortion.
ÊRMS Empirical RMS prediction error.

w→ w For each n, either wn = wn or wn = ◦.
‖w‖◦ Number of circles in ratings vector w: |{n : wn = ◦}|.
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